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Abstract

As an essential vision task, infrared small target detection (IRSTD)1 has seen
significant advancements through deep learning. However, critical limitations
in current evaluation protocols impede further progress. First, existing methods
rely on fragmented pixel- and target-level specific metrics, which fails to provide
a comprehensive view of model capabilities. Second, an excessive emphasis
on overall performance scores obscures crucial error analysis, which is vital for
identifying failure modes and improving real-world system performance. Third, the
field predominantly adopts dataset-specific training-testing paradigms, hindering
the understanding of model robustness and generalization across diverse infrared
scenarios. This paper addresses these issues by introducing a hybrid-level metric
incorporating pixel- and target-level performance, proposing a systematic error
analysis method, and emphasizing the importance of cross-dataset evaluation.
These aim to offer a more thorough and rational hierarchical analysis framework,
ultimately fostering the development of more effective and robust IRSTD models.
An open-source toolkit has be released to facilitate standardized benchmarking. 2

1 Introduction

Infrared small target detection (IRSTD) is critical in applications such as maritime resource man-
agement, navigation, and environmental monitoring [30, 3, 2, 36]. Infrared imaging leverages the
contrast between target and background radiation, offering advantages such as working in all weather
conditions and operating day and night. Detecting small and low-contrast targets in infrared image
presents significant challenges due to complex backgrounds, long-distance transmission effects, and
a low signal-to-noise ratio [4, 16]. Given the unique challenges, significant research has been devoted
to developing algorithms that accurately capture and segment these targets.

Despite advances in detection methods, the evaluation protocols used to benchmark these algorithms
remains a subject of concern. Current IRSTD practices rely on level-specific metrics, including both
pixel-level IoUpix, nIoUpix, and F1pix, and target-level Pd and Fa, alongside independent training
and testing on individual datasets. These protocols often prioritize the incomplete evaluation in
data-constrained scenarios, failing to deliver comprehensive and detailed model analysis. Such
an inadequate evaluation leads to several issues. First, existing fragmented and coupled metrics
result in a lack of holistic evaluation, making it difficult to fully show the model’s true performance.
Furthermore, the current research frequently overlooks systematic failure mode investigation in

*Corresponding Authors: Xiaoqi Zhao # and Lihe Zhang #
1In the existing literature, IRSTD can refer to both detection and segmentation tasks. However, this paper

primarily focuses on the more challenging segmentation task as in [20, 17, 37].
2Our evaluation toolkit: https://github.com/lartpang/PyIRSTDMetrics
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its rush to report competitive performance benchmarks, which is a fundamental requirement for
diagnosing model vulnerabilities and enhancing algorithmic robustness. Additionally, the evaluation
protocol remains constrained by its dataset-specific training-testing paradigm. Such a widespread
practice incentivizes narrow optimization for dataset biases rather than general detection capability.
It not only increases overfitting risks but may also exaggerate perceived performance.

Figure 1: Our hierarchical analysis framework.

To address these challenges, we propose a
comprehensive hierarchical analysis framework,
which introduces three key components: 1)
a hybrid-level performance metric, hierarchi-
cal IoU (hIoU), 2) a systematic error analysis
method, and 3) a cross-dataset evaluation set-
ting. Specifically, the proposed hIoU combines
the performance from target-level localization
and pixel-level segmentation, offering a more
holistic view of model efficacy. And the pro-
posed error analysis method is closely tied and complementary to the proposed metric hIoU. It
allows for a detailed exploration of model failure modes and identifying key cues for improving
method effectiveness. Besides, our cross-dataset setting systematically evaluates model performance
across different dataset scenarios, providing valuable measurements of robustness and generalization.
By addressing these challenges, our work provide a thorough and rational evaluation framework,
ultimately contributing to the advancement of more reliable and transferable IRSTD applications.

Our main contributions are summarized as follows:

• First to expose limitations in current IRSTD evaluation protocols and propose a hierarchical analysis
framework.

• Introduce an hybrid-level metric capturing IRSTD performance across target and pixel levels.
• Reveal limited cross-dataset generalization of IRSTD algorithms through detailed evaluation.
• First to systematically analyze errors in IRSTD by quantifying model limitations under our metric.
• Develop a universal and comprehensive evaluation toolkit to advance IRSTD research.

2 Related Work

After the development of several decades, the IRSTD algorithm design has undergone a significant
evolution from traditional methods to deep learning techniques [4, 16]. Traditional algorithms [1, 15,
31, 10, 13, 26, 14, 27, 12, 8, 7, 38, 43, 39] rely on filtering techniques and model-driven approaches,
which perform well in simple backgrounds but lacked robustness in complex environments. Recent
advances [9, 40, 17, 41, 42, 34, 29, 33, 22, 6, 20, 44, 37, 32, 18, 35, 19] based on deep learning have
significantly propelled IRSTD.

Pioneering work [9] introduces asymmetric contextual modulation to enhance target-background
discrimination while addressing data scarcity via a high-quality annotated dataset. Subsequent
studies focus on specialized architectures. [17] designs dense nested interaction modules with dual
attention to preserve targets across network depths, whereas [40] proposes feature compensation
and cross-level correlation mechanisms to recover lost target details. For shape-aware detection,
[41] integrates Taylor finite difference operators and orientation attention to capture geometric
characteristics of targets. And [44] emphasizes lightweight multi-receptive field perception and feature
fusion. Attention mechanisms became pivotal in later innovations. [42] developes pyramid context
modules with global-local attention for complex backgrounds, while [34] embeds nested U-Nets with
resolution-maintenance supervision to enhance multi-scale contrast. And [6] employs selective rank-
aware attention to resolve hit-miss trade-offs. Transformer-based architectures emerge as powerful
alternatives. [22] combines bilinear correlation and dilated convolutions for semantic refinement.
[37] introduces spatial-channel cross-transformers to model full-level semantic differences. Besides,
the loss function design proves critical. Scale- and location-sensitive losses [20] are developed to
address target scale and location variations. Efforts to balance performance and interpretability are
also explored by [32] which unfolds robust PCA into a deep network.

Despite these algorithmic advancements, the field has predominantly focused on architectural inno-
vations while neglecting improvements in evaluation frameworks. Our work shifts the focus from
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algorithm design to evaluation pipeline. And our framework provides actionable insights for real-
world deployments, complementing rather than competing with existing algorithmic advancements.

3 Evaluation Metrics

3.1 Preliminaries

The existing deep learning-based IRSTD approaches utilize the hierarchical encoder-decoder[28,
21] architecture to process a dataset with K pairs of thermal infrared images {Ii}Ki=1 and the
corresponding ground truth (GT) binary masks {Gi}Ki=1. In the pipeline, gray-scale predictions
{Pi}Ki=1 will be generated for these input images by the deep model in an end-to-end manner. The
pixel values of Pi represent the probabilities of pixels belonging to infrared small targets within the
ith input image, and they range from 0 to 1. 0 indicates that the pixel is classified as a background
pixel, whereas the value 1 signifies that the pixel is considered to be part of the foreground target.
Gray-scale predictions {Pi}Ki=1 are directly compared with their corresponding binary GT masks
{Gi}Ki=1 to calculate similarity. Thus, the average performance on the dataset can be calculated to
evaluate the proposed algorithm. Currently, IRSTD metrics can be broadly classified into pixel-level
and target-level categories according to their computational primitives. The following sections will
provide detailed introductions.

3.2 Pixel-level Metrics

In this branch, existing metrics are all computed based on the statistical values the number of
pixel-level true positives (TPpix), false positives (FPpix), true negatives (TNpix), and false negatives
(FNpix) from the binary confusion matrix. Note that TPpix, FPpix, TNpix, and FNpix rely on the
binary predictions and GTs with the same size. Therefore, the binarization strategy applied to the
gray-scale predictions also influences the results of these metrics. However, the strategy design is
beyond the scope of this work. Unless otherwise specified, a commonly-used threshold of 0.5 will be
used by default for the prediction thresholding. The pixel-level metrics involved in existing works
include Intersection over Union (IoU), and F1-score (F1) 3.

Intersection over Union (IoU) is a widely-used metric for measuring the overlap between the
predicted foreground and the GT mask, normalizing their intersection cardinality with respect to the
union. In existing works, there exist two different variants according to the difference of computational
logic, including the conventional IoU (IoUpix) and the normalized IoU (nIoUpix) [9] as follows:

IoUpix =

∑K
i=1 |TP[i]

pix|∑K
i=1(|TP[i]

pix|+ |FP[i]
pix|+ |FN[i]

pix|)
nIoUpix =

K∑
i=1

|TP[i]
pix|/K

|TP[i]
pix|+ |FP[i]

pix|+ |FN[i]
pix|

(1)

where | · | and [i] represent the number of elements in the set and the sample index, respectively.
IoUpix aggregates global pixel statistics across all samples. nIoUpix computes per-sample IoU before
averaging, which ensures equal contribution from all samples, thereby fairly evaluating performance
across diverse targets. When there is only one single sample (i.e., K = 1), nIoUpix = IoUpix.

F1-score (F1pix) is the harmonic mean of precision (Prepix) and recall (Recpix), designed to balance
these metrics and provide a comprehensive evaluation. The calculation framework is defined as:

Prepix =

∑K
i=1 |TP[i]

pix|∑K
i=1 |TP[i]

pix|+ |FP[i]
pix|

Recpix =

∑K
i=1 |TP[i]

pix|∑K
i=1 |TP[i]

pix|+ |FN[i]
pix|

(2)

F1pix =
2Prepix × Recpix
Prepix + Recpix

(3)

where Prepix and Recpix are primarily used to calculate the metric F1 and not used independently.

3.3 Target-level Metrics

Target-level metrics are designed to evaluate model performance at the level of individual targets and
play an important role in IRSTD [17]. Unlike pixel-level metrics that aggregate performance across

3While IoU and F1 fundamentally measure region overlap, their standard implementation in IRSTD prioritizes
global pixel-level evaluation over target-level alignment.
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(a) (b) (c) (d) (e) (f)
IoUpix ↑ nIoUpix ↑ F1pix ↑ Pd↑ Fa×106 ↓ hIoU↑ IoUseg

pix ↑ Eseg
MRG ↓ Eseg

ITF ↓ Eseg
PCP ↓ IoUloc

tgt ↑ Eloc
S2M ↓ Eloc

M2S ↓ Eloc
ITF ↓ Eloc

PCP ↓
Subfigure Ori. [17] OPDC Ori. [17] OPDC OPDC OPDC OPDC OPDC OPDC OPDC OPDC OPDC OPDC OPDC

(a) 0.573 0.573 0.728 0.333 0.667 785.828 0.000 0.373 0.560 0.052 0.246 0.142 0.667 0.333 0.000 0.000 0.000
(b) 0.438 0.438 0.610 0.333 1.000 1457.214 198.364 0.344 0.459 0.000 0.225 0.316 0.750 0.000 0.000 0.250 0.000
(c) 0.310 0.310 0.473 0.500 0.500 0.000 0.000 0.300 0.600 0.000 0.000 0.400 0.500 0.000 0.000 0.000 0.500
(d) 0.477 0.477 0.646 1.000 1.000 579.834 625.610 0.005 0.036 0.000 0.000 0.964 0.143 0.000 0.857 0.000 0.000
(e) 0.514 0.514 0.679 0.500 0.500 244.141 244.141 0.118 0.474 0.474 0.053 0.000 0.250 0.250 0.000 0.500 0.000
(f) 0.326 0.326 0.492 1.000 1.000 0.000 0.000 0.313 0.313 0.000 0.085 0.602 1.000 0.000 0.000 0.000 0.000

Figure 2: Comparison of different metrics. Red and blue boxes to highlight the target regions. Red
and blue points indicate the target centroids in ground truth (GT) masks and predictions, respectively.
Zoom in on the digital color version for details. “Ori.” [17] and “OPDC” refer to the original distance-
based strategy and the proposed OPDC strategy for target matching.

the entire image, target-level metrics focus on the localization quality of predictions for each distinct
small target. And target region sets {Tm

G } and {Tn
P } are extracted by the connected component

analysis algorithm from the GT masks and binary predictions, respectively. Each individual predicted
target Tn

P tries to match a nearby target Tm
G in the GT mask based on a specific criteria. Existing

works [17, 22, 33] usually use the centroid distance to determine the matching relationship. If the
distance between Tn

P and Tm
G is less than the predefined threshold (e.g., 3 [17]), they will be viewed as

the matched pair. Every predicted target matches to at most one GT target, and vice versa. Eventually,
the predicted target regions matched to GT targets can be considered as belonging to target-level TP
(TPtgt), while the remaining TP and TG belong to FPtgt and FNtgt, respectively.

Probability of Detection (Pd). It quantifies the model’s ability to detect true targets by computing
the fraction of correctly matched target predictions (the count of TPtgt) over the total number of GT
targets (TPtgt + FNtgt) as follows:

Pd =

∑K
i=1 |TP[i]

tgt|∑K
i=1(|TP[i]

tgt|+ |FN[i]
tgt|)

(4)

It effectively evaluates detection completeness for small targets regardless of their pixel area size.

False-Alarm Rate (Fa). It evaluates the spatial impact of unmatched predictions by normalizing the
count of pixels in all FPtgt targets against the entire image resolution:

Fa =

∑K
i=1 TargetAreaOf(FP[i]

tgt)∑K
i=1 ImageAreaOf(Gi)

(5)

where the normalization stabilizes comparisons across varying resolutions.

3.4 Current Limitations

Pixel-level Evaluation. Although IoUpix, nIoUpix, and F1pix mitigate foreground imbalance by
incorporating relative area proportions, they are inherently limited to global pixel-wise analysis and
cannot assess target-level spatial localization or segmentation accuracy, both of which are critical to
understanding the fine-grained IRSTD performance.

Target-level Evaluation. Pd measures detection completeness but ignores false positives, potentially
overestimating performance in noisy environments. Fa quantifies the spatial impact of FPtgt by
normalizing their total area to the full image. But it maybe undercount smaller FPtgt targets while
overpenalizing large FPtgt targets. Additionally, Fa disregards pixel-level errors (FPpix) within TPtgt

targets and target-level errors FNtgt targets. Although conventional Pd and Fa may compensate for
each other’s blind spots, their shared dependency on the distance threshold and data biases related to
size and shape limit their ability to holistically reflect algorithm performance.
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Fragmented Evaluation Paradigm. Current pipelines rely on several pixel-level (IoUpix, nIoUpix,
and F1pix) and target-level (Pd and Fa) metrics to approximate holistic performance. The former
lacks spatial awareness, while the latter oversimplifies error patterns. While they individually address
specific aspects, their simple combination creates a mismatch between evaluation pipeline and
task requirements. Such fragmented paradigm obscures critical trade-offs, such as segmentation-
localization dependency and target diversity tolerance, leaving incomplete or even contradictory
performance insights. A new evaluation framework, considering hybrid-level modeling and data
diversity, is essential to overcome these limitations.

4 New Evaluation Framework

4.1 Target Matching Strategy

Current target-level IRSTD metrics suffer from overly strict distance-only filtering [17], where
centroid matching frequently misjudges offset, fragmented, or connected predictions as shown in
Fig. 2a and Fig. 2b. By introducing overlap-priority constraint to enhance the matching mechanism,
we propose the “Overlap Priority with Distance Compensation” (OPDC) strategy (Alg. 1), which can
effectively alleviates these limitations.

Overlap priority constraint enforces shape coherence by computing pairwise overlap ratios between
targets from GTs and predictions. For each target pair, if their IoU exceeds 0.5, it is marked as a
valid candidate. The commonly-used assignment algorithm [5] is then applied to the full centroid
Euclidean distance matrix to find the minimum-cost matching, followed by retaining only valid pairs
satisfying the overlap constraint. This phase ensures morphological alignment by filtering mismatches
caused by unreasonable shapes or over-prediction as the smallest target in Fig. 2a, resulting in initial
matched pairs STP and unmatched sets SFN/SFP .

Distance-based compensation supplements residual unmatched pairs by evaluating centroid Eu-
clidean distances. For targets in SFN and SFP , pairs with distances below the strict threshold (3
pixels, as in [17]) are re-matched via the assignment algorithm [5]. This phase specifically addresses
small or low-overlap targets where shape metrics may underperform, leveraging spatial proximity as
a secondary criterion to reassess their value.

By hierarchically integrating overlap and distance constraints, OPDC achieves a more intuitive
matching. The former prioritizes overlap-based filtering to relax the original distance constraint,
aligning with the real-world intuition where high overlap inherently indicates true morphological
correspondence. The latter acts as a safety net exclusively for low-overlap residuals, ensuring spatial
proximity without compromising the dominance of shape-aware matching. As shown in Fig. 2f, the
right predicted target that do not satisfy the overlap constraint are re-matched with the GT target in
the distance compensation.

4.2 Hierarchical Intersection over Union

Evaluation practices in current IRSTD studies typically focus on either isolated pixel-level or target-
level similarity measurements between predictions and GTs. However, we propose a new hybrid-level
metric, i.e., hierarchical Intersection over Union (hIoU), which hierarchically combines both global
target-level localization and local pixel-level segmentation performance as follows:

IoUloc
tgt =

∑K
i=1 |TP[i]

tgt|∑K
i=1 |TP[i]

tgt|+ |FP[i]
tgt|+ |FN[i]

tgt|
IoUseg

pix =

∑
(Tm

G ,Tn
P )∈TPtgt

(Tm
G ∩ Tn

P )/(T
m
G ∪ Tn

P )∑K
i=1 |TP[i]

tgt|
(6)

hIoU = IoUloc
tgt × IoUseg

pix (7)

where (Tm
G ∩ Tn

P )/(T
m
G ∪ Tn

P ) denotes the intersection-over-union ratio of the matched predicted
target Tn

P and GT target Tm
G from TPtgt. IoUloc

tgt and IoUseg
pix reflect the IoU-based localization and

segmentation performance in infrared small target prediction, respectively. Specifically, we first
adjust the IoU metric to measure the target-level localization performance IoUloc

tgt. And then, for
those predicted targets matched with GT targets, IoUseg

pix is further applied to measure the local fine-
grained segmentation similarity between them and the corresponding GT targets. The multiplicative
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combination in hIoU inherently balances localization and segmentation: a method missing targets
(low IoUloc

tgt) or producing imprecise regions (low IoUseg
pix) will be penalized proportionally. Unlike

additive combinations that allow for linear error compensation (e.g., high localization scores masking
poor segmentation), this coupling measures the joint performance in the unit space [0, 1]2, which
makes improvements in one part necessary to maintain the other’s performance. For example,
achieving hIoU>0.64 requires both IoUloc

tgt and IoUseg
pix to exceed 0.64, whereas additive scoring

would accept imbalanced solutions like (0.9 + 0.38)/2 = 0.64. This hybrid-level paradigm enables
more comprehensive and nuanced performance evaluation, particularly crucial for the IRSTD task
where both complete localization (preventing target loss) and precise region delineation (ensuring
target integrity) are equally valuable for practical applications. Further discussions can be found in
Sec. C.2.

4.3 Error Analysis Method

𝐄𝑃𝐶𝑃
𝑠𝑒𝑔

𝐄𝐼𝑇𝐹
𝑠𝑒𝑔

𝐄𝑀𝑅𝐺
𝑠𝑒𝑔

𝐄𝑃𝐶𝑃
𝑙𝑜𝑐

𝐄𝐼𝑇𝐹
𝑙𝑜𝑐

𝐄𝑀2𝑆
𝑙𝑜𝑐

𝐄𝑆2𝑀
𝑙𝑜𝑐

Matched

Figure 3: Error types (Sec. 4.3) for three pre-
dicted and three GT targets. Blue contours denote
predictions and red contours denote GT. Under
our OPDC strategy, only the middle prediction is
matched to a GT and all others remain unmatched.

Existing protocols for evaluating IRSTD typi-
cally focus on overall average performance val-
ues. This analytical preference obscures criti-
cal failure modes and makes it difficult to di-
agnose and improve model deficiencies. For
instance, a low IoUpix and Pd could stem from
background noise interference, adjacent target
merging, or target perception limitations—each
requiring distinct corrective strategies. To ad-
dress this, building on our hierarchical evalua-
tion paradigm as stated in Sec. 4.2, we catego-
rize prediction errors into two associated levels:
target-level localization errors (Eloc

S2M , Eloc
M2S ,

Eloc
ITF , and Eloc

PCP ) and pixel-level segmenta-
tion errors (Eseg

MRG, Eseg
ITF , and Eseg

PCP ). They
provide fine-grained decomposition of the per-
formance losses reflected in IoUloc

tgt (target localization IoU) and IoUseg
pix (target segmentation IoU)

metrics, respectively. Critically, the total error for each level is complementary to its corresponding
IoU metric:

Total Localization Error Eloc = 1− IoUloc
tgt Total Segmentation Error Eseg = 1− IoUseg

pix (8)

Such a design establishes an explicit error-accuracy complementary relationship, where our error
subtypes illustrated in Fig. 3 quantify distinct sources of deviation from the ideal performance of 1.

Target-level localization errors quantify mismatches and misidentifications in perceiving individual
targets, including Eloc

S2M , Eloc
M2S , Eloc

ITF , and Eloc
PCP .

• Eloc
S2M (Single-to-Multi Mismatch): During the matching process, when a single predicted target

satisfies overlap/distance constraints with multiple GT targets but ultimately gets assigned to only
one GT target, the remaining unmatched GT targets contribute to this localization error. This is
commonly observed in dense target clusters where a single prediction overlaps ambiguously with
multiple GT targets, as illustrated in Fig. 2a and Fig. 2e.

• Eloc
M2S (Multi-to-Single Mismatch): When multiple predicted targets satisfy matching constraints

with a single GT target, the one-to-one matching protocol forces retention of only one prediction.
The excluded and unmatched competing predictions then become contributors to this localiza-
tion error. This reflects model oversensitivity or fragmented predictions near valid targets, as
demonstrated in Fig. 2d.

• Eloc
ITF (Interference Error): It corresponds to other false target predictions with no corresponding

GT, which are primarily triggered by background clutter or noise artifacts, as marked by blue boxes
in Fig. 2b and Fig. 2e.

• Eloc
PCP (Perception Error): It quantifies undetected GTs that fail to meet matching criteria, as

exemplified in Fig. 2c. This indicates model insensitivity to low-contrast or morphologically
variable targets.

Pixel-level segmentation errors capture neighboring interferences and shape distortions in matched
targets, including Eseg

MRG, Eseg
ITF , and Eseg

PCP .
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Algorithm 1: OPDC Matching Strategy
Input: {Tm

G }Mm : the mask set of M targets extracted from GT map G; {Tn
P }Nn : the mask set of N targets

extracted from prediction map P ; MAX: a extremely large value used to avoid the algorithm
choosing irrational matches;

Output: STP : the matched index pair set; SFN : the unmatched GT target index set; SFP : the unmatched
predicted target index set;

// 1. Overlap Priority Constraint
1 Valid indicator I ∈ RM×N , Im,n ∈ {0, 1}, Im,n = 0, ∀m,n;
2 Distance matrix D ∈ RM×N , Dm,n = MAX,∀m,n;
3 for m = 1 to M do
4 for n = 1 to N do
5 Dm,n = EuclideanDistance(Tm

G , Tn
P );

6 if |Tm
G ∩ Tn

P |/|Tm
G ∪ Tn

P | ≥ 0.5 then Im,n = 1;

7 Initial match A = Assignment(D); // scipy.optimize.linear_sum_assignment [5]
8 STP , SFN , SFP ← A ∩ I; // Consider only pairwise relations that satisfy constraints.

// 2. Distance-based Compensation
9 Valid indicator Î ∈ R|SFN |×|SFP |, Îm,n ∈ {0, 1}, Îm,n = 0, ∀m,n;

10 Distance matrix D̂ ∈ R|SFN |×|SFP |, D̂m,n = MAX, ∀m,n;
11 for m = 1 to |SFN | do
12 for n = 1 to |SFP | do
13 if DSm

FN
,Sn

FN
< 3 then // Following the setting in [17].

14 D̂m,n = DSm
FN

,Sn
FN

;
15 Îm,n = 1;

16 Compensation match Â = Assignment(D̂); // scipy.optimize.linear_sum_assignment [5]
17 ŜTP , ŜFN , ŜFP ← Â ∩ Î;
18 STP = STP ∪ ŜTP ; // Construct final matched index pair set.
19 SFN = SFN \ ŜTP ; // Construct final unmatched GT target index set.
20 SFP = SFP \ ŜTP ; // Construct final unmatched predicted target index set.

• Eseg
MRG (Merging Error): This error quantifies false positive pixels within the regions of the GT

targets that are not matched to the current predicted target. It specifically occurs when a target
prediction extends into neighboring GT target regions, particularly when adjacent targets are
erroneously merged, as shown in Fig. 2a and Fig. 2e.

• Eseg
ITF (Interference Error): It represents incorrectly predicted foreground pixels in real background

region within target neighborhood, highlighting local noise interference or incomplete background
suppression, as exemplified in Fig. 2a and Fig. 2b.

• Eseg
PCP (Perception Error): It accounts for the missing prediction within the region of the matched

GT target, reflecting model uncertainty in delineating targets with faint edges or complex structures,
as illustrated in Fig. 2d.

5 Experiment

5.1 Experimental Setup

Datasets. We evaluate IRSTD methods on three widely-used datasets: IRSTD1k [41], SIRST [9], and
NUDT [17]. These datasets exhibit inherent diversity and complexity [6], enabling comprehensive
evaluation of both within-dataset performance and cross-dataset generalization.

Metrics. We adopt several existing standard metrics, i.e., IoUpix, nIoUpix, F1pix, Pd, and Fa. Besides,
we introduce the proposed hIoU to holistically evaluate localization-segmentation joint performance.
For error analysis, we decompose hIoU into two components, i.e., IoUloc

tgt and IoUseg
pix, and further

break down their error statistics into fine-grained aspects based on a set of error subtypes.

Implementation Details. To ensure fair comparison across methods, we retrain all approaches
using their official codebases under strictly controlled settings. All models are optimized via Adam
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optimizer with an initial learning rate of 0.0005 and a multi-step decay schedule. They are trained for
400 epochs using a batch size of 16 on two NVIDIA GeForce RTX 3090 GPUs with a total of 48 GB
memory. Following the existing practices [20], we introduce random horizontal flipping, cropping,
and blurring to mitigate the overfitting risk. Besides, all images are bilinearly interpolated to 256 ×
256 resolution during both training and testing phases.

5.2 Results and Discussion

We conduct a comprehensive benchmarking study of 14 recent deep learning-based4 IRSTD meth-
ods [9, 40, 17, 41, 42, 34, 29, 33, 22, 6, 20, 44, 37, 32] through and dual evaluation protocols:
conventional metrics and our hierarchical analysis framework. This analysis uniquely addresses two
critical gaps in existing research: 1) over-optimistic single-dataset evaluation and 2) lack of detailed
error analysis. By introducing cross-dataset setting and fine-grained error decomposition, we reveal
previously obscured performance limitations.

Holistic Performance. Existing metrics show weak alignment in practical performance evaluation.
As exemplified in Tab. 1, MSHNet [20], achieving top scores in conventional metrics (IoUpix,
F1pix and Fa), fails to translate these advantages into superior holistic performance (hIoU). While
DNANet [17] does not stand out in conventional metrics, its more balanced segmentation and
localization performance propels it to hIoU leadership (0.557 vs. MSHNet’s 0.549), as shown in
Tab. 2. This inconsistency stems from their narrow focus on isolated aspects (pixel-level segmentation
accuracy, target-level detection recall, etc..) without adequately modeling task hierarchy. Our hIoU
demonstrates important value by reconciling these different aspects.

OPDC-Based Matching. To show OPDC’s effects, we recalculated Pd and Fa metrics under this
strategy (“+OPDC”) as listed in Tab. 1. The observed recall improvement reveals that the original
distance-based criterion overly constrained matching, discarding predictions with valuable positional
reference for target localization. As shown in Fig. 2, when predictions span multiple adjacent GT
targets (Fig. 2a and Fig. 2e) or partially intersect isolated targets (Fig. 2b), they fail centroid distance
checks under the current protocol, but provide key location cues. OPDC alleviates these limitations
through a dual-constraint mechanism that prioritizes overlap constraint as the primary matching
trigger, with centroid distance constraint acting as supplementary validators as stated in Sec. 4.1.

Cross-Dataset Generalization. Cross-dataset analysis in Tab. 1 exposes critical generalization
limitations. Most models exhibit severe performance degradation when they are tested on other
datasets beyond their training one. Notably, IRSTD1k-trained models achieve better performance
on SIRSTTE than on IRSTD1kTE . And some IRSTD1k-trained models (e.g., MRF3Net with 0.694
hIoU) even surpass counterparts trained on SIRSTTR (UIUNet: 0.679 hIoU; RPCANet: 0.675 hIoU)
when evaluated on SIRSTTE . This phenomenon may be attributed to IRSTD1k primarily focuses on
sky-background scenarios from SIRST, while introducing additional challenging ground scenarios
(e.g., woods and buildings). These complexities make IRSTD1kTE inherently more difficult than
SIRSTTE . Current single-dataset evaluation frameworks fail to expose such critical performance
limitations. Establishing cross-dataset evaluation protocols would not only drive the community
to prioritize model generalization across diverse scenarios, but also incentivize dataset creators
to enhance scenario and target diversity. This paradigm shift addresses the current oversight in
robustness validation and fosters progress in domain adaptation research.

Dense Multi-Object Scenarios. As shown in Fig. 4, these errors are predominantly dominated
by interference- and perception-related terms. More specifically, interference item dominates the
localization error, while perception item dominates the segmentation error. The former reflects the
limited capability of current algorithms in suppressing background interference. The latter is closely
tied to the intrinsic challenges of infrared small targets, such as blurred boundaries and complex
structure patterns, which may lead to insufficient holistic perception during prediction. Furthermore,
the analysis reveals that matching errors (i.e., Eloc

S2M and Eloc
M2S) and prediction merging errors

(i.e., Eseg
MRG), often arising in dense multi-target scenarios or cases with complex target structures,

exhibit relatively low proportions due to current data limitations. However, experiments in Sec. B
using synthetic data reveal that they still make up a significant portion of total error. Their impact
cannot be overlooked, as they represent critical failure modes in real-world applications. For instance,
single-to-multi or multi-to-single errors may disrupt downstream tasks like counting, and merged

4Deep learning approaches are prioritized due to their demonstrated superiority in handling the IRSTD task.
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Table 1: Cross-dataset performance analysis. Colors red, green and blue represent the first, second
and third ranked results.

ACM21 [9] FC3Net22 [40] DNANet22 [17] ISNet22 [41] AGPCNet23 [42] UIUNet23 [34] RDIAN23 [29] MTU-Net23 [33] ABC23 [22] SeRankDet24 [6] MSHNet24 [20] MRF3Net24 [44] SCTransNet24 [37] RPCANet24 [32]

Params. 0.5M 6.9M 4.7M 1.1M 12.4M 50.5M 0.1M 4.1M 73.5M 108.9M 4.1M 0.5M 11.2M 0.7M
FLOPs 2.0G 10.6G 56.1G 121.9G 327.5G 217.9G 14.8G 24.4G 332.6G 568.7G 24.4G 33.2G 67.4G 179.7G

Trained on IRSTD1kTR [41].

IR
ST

D
1k

T
E

[4
1]

IoUpix ↑ 0.439 0.358 0.637 0.578 0.605 0.570 0.603 0.610 0.624 0.642 0.650 0.636 0.644 0.608
nIoUpix ↑ 0.476 0.531 0.625 0.518 0.580 0.600 0.605 0.607 0.595 0.621 0.620 0.630 0.622 0.579
F1pix ↑ 0.610 0.527 0.778 0.733 0.754 0.726 0.753 0.757 0.768 0.782 0.788 0.777 0.783 0.756
Pd↑ 0.798 0.865 0.912 0.919 0.916 0.906 0.902 0.929 0.916 0.926 0.933 0.899 0.912 0.886

+OPDC 0.835 0.875 0.916 0.926 0.919 0.912 0.912 0.939 0.919 0.933 0.936 0.909 0.923 0.896
Fa×106 ↓ 95.178 237.365 13.854 13.266 15.354 51.147 21.503 28.012 16.815 44.638 11.539 17.441 16.834 28.145

+OPDC 61.187 233.266 10.476 11.444 11.862 44.277 17.062 23.647 13.475 41.108 7.686 12.146 10.476 21.844
hIoU↑ 0.356 0.383 0.557 0.443 0.496 0.530 0.511 0.493 0.508 0.520 0.549 0.553 0.537 0.470

SI
R

ST
T
E

[9
]

IoUpix ↑ 0.472 0.234 0.676 0.712 0.763 0.696 0.658 0.701 0.708 0.734 0.649 0.752 0.629 0.543
nIoUpix ↑ 0.567 0.595 0.733 0.719 0.735 0.688 0.735 0.749 0.737 0.742 0.699 0.763 0.686 0.676
F1pix ↑ 0.642 0.380 0.807 0.832 0.866 0.821 0.794 0.824 0.829 0.847 0.787 0.858 0.772 0.704
Pd↑ 0.908 0.872 0.963 0.982 0.991 0.963 0.963 0.982 0.972 0.982 0.954 0.982 0.963 0.927

+OPDC 0.927 0.881 0.963 0.982 0.991 0.982 0.963 1.000 0.982 0.982 0.954 0.982 0.963 0.927
Fa×106 ↓ 127.650 932.797 3.754 5.632 2.560 86.351 17.407 42.152 22.526 17.236 11.946 4.608 20.820 124.066

+OPDC 121.165 932.456 3.754 5.632 2.560 30.376 17.407 38.397 21.844 17.236 11.946 4.608 20.820 124.066
hIoU↑ 0.418 0.390 0.687 0.674 0.682 0.644 0.645 0.693 0.672 0.684 0.623 0.694 0.596 0.598

N
U

D
T
T
E

[1
7]

IoUpix ↑ 0.331 0.288 0.504 0.443 0.468 0.450 0.441 0.416 0.469 0.494 0.463 0.512 0.377 0.291
nIoUpix ↑ 0.452 0.443 0.627 0.538 0.556 0.541 0.554 0.528 0.582 0.581 0.561 0.609 0.502 0.430
F1pix ↑ 0.498 0.448 0.670 0.614 0.638 0.620 0.612 0.588 0.638 0.661 0.633 0.678 0.548 0.451
Pd↑ 0.757 0.752 0.848 0.759 0.785 0.836 0.804 0.769 0.808 0.820 0.771 0.815 0.748 0.701

+OPDC 0.792 0.787 0.886 0.806 0.850 0.867 0.871 0.857 0.841 0.832 0.843 0.862 0.818 0.722
Fa×106 ↓ 253.092 273.488 121.206 71.920 40.690 114.695 71.869 96.690 133.464 63.883 65.562 43.844 110.728 190.989

+OPDC 236.308 266.469 114.899 57.068 31.789 106.049 62.002 79.753 124.563 59.916 47.913 35.502 92.723 187.581
hIoU↑ 0.274 0.333 0.526 0.434 0.456 0.457 0.408 0.366 0.484 0.466 0.445 0.484 0.393 0.344

Trained on SIRSTTR [9].

IR
ST

D
1k

T
E

[4
1]

IoUpix ↑ 0.104 0.456 0.564 0.498 0.518 0.444 0.382 0.545 0.574 0.549 0.581 0.581 0.550 0.492
nIoUpix ↑ 0.306 0.469 0.556 0.495 0.481 0.470 0.470 0.544 0.544 0.543 0.542 0.550 0.519 0.490
F1pix ↑ 0.188 0.626 0.721 0.665 0.683 0.615 0.552 0.705 0.730 0.709 0.735 0.735 0.710 0.659
Pd↑ 0.818 0.865 0.912 0.909 0.912 0.912 0.879 0.909 0.902 0.909 0.892 0.899 0.912 0.879

+OPDC 0.872 0.882 0.919 0.916 0.919 0.929 0.889 0.912 0.906 0.916 0.896 0.906 0.916 0.909
Fa×106 ↓ 1784.007 139.018 66.672 118.806 84.815 178.835 187.907 88.364 60.959 85.537 44.524 56.822 72.005 88.630

+OPDC 1704.411 129.073 61.813 115.124 81.608 160.730 182.935 87.947 60.409 81.399 44.144 52.666 71.663 81.342
hIoU↑ 0.124 0.334 0.435 0.370 0.356 0.336 0.172 0.408 0.443 0.413 0.459 0.398 0.400 0.313

SI
R

ST
T
E

[9
]

IoUpix ↑ 0.607 0.651 0.708 0.746 0.787 0.738 0.670 0.805 0.775 0.785 0.715 0.777 0.764 0.690
nIoUpix ↑ 0.664 0.740 0.779 0.759 0.771 0.723 0.751 0.796 0.793 0.800 0.754 0.775 0.773 0.742
F1pix ↑ 0.756 0.788 0.829 0.854 0.881 0.849 0.803 0.892 0.873 0.879 0.834 0.875 0.866 0.817
Pd↑ 0.954 1.000 0.963 0.982 1.000 0.991 0.972 1.000 1.000 1.000 0.972 1.000 0.991 0.972

+OPDC 0.972 1.000 0.972 0.991 1.000 0.991 0.972 1.000 1.000 1.000 0.972 1.000 1.000 0.972
Fa×106 ↓ 92.836 121.506 4.778 35.155 8.362 13.994 75.771 14.335 31.571 31.571 25.598 13.482 7.679 51.367

+OPDC 51.879 121.506 3.584 22.526 8.362 13.994 75.771 14.335 31.571 31.571 25.598 13.482 6.485 51.367
hIoU↑ 0.584 0.655 0.736 0.720 0.723 0.679 0.655 0.732 0.747 0.755 0.699 0.715 0.712 0.675

N
U

D
T
T
E

[1
7]

IoUpix ↑ 0.121 0.361 0.521 0.463 0.458 0.482 0.226 0.502 0.599 0.586 0.539 0.543 0.474 0.355
nIoUpix ↑ 0.373 0.461 0.635 0.552 0.563 0.549 0.527 0.586 0.663 0.644 0.616 0.643 0.572 0.467
F1pix ↑ 0.215 0.530 0.685 0.633 0.628 0.650 0.369 0.668 0.749 0.739 0.701 0.704 0.643 0.524
Pd↑ 0.855 0.757 0.841 0.832 0.846 0.846 0.825 0.846 0.888 0.867 0.864 0.890 0.827 0.750

+OPDC 0.879 0.836 0.923 0.867 0.888 0.916 0.923 0.909 0.895 0.879 0.883 0.946 0.883 0.848
Fa×106 ↓ 2600.861 150.604 114.594 115.000 142.008 118.510 1013.184 100.352 58.492 42.979 70.089 97.198 91.553 139.211

+OPDC 2571.971 139.567 100.352 111.084 137.126 109.049 996.348 82.855 56.661 41.453 66.427 90.078 84.686 124.003
hIoU↑ 0.125 0.317 0.379 0.419 0.340 0.409 0.070 0.404 0.492 0.474 0.481 0.401 0.406 0.328

Trained on NUDTTR [17].

IR
ST

D
1k

T
E

[4
1]

IoUpix ↑ 0.340 0.398 0.420 0.259 0.443 0.464 0.448 0.450 0.441 0.214 0.405 0.414 0.392 0.270
nIoUpix ↑ 0.420 0.425 0.506 0.342 0.479 0.522 0.523 0.506 0.492 0.341 0.527 0.511 0.484 0.409
F1pix ↑ 0.508 0.569 0.591 0.411 0.614 0.633 0.619 0.621 0.612 0.352 0.576 0.585 0.564 0.425
Pd↑ 0.862 0.859 0.852 0.865 0.875 0.892 0.862 0.892 0.896 0.943 0.896 0.889 0.892 0.855

+OPDC 0.886 0.879 0.859 0.882 0.892 0.899 0.886 0.906 0.906 0.943 0.902 0.896 0.902 0.879
Fa×106 ↓ 251.409 134.596 76.408 268.699 79.710 107.741 57.904 112.847 58.530 678.048 104.724 81.247 89.465 265.985

+OPDC 226.149 113.872 73.504 257.919 70.695 92.255 49.325 106.508 54.810 678.048 101.346 79.843 87.112 256.970
hIoU↑ 0.306 0.279 0.383 0.186 0.366 0.382 0.342 0.322 0.375 0.192 0.408 0.325 0.321 0.192

SI
R

ST
T
E

[9
]

IoUpix ↑ 0.605 0.557 0.645 0.572 0.587 0.675 0.638 0.603 0.611 0.615 0.587 0.625 0.569 0.484
nIoUpix ↑ 0.668 0.627 0.716 0.621 0.660 0.720 0.720 0.687 0.678 0.704 0.670 0.709 0.632 0.560
F1pix ↑ 0.754 0.716 0.784 0.728 0.740 0.806 0.779 0.752 0.759 0.762 0.740 0.770 0.725 0.652
Pd↑ 0.963 0.954 0.936 0.927 0.917 0.963 0.963 0.954 0.945 0.954 0.954 0.936 0.945 0.826

+OPDC 0.963 0.963 0.936 0.936 0.917 0.972 0.963 0.963 0.945 0.963 0.954 0.936 0.945 0.826
Fa×106 ↓ 33.960 56.316 8.191 42.152 15.188 22.356 15.700 26.793 17.407 48.125 19.796 25.939 11.605 52.220

+OPDC 33.960 55.463 8.191 20.820 15.188 19.967 15.700 25.939 17.407 47.613 19.796 25.939 11.605 53.586
hIoU↑ 0.575 0.441 0.637 0.491 0.557 0.648 0.566 0.557 0.555 0.526 0.559 0.554 0.511 0.372

N
U

D
T
T
E

[1
7]

IoUpix ↑ 0.635 0.693 0.831 0.790 0.778 0.840 0.803 0.809 0.854 0.840 0.790 0.830 0.856 0.747
nIoUpix ↑ 0.668 0.723 0.850 0.813 0.796 0.844 0.826 0.821 0.862 0.854 0.817 0.847 0.856 0.772
F1pix ↑ 0.776 0.819 0.908 0.882 0.875 0.913 0.891 0.895 0.921 0.913 0.882 0.907 0.923 0.855
Pd↑ 0.974 0.953 0.988 0.988 0.986 0.993 0.988 0.993 0.993 0.991 0.974 0.991 0.991 0.970

+OPDC 0.977 0.960 0.991 0.993 0.986 0.995 0.995 0.993 0.995 0.991 0.981 0.993 0.995 0.972
Fa×106 ↓ 46.844 46.539 11.698 17.700 13.987 7.222 22.125 20.549 12.309 31.586 30.518 10.071 3.916 57.576

+OPDC 42.979 36.621 9.003 16.886 13.987 5.442 19.786 20.091 10.325 31.586 20.142 7.782 2.391 57.271
hIoU↑ 0.600 0.620 0.817 0.742 0.744 0.793 0.704 0.714 0.814 0.728 0.748 0.803 0.824 0.547

Table 2: Cross-dataset error analysis for IRSTD1kTR [41]-trained models. See Tab. 3 for details.

ACM21 [9] FC3Net22 [40] DNANet22 [17] ISNet22 [41] AGPCNet23 [42] UIUNet23 [34] RDIAN23 [29] MTU-Net23 [33] ABC23 [22] SeRankDet24 [6] MSHNet24 [20] MRF3Net24 [44] SCTransNet24 [37] RPCANet24 [32]

IR
ST

D
1k

T
E

[4
1]

IoUseg
pix ↑ 5.387e-01 6.172e-01 6.694e-01 5.476e-01 6.139e-01 6.317e-01 6.529e-01 6.543e-01 6.361e-01 6.755e-01 6.497e-01 6.742e-01 6.610e-01 6.607e-01

Eseg
MRG ↓ 2.132e-03 4.340e-04 5.610e-04 4.830e-04 4.340e-04 4.440e-04 5.410e-04 4.580e-04 4.680e-04 4.250e-04 0.000e+00 4.420e-04 4.770e-04 4.570e-04
Eseg

ITF ↓ 2.630e-01 1.431e-01 1.669e-01 1.089e-01 1.330e-01 1.048e-01 1.470e-01 1.855e-01 1.017e-01 1.463e-01 1.186e-01 2.039e-01 1.135e-01 1.595e-01
Eseg

PCP ↓ 1.962e-01 2.393e-01 1.631e-01 3.430e-01 2.527e-01 2.630e-01 1.996e-01 1.597e-01 2.618e-01 1.778e-01 2.317e-01 1.215e-01 2.250e-01 1.794e-01

IoUloc
tgt ↑ 6.613e-01 6.205e-01 8.318e-01 8.088e-01 8.077e-01 8.390e-01 7.832e-01 7.541e-01 7.982e-01 7.694e-01 8.450e-01 8.207e-01 8.131e-01 7.112e-01

Eloc
S2M ↓ 8.000e-03 2.387e-03 9.174e-03 2.941e-03 2.959e-03 3.096e-03 8.671e-03 5.405e-03 2.924e-03 2.778e-03 0.000e+00 6.079e-03 2.967e-03 2.674e-03

Eloc
M2S ↓ 0.000e+00 2.387e-03 0.000e+00 0.000e+00 0.000e+00 3.096e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 6.079e-03 0.000e+00 0.000e+00

Eloc
ITF ↓ 2.080e-01 2.888e-01 9.174e-02 1.265e-01 1.213e-01 7.740e-02 1.416e-01 1.973e-01 1.316e-01 1.750e-01 9.726e-02 9.119e-02 1.187e-01 2.059e-01

Eloc
PCP ↓ 1.227e-01 8.592e-02 6.728e-02 6.177e-02 6.805e-02 7.740e-02 6.647e-02 4.324e-02 6.725e-02 5.278e-02 5.775e-02 7.599e-02 6.528e-02 8.021e-02

SI
R

ST
T
E

[9
]

IoUseg
pix ↑ 6.254e-01 7.317e-01 7.391e-01 7.113e-01 7.260e-01 6.857e-01 7.550e-01 7.564e-01 7.405e-01 7.480e-01 7.184e-01 7.658e-01 7.036e-01 7.575e-01

Eseg
MRG ↓ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 6.040e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Eseg

ITF ↓ 1.488e-01 7.411e-02 5.026e-02 7.203e-02 8.022e-02 4.956e-02 7.283e-02 9.772e-02 4.874e-02 6.509e-02 5.877e-02 8.256e-02 4.715e-02 6.688e-02
Eseg

PCP ↓ 2.257e-01 1.941e-01 2.106e-01 2.167e-01 1.937e-01 2.587e-01 1.721e-01 1.459e-01 2.107e-01 1.869e-01 2.229e-01 1.516e-01 2.493e-01 1.756e-01

IoUloc
tgt ↑ 6.689e-01 5.333e-01 9.292e-01 9.469e-01 9.391e-01 9.386e-01 8.537e-01 9.160e-01 9.068e-01 9.145e-01 8.667e-01 9.068e-01 8.468e-01 7.891e-01

Eloc
S2M ↓ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.754e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

Eloc
M2S ↓ 6.623e-03 0.000e+00 0.000e+00 8.850e-03 0.000e+00 0.000e+00 0.000e+00 8.403e-03 0.000e+00 0.000e+00 0.000e+00 8.475e-03 0.000e+00 0.000e+00

Eloc
ITF ↓ 2.715e-01 3.944e-01 3.540e-02 2.655e-02 5.217e-02 4.386e-02 1.138e-01 7.563e-02 7.627e-02 6.838e-02 9.167e-02 6.780e-02 1.210e-01 1.484e-01

Eloc
PCP ↓ 5.298e-02 7.222e-02 3.540e-02 1.770e-02 8.696e-03 0.000e+00 3.252e-02 0.000e+00 1.695e-02 1.709e-02 4.167e-02 1.695e-02 3.226e-02 6.250e-02

N
U

D
T
T
E

[1
7]

IoUseg
pix ↑ 6.170e-01 6.490e-01 7.250e-01 7.177e-01 6.672e-01 6.491e-01 6.475e-01 6.569e-01 7.145e-01 7.075e-01 6.670e-01 7.032e-01 6.504e-01 6.966e-01

Eseg
MRG ↓ 1.087e-03 1.249e-03 0.000e+00 1.242e-03 1.124e-03 1.110e-03 1.270e-03 1.291e-03 0.000e+00 1.248e-03 0.000e+00 1.284e-03 1.176e-03 1.456e-03
Eseg

ITF ↓ 1.875e-01 1.287e-01 1.127e-01 1.463e-01 1.261e-01 9.163e-02 8.371e-02 1.352e-01 1.242e-01 1.275e-01 9.738e-02 1.079e-01 7.780e-02 1.093e-01
Eseg

PCP ↓ 1.944e-01 2.210e-01 1.622e-01 1.347e-01 2.056e-01 2.581e-01 2.676e-01 2.066e-01 1.613e-01 1.637e-01 2.357e-01 1.876e-01 2.706e-01 1.927e-01

IoUloc
tgt ↑ 4.443e-01 5.129e-01 7.261e-01 6.042e-01 6.829e-01 7.040e-01 6.301e-01 5.569e-01 6.767e-01 6.580e-01 6.673e-01 6.884e-01 6.045e-01 4.944e-01

Eloc
S2M ↓ 1.311e-03 1.522e-03 0.000e+00 1.751e-03 1.876e-03 1.898e-03 1.689e-03 1.517e-03 0.000e+00 1.848e-03 0.000e+00 1.866e-03 1.727e-03 1.600e-03

Eloc
M2S ↓ 1.180e-02 1.218e-02 1.149e-02 2.627e-02 4.878e-02 2.656e-02 7.264e-02 7.436e-02 2.256e-02 1.294e-02 5.176e-02 5.597e-02 7.081e-02 2.080e-02

Eloc
ITF ↓ 4.273e-01 3.364e-01 1.686e-01 2.242e-01 1.482e-01 1.613e-01 2.044e-01 2.762e-01 1.729e-01 1.959e-01 1.571e-01 1.455e-01 1.900e-01 2.944e-01

Eloc
PCP ↓ 1.153e-01 1.370e-01 9.387e-02 1.436e-01 1.182e-01 1.063e-01 9.122e-02 9.105e-02 1.278e-01 1.312e-01 1.238e-01 1.082e-01 1.330e-01 1.888e-01

segmentation masks could degrade the reliability of target region decisions. This highlights the
necessity of future research to address such edge cases while balancing dataset biases.
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(a) Localization errors.
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(b) Segmentation errors.

Figure 4: Cross-dataset error ratios corresponding to IRSTD1kTE , SIRSTTE , and NUDTTE from
bottom to top for the models trained on different datasets.

6 Limitations and Future Extensions

Broader Data and Application Scenarios. Given its status as a representative, mature, and challeng-
ing task with extensive research and diverse real-world applications, we selected IRSTD (Infrared
Small Target Detection) as our primary focus. Our work addresses critical limitations in its existing
evaluation framework through targeted enhancements. While this work provides focused analysis of
14 representative deep learning-based IRSTD methods [9, 40, 17, 41, 42, 34, 29, 33, 22, 6, 20, 44,
37, 32], its scope is fundamentally limited by relying exclusively on commonly-used infrared-only
datasets (SIRST [9], IRSTD1k [41], and NUDT [17]). We also explore more challenging scenarios
using synthetic data constructed based on data augmentation techniques in Sec. B. However, given
the generalizability of our focal problem and the model- and data-agnostic nature of the proposed
analysis framework, it can be readily extended to broader data and application scenarios, including the
multi-frame IRSTD setting (Sec. C.5), medical image analysis (Sec. C.7), and other visual perception
tasks involving small targets in industrial [46, 45, 50] and context-dependent [47, 24, 23, 49, 48, 25]
scenarios. Based on the proposed framework, we also plan to conduct more targeted analysis and
exploration on more diverse visual perception tasks to further advance the overall community.

Computational Efficiency. In our OPDC strategy described in Alg. 1, we integrate the commonly-
used assignment algorithm (scipy.optimize.linear_sum_assignment [5]) to find the minimum-
cost matching between predicted targets and GT targets. The algorithm ensures optimality but requires
O(n3) time in worst-case scenarios. While our experiments show real-time feasibility in different
datasets, scaling to larger-scale targets may necessitate trade-offs between optimality and speed (e.g.,
via approximations) or hardware-specific optimizations. Additionally, as a performance analysis
framework, our method is primarily designed for offline evaluation of IRSTD applications, where
runtime is not a critical concern. However, to extend to application scenarios that may have real-time
requirements, efficiency will also be one of the issues we will continue to focus on in the future.

7 Conclusion

Our work carefully reviews the limitations of existing evaluation protocols in IRSTD. And to this
end, we introduce a novel hybrid-level performance metric and a systematic error analysis method,
emphasizing the necessity of cross-dataset validation in evaluation. The proposed metric holistically
models hybrid localization-segmentation information to comprehensively characterize the algorithm
capabilities. Coupled with this, our error analysis provides fine-grained diagnostic insights into failure
modes, thereby deepening the understanding of model performance. Through extensive within- and
cross-dataset experiments on existing benchmarks, we demonstrate the effectiveness and interpretative
power of our framework in evaluating the performance of IRSTD methods. By establishing an
enhanced analytical paradigm, our work aims to advance the methodological foundation of IRSTD
algorithm development and evaluation, with important implications for guiding more robust model
design and validation in practical applications.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
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Justification: As previously mentioned, the data (SIRST [9], IRSTD1k [41], and NUDT [17])
used in this paper and the code for the relevant algorithms are publicly available.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail the experimental details in Sec. 5.1. To ensure that the experiments
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Each experiment requires a substantial amount of resources and time, so we
do not conduct a statistical analysis.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have specific instructions in the implementation details of the experiment
section (Sec. 5.1).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully read the NeurIPS Code of Ethics and ensured compliance
with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Answer: [Yes]
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Guidelines:
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
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that users adhere to usage guidelines or restrictions to access the model or implementing
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In our work, we augment the testset of the existing IRSTD1k [41] (MIT
License) using a randomized copy-paste augmentation strategy and construct the synthetic
dataset, i.e., IRSTD1kAUG

TE , and we include the relevant Croissant file with our paper
submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

A Clearer Comparison

This section further adds the following:
• Fig. 5: Clearer figure visualization for improved readability.
• Tab. 3: Complete cross-dataset error analysis table (only the first section is presented in the main

text due to space constraints).
• Fig. 6 and Fig. 7: Clearer statistical visualization of cross-dataset error ratios.

(a) (b) (c)

(d) (e) (f)

IoUpix ↑ nIoUpix ↑ F1pix ↑ Pd↑ Fa×106 ↓ hIoU↑ IoUseg
pix ↑ Eseg

MRG ↓ Eseg
ITF ↓ Eseg

PCP ↓ IoUloc
tgt ↑ Eloc

S2M ↓ Eloc
M2S ↓ Eloc

ITF ↓ Eloc
PCP ↓

Subfigure Ori. [17] OPDC Ori. [17] OPDC OPDC OPDC OPDC OPDC OPDC OPDC OPDC OPDC OPDC OPDC

(a) 0.573 0.573 0.728 0.333 0.667 785.828 0.000 0.373 0.560 0.052 0.246 0.142 0.667 0.333 0.000 0.000 0.000
(b) 0.438 0.438 0.610 0.333 1.000 1457.214 198.364 0.344 0.459 0.000 0.225 0.316 0.750 0.000 0.000 0.250 0.000
(c) 0.310 0.310 0.473 0.500 0.500 0.000 0.000 0.300 0.600 0.000 0.000 0.400 0.500 0.000 0.000 0.000 0.500
(d) 0.477 0.477 0.646 1.000 1.000 579.834 625.610 0.005 0.036 0.000 0.000 0.964 0.143 0.000 0.857 0.000 0.000
(e) 0.514 0.514 0.679 0.500 0.500 244.141 244.141 0.118 0.474 0.474 0.053 0.000 0.250 0.250 0.000 0.500 0.000
(f) 0.326 0.326 0.492 1.000 1.000 0.000 0.000 0.313 0.313 0.000 0.085 0.602 1.000 0.000 0.000 0.000 0.000

Figure 5: Comparison of different metrics. Red and blue boxes to highlight the target regions. Red
and blue points indicate the target centroids in ground truth (GT) masks and predictions, respectively.
Zoom in on the digital color version for details. “Ori.” [17] and “OPDC” refer to the original distance-
based strategy and the proposed OPDC strategy for target matching.
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Table 3: Cross-dataset error analysis for the models trained on different datasets.

ACM21 [9] FC3Net22 [40] DNANet22 [17] ISNet22 [41] AGPCNet23 [42] UIUNet23 [34] RDIAN23 [29] MTU-Net23 [33] ABC23 [22] SeRankDet24 [6] MSHNet24 [20] MRF3Net24 [44] SCTransNet24 [37] RPCANet24 [32]

Trained on IRSTD1kTR [41].

IR
ST

D
1k

T
E

[4
1]

IoUseg
pix ↑ 5.387e-01 6.172e-01 6.694e-01 5.476e-01 6.139e-01 6.317e-01 6.529e-01 6.543e-01 6.361e-01 6.755e-01 6.497e-01 6.742e-01 6.610e-01 6.607e-01

Eseg
MRG ↓ 2.132e-03 4.340e-04 5.610e-04 4.830e-04 4.340e-04 4.440e-04 5.410e-04 4.580e-04 4.680e-04 4.250e-04 0.000e+00 4.420e-04 4.770e-04 4.570e-04
Eseg

ITF ↓ 2.630e-01 1.431e-01 1.669e-01 1.089e-01 1.330e-01 1.048e-01 1.470e-01 1.855e-01 1.017e-01 1.463e-01 1.186e-01 2.039e-01 1.135e-01 1.595e-01
Eseg

PCP ↓ 1.962e-01 2.393e-01 1.631e-01 3.430e-01 2.527e-01 2.630e-01 1.996e-01 1.597e-01 2.618e-01 1.778e-01 2.317e-01 1.215e-01 2.250e-01 1.794e-01

IoUloc
tgt ↑ 6.613e-01 6.205e-01 8.318e-01 8.088e-01 8.077e-01 8.390e-01 7.832e-01 7.541e-01 7.982e-01 7.694e-01 8.450e-01 8.207e-01 8.131e-01 7.112e-01

Eloc
S2M ↓ 8.000e-03 2.387e-03 9.174e-03 2.941e-03 2.959e-03 3.096e-03 8.671e-03 5.405e-03 2.924e-03 2.778e-03 0.000e+00 6.079e-03 2.967e-03 2.674e-03

Eloc
M2S ↓ 0.000e+00 2.387e-03 0.000e+00 0.000e+00 0.000e+00 3.096e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 6.079e-03 0.000e+00 0.000e+00

Eloc
ITF ↓ 2.080e-01 2.888e-01 9.174e-02 1.265e-01 1.213e-01 7.740e-02 1.416e-01 1.973e-01 1.316e-01 1.750e-01 9.726e-02 9.119e-02 1.187e-01 2.059e-01

Eloc
PCP ↓ 1.227e-01 8.592e-02 6.728e-02 6.177e-02 6.805e-02 7.740e-02 6.647e-02 4.324e-02 6.725e-02 5.278e-02 5.775e-02 7.599e-02 6.528e-02 8.021e-02

SI
R

ST
T
E

[9
]

IoUseg
pix ↑ 6.254e-01 7.317e-01 7.391e-01 7.113e-01 7.260e-01 6.857e-01 7.550e-01 7.564e-01 7.405e-01 7.480e-01 7.184e-01 7.658e-01 7.036e-01 7.575e-01

Eseg
MRG ↓ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 6.040e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Eseg

ITF ↓ 1.488e-01 7.411e-02 5.026e-02 7.203e-02 8.022e-02 4.956e-02 7.283e-02 9.772e-02 4.874e-02 6.509e-02 5.877e-02 8.256e-02 4.715e-02 6.688e-02
Eseg

PCP ↓ 2.257e-01 1.941e-01 2.106e-01 2.167e-01 1.937e-01 2.587e-01 1.721e-01 1.459e-01 2.107e-01 1.869e-01 2.229e-01 1.516e-01 2.493e-01 1.756e-01

IoUloc
tgt ↑ 6.689e-01 5.333e-01 9.292e-01 9.469e-01 9.391e-01 9.386e-01 8.537e-01 9.160e-01 9.068e-01 9.145e-01 8.667e-01 9.068e-01 8.468e-01 7.891e-01

Eloc
S2M ↓ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.754e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

Eloc
M2S ↓ 6.623e-03 0.000e+00 0.000e+00 8.850e-03 0.000e+00 0.000e+00 0.000e+00 8.403e-03 0.000e+00 0.000e+00 0.000e+00 8.475e-03 0.000e+00 0.000e+00

Eloc
ITF ↓ 2.715e-01 3.944e-01 3.540e-02 2.655e-02 5.217e-02 4.386e-02 1.138e-01 7.563e-02 7.627e-02 6.838e-02 9.167e-02 6.780e-02 1.210e-01 1.484e-01

Eloc
PCP ↓ 5.298e-02 7.222e-02 3.540e-02 1.770e-02 8.696e-03 0.000e+00 3.252e-02 0.000e+00 1.695e-02 1.709e-02 4.167e-02 1.695e-02 3.226e-02 6.250e-02

N
U

D
T
T
E

[1
7]

IoUseg
pix ↑ 6.170e-01 6.490e-01 7.250e-01 7.177e-01 6.672e-01 6.491e-01 6.475e-01 6.569e-01 7.145e-01 7.075e-01 6.670e-01 7.032e-01 6.504e-01 6.966e-01

Eseg
MRG ↓ 1.087e-03 1.249e-03 0.000e+00 1.242e-03 1.124e-03 1.110e-03 1.270e-03 1.291e-03 0.000e+00 1.248e-03 0.000e+00 1.284e-03 1.176e-03 1.456e-03
Eseg

ITF ↓ 1.875e-01 1.287e-01 1.127e-01 1.463e-01 1.261e-01 9.163e-02 8.371e-02 1.352e-01 1.242e-01 1.275e-01 9.738e-02 1.079e-01 7.780e-02 1.093e-01
Eseg

PCP ↓ 1.944e-01 2.210e-01 1.622e-01 1.347e-01 2.056e-01 2.581e-01 2.676e-01 2.066e-01 1.613e-01 1.637e-01 2.357e-01 1.876e-01 2.706e-01 1.927e-01

IoUloc
tgt ↑ 4.443e-01 5.129e-01 7.261e-01 6.042e-01 6.829e-01 7.040e-01 6.301e-01 5.569e-01 6.767e-01 6.580e-01 6.673e-01 6.884e-01 6.045e-01 4.944e-01

Eloc
S2M ↓ 1.311e-03 1.522e-03 0.000e+00 1.751e-03 1.876e-03 1.898e-03 1.689e-03 1.517e-03 0.000e+00 1.848e-03 0.000e+00 1.866e-03 1.727e-03 1.600e-03

Eloc
M2S ↓ 1.180e-02 1.218e-02 1.149e-02 2.627e-02 4.878e-02 2.656e-02 7.264e-02 7.436e-02 2.256e-02 1.294e-02 5.176e-02 5.597e-02 7.081e-02 2.080e-02

Eloc
ITF ↓ 4.273e-01 3.364e-01 1.686e-01 2.242e-01 1.482e-01 1.613e-01 2.044e-01 2.762e-01 1.729e-01 1.959e-01 1.571e-01 1.455e-01 1.900e-01 2.944e-01

Eloc
PCP ↓ 1.153e-01 1.370e-01 9.387e-02 1.436e-01 1.182e-01 1.063e-01 9.122e-02 9.105e-02 1.278e-01 1.312e-01 1.238e-01 1.082e-01 1.330e-01 1.888e-01

Trained on SIRSTTR [9].

IR
ST

D
1k

T
E

[4
1]

IoUseg
pix ↑ 4.501e-01 5.769e-01 6.311e-01 6.133e-01 5.876e-01 5.900e-01 6.009e-01 6.506e-01 6.301e-01 6.492e-01 6.070e-01 6.365e-01 6.268e-01 6.135e-01

Eseg
MRG ↓ 2.131e-03 4.720e-04 0.000e+00 1.243e-03 4.990e-04 1.563e-03 4.870e-04 0.000e+00 4.820e-04 0.000e+00 0.000e+00 4.300e-04 0.000e+00 5.070e-04
Eseg

ITF ↓ 4.390e-01 2.374e-01 1.354e-01 1.902e-01 1.946e-01 3.172e-01 1.721e-01 1.896e-01 1.239e-01 1.310e-01 1.628e-01 2.031e-01 1.226e-01 1.445e-01
Eseg

PCP ↓ 1.088e-01 1.852e-01 2.335e-01 1.953e-01 2.172e-01 9.125e-02 2.265e-01 1.598e-01 2.456e-01 2.198e-01 2.302e-01 1.600e-01 2.506e-01 2.415e-01

IoUloc
tgt ↑ 2.761e-01 5.796e-01 6.894e-01 6.031e-01 6.053e-01 5.702e-01 2.870e-01 6.273e-01 7.024e-01 6.355e-01 7.557e-01 6.256e-01 6.385e-01 5.104e-01

Eloc
S2M ↓ 5.330e-03 2.212e-03 0.000e+00 6.652e-03 2.217e-03 1.033e-02 1.087e-03 0.000e+00 2.611e-03 0.000e+00 0.000e+00 2.326e-03 0.000e+00 1.890e-03

Eloc
M2S ↓ 1.066e-03 0.000e+00 7.576e-03 0.000e+00 0.000e+00 0.000e+00 6.522e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.457e-02

Eloc
ITF ↓ 6.823e-01 3.429e-01 2.424e-01 3.415e-01 3.415e-01 3.864e-01 6.707e-01 3.125e-01 2.245e-01 3.061e-01 1.562e-01 3.093e-01 3.028e-01 4.140e-01

Eloc
PCP ↓ 3.518e-02 7.522e-02 6.061e-02 4.878e-02 5.100e-02 3.306e-02 3.478e-02 6.019e-02 7.050e-02 5.841e-02 8.807e-02 6.279e-02 5.869e-02 4.915e-02

SI
R

ST
T
E

[9
]

IoUseg
pix ↑ 6.835e-01 7.630e-01 7.776e-01 7.665e-01 7.763e-01 7.360e-01 7.792e-01 8.062e-01 7.948e-01 8.036e-01 7.645e-01 7.809e-01 7.710e-01 7.831e-01

Eseg
MRG ↓ 1.741e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Eseg

ITF ↓ 1.976e-01 1.071e-01 6.655e-02 1.240e-01 9.534e-02 1.829e-01 6.401e-02 1.037e-01 6.307e-02 5.319e-02 9.104e-02 1.270e-01 3.959e-02 6.215e-02
Eseg

PCP ↓ 1.171e-01 1.299e-01 1.559e-01 1.094e-01 1.284e-01 8.107e-02 1.568e-01 9.009e-02 1.422e-01 1.432e-01 1.444e-01 9.207e-02 1.895e-01 1.548e-01

IoUloc
tgt ↑ 8.548e-01 8.583e-01 9.464e-01 9.391e-01 9.316e-01 9.231e-01 8.413e-01 9.083e-01 9.397e-01 9.397e-01 9.138e-01 9.160e-01 9.237e-01 8.618e-01

Eloc
S2M ↓ 8.065e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

Eloc
M2S ↓ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.587e-02 0.000e+00 0.000e+00 0.000e+00 8.621e-03 0.000e+00 8.475e-03 0.000e+00

Eloc
ITF ↓ 1.210e-01 1.417e-01 2.679e-02 5.217e-02 6.838e-02 6.838e-02 1.190e-01 9.167e-02 6.035e-02 6.035e-02 5.172e-02 8.403e-02 6.780e-02 1.138e-01

Eloc
PCP ↓ 1.613e-02 0.000e+00 2.679e-02 8.696e-03 0.000e+00 8.547e-03 2.381e-02 0.000e+00 0.000e+00 0.000e+00 2.586e-02 0.000e+00 0.000e+00 2.439e-02

N
U

D
T
T
E

[1
7]

IoUseg
pix ↑ 5.597e-01 6.327e-01 6.988e-01 7.029e-01 6.763e-01 6.587e-01 6.541e-01 6.777e-01 7.832e-01 7.566e-01 6.999e-01 6.855e-01 6.793e-01 6.279e-01

Eseg
MRG ↓ 6.380e-04 1.143e-03 1.139e-03 1.155e-03 1.003e-03 9.980e-04 1.085e-03 1.157e-03 1.119e-03 1.260e-03 1.058e-03 1.010e-03 1.253e-03 1.181e-03
Eseg

ITF ↓ 2.834e-01 1.364e-01 9.303e-02 1.979e-01 1.202e-01 2.237e-01 9.840e-02 1.232e-01 1.178e-01 1.033e-01 1.122e-01 1.015e-01 6.661e-02 9.961e-02
Eseg

PCP ↓ 1.563e-01 2.297e-01 2.070e-01 9.805e-02 2.025e-01 1.166e-01 2.464e-01 1.980e-01 9.795e-02 1.388e-01 1.868e-01 2.120e-01 2.529e-01 2.713e-01

IoUloc
tgt ↑ 2.242e-01 5.007e-01 5.418e-01 5.955e-01 5.026e-01 6.212e-01 1.063e-01 5.957e-01 6.279e-01 6.267e-01 6.873e-01 5.853e-01 5.981e-01 5.231e-01

Eloc
S2M ↓ 5.960e-04 1.399e-03 1.372e-03 1.605e-03 1.323e-03 1.585e-03 2.690e-04 1.531e-03 1.639e-03 1.667e-03 1.818e-03 1.445e-03 1.582e-03 1.441e-03

Eloc
M2S ↓ 1.789e-03 2.238e-02 9.877e-02 1.284e-02 3.571e-02 3.328e-02 1.856e-02 8.729e-02 1.639e-02 2.833e-02 5.455e-02 1.127e-01 5.380e-02 8.069e-02

Eloc
ITF ↓ 7.430e-01 3.790e-01 3.141e-01 3.002e-01 3.981e-01 2.884e-01 8.663e-01 2.573e-01 2.820e-01 2.583e-01 1.673e-01 2.688e-01 2.690e-01 3.026e-01

Eloc
PCP ↓ 3.041e-02 9.650e-02 4.390e-02 8.989e-02 6.217e-02 5.547e-02 8.609e-03 5.819e-02 7.213e-02 8.500e-02 8.909e-02 3.179e-02 7.753e-02 9.222e-02

Trained on NUDTTR [17].

IR
ST

D
1k

T
E

[4
1]

IoUseg
pix ↑ 5.488e-01 5.966e-01 6.225e-01 4.989e-01 5.792e-01 6.397e-01 6.289e-01 6.459e-01 5.752e-01 6.597e-01 6.141e-01 6.347e-01 5.949e-01 6.154e-01

Eseg
MRG ↓ 1.617e-03 1.387e-03 5.760e-04 1.380e-03 5.170e-04 5.010e-04 5.120e-04 5.060e-04 0.000e+00 4.660e-04 0.000e+00 0.000e+00 0.000e+00 4.960e-04
Eseg

ITF ↓ 2.653e-01 1.621e-01 1.242e-01 8.047e-02 1.250e-01 1.052e-01 1.241e-01 1.214e-01 7.609e-02 1.440e-01 1.045e-01 1.614e-01 8.208e-02 1.219e-01
Eseg

PCP ↓ 1.843e-01 2.399e-01 2.527e-01 4.193e-01 2.953e-01 2.546e-01 2.465e-01 2.321e-01 3.487e-01 1.959e-01 2.815e-01 2.039e-01 3.230e-01 2.623e-01

IoUloc
tgt ↑ 5.572e-01 4.677e-01 6.145e-01 3.727e-01 6.325e-01 5.973e-01 5.445e-01 4.991e-01 6.513e-01 2.917e-01 6.650e-01 5.115e-01 5.392e-01 3.115e-01

Eloc
S2M ↓ 8.475e-03 3.584e-03 4.819e-03 2.845e-03 2.387e-03 2.237e-03 2.070e-03 1.855e-03 0.000e+00 1.042e-03 0.000e+00 0.000e+00 0.000e+00 1.193e-03

Eloc
M2S ↓ 2.119e-03 1.792e-03 0.000e+00 4.267e-03 4.773e-03 0.000e+00 6.211e-03 5.566e-03 7.264e-03 1.042e-03 2.481e-03 1.923e-03 6.036e-03 4.773e-03

Eloc
ITF ↓ 3.686e-01 4.659e-01 2.843e-01 5.733e-01 2.864e-01 3.356e-01 3.789e-01 4.434e-01 2.736e-01 6.896e-01 2.605e-01 4.269e-01 3.964e-01 6.408e-01

Eloc
PCP ↓ 6.356e-02 6.093e-02 9.639e-02 4.694e-02 7.399e-02 6.488e-02 6.832e-02 5.009e-02 6.780e-02 1.667e-02 7.196e-02 5.962e-02 5.835e-02 4.177e-02

SI
R

ST
T
E

[9
]

IoUseg
pix ↑ 6.896e-01 6.802e-01 7.372e-01 6.354e-01 7.015e-01 7.395e-01 7.330e-01 7.107e-01 7.165e-01 7.369e-01 6.876e-01 7.547e-01 6.549e-01 7.070e-01

Eseg
MRG ↓ 0.000e+00 0.000e+00 0.000e+00 2.723e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Eseg

ITF ↓ 9.297e-02 6.004e-02 5.745e-02 5.292e-02 5.888e-02 4.036e-02 5.550e-02 5.562e-02 3.822e-02 5.499e-02 4.493e-02 8.826e-02 2.612e-02 3.665e-02
Eseg

PCP ↓ 2.174e-01 2.597e-01 2.054e-01 3.090e-01 2.396e-01 2.201e-01 2.115e-01 2.337e-01 2.453e-01 2.081e-01 2.675e-01 1.570e-01 3.189e-01 2.563e-01

IoUloc
tgt ↑ 8.333e-01 6.481e-01 8.644e-01 7.727e-01 7.937e-01 8.760e-01 7.721e-01 7.836e-01 7.744e-01 7.143e-01 8.125e-01 7.338e-01 7.803e-01 5.263e-01

Eloc
S2M ↓ 0.000e+00 0.000e+00 0.000e+00 7.576e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

Eloc
M2S ↓ 0.000e+00 6.173e-03 0.000e+00 0.000e+00 7.937e-03 0.000e+00 7.353e-03 1.493e-02 0.000e+00 6.803e-03 0.000e+00 0.000e+00 2.273e-02 2.339e-02

Eloc
ITF ↓ 1.349e-01 3.210e-01 7.627e-02 1.742e-01 1.270e-01 9.917e-02 1.912e-01 1.716e-01 1.805e-01 2.517e-01 1.484e-01 2.158e-01 1.515e-01 3.392e-01

Eloc
PCP ↓ 3.175e-02 2.469e-02 5.932e-02 4.546e-02 7.143e-02 2.479e-02 2.941e-02 2.985e-02 4.511e-02 2.721e-02 3.906e-02 5.036e-02 4.546e-02 1.111e-01

N
U

D
T
T
E

[1
7]

IoUseg
pix ↑ 7.046e-01 7.813e-01 8.570e-01 8.347e-01 8.131e-01 8.380e-01 8.310e-01 8.321e-01 8.677e-01 8.745e-01 8.336e-01 8.557e-01 8.550e-01 8.304e-01

Eseg
MRG ↓ 9.110e-04 1.810e-03 9.710e-04 1.046e-03 8.730e-04 9.670e-04 0.000e+00 1.046e-03 0.000e+00 0.000e+00 7.750e-04 0.000e+00 0.000e+00 9.900e-04
Eseg

ITF ↓ 1.645e-01 1.171e-01 8.854e-02 9.513e-02 1.156e-01 7.499e-02 8.621e-02 9.827e-02 7.214e-02 7.323e-02 7.871e-02 9.872e-02 4.867e-02 8.605e-02
Eseg

PCP ↓ 1.300e-01 9.976e-02 5.352e-02 6.914e-02 7.048e-02 8.606e-02 8.283e-02 6.854e-02 6.014e-02 5.225e-02 8.687e-02 4.556e-02 9.635e-02 8.258e-02

IoUloc
tgt ↑ 8.513e-01 7.934e-01 9.528e-01 8.891e-01 9.154e-01 9.467e-01 8.469e-01 8.586e-01 9.383e-01 8.330e-01 8.974e-01 9.382e-01 9.638e-01 6.582e-01

Eloc
S2M ↓ 2.037e-03 3.861e-03 2.247e-03 2.092e-03 2.169e-03 2.222e-03 0.000e+00 2.020e-03 0.000e+00 0.000e+00 2.137e-03 0.000e+00 0.000e+00 1.582e-03

Eloc
M2S ↓ 4.073e-03 7.722e-03 6.742e-03 6.276e-03 6.508e-03 1.778e-02 2.783e-02 1.616e-02 6.608e-03 1.179e-02 1.068e-02 6.623e-03 6.787e-03 7.911e-03

Eloc
ITF ↓ 1.242e-01 1.660e-01 3.146e-02 9.833e-02 6.508e-02 3.111e-02 1.213e-01 1.192e-01 5.066e-02 1.473e-01 7.479e-02 4.856e-02 2.489e-02 3.149e-01

Eloc
PCP ↓ 1.833e-02 2.896e-02 6.742e-03 4.184e-03 1.085e-02 2.222e-03 3.976e-03 4.040e-03 4.405e-03 7.859e-03 1.496e-02 6.623e-03 4.525e-03 1.741e-02

B Synthetic Data Experiment

To further investigate algorithm performance in complex scenarios with with densely distributed
targets, we augment the testset of the existing IRSTD1k [41] using a randomized copy-paste augmen-
tation strategy and construct the synthetic dataset, i.e., IRSTD1kAUG

TE . For copyright compliance, we
exclusively performed data augmentation on the IRSTD1k dataset (MIT License), the only benchmark
in our study with explicit redistribution permissions. All synthetic data will be publicly released
under the same license terms (MIT License), providing legally compliant yet challenging test cases
that faithfully extend the benchmark’s inherent properties.

The strategy intelligently generates new target instances by:

1. Extract valid target regions from the ground-truth mask using connected component analysis.
2. Select targets for replication based on area-weighted sampling, prioritizing smaller targets.
3. Generate copies at 2× the original target count, with a maximum of 7 new targets per image.
4. Augment each copy with random transformations including scaling (0.5-1.1×), rotation (0◦-180◦),

and positional perturbations (75% near original targets and 25% globally distributed).
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Figure 6: Cross-dataset localization error ratios corresponding to IRSTD1kTE , SIRSTTE , and
NUDTTE from bottom to top for the models trained on different datasets.

This approach realistically increases object density and morphological diversity, expanding the
original dataset while maintaining scene coherence, thereby creating more challenging test conditions
for evaluating algorithm robustness. And some samples are shown in Fig. 8.

As evidenced in Tab 4, existing models exhibit significant performance degradation on this new
challenging dataset, with our error statistics showing marked increases across all error types. Fig. 9
provides a visual breakdown of how different error subtypes contribute to the overall performance
decline. Notably, when comparing Fig. 9a with Fig. 6, we observe a substantial increase in the
proportion of Eloc

S2M , which directly validates our analysis about it in Sec. 4.3 of the main text.
Similarly, the dramatic rise in Eseg

MRG shown in Fig. 9b versus Fig. 7 indicates these models struggle
to effectively distinguish between individual target instances in high-density target distributions.

C Other Discussions

C.1 Further Error Analysis

Significant Value of Error Analysis. The goal of our error analysis is not merely to present total
performance but to provide a more fine-grained understanding of model behavior, exposing the
limitations and failure modes that are often hidden behind aggregated performance metrics. For
instance, as demonstrated in Sec. B, Fig. 4 and Fig. 9 present the relative proportions of error
components, which help identify which types of error dominate under different conditions. In dense-
target scenarios, our analysis reveals that Eseg

MRG and Etgt
S2M are the most significant contributors to

failure, as discussed in Sec. 4.3. Furthermore, Tab. 3 provide quantitative error values and evaluate
the severity of each error type in detail, enabling more targeted performance improvement strategies
beyond overall score optimization.

Potential Impacts of Model Structure. Different structural choices in the model design clearly cor-
relate with distinct error distributions. For instance, some models such as ACM [9] and FC3Net [40],
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Figure 7: Cross-dataset segmentation error ratios corresponding to IRSTD1kTE , SIRSTTE , and
NUDTTE from bottom to top for the models trained on different datasets.

(a) Sample 1 (Original). (b) Sample 1 (Augmented).

(c) Sample 2 (Original). (d) Sample 2 (Augmented).

Figure 8: Visual demonstration of sample augmentation effects.

which lack explicit global modeling or deep semantic suppression, exhibit high Eseg
ITF and Eloc

ITF er-
rors, often confusing textured backgrounds as targets. ISNet [41] and UIUNet [34], while integrating
attention and multi-scale decoding, still suffer from structural inconsistencies and incorrect merging
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Table 4: Performance and error analysis on the synthetic dataset IRSTD1kAUG
TE which utilize data

augmentation strategies to significantly expand the number and morphology of targets on each image.
Colors red, green and blue represent the first, second and third ranked results.

ACM21 [9] FC3Net22 [40] DNANet22 [17] ISNet22 [41] AGPCNet23 [42] UIUNet23 [34] RDIAN23 [29] MTU-Net23 [33] ABC23 [22] SeRankDet24 [6] MSHNet24 [20] MRF3Net24 [44] SCTransNet24 [37] RPCANet24 [32]

Params. 0.5M 6.9M 4.7M 1.1M 12.4M 50.5M 0.1M 4.1M 73.5M 108.9M 4.1M 0.5M 11.2M 0.7M
FLOPs 2.0G 10.6G 56.1G 121.9G 327.5G 217.9G 14.8G 24.4G 332.6G 568.7G 24.4G 33.2G 67.4G 179.7G

Trained on IRSTD1kTR [41].

IoUpix ↑ 0.272 0.315 0.398 0.307 0.372 0.469 0.372 0.417 0.361 0.456 0.458 0.467 0.431 0.371
nIoUpix ↑ 0.327 0.414 0.491 0.359 0.425 0.489 0.468 0.495 0.446 0.534 0.546 0.537 0.492 0.369
F1pix ↑ 0.428 0.479 0.569 0.470 0.543 0.638 0.542 0.588 0.531 0.626 0.629 0.637 0.602 0.541
Pd↑ 0.313 0.451 0.633 0.424 0.526 0.598 0.622 0.681 0.588 0.663 0.715 0.667 0.678 0.552

+OPDC 0.407 0.541 0.669 0.502 0.577 0.664 0.666 0.737 0.629 0.695 0.758 0.700 0.735 0.605
Fa×106 ↓ 267.446 388.321 44.106 127.954 82.120 122.450 66.596 71.056 47.674 68.703 43.081 57.752 67.811 74.548

+OPDC 59.365 234.556 14.424 14.727 14.784 26.475 24.103 22.034 12.716 31.542 11.406 19.909 15.126 24.976
hIoU↑ 0.150 0.231 0.384 0.203 0.279 0.329 0.343 0.370 0.336 0.408 0.426 0.406 0.379 0.298

IoUseg
pix ↑ 4.019e-01 4.898e-01 6.147e-01 4.276e-01 5.100e-01 5.144e-01 5.656e-01 5.525e-01 5.687e-01 6.344e-01 5.890e-01 6.199e-01 5.498e-01 5.493e-01

Eseg
MRG ↓ 7.081e-02 6.669e-02 1.716e-02 5.151e-02 3.660e-02 4.259e-02 1.938e-02 2.138e-02 1.793e-02 2.042e-02 1.994e-02 1.603e-02 2.032e-02 1.983e-02

Eseg
ITF ↓ 2.726e-01 1.513e-01 6.955e-02 1.085e-01 9.634e-02 7.270e-02 7.014e-02 8.126e-02 4.279e-02 7.339e-02 6.408e-02 1.050e-01 4.268e-02 5.748e-02

Eseg
PCP ↓ 2.546e-01 2.922e-01 2.986e-01 4.124e-01 3.571e-01 3.703e-01 3.448e-01 3.448e-01 3.706e-01 2.718e-01 3.269e-01 2.591e-01 3.872e-01 3.734e-01

IoUloc
tgt ↑ 3.739e-01 4.716e-01 6.250e-01 4.758e-01 5.469e-01 6.387e-01 6.057e-01 6.688e-01 5.913e-01 6.430e-01 7.236e-01 6.543e-01 6.900e-01 5.422e-01

Eloc
S2M ↓ 1.955e-01 1.491e-01 4.130e-02 1.531e-01 1.069e-01 1.365e-01 5.391e-02 6.224e-02 4.590e-02 5.699e-02 6.659e-02 5.000e-02 6.332e-02 4.067e-02

Eloc
M2S ↓ 2.137e-03 1.014e-02 3.587e-02 1.212e-02 1.213e-02 1.230e-02 3.383e-02 3.481e-02 2.076e-02 2.366e-02 2.331e-02 3.370e-02 3.493e-02 2.190e-02

Eloc
ITF ↓ 7.906e-02 1.176e-01 2.935e-02 4.075e-02 3.969e-02 2.573e-02 5.708e-02 5.802e-02 3.934e-02 5.161e-02 2.220e-02 3.152e-02 2.620e-02 8.134e-02

Eloc
PCP ↓ 3.494e-01 2.515e-01 2.685e-01 3.183e-01 2.944e-01 1.868e-01 2.495e-01 1.762e-01 3.027e-01 2.247e-01 1.643e-01 2.304e-01 1.856e-01 3.139e-01

Trained on SIRSTTR [9].

IoUpix ↑ 0.213 0.472 0.520 0.430 0.496 0.517 0.518 0.568 0.504 0.548 0.459 0.572 0.540 0.492
nIoUpix ↑ 0.323 0.445 0.535 0.442 0.490 0.523 0.513 0.591 0.555 0.557 0.497 0.567 0.554 0.468
F1pix ↑ 0.351 0.641 0.685 0.601 0.663 0.681 0.682 0.725 0.670 0.708 0.629 0.728 0.701 0.659
Pd↑ 0.324 0.515 0.757 0.458 0.658 0.519 0.651 0.735 0.721 0.745 0.665 0.776 0.763 0.755

+OPDC 0.452 0.605 0.813 0.584 0.726 0.643 0.728 0.792 0.770 0.802 0.719 0.826 0.812 0.813
Fa×106 ↓ 1378.662 271.090 140.347 361.106 193.904 424.969 221.841 185.288 118.388 232.070 99.695 126.777 124.348 140.157

+OPDC 960.089 78.116 65.818 98.062 72.745 155.302 102.124 87.510 52.628 143.877 36.287 66.083 65.097 105.047
hIoU↑ 0.124 0.275 0.414 0.235 0.339 0.298 0.317 0.442 0.417 0.415 0.368 0.433 0.415 0.347

IoUseg
pix ↑ 3.914e-01 5.150e-01 5.840e-01 4.708e-01 5.480e-01 5.499e-01 5.546e-01 6.394e-01 5.956e-01 6.106e-01 5.478e-01 6.090e-01 5.916e-01 5.705e-01

Eseg
MRG ↓ 7.867e-02 5.215e-02 1.875e-02 7.959e-02 3.263e-02 8.619e-02 4.768e-02 3.392e-02 3.214e-02 3.462e-02 2.758e-02 1.897e-02 2.815e-02 1.095e-02

Eseg
ITF ↓ 3.441e-01 1.677e-01 6.384e-02 2.004e-01 1.463e-01 2.121e-01 1.053e-01 1.227e-01 7.095e-02 7.951e-02 9.872e-02 1.195e-01 6.383e-02 5.400e-02

Eseg
PCP ↓ 1.858e-01 2.651e-01 3.334e-01 2.492e-01 2.730e-01 1.517e-01 2.924e-01 2.040e-01 3.013e-01 2.753e-01 3.259e-01 2.525e-01 3.164e-01 3.645e-01

IoUloc
tgt ↑ 3.173e-01 5.333e-01 7.082e-01 4.995e-01 6.184e-01 5.422e-01 5.722e-01 6.914e-01 6.998e-01 6.805e-01 6.717e-01 7.114e-01 7.008e-01 6.078e-01

Eloc
S2M ↓ 2.015e-01 1.549e-01 5.167e-02 2.517e-01 9.911e-02 2.451e-01 1.207e-01 1.005e-01 9.302e-02 9.961e-02 9.565e-02 5.611e-02 7.229e-02 2.522e-02

Eloc
M2S ↓ 4.078e-03 1.231e-02 3.850e-02 2.090e-02 2.676e-02 1.274e-02 3.474e-02 2.335e-02 2.008e-02 1.972e-02 1.848e-02 3.507e-02 3.012e-02 6.261e-02

Eloc
ITF ↓ 2.945e-01 1.056e-01 9.017e-02 1.234e-01 1.209e-01 1.441e-01 1.792e-01 1.036e-01 7.082e-02 1.321e-01 4.674e-02 1.032e-01 1.064e-01 1.896e-01

Eloc
PCP ↓ 1.827e-01 1.938e-01 1.114e-01 1.045e-01 1.348e-01 5.588e-02 9.324e-02 8.122e-02 1.163e-01 6.805e-02 1.674e-01 9.419e-02 9.036e-02 1.148e-01

Trained on SIRSTTR [9].

IoUpix ↑ 0.364 0.377 0.409 0.293 0.376 0.440 0.417 0.445 0.346 0.337 0.426 0.439 0.344 0.439
nIoUpix ↑ 0.376 0.412 0.477 0.348 0.433 0.492 0.498 0.512 0.413 0.415 0.507 0.535 0.437 0.489
F1pix ↑ 0.534 0.547 0.581 0.453 0.546 0.611 0.588 0.616 0.514 0.504 0.597 0.610 0.511 0.610
Pd↑ 0.393 0.572 0.726 0.535 0.623 0.736 0.708 0.765 0.744 0.743 0.780 0.772 0.771 0.745

+OPDC 0.516 0.664 0.773 0.634 0.692 0.784 0.771 0.820 0.800 0.800 0.823 0.820 0.821 0.814
Fa×106 ↓ 396.102 242.622 87.909 293.921 124.519 117.610 116.604 127.954 93.166 652.408 74.700 115.788 126.682 372.379

+OPDC 122.469 111.271 51.717 193.164 55.911 67.924 58.663 91.097 49.610 592.664 31.485 74.510 88.801 283.085
hIoU↑ 0.196 0.251 0.368 0.192 0.300 0.378 0.340 0.369 0.313 0.271 0.403 0.394 0.321 0.282

IoUseg
pix ↑ 4.295e-01 4.878e-01 5.378e-01 4.033e-01 4.885e-01 5.386e-01 5.448e-01 5.597e-01 4.524e-01 5.875e-01 5.369e-01 5.971e-01 4.912e-01 5.797e-01

Eseg
MRG ↓ 7.636e-02 4.842e-02 1.391e-02 5.619e-02 3.714e-02 2.325e-02 2.890e-02 2.004e-02 1.073e-02 3.154e-02 1.715e-02 1.853e-02 9.236e-03 3.725e-02

Eseg
ITF ↓ 2.678e-01 1.244e-01 4.590e-02 1.234e-01 9.219e-02 5.022e-02 5.870e-02 5.309e-02 2.186e-02 6.937e-02 5.065e-02 9.179e-02 2.851e-02 8.325e-02

Eseg
PCP ↓ 2.264e-01 3.394e-01 4.024e-01 4.172e-01 3.821e-01 3.879e-01 3.676e-01 3.672e-01 5.150e-01 3.115e-01 3.953e-01 2.926e-01 4.710e-01 2.998e-01

IoUloc
tgt ↑ 4.568e-01 5.144e-01 6.842e-01 4.752e-01 6.140e-01 7.021e-01 6.243e-01 6.589e-01 6.922e-01 4.617e-01 7.508e-01 6.601e-01 6.531e-01 4.858e-01

Eloc
S2M ↓ 2.335e-01 1.243e-01 4.321e-02 1.700e-01 1.156e-01 7.292e-02 7.156e-02 5.234e-02 2.917e-02 5.570e-02 5.832e-02 4.775e-02 2.775e-02 6.870e-02

Eloc
M2S ↓ 6.173e-03 1.892e-02 5.761e-02 2.267e-02 2.477e-02 3.125e-02 6.497e-02 5.794e-02 5.835e-02 2.617e-02 3.924e-02 5.805e-02 6.846e-02 3.192e-02

Eloc
ITF ↓ 1.091e-01 2.063e-01 5.761e-02 2.276e-01 8.772e-02 7.292e-02 1.252e-01 1.383e-01 7.646e-02 3.966e-01 4.878e-02 1.367e-01 1.360e-01 3.713e-01

Eloc
PCP ↓ 1.944e-01 1.360e-01 1.574e-01 1.046e-01 1.579e-01 1.208e-01 1.139e-01 9.252e-02 1.439e-01 5.973e-02 1.029e-01 9.738e-02 1.147e-01 4.233e-02

or splitting (e.g., high Eseg
PCP or Eloc

S2M /Eloc
M2S errors), reflecting limitations of shallow local attention.

These observations highlight structural limitations and support the need for better context integration,
stronger structural priors, and error-aware learning objectives.

C.2 Why Use the Multiplicative Form?

We chose the multiplicative form hIoU = IoUloc
tgt × IoUseg

pix in Equ. 7 over the additive alternative
aIoU = 0.5(IoUloc

tgt + IoUseg
pix) for modeling the interdependence of localization and segmentation in

IRSTD:

1. Since 0 ≤ IoUloc, IoUseg ≤ 1, both hIoU and aIoU lie in [0, 1]:
(a) Both equal 1 only when both IoUloc = IoUseg = 1. hIoU = 0 if either component is 0, but

aIoU = 0 only if both are 0.
(b) hIoU = IoUlocIoUseg > t ⇒ IoUloc = t

IoUseg
> t and IoUseg = t

IoUloc
> t, so any

threshold t is enforced simultaneously. By contrast, aIoU = 0.5(IoUloc + IoUseg) > t ⇒
IoUloc > 2t− IoUseg corresponds to the half-space, a much larger region that includes points
where one coordinate can be far below t (e.g., (IoUloc, IoUseg) = (2t− 1, 1)). Consequently,
aIoU covers a broader area, over-approximating joint performance, whereas hIoU strictly
requires both components to exceed t.

2. Both increase monotonically in each argument as follows:
(a) ∂hIoU

∂IoUloc
= IoUseg,

∂hIoU
∂IoUseg

= IoUloc: The coupling means that when one component is
low, the influence of the other is diminished, ensuring that isolated improvements cannot
disproportionately boost the overall score.

(b) ∂aIoU
∂IoUloc

= ∂aIoU
∂IoUseg

= 0.5: In contrast, aIoU assigns fixed, equal weight to each component,
ignoring their interaction and thus diluting the impact of imbalance.

3. The total error can be written as follows:
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(b) Segmentation errors.

Figure 9: Cross-dataset error ratios on the synthetic dataset IRSTD1kAUG
TE for the models trained on

different datasets.

(a) For hIoU: EhIoU = 1 − hIoU = 1 − (1 − Eloc)(1 − Eseg) = Eloc + Eseg − ElocEseg ={
Eseg(1−Eloc) +Eloc ≥ Eloc

Eloc(1−Eseg) +Eseg ≥ Eseg ⇒ max(Eloc,Eseg) ≤ EhIoU ≤ min(1,Eloc +Eseg)

(b) For aIoU: EaIoU = 1− aIoU = 0.5(Eloc +Eseg).
(c) EhIoU intuitively reflects that “the shortcoming dictates the performance ceiling”. In contrast,

EaIoU is always 0.5(Eloc+Eseg), lacking the shortcoming effect. Thus, EhIoU more faithfully
captures the coupled relationship in IRSTD.

The multiplicative form naturally penalizes any weak link, making it a more faithful, robust metric
for IRSTD than the additive aIoU. No high score can “hide” a bad component, whereas the additive
form can still report misleadingly high scores even if one factor is near zero, thus failing to reflect
genuine end-to-end performance.

C.3 Why Use the IoU-based Form?

Our choice to adopt an IoU-based formulation is intentional and motivated by both practical and
conceptual considerations.

1. Using the IoU form ensures consistency with the segmentation IoU, thereby yielding a uniform
metric structure across both pixel and target levels. This consistency simplifies the interpretation
and facilitates a coherent hierarchical error decomposition framework. Specifically:
(a) It enables pixel-level and target-level components to have the same variation trends and

intrinsic meanings.
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(b) It allows a unified performance and error analysis principle based on set intersection-over-
union, to be applied at different levels.

(c) It can further simplify the final computation of the hIoU, as the term
∑K

i=1 |TP[i]
tgt| can be

cleanly canceled out due to structural consistency.

2. IoU has the added advantage of directly reflecting spatial overlap, which is particularly meaningful
for tasks involving localization and segmentation. This makes it more intuitive and analytically
convenient in the context of IRSTD.

C.4 Extended Discussion on F1-score

Target-level F1-score (F1tgt). As stated in the main text, the F1 we used follows the pixel-level
formulation that has been widely adopted in IRSTD [37]. Therefore, our implementation of F1 is
aligned with the precedent set by prior literature. F1/precision/recall can also be formulated at the
target level. Notably, the recall in this context corresponds to the commonly used target-level IRSTD
metric Pd. To provide a more comprehensive evaluation, we additionally supplement the target-level
F1tgt in Tab. 5.

Why not F1tgt×nIoUpix? There are fundamental differences in the way they handle error attribution.
The product of target-level F1tgt and pixel-level nIoUpix can lead to redundant penalization, as it
implicitly assumes independence between segmentation and localization errors. However, the two
types of errors are often correlated, for instance, inaccurate localization will simultaneously degrade
whole segmentation performance. As a result, this form tends to double-count the impact of shared
failure sources, and thus does not faithfully reflect the overall performance. In contrast, our hIoU is
designed to disentangle these two layers of performance. Localization quality is measured first, and
any performance loss due to missed or poorly localized targets is entirely attributed to the target-level.
Segmentation quality is then evaluated only within the region of correctly matched targets, focusing
solely on the spatial overlap and avoiding entanglement with localization failure. This design ensures
that each layer is evaluated in a complementary manner and errors are attributed unambiguously to
their true source. Consequently, hIoU offers a more accurate, interpretable, and fair assessment of the
model’s overall performance, avoiding the distortion introduced by overlapping error contributions.

C.5 Multi-Frame Infrared Small Target Detection

Some advances leverage temporal cues (i.e., multi-frame IRSTD) to enhance robustness against clutter,
including motion direction encoding [18] and recurrent refinement with motion compensation [35],
effectively exploiting spatiotemporal dynamics. Recent work [19] explores the temporal-profile per-
spective by reformulating detection as a one-dimensional anomaly task, offering high efficiency. These
works highlight the emerging shift from purely spatial designs toward spatio-temporal paradigms.

Our evaluation framework is agnostic to the detection paradigm and is designed to be equally applica-
ble to both single-frame and multi-frame IRSTD methods. In particular, the proposed metrics and
analysis mechanisms remain consistent across these settings without any need for structural adapta-
tion. In Tab. 6, we conduct experiments on a representative multi-frame dataset [18] and evaluate
several state-of-the-art multi-frame IRSTD methods [18, 35, 19] using our proposed framework.

C.6 Validation under Occlusion, Deformation, and Connectivity

Our work focuses on the IRSTD task, where the targets often exhibit significant boundary ambiguity
and shape diversity, as shown in Fig. 5 and Fig. 8. Our OPDC strategy does not rely on the content
of the input image (e.g., weather conditions or image quality), but instead operates solely on the
binary prediction and ground-truth masks. It incorporates both distance-based and region-overlap
constraints, which helps reduce interference caused by target occlusion, deformation, or connectivity.
We also supplement experiments of OPDC under these challenging conditions by creating three data
subsets with random target occlusion, deformation, and connectivity. The proposed OPDC strategy is
compared with the original distance-based approach [17]. The ratio of predefined target pairs that
are successfully matched is summarized in Tab. 7. This experiment demonstrates that our OPDC
performs better than the distance-based method [17].
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Table 5: Cross-dataset performance analysis. Colors red, green and blue represent the first, second
and third ranked results. Besides the reported metrics, the target-level F1-score (F1tgt) is included
in the content of Tab. 1.

ACM21 [9] FC3Net22 [40] DNANet22 [17] ISNet22 [41] AGPCNet23 [42] UIUNet23 [34] RDIAN23 [29] MTU-Net23 [33] ABC23 [22] SeRankDet24 [6] MSHNet24 [20] MRF3Net24 [44] SCTransNet24 [37] RPCANet24 [32]

Params. 0.5M 6.9M 4.7M 1.1M 12.4M 50.5M 0.1M 4.1M 73.5M 108.9M 4.1M 0.5M 11.2M 0.7M
FLOPs 2.0G 10.6G 56.1G 121.9G 327.5G 217.9G 14.8G 24.4G 332.6G 568.7G 24.4G 33.2G 67.4G 179.7G

Trained on IRSTD1kTR [41].

IR
ST

D
1k

T
E

[4
1]

IoUpix ↑ 0.439 0.358 0.637 0.578 0.605 0.570 0.603 0.610 0.624 0.642 0.650 0.636 0.644 0.608
nIoUpix ↑ 0.476 0.531 0.625 0.518 0.580 0.600 0.605 0.607 0.595 0.621 0.620 0.630 0.622 0.579
F1pix ↑ 0.610 0.527 0.778 0.733 0.754 0.726 0.753 0.757 0.768 0.782 0.788 0.777 0.783 0.756
F1tgt ↑ 0.761 0.757 0.905 0.888 0.890 0.906 0.869 0.851 0.885 0.863 0.913 0.891 0.887 0.830

+OPDC 0.796 0.766 0.908 0.894 0.894 0.912 0.878 0.860 0.888 0.870 0.916 0.902 0.897 0.831
Pd↑ 0.798 0.865 0.912 0.919 0.916 0.906 0.902 0.929 0.916 0.926 0.933 0.899 0.912 0.886

+OPDC 0.835 0.875 0.916 0.926 0.919 0.912 0.912 0.939 0.919 0.933 0.936 0.909 0.923 0.896
Fa×106 ↓ 95.178 237.365 13.854 13.266 15.354 51.147 21.503 28.012 16.815 44.638 11.539 17.441 16.834 28.145

+OPDC 61.187 233.266 10.476 11.444 11.862 44.277 17.062 23.647 13.475 41.108 7.686 12.146 10.476 21.844
hIoU↑ 0.356 0.383 0.557 0.443 0.496 0.530 0.511 0.493 0.508 0.520 0.549 0.553 0.537 0.470

SI
R

ST
T
E

[9
]

IoUpix ↑ 0.472 0.234 0.676 0.712 0.763 0.696 0.658 0.701 0.708 0.734 0.649 0.752 0.629 0.543
nIoUpix ↑ 0.567 0.595 0.733 0.719 0.735 0.688 0.735 0.749 0.737 0.742 0.699 0.763 0.686 0.676
F1pix ↑ 0.642 0.380 0.807 0.832 0.866 0.821 0.794 0.824 0.829 0.847 0.787 0.858 0.772 0.704
F1tgt ↑ 0.786 0.688 0.963 0.973 0.969 0.950 0.921 0.939 0.942 0.955 0.929 0.951 0.917 0.890

+OPDC 0.802 0.696 0.963 0.973 0.969 0.968 0.921 0.956 0.951 0.955 0.929 0.951 0.917 0.882
Pd↑ 0.908 0.872 0.963 0.982 0.991 0.963 0.963 0.982 0.972 0.982 0.954 0.982 0.963 0.927

+OPDC 0.927 0.881 0.963 0.982 0.991 0.982 0.963 1.000 0.982 0.982 0.954 0.982 0.963 0.927
Fa×106 ↓ 127.650 932.797 3.754 5.632 2.560 86.351 17.407 42.152 22.526 17.236 11.946 4.608 20.820 124.066

+OPDC 121.165 932.456 3.754 5.632 2.560 30.376 17.407 38.397 21.844 17.236 11.946 4.608 20.820 124.066
hIoU↑ 0.418 0.390 0.687 0.674 0.682 0.644 0.645 0.693 0.672 0.684 0.623 0.694 0.596 0.598

N
U

D
T
T
E

[1
7]

IoUpix ↑ 0.331 0.288 0.504 0.443 0.468 0.450 0.441 0.416 0.469 0.494 0.463 0.512 0.377 0.291
nIoUpix ↑ 0.452 0.443 0.627 0.538 0.556 0.541 0.554 0.528 0.582 0.581 0.561 0.609 0.502 0.430
F1pix ↑ 0.498 0.448 0.670 0.614 0.638 0.620 0.612 0.588 0.638 0.661 0.633 0.678 0.548 0.451
F1tgt ↑ 0.588 0.648 0.806 0.710 0.749 0.797 0.713 0.641 0.776 0.783 0.732 0.771 0.689 0.680

+OPDC 0.613 0.678 0.841 0.749 0.809 0.824 0.771 0.712 0.805 0.794 0.798 0.813 0.751 0.662
Pd↑ 0.757 0.752 0.848 0.759 0.785 0.836 0.804 0.769 0.808 0.820 0.771 0.815 0.748 0.701

+OPDC 0.792 0.787 0.886 0.806 0.850 0.867 0.871 0.857 0.841 0.832 0.843 0.862 0.818 0.722
Fa×106 ↓ 253.092 273.488 121.206 71.920 40.690 114.695 71.869 96.690 133.464 63.883 65.562 43.844 110.728 190.989

+OPDC 236.308 266.469 114.899 57.068 31.789 106.049 62.002 79.753 124.563 59.916 47.913 35.502 92.723 187.581
hIoU↑ 0.274 0.333 0.526 0.434 0.456 0.457 0.408 0.366 0.484 0.466 0.445 0.484 0.393 0.344

Trained on SIRSTTR [9].

IR
ST

D
1k

T
E

[4
1]

IoUpix ↑ 0.104 0.456 0.564 0.498 0.518 0.444 0.382 0.545 0.574 0.549 0.581 0.581 0.550 0.492
nIoUpix ↑ 0.306 0.469 0.556 0.495 0.481 0.470 0.470 0.544 0.544 0.543 0.542 0.550 0.519 0.490
F1pix ↑ 0.188 0.626 0.721 0.665 0.683 0.615 0.552 0.705 0.730 0.709 0.735 0.735 0.710 0.659
F1tgt ↑ 0.406 0.720 0.810 0.747 0.749 0.713 0.441 0.768 0.822 0.771 0.858 0.764 0.777 0.656

+OPDC 0.429 0.734 0.816 0.752 0.754 0.724 0.446 0.771 0.825 0.777 0.861 0.767 0.779 0.676
Pd↑ 0.818 0.865 0.912 0.909 0.912 0.912 0.879 0.909 0.902 0.909 0.892 0.899 0.912 0.879

+OPDC 0.872 0.882 0.919 0.916 0.919 0.929 0.889 0.912 0.906 0.916 0.896 0.906 0.916 0.909
Fa×106 ↓ 1784.007 139.018 66.672 118.806 84.815 178.835 187.907 88.364 60.959 85.537 44.524 56.822 72.005 88.630

+OPDC 1704.411 129.073 61.813 115.124 81.608 160.730 182.935 87.947 60.409 81.399 44.144 52.666 71.663 81.342
hIoU↑ 0.124 0.334 0.435 0.370 0.356 0.336 0.172 0.408 0.443 0.413 0.459 0.398 0.400 0.313

SI
R

ST
T
E

[9
]

IoUpix ↑ 0.607 0.651 0.708 0.746 0.787 0.738 0.670 0.805 0.775 0.785 0.715 0.777 0.764 0.690
nIoUpix ↑ 0.664 0.740 0.779 0.759 0.771 0.723 0.751 0.796 0.793 0.800 0.754 0.775 0.773 0.742
F1pix ↑ 0.756 0.788 0.829 0.854 0.881 0.849 0.803 0.892 0.873 0.879 0.834 0.875 0.866 0.817
F1tgt ↑ 0.904 0.924 0.963 0.960 0.965 0.960 0.914 0.952 0.969 0.969 0.955 0.956 0.952 0.930

+OPDC 0.922 0.924 0.972 0.969 0.965 0.960 0.914 0.952 0.969 0.969 0.955 0.956 0.960 0.926
Pd↑ 0.954 1.000 0.963 0.982 1.000 0.991 0.972 1.000 1.000 1.000 0.972 1.000 0.991 0.972

+OPDC 0.972 1.000 0.972 0.991 1.000 0.991 0.972 1.000 1.000 1.000 0.972 1.000 1.000 0.972
Fa×106 ↓ 92.836 121.506 4.778 35.155 8.362 13.994 75.771 14.335 31.571 31.571 25.598 13.482 7.679 51.367

+OPDC 51.879 121.506 3.584 22.526 8.362 13.994 75.771 14.335 31.571 31.571 25.598 13.482 6.485 51.367
hIoU↑ 0.584 0.655 0.736 0.720 0.723 0.679 0.655 0.732 0.747 0.755 0.699 0.715 0.712 0.675

N
U

D
T
T
E

[1
7]

IoUpix ↑ 0.121 0.361 0.521 0.463 0.458 0.482 0.226 0.502 0.599 0.586 0.539 0.543 0.474 0.355
nIoUpix ↑ 0.373 0.461 0.635 0.552 0.563 0.549 0.527 0.586 0.663 0.644 0.616 0.643 0.572 0.467
F1pix ↑ 0.215 0.530 0.685 0.633 0.628 0.650 0.369 0.668 0.749 0.739 0.701 0.704 0.643 0.524
F1tgt ↑ 0.357 0.604 0.641 0.716 0.637 0.708 0.172 0.695 0.765 0.760 0.797 0.695 0.701 0.615

+OPDC 0.366 0.665 0.703 0.744 0.669 0.764 0.192 0.747 0.771 0.770 0.815 0.735 0.749 0.687
Pd↑ 0.855 0.757 0.841 0.832 0.846 0.846 0.825 0.846 0.888 0.867 0.864 0.890 0.827 0.750

+OPDC 0.879 0.836 0.923 0.867 0.888 0.916 0.923 0.909 0.895 0.879 0.883 0.946 0.883 0.848
Fa×106 ↓ 2600.861 150.604 114.594 115.000 142.008 118.510 1013.184 100.352 58.492 42.979 70.089 97.198 91.553 139.211

+OPDC 2571.971 139.567 100.352 111.084 137.126 109.049 996.348 82.855 56.661 41.453 66.427 90.078 84.686 124.003
hIoU↑ 0.125 0.317 0.379 0.419 0.340 0.409 0.070 0.404 0.492 0.474 0.481 0.401 0.406 0.328

Trained on NUDTTR [17].

IR
ST

D
1k

T
E

[4
1]

IoUpix ↑ 0.340 0.398 0.420 0.259 0.443 0.464 0.448 0.450 0.441 0.214 0.405 0.414 0.392 0.270
nIoUpix ↑ 0.420 0.425 0.506 0.342 0.479 0.522 0.523 0.506 0.492 0.341 0.527 0.511 0.484 0.409
F1pix ↑ 0.508 0.569 0.591 0.411 0.614 0.633 0.619 0.621 0.612 0.352 0.576 0.585 0.564 0.425
F1tgt ↑ 0.697 0.623 0.755 0.533 0.760 0.742 0.686 0.656 0.780 0.452 0.793 0.672 0.693 0.464

+OPDC 0.716 0.630 0.761 0.541 0.775 0.748 0.705 0.666 0.789 0.448 0.796 0.674 0.701 0.475
Pd↑ 0.862 0.859 0.852 0.865 0.875 0.892 0.862 0.892 0.896 0.943 0.896 0.889 0.892 0.855

+OPDC 0.886 0.879 0.859 0.882 0.892 0.899 0.886 0.906 0.906 0.943 0.902 0.896 0.902 0.879
Fa×106 ↓ 251.409 134.596 76.408 268.699 79.710 107.741 57.904 112.847 58.530 678.048 104.724 81.247 89.465 265.985

+OPDC 226.149 113.872 73.504 257.919 70.695 92.255 49.325 106.508 54.810 678.048 101.346 79.843 87.112 256.970
hIoU↑ 0.306 0.279 0.383 0.186 0.366 0.382 0.342 0.322 0.375 0.192 0.408 0.325 0.321 0.192

SI
R

ST
T
E

[9
]

IoUpix ↑ 0.605 0.557 0.645 0.572 0.587 0.675 0.638 0.603 0.611 0.615 0.587 0.625 0.569 0.484
nIoUpix ↑ 0.668 0.627 0.716 0.621 0.660 0.720 0.720 0.687 0.678 0.704 0.670 0.709 0.632 0.560
F1pix ↑ 0.754 0.716 0.784 0.728 0.740 0.806 0.779 0.752 0.759 0.762 0.740 0.770 0.725 0.652
F1tgt ↑ 0.909 0.779 0.927 0.863 0.885 0.925 0.871 0.870 0.873 0.825 0.897 0.846 0.877 0.703

+OPDC 0.909 0.779 0.927 0.872 0.885 0.934 0.871 0.879 0.873 0.833 0.897 0.846 0.877 0.690
Pd↑ 0.963 0.954 0.936 0.927 0.917 0.963 0.963 0.954 0.945 0.954 0.954 0.936 0.945 0.826

+OPDC 0.963 0.963 0.936 0.936 0.917 0.972 0.963 0.963 0.945 0.963 0.954 0.936 0.945 0.826
Fa×106 ↓ 33.960 56.316 8.191 42.152 15.188 22.356 15.700 26.793 17.407 48.125 19.796 25.939 11.605 52.220

+OPDC 33.960 55.463 8.191 20.820 15.188 19.967 15.700 25.939 17.407 47.613 19.796 25.939 11.605 53.586
hIoU↑ 0.575 0.441 0.637 0.491 0.557 0.648 0.566 0.557 0.555 0.526 0.559 0.554 0.511 0.372

N
U

D
T
T
E

[1
7]

IoUpix ↑ 0.635 0.693 0.831 0.790 0.778 0.840 0.803 0.809 0.854 0.840 0.790 0.830 0.856 0.747
nIoUpix ↑ 0.668 0.723 0.850 0.813 0.796 0.844 0.826 0.821 0.862 0.854 0.817 0.847 0.856 0.772
F1pix ↑ 0.776 0.819 0.908 0.882 0.875 0.913 0.891 0.895 0.921 0.913 0.882 0.907 0.923 0.855
F1tgt ↑ 0.917 0.878 0.974 0.937 0.956 0.970 0.911 0.924 0.966 0.909 0.939 0.966 0.977 0.793

+OPDC 0.920 0.885 0.976 0.941 0.956 0.973 0.917 0.924 0.968 0.909 0.946 0.968 0.982 0.794
Pd↑ 0.974 0.953 0.988 0.988 0.986 0.993 0.988 0.993 0.993 0.991 0.974 0.991 0.991 0.970

+OPDC 0.977 0.960 0.991 0.993 0.986 0.995 0.995 0.993 0.995 0.991 0.981 0.993 0.995 0.972
Fa×106 ↓ 46.844 46.539 11.698 17.700 13.987 7.222 22.125 20.549 12.309 31.586 30.518 10.071 3.916 57.576

+OPDC 42.979 36.621 9.003 16.886 13.987 5.442 19.786 20.091 10.325 31.586 20.142 7.782 2.391 57.271
hIoU↑ 0.600 0.620 0.817 0.742 0.744 0.793 0.704 0.714 0.814 0.728 0.748 0.803 0.824 0.547

Table 6: Results of multi-frame IRSTD methods.

hIoU↑ IoUseg
pix ↑ Eseg

MRG ↓ Eseg
ITF ↓ Eseg

PCP ↓ IoUloc
tgt ↑ Eloc

S2M ↓ Eloc
M2S ↓ Eloc

ITF ↓ Eloc
PCP ↓

[18] 0.552 0.832 0.000 0.107 0.061 0.683 0.000 0.010 0.189 0.119
[35] 0.546 0.816 0.000 0.117 0.067 0.669 0.000 0.012 0.195 0.123
[19] 0.591 0.822 0.000 0.114 0.064 0.719 0.000 0.006 0.151 0.124

Table 7: Success rate of predefined target pair matching.

Occlusion Deformation Connectivity

OPDC 1.000 1.000 0.949
Distance 0.420 0.320 0.379
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C.7 Validation on Medical Small Object Detection

To verify its applicability, we transfer the proposed framework to the medical image domain, specif-
ically, the polyp segmentation task, which also involves small and irregular targets. We evaluate
the classic method [11] in Tab. 8 using our framework and observe clear localization-related er-
rors, including large values in Eloc

ITF and Eloc
PCP , corresponding to missed detections and incorrect

background predictions. These issues are also visually evident in its predictions, confirming that
established methods can also suffer from target-level limitations not reflected in traditional metrics.
This extension further shows the generality and diagnostic value of our framework beyond IRSTD.

Table 8: Experiments on medical small object detection, i.e., the polyp segmentation task.

hIoU↑ IoUseg
pix ↑ Eseg

MRG ↓ Eseg
ITF ↓ Eseg

PCP ↓ IoUloc
tgt ↑ Eloc

S2M ↓ Eloc
M2S ↓ Eloc

ITF ↓ Eloc
PCP ↓

[11] 0.589 0.881 0.003 0.050 0.066 0.669 0.000 0.000 0.143 0.188

C.8 Validation on Different Target Attributes

Since our metrics are computed based solely on binary prediction and ground truth masks, they do not
rely on the input image itself and the target contrast in the image has no influence on the evaluation
process. To analyze the influence of target size and density attributes, we manually adjust the size and
spatial density of targets and the results are reported in Tab. 9. The results show that while the metrics
are generally stable, changes in target size or density do lead to observable variations in hIoU. This
behavior is expected and reasonable: modifying target size or density can alter the relative distances
and overlaps between targets, which directly affects localization accuracy, segmentation overlap, and
ultimately the joint hIoU score.

Table 9: Experiments on different target attributes, including size and density.

hIoU↑ IoUseg
pix ↑ Eseg

MRG ↓ Eseg
ITF ↓ Eseg

PCP ↓ IoUloc
tgt ↑ Eloc

S2M ↓ Eloc
M2S ↓ Eloc

ITF ↓ Eloc
PCP ↓

Original 0.430 0.632 0.000 0.182 0.186 0.687 0.000 0.000 0.207 0.106
Smaller (Erosion) 0.422 0.614 0.002 0.192 0.192 0.686 0.000 0.000 0.206 0.108
Larger (Dilation) 0.437 0.633 0.001 0.180 0.186 0.690 0.000 0.000 0.209 0.101
Sparser 0.424 0.622 0.001 0.188 0.189 0.682 0.000 0.000 0.208 0.110
Denser 0.441 0.634 0.000 0.176 0.190 0.696 0.000 0.000 0.207 0.097

In addition, we conduct experiments in Sec. B by creating synthetic scenarios with more and denser
small targets. As shown in the comparison between the original dataset (Tab. 1) and the synthetic
dataset (Tab. 4), the average differences between other metrics and hIoU are listed as Tab. 10. These
results show that, except for Pd and Fa, the performance gap between hIoU and other metrics remains
relatively stable. The changes in Pd and Fa may be related to their strong dependence on target
matching, which is itself sensitive to variations in target number and density.

Table 10: Average differences between other metrics and hIoU.

IoUpix ↑ nIoUpix ↑ F1pix ↑ Pd↑ +OPDC↑ Fa×106 ↓ +OPDC↑
-0.003 0.014 0.006 -0.195 -0.142 58.519 -28.424

C.9 Experiments on NUDT-SIRST-Sea

The selected datasets in the main text are the most commonly-used benchmarks in IRSTD. As shown
in Tab. 1, existing methods still exhibit large performance variations across these datasets, suggesting
inherent distribution differences in data. We additionally introduce the NUDT-SIRST-Sea dataset [33],
which features space-based infrared imagery of tiny ships and drastically different with existing data.
Results of RPCANet [32] on four datasets as listed in Tab. 11 show a significant performance drop
under this distribution shift, confirming both the sensitivity of current methods and the usefulness of
our framework in revealing such robustness issues.

To better characterize the differences in data distributions, we analyze and compare the four testing
datasets, i.e., IRSTD1kTE [41], SIRSTTE [9], NUDTTE [17], and NUDT-SIRST-SeaTE [33]. A
set of hand-crafted statistical features from each image, including image attributes (i.e., brightness,
contrast, and noise estimation) and target attributes (i.e., count, size, contrast, and area ratio) are
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Table 11: Results of RPCANet [32] on four datasets.

IRSTD1kTE [41] NUDTTE [17] SIRSTTE [9] NUDT-SIRST-SeaTE [33]

IoUpix ↑ 0.608 0.291 0.543 0.001
F1pix ↑ 0.756 0.451 0.704 0.001

Pd↑ 0.886 0.701 0.927 0.303
Fa×106 ↓ 28.145 190.989 124.066 56666.629

hIoU↑ 0.470 0.344 0.598 0.017

Table 12: Attribute statistics for four datasets.

Image Attributes Target Attributes
Brightness Brightness Contrast Root Mean Laplacian-based Average Average Target-Background Foreground-Background

Mean Standard Deviation Square Contrast Noise Estimation Target Count Target Size Contrast Area Ratio

IRSTD1kTE [41] 0.344 0.149 0.149 43.436 1.477 51.148 131.865 1.786×104

SIRSTTE [9] 0.428 0.098 0.098 40.068 1.267 30.289 1.936 3.795×104

NUDTTE [17] 0.419 0.127 0.127 110.505 1.426 34.703 1.525 4.263×104

NUDT-SIRST-SeaTE [33] 0.244 0.076 0.076 66.729 2.238 10.011 0.881 1.761×104

Figure 10: Illustration of attribute distribution for four datasets.

extracted and summarized in Tab. 12. They can be used to visualize the overall data distribution of
these datasets based on t-SNE, as shown in Fig. 10. The visualization offers an interpretable and
model-agnostic way to clear distribution differences through images and target attributes. While
partial overlaps exist, each dataset occupies distinct regions, highlighting cross-dataset heterogeneity.
This underscores the necessity of cross-dataset analysis to avoid bias and improve generalization in
the IRSTD research.

D Societal Impacts

This work rethinks the evaluation protocols in IRSTD, aiming to enhance research transparency and
fairness through the hierarchical analysis framework and open-source benchmarking tool, ultimately
supporting the development of more reliable systems for real-world deployment. Furthermore,
through systematic error analysis, this work identifies critical failure modes, which may help facilitate
the exploration of necessary risk mitigation strategies in safety-sensitive applications.
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