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Abstract

The use of Retrieval-Augmented Generation (RAG) has improved Large Language
Models (LLMs) in collaborating with external data, yet significant challenges
exist in real-world scenarios. In areas such as academic literature and finance
question answering, data are often found in raw text and tables in HTML or
PDF formats, which can be lengthy and highly unstructured. In this paper, we
introduce a benchmark suite, namely Unstructured Document Analysis (UDA), that
involves 2,965 real-world documents and 29,590 expert-annotated Q&A pairs. We
revisit popular LLM- and RAG-based solutions for document analysis and evaluate
the design choices and answer qualities across multiple document domains and
diverse query types. Our evaluation yields interesting findings and highlights the
importance of data parsing and retrieval. We hope our benchmark can shed light and
better serve real-world document analysis applications. The benchmark suite and
code can be found at https://github.com/qinchuanhui/UDA-Benchmark.

1 Introduction

Large Language Models (LLMs) have achieved remarkable success yet still face limitations [16].
One of the key challenges is to grapple with external knowledge and previously unseen data, which
is a common scenario in real-world applications such as enterprise search and data analysis. For
example, a company may need to query its proprietary technique documents; a financial expert
may need to extract insights from the latest corporate reports; and a research group may need to
assimilate cutting-edge academic papers to guide their innovations. To overcome this challenge,
retrieval-augmented generation (RAG) that incorporates relevant content from an external data source
into the LLM generation procedure, has emerged as a promising approach [30].

As shown in Figure 1, a common RAG workflow involves the following procedures: 1) parse the
external data and segment it into chunks; 2) embed the chunks into vectors and create indexes; 3)
retrieve the most relevant chunks according to the user query, and 4) assemble the prompt with
relevant chunks (i.e., context) as input for the LLM to generate the response. Recently, a multitude
of advanced RAG techniques have been proposed with improved retrieval policies [3, 64], context
chunk compression [59, 56], and pre-training strategies [49]. Furthermore, as an alternative approach
to RAG, recent advances in long-context LLMs [8, 11, 62] have empowered querying directly on
lengthy data without chunking and retrieval.
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Figure 1: An example of basic RAG processing on unstructured documents.

According to a study by Forbes, 95% of business organizations in various domains such as finance
and technology need analyzing unstructured texts and tables in raw documents like web pages and
PDFs [6]. Analyzing unstructured documents in the world poses the following challenges:

Unstructured inputs. Parsing unstructured documents into regularized text and tables is error-prone.
Unlike plain text, unstructured documents often contain intricate layouts and redundant symbols.
Prior works [51, 63] have incorporated vision and language models, but their effectiveness is still
doubtful. Further, multi-modal data, e.g., tables, require improved indexing and retrieval strategies
because classic text embeddings disregard structural information from these data.

Lengthy documents, such as financial reports spanning hundreds of pages, necessitate effective
embedding and retrieval mechanisms.

Query answering strategies. User queries span from extractive queries to complex arithmetic
reasoning; each may require a different answering strategy, such as using Chain-of-Thought[57]
or external tools like Code Interpreters [65]. We wonder how these design choices can impact the
end-to-end query answering quality.

In this paper, we propose a benchmark suite that enables the evaluation of various components of
RAG-based unstructured document analysis. Specifically, we leverage the Unstructured Document
Analysis (UDA) dataset to cover finance, academia, and world knowledge with a total of 2,965
documents and 29,590 expert-annotated Q&A pairs. UDA enables end-to-end evaluations of diverse
Q&As and granular analyses of individual components within the RAG pipeline.

Unlike prior datasets and benchmarks which often assume clean or segmented inputs [12, 35, 15],
we exploit the design considerations in end-to-end document analysis. We performed extensive
experimental analysis to cover different data extraction policies, retrieval and generation strategies,
and a range of LLMs. We also compared RAG-based solutions with those that use LLMs with long
context capabilities.

Our analysis leads to interesting findings. First, despite that various computer-vision- or language-
based parsing techniques have been proposed, conventional solutions may fail to improve the overall
Q&A quality due to irregular edge cases. We also found that smaller retrieval models could perform
reasonably well in certain RAG applications, while Chain-of-Thought approaches improve the answer
quality in zero-shot numerical document analysis. However, long-context LLMs often fall short in
these tasks.

We will actively update the benchmark suite and incorporate more state-of-the-art RAG solutions and
LLMs in our benchmark. We hope such efforts will shed light on future research and production of
RAG- and LLM-based document analysis.

2 Related Work

Retrieval Augmented Generation Large Language Models (LLMs) demonstrate remarkable abili-
ties but struggle with external knowledge and the latest unseen data. Retrieval Augmented Generation
(RAG) addresses these limitations by incorporating external information to enrich LLMs’ responses,
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Table 1: Summary and comparison of Q&A datasets. Raw documents: datasets in the native file
format, without extraction or parsing; Long content: the provision of unsegmented, un-retrieved long
content.

Dataset Text + tables Raw documents Long content Diverse
Questions Sources

HybridQA [10] ✓ ✓ Wikipedia
WiKiTableQuestion [39] ✓ Wikipedia

TriviaQA [24] ✓ ✓ ✓ ✓ Wikipedia
VisualMRC [52] ✓ ✓ Wikipedia

FinQA [12] ✓ Finance
TAT-DQA [66] ✓ ✓ ✓ Finance

Qasper [13] ✓ ✓ ✓ Papers
PDF-VQA [14] ✓ ✓ ✓ Medicine
DocVQA [35] ✓ ✓ ✓ Multiple

NarrativeQA [26] ✓ ✓ Multiple
UDA (Ours) ✓ ✓ ✓ ✓ Multiple

yielding more precise and credible outputs [44]. Furthermore, several innovative techniques have
been developed to refine the procedure beyond the basic RAG approach [16]. For instance, Self-RAG
[3] and FLARE [23] determine the retrieved content actively according to the generation results.
LLMLingua [22, 21], RECOMP [59], and FILCO [56] focus on filtering and condensing the context
input to enhance the information efficiency. Additionally, specialized pre-training and fine-tuning
techniques can also optimize the process [31, 48, 49]. Despite these advancements, current ap-
proaches often overlook the complexities in real-world unstructured document analysis, such as
unstructured data and table schemas, extensive document lengths, and diverse analytical queries.

Prior Benchmarks for RAG offer tools for assessing various dimensions of RAG. RGB [9] bench-
marks RAG on robustness and negative rejection. CRUD-RAG [34] introduces a Chinese news dataset
for multifaceted evaluation, including text continuation, question answering, and error correction.
ALCE [15] evaluates the performance of generating cited responses. In contrast, our benchmark
emphasizes the tasks of document comprehension and analysis.

Prior Benchmarks for Q&A often inadequately represent real-world scenarios. For example,
mainstream datasets like TriviaQA [24], HotPotQA [61], SQuAD [42], and NaturalQuestions [29]
predominantly utilize the Wikipedia sources that have limited application scope and potentially
overlap with LLM’s internal knowledge. Moreover, datasets such as QuALITY [38] and NarrativeQA
[26] are pure plain text, while WikiTableQuestions [39] and SQA [18] are pure tabular data. They
fail to capture the complexity of real-world analytical documents. Additionally, datasets like FinQA
[12] and VisualMRC [52] present well-structured or segmented content directly, thus sidestepping
the intricacies of parsing and retrieval. Table 1 summarizes the features of existing datasets and
highlights the uniqueness of our UDA benchmark in real-world document analysis.

3 Dataset: UDA

In this section, we outline the composition and construction of UDA. Each data item within UDA is
logically structured as a triplet (D, q, a), where D represents a complete unstructured document, q
denotes a question raised from the document, and a signifies the ground truth answer (refer to the
data example in Appendix A). To mirror the authenticity of real-world applications, the documents
are retained in their original file formats without parsing or segmentation.

Dataset Composition. Our UDA dataset includes six sub-datasets across three pivotal domains:
finance, academia, and knowledge bases, reflecting typical use cases in document analysis. As
delineated in Table 2, the dataset spans table-based and text-based (or hybrid) QA formats in each
domain to ensure that the evaluation covers different data patterns. Moreover, UDA contains 2,965
documents with a wide range of content length and 29,590 expert-annotated Q&A pairs that vary
from extractive queries to arithmetic reasoning (see examples in Table 3). These features profoundly
embody the breadth and depth of practical real-world applications.
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Table 2: An overview of sub-datasets in UDA and their statistics

Domain Sub Dataset Doc Format Doc Num Q&A Num Avg #Words Avg #Pages Tot Size Q&A Types

Finance
FinHybrid PDF 788 8190 76.6k 147.8 2.61 GB Arithmetic

TatHybrid PDF 170 14703 77.5k 148.5 0.58 GB Extractive, counting, arithmetic

Academic
Paper

PaperTab PDF 307 393 6.1k 11.0 0.22 GB Extractive, yes/no, free-form

PaperText PDF 1087 2804 5.9k 10.6 0.87 GB Extractive, yes/no, free-form

World
Knowledge

FetaTab PDF & HTML 878 1023 6.0k 14.9 0.92 GB Free-form

NqText PDF & HTML 645 2477 6.1k 14.9 0.68 GB Extractive

Table 3: Examples of different Q&A types

Q&A Types Example Question Example Answer

Extractive Who has the longest win streak in MMA? Anderson Silva

Yes/No Are experiments performed with any other pair of languages? No

Free-form How did Hayden Panettiere fare at the 2012 and 2013 Golden Globes?

Hayden Panettiere received two
nominations for the Golden Globe

Award, Best Supporting Actress Series,
Miniseries or Television Film, for her
work on Nashville in 2012 and 2013.

Counting How many regions have revenues of more than $20,000 thousand? 2

Arithmetic What was the percentage increase in cash dividends from 2015 to 2016? (0.29− 0.25)÷ 0.25 ∗ 100% = 16%

Label Collection. We first collect the Q&A labels from the open-released datasets (i.e., source
datasets), which are all annotated by human participants. Specifically, our FinHybrid is based on
the financial numerical reasoning dataset FINQA [12], which is constructed based on the public
earnings reports of S&P 500 companies. TatHybrid is derived from TAT-DQA [66], whose Q&A
pairs are accompanied by the document snapshot of 1 to 3 pages from public financial annual reports.
Both PaperTab and PaperText are based on Qasper [13], a reading comprehension dataset based on
NLP research papers. FetaTab is built upon FetaQA [36], a question-answering dataset for tables
from Wikipedia pages. NqText is derived from the widely used Q&A dataset, Natural-Questions
[28], which uses the Wikipedia pages as context. Its questions are collected from the Google Search
engine, and the answers are human-annotated.

Dataset Construction. We conduct a series of essential constructing actions after collecting
the Q&A labels from the source datasets. The integrity of original documents is crucial for the
fidelity of document analysis. However, most of the source datasets only offer well-parsed and
segmented partial content without the complete document. To address this problem, we perform a
comprehensive source-document identification process, including retrieval, verification, and cleaning.
(1) Retrieval: the original documents are sourced from certain platforms, such as Wikipedia [58] and
arXiv [2]. We conduct retrieval on these platforms using the metadata from the source datasets, such
as titles, timestamps, and document types. (2) Verification: we verify the accuracy of the retrieved
document by cross-referencing the content fragments in existing datasets, collecting only exact
matches. Specifically, we employ the pypdf [41] library for automatic data parsing and comparison,
supplemented by manual inspection. (3) Cleaning: we remove the documents that are inaccessible or
not available, such as damaged files and withdrawn papers.

Then we embark on a rigorous matching and reorganization effort, enhancing the data quality and
forming complete triplet data pairs, i.e., document-question-answer. This involves the following
transformations: (1) data cleaning by removing the Q&A pairs or documents lacking essential
answers; (2) standardizing diverse data formats into consistently structured tables and JSON files,
addressing the heterogeneity of presentation across different sub-datasets; (3) categorizing the queries
in Qasper into table-centric and text-centric, thus forming the PaperTab and PaperText subsets for
different application patterns; (4) converting HTML-token-based data type into natural language,
forming our user-friendly NqText dataset (5) manually annotating some tables within Qasper to serve
as references for evaluating parsing strategies.
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Table 4: The structure of the sampled datasets used in the following evaluation.

Sum FinHybrid TatHybrid PaperTab PaperText FetaTab NqText

# Docs 1201 100 150 307 194 300 150

# Q&A pairs 2503 451 450 393 480 350 379

4 Benchmarks and Evaluations

We provide a systematic benchmark of various modules in a typical RAG workflow, as well as an
end-to-end LLM-based evaluation. The focused items of our benchmark include:

• The effectiveness of various table-parsing approaches, including raw-text extraction, computer
vision (CV)-based, CV-LLM-based and advanced multi-modal parsing (Section 4.1).

• The performance of different indexing and retrieval strategies, spanning sparse retrieval, classic
dense embedding, and advanced retrieval model (Section 4.2).

• The influence of precise retrieval on the quality of LLM interpretation (Section 4.2).

• The effectiveness of long-context LLMs compared to typical RAGs (Section 4.3).

• Comparison of different Q&A strategies, such as Chain-of-Thought reasoning and the integration
of external code execution (Section 4.4).

• End-to-end comparisons of various LLMs across diverse applications (Section 4.5).

Metrics To evaluate the quality of LLM-generated answers, we apply widely accepted span-level
F1-score [42] in PaperTab, PaperText, FetaTab, and NqText datasets, where ground-truth answers are
in natural language and the source datasets also utilize this metric. We treat the prediction and ground
truth as bags of words and calculate the F1-score to measure their overlap. In financial analysis, the
assessment becomes more intricate due to numerical values. For the TatHybrid dataset, we adopt the
numeracy-focused F1-score, introduced by Zhu, et al. [67], which considers the scale and the plus-
minus of numerical values. In the FinHybrid dataset, where answers are always numerical or binary,
we rely on the Exact-Match metric but allow for a numerical tolerance of 1%, accounting for rounding
discrepancies. Furthermore, we also incorporate the LLM-based method for a more comprehensive
evaluation (more details in Appendix B.5). To assess the effectiveness of retrieval strategies, we
identify the factual evidence in retrieved chunks using the relative length of the Longest Common
Subsequence (LCS) [40] instead of the exact match, because extracted PDF data chunks often include
extraneous symbols that can hinder exact matches while still containing crucial evidence.

Experiment setups In our experiments, we evaluate the performance of various decomposed RAG
components, mainly utilizing two representative LLMs: 1) GPT-4 [1], exemplifying the large-scale
powerful model, proposed by OpenAI; 2) Llama-3-8B [53], representing the compact yet capable
model, proposed by Meta. Furthermore, to ensure a thorough comparative analysis, we also include
the end-to-end experiment encompassing a suite of additional LLMs: 3) LLama-3-70B [33], an open-
source large-scale model; 4) Qwen-1.5-32B and Qwen-1.5-7B [5], introduced by Alibaba, notable
for its 32k token context window; 5) Mixtral-8x7B [20], a Mixture-of-Experts model innovated by
MistralAI; 6) Mistral-7B [19], also from MistralAI; 7) CodeLlama-7B and CodeLlama-13B [45],
llama models tailored for code generation.

Following prior works in [4, 60, 68], we focus on zero-shot LLM generation, yet add an extra
formatting example to align the output with the desired pattern (refer to Appendix B.1). For the GPT-
4 model, we leverage the Azure-OpenAI API to access GPT4-Turbo-1106-Preview with the context
window of 128k. Other open-source models are obtained from Huggingface, and we always use the
instruct-tuned version. The inference is done on 4 NVIDIA-A100 GPUs. To reduce the compute
costs, we randomly sample 1201 documents (in PDF format) accompanied by 2503 question-answer
pairs to form our evaluation set (detailed in Table 4). We believe it serves as a practical performance
indicator for real-world scenarios.
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Figure 2: The procedure of the table parsing experiment

Table 5: Performance scores (EM or F1) of LLMs using varying parsing strategies on table-based
Q&A tasks.

Dataset LLM Name Well Parsed GPT-4-Omni Raw Text CV CV + LLM

Tabular FinHybrid (EM)
GPT-4-Turbo 71.9 72.4 68.0 61.3 52.4

Llama-3-8B 59.5 56.3 51.6 44.6 40.2

PaperTab (F1)
GPT-4-Turbo 42.8 44.3 42.4 38.6 40.7

Llama-3-8B 35.8 37.7 36.5 34.6 32.1

4.1 Evaluating Data Parsing

We evaluate various parsing methods to extract tabular information from PDF files and analyze their
influence on the downstream tasks, utilizing the table-based questions from PaperTab and FinHybrid
(more details in Appendix B.2). As shown in Figure 2, each question is paired with a PDF page that
contains the clue tables; doing so prevents inaccurate retrievals. The tabular data are parsed into text
and merged with the rest of the text content as the input context to the LLM.

We evaluate several existing approaches of table parsing: (1) Raw text extraction, which employs
a PDF text extractor [41] to extract all the characters. (2) Classic Computer Vision (CV) based
approach, which often performs layout detection and OCR extraction at the same time. We follow
[55] to use Yolox [17], Tesseract [50] and TableTransformer [51] models together. (3) CV + LLM
method, which further employs an LLM to transform the outputs of (2) into Markdown tables. (4) For
the advanced multi-modal approach, we employ the latest GPT-4-Omni [37] to convert image-based
document tables into Markdown format. (5) The manually-verified well-parsed tables serve as the
parsing ground truth.

Table 5 reveals that GPT-4-Omni outperforms other approaches, while surprisingly, raw text extraction
also yields decent results. We found that the queried tables are relatively simple; the structural markers
from the raw text, such as line-breakers and space, are often adequate for LLMs to understand the
table. Classic CV methods, if not meticulously tuned, may struggle in handling non-standard table
presentations, i.e., edge cases (see an example in Figure 3). Additionally, employing GPT-4-Omni
directly for question-answering scores 69.8 and 35.4, lower than sequentially parsing and generating
with GPT-4 (i.e., 72.4 and 44.3).

We also observe from the FinHybrid dataset that the GPT-4 model shows a modest 5.7% improvement
with well-parsed data over raw-text data, while the much smaller Llama-3-8B offers a significant
15% enhancement, suggesting that compact models with a limited capability of parsing table layouts,
may benefit more from enhanced parsing. In the PaperTab dataset, where completely accurate
information is less critical, GPT-4-Omni and raw-text parsing could even outperform well-parsed
tables by preserving structural cues that highlight important elements for LLM interpretation.

Remark. Evaluations here suggest (1) CV-based parsing methods may require adaptation for edge
cases before they can be useful; (2) smaller LLMs may be impacted more by uncleaned input data,
when requiring accurate and specific information.
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Source PDF Page

Classic-CV Parsed Table
(in visible format)

North AmericaEurope,
Middle East
& Africa Asia Pacific South America Total
Electrical/Electronic Architecture...................... 32 34 25 5 96
Powertrain Systems............................................ 4 8 5 1 18
Electronics and Safety........................................ 3 6 3 — 12
Total............................................................... 39 48 33 6 126

Raw-Text Extraction

|                           | North America | Europe, Middle East & Africa | Asia Pacific | South America | Total |
|---------------------------|---------------|------------------------------|--------------|---------------|-------|
| Electrical/Electronic Architecture | 32            | 34            | 25           | 5             | 96    |
| Powertrain Systems        | 4             | 8                            | 5             | 1             | 18    |
| Electronics and Safety    | 3             | 6                            | 3             | —            | 12    |
| Total                     | 39            | 48                           | 33           | 6             | 126   |

GPT-4-Omni Parsed Table

Figure 3: An example of table parsing with different strategies. Raw-text-extraction preserves the
informational content with structural markers; CV-based method may struggle with the irregular table
presentation; GPT-4-Omni yields the highest accuracy.

Table 6: Relative LCS scores in different retrieval strategies. We evaluate the presence of evidence in
most related 1, 5, 10 and 20 chunks.

Model
FinHybrid PaperTab PaperText FetaTab NqText

@1 @5 @10 @20 @1 @5 @10 @20 @1 @5 @10 @20 @1 @5 @10 @20 @1 @5 @10 @20

Sparse BM-25 65.6 83.7 87.4 90.0 46.0 79.7 90.0 92.3 47.4 80.0 88.0 89.9 68.3 91.9 95.2 96.2 42.0 69.2 75.8 80.3

Dense
Embedding

all-MiniLM-L6 49.1 71.8 78.2 84.0 51.3 81.7 90.4 92.9 45.7 76.7 85.9 89.9 63.6 90.8 94.4 95.3 49.1 71.1 77.3 80.7

all-mpnet-base 48.7 74.7 81.7 86.7 50.2 82.2 90.8 92.9 40.8 75.3 86.3 89.8 66.3 91.5 94.6 95.5 50.3 73.4 78.8 81.7

OpenAI 57.2 80.1 85.2 89.3 55.5 85.4 91.8 93.0 52.2 83.1 89.0 90.3 69.7 92.7 95.0 95.7 50.9 74.9 80.2 82.3

Advanced Col-BERT 54.4 75.0 80.4 85.0 47.8 79.7 89.2 92.7 48.4 77.1 86.8 89.8 67.8 91.5 94.6 95.4 47.3 70.3 76.5 80.2

4.2 Indexing and Retrieval

We evaluate the performance of 5 different models under the following retrieval paradigms: 1) BM-25
[7, 54], a lightweight sparse retrieval method without complex neural networks, ranking document
segments based on the appearing frequency of query terms. 2) all-MiniLM-L6 from SentenceTrans-
former [43], a prevalent dense embedding model, mapping sentences to a 384-dimensional dense
vector space. 3) all-mpnet-base, another widely utilized embedding model from SentenceTrans-
former, noted for its larger architecture and improved performance. 4) text-embedding-3-large
model, the latest embedding model from OpenAI, with enhanced capability. These classic dense
embedding models process both query and document segments into vectors, and employ cosine
similarity measures to retrieve the most relevant segments. 5) ColBERT [46], an advanced retrieval
model, relying on token-level embedding and fine-grained contextual late interaction.

We use the relative length of the Longest Common Subsequence (LCS) to demonstrate the presence
of human-annotated evidence in retrieved chunks (more experimental details in Appendix B.3).
As shown in Table 6, OpenAI’s text-embedding-3-large model excels in most datasets except for
FinHybrid, where the simpler BM-25 approach intriguingly outperforms. This could be attributed
to the fact that financial queries often contain more precise details, such as dates or keywords; this
aligns well with the direct keyword-matching of BM-25.

We also conduct end-to-end experiments to verify the impact of the retrieval quality. We evaluate the
answer quality with top-5 chunks retrieved using OpenAI embeddings or with the human-annotated
evidential chunks. As shown in Table 7, providing more relevant context to LLMs improves the
answers in most cases, particularly in arithmetic-reasoning tasks such as FinHybrid and TatHybrid.
Interestingly, for the FinHybrid dataset, the Llama-3-8B model achieved a score of 51.0 when given
accurate context, outperforming GPT-4 with model-retrieved chunks. However, for knowledge-based
questions from the NqText and FetaTab, the answer quality remains less affected. This is because
complex numerical reasoning demands more precise evidence for accurate arithmetic operations,
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Table 7: End-to-end answer scores using retrieved and human-annotated context

LLM Name Context Type FinHybrid TatHybrid PaperTab PaperText FetaTab NqText

Llama-3-8B
OpenAI Retrieval @5 37.9 22.5 35.5 42.3 56.6 31.7

Human-annotated 51.0 35.9 35.1 46.4 57.5 31.5

Improvement 35% 60% -1% 10% 2% -1%

GPT-4-Turbo
OpenAI Retrieval @5 45.9 43.5 40.3 45.8 61.5 37.4

Human-annotated 69.4 57.7 42.0 56.5 59.5 39.0
Improvement 51% 33% 4% 23% -3% 4%

Table 8: Performance scores between long-context and RAG mechanism.

LLM Name Input Type FinHybrid TatHybrid PaperTab PaperText FetaTab NqText

Qwen-1.5-7B
OpenAI Retrieval @5 21.0 26.6 31.4 39.1 58.1 32.4

Long Context 3.0 20.9 26.3 33.1 58.7 30.2

GPT-4-Turbo
OpenAI Retrieval @5 43.4 46.3 43.5 47.1 61.8 35.8

Long Context 37.4 36.9 43.3 47.4 63.3 35.4

whereas LLMs can leverage a wide range of narrative information to derive answers to knowledge-
based questions.

Remark. We found that the model scaling law may not hold true in retrieval scenarios. The retrieval
quality does matter, particularly in arithmetic tasks, but the incremental benefit of including additional
chunks diminishes. Some use cases (e.g., queries that involve exact entity matching) may prefer some
specific data embedding or indexing mechanisms.

4.3 RAG vs. Long Context

We compare RAG-based methods with long-context LLMs, utilizing GPT-4-Turbo with a 128k
context window and Qwen-1.5-7B with a 32k context window. Due to the high cost of long context
inference, we conduct this experiment on a subset of 600 documents (more details in Appendix B.4).
The results are demonstrated in Table 8.

Remark. We notice that for free-form or knowledge-based tasks (i.e., paper-based and wiki-based
Q&A), RAG and long-context solutions demonstrate comparable capability. Conversely, in tasks with
more numerical reasoning (i.e., financial Q&A), long-context LLMs fail to match the performance of
RAG. In such use cases, the excess of verbose content might hinder long-context LLMs in pinpointing
facts and performing numerical reasoning effectively (see an example in Table 10). Additionally,
RAG is likely to surpass the long-context mechanism more in the smaller LLM, given its constrained
capacity to handle large volumes of data.

4.4 Evaluating Chain-of-Thought and Code Interpreters

In real-world analytical queries, reasoning capabilities can be essential, yet LLMs face limitations in
this area [25]. To overcome these constraints, advanced methods such as Chain-of-Thought (CoT)
[57] and Code-Interpreter (CI) [65] have been introduced. CoT prompts LLMs to generate a series of
intermediate reasoning steps, whereas CI lets the LLM produce executable codes and then invoke an
external executor to derive the answer. In this section, we evaluate the efficacy of basic generation, the
CoT approach, and CI methods using the numerical reasoning dataset FinHybrid. We use the top-5
chunks retrieved with OpenAI’s embedding as the context and benchmark GPT-4-Turbo, Llama-3-8B,
and the code-tailored CodeLlama models. The CoT approaches are implemented with step-wise
instructive prompts, while the basic CI method asks LLMs to produce Python codes if necessary
(more details in Appendix B.1).

Remark. As illustrated in Table 9, the Chain-of-Thought (CoT) approach outperforms others across
all model configurations (see an example in Table 10). The Llama-3-8B model shows improvements
when incorporating codes, yet CoT methods still prove superior. CodeLlama models, however,
struggle with generating viable code in this scenario with lengthy context and ambiguous code-gen
instructions. GPT-4-turbo exhibits a native ability to produce step-by-step explanations, leading to
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Table 9: Exact-match scores of different generation strategies on the FinHybrid dataset

LLM Name Base CoT Code

Llama-3-8B 21.3 37.9 26.4

CodeLlama-7B 5.5 7.3 5.5

CodeLlama-13B 10.6 11.3 9.1

GPT-4-Turbo 45.9 45.9 32.2

Table 10: Case study of long-context and generating strategy. RAG outperforms the long-context
through more accurate evidence retrieval, and CoT’s superiority is attributed to the integration of
explicit reasoning steps.

Question LLM Name Strategy LLM’s Response

What percentage of contractual obligations
is due to maturities of long-term debt? Qwen-1.5-7B

long-context 33% ✗

RAG 690 million out of 1416 million, 49% ✓

What percent of the share-based compensation
expense was related to stock options? Llama-3-8B

basic-gen 100% ✗

code 94.4% (no code is generated, direct response) ✗

CoT

To find the percentage, we can divide the
portion related to stock options by the total

share-based compensation expense
($7 million / $36 million) x 100 = 19.4% ✓

Table 11: End-to-end performance scores of different LLMs

LLM Name Avg FinHybrid TatHybrid PaperTab PaperText FetaTab NqText

GPT-4-turbo 45.7 45.9 43.5 40.3 45.8 61.5 37.4

Llama-3-70B 42.5 43.5 30.9 38.7 44.4 63.3 33.9

GPT-3.5 40.9 36.6 33.9 35.5 42.1 64.1 33.1

Qwen-1.5-32B 38.9 31.3 27.9 31.6 43.1 58.4 41.3
Llama-3-8B 37.7 37.9 22.5 35.5 42.3 56.6 31.7

Mixtral-8x7B-v0.1 34.5 28.4 22.5 35.0 38.1 54.1 29.1

Qwen-1.5-7B 33.8 17.0 22.6 28.0 37.7 58.6 38.9

Mistral-7B-v0.2 26.6 18.2 15.9 20.9 22.7 54.3 27.3

Llama-3-8B-NoRAG 18.0 3.6 6.0 13.0 16.2 47.7 21.7

GPT-4-turbo-NoRAG 17.6 0.4 3.0 15.3 18.9 48.6 19.6

equivalent performance between basic generation and CoT methods. It is worth noting that while
code interpreter has been demonstrated capable of handling numerical and tabular data [27, 68], its
efficacy in document analysis is hindered by the unstructured tables and lengthy context, if just using
the basic code strategy.

4.5 End-to-End Evaluations

Assembling the insights derived from the above analyses, we construct an end-to-end RAG pipeline.
Specifically, we parse unstructured data from PDFs leveraging the raw-text extraction approach,
and employ OpenAI’s text-embedding-3-large model to index and retrieve relevant data chunks. In
the generation phase, we incorporate the Chain-of-Thought approach to handle arithmetic-intensive
tasks. Based on this end-to-end pipeline, we evaluate 8 LLMs spanning various model sizes and
architectures.

Remark. Table 11 presents the results, where GPT-4 leads in overall performance. GPT-3.5 and
Qwen-1.5-32B excel in FetaTab and NqText, respectively. The overall end-to-end scores demonstrate
the challenges of our benchmark and also indicate considerable room for improvement in real-world
document analysis for both RAG and LLMs.

Additionally, Table 12 presents the results when the LLMs respond to the questions with versus
without RAG support. A significant decline in accuracy is observed when RAG is absent, underscoring
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Table 12: Performance scores with and without RAG

LLM and Strategy FinHybrid TatHybrid PaperTab PaperText FetaTab NqText

GPT-4 45.9 43.5 40.3 45.8 61.5 37.4
GPT-4-NoRAG 0.4 3.0 15.3 18.9 48.6 19.6

Llama-3-8B 37.9 22.5 35.5 42.3 56.6 31.7
Llama-3-8B-NoRAG 3.6 6.0 13.0 16.2 47.7 21.7

the LLMs’ deficiency of related internal knowledge and their reliance on external documents. This
reinforces the effectiveness of our benchmark for the evaluation and exploration of RAG approaches.

5 Conclusion

In this paper, we propose a novel benchmark to assess Retrieval Augmented Generation (RAG)
methodologies in real-world document analysis scenarios. Our benchmark features diverse question
types and encompasses thousands of unstructured documents with expert labels from financial
and other domains. Meanwhile, we discuss interesting findings from our evaluations, covering
data parsing, information retrieval, long context mechanism, generating strategies and end-to-end
performance. We believe our benchmark will advance future research and production in unstructured
document analysis.

6 Limitations

Despite the valuable contributions of this study, we acknowledge its limitations: (1) While the efficacy
of parsing strategies was evaluated through the downstream Q&A performance, a direct comparison
of the parsed content was not undertaken. This stems from the absence of well-defined standards for
direct quality assessment in the scenario of document understanding. (2) This study did not extend
to the in-depth analyses of noise sensitivity and hallucination. We will delve into these topics and
conduct detailed analyses in our future work.
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A Dataset Example

Unstructured Document

Question
What is the total value of vested shares during the fiscal year ended march
31, 2012 , in millions?

Answers

str_ans: "1.46"
exe_ans: 1.45792

Program Explanation

multiply (134, 10.88)
divide (#0, const_1000)

Factual Evidence
page_idx: 47,
table_content: ....
text_content: ....

Figure 4: Data example of FinHybrid in UDA

Figure 4 presents a data item from the FinHybrid dataset, a prototypical representation common
to all datasets within UDA. It comprises an original multi-page unstructured document containing
tables and text, accompanied by related question-answer pairs. The datasets within UDA also feature
additional explanations in different formats, such as the programmatic operation and factual evidence
in FinHybrid.

B Experimental Details

B.1 Prompt Templates for LLMs

Table 13 presents the prompt templates for LLM. We use the Chain-of-Thought approach for
FinHybrid and TatHybrid datasets and also explore basic generation and Code-Interpreter strategies
for FinHybrid, as detailed in Section 4.4. The example instruction of the prompt omits full context,
just using a Q&A pair to guide LLM output toward the target answer format.

B.2 Settings of Parsing Experiments

In our parsing experiments, we utilize 341 table-based questions from FinHybrid and 100 questions
from PaperTab. FinHybrid provides cleanly extracted tables which we formatted into Markdown
text as our well-parsed ground truth. To get the well-parsed content in PaperTab, we first use GPT-4-
Omni to convert table images to Markdown, followed by manual corrections for inaccuracies. Since
Markdown doesn’t support the nested structure, we replicate the root content to represent hierarchical
relationships.

B.3 Settings of Indexing and Retrieval Experiments

In our indexing and retrieval experiments, we first extract raw text from documents, then segment it
into 3000-character (about 500 words) chunks using the recursive-split method [47], ensuring a 10%
overlap to mitigate information loss. Then the index is constructed on these chunks for the retrieval
task. For evaluation, human-annotated factual evidence serves as the ground truth for retrieval. We
measure evidence presence by calculating the ratio of the Longest Common Subsequence (LCS)
length to the full evidence length.

B.4 Long-context Policy

In our long-context experiments, we employ the Qwen-1.5-7B-32k and GPT4-Turbo-128k models,
which can handle extended contexts but are still insufficient for quite long documents, such as
financial reports exceeding 100k words (more than 150k tokens). For such cases, the strategy falls
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Table 13: Prompt templates for LLMs in each dataset and task.

Dataset Prompt Template

PaperTab and PaperText

System

You are a scientific researcher, given a section of an academic paper, please
answer the question according to the context of the paper. The final answer output
should be in the format of "The answer is: <answer>", and the <answer> should
be concise with no explanation.

User ### Context: ... ### Question: Which Indian languages do they experiment
with? ### Response:

Assistant The answer is: Hindi, English, Kannada, Telugu, Assamese, Bengali
and Malayalam.

User ### Context: {context} ### Question: {question} ### Response:

FetaTab

System
Given a section of a document, plese answer the question according to the
context. The final answer output should be in the format of "The answer is:
<answer>", and the <answer> should be a natural sentence.

User ### Context: ... ### Question: When and in what play did Platt appear at the
Music Box Theatre? with? ### Response:

Assistant The answer is: In 2016 and 2017, Platt played in Dear Evan Hansen on
Broadway at the Music Box Theatre.

User ### Context: {context} ### Question: {question} ### Response:

NqText

System

Given a section of a document, plese answer the question according to the
context. The final answer output should be in the format of "The answer is:
<answer>", and the <answer> should be a paragraph from the context or a
summarized short phrase.

User ### Context: ... ### Question: When will tour de france teams be announced?
### Response:

Assistant The answer is: 6 January 2018

User ### Context: {context} ### Question: {question} ### Response:

FinHybrid and TatHybird
(Chain-of-Thought)

System

You are a financial analyzer, given a section of a company’s annual report, please
answer the question according to the report context. Let’s do this step by step.
The final answer output should be in the format of "The answer is: <answer>", and
the <answer> must be simple and short (e.g. just an accurate numerical value
or phrases).

User ### Context: ... ### Question: What is the average price of the products?
### Response:

Assistant There are 8 products with a total price value of 1000 so the average value is
125.00. The answer is: 125.00

User ### Context: {context} ### Question: {question} ### Response:

FinHybrid
(Basic Generation)

System

You are a financial analyzer, given a section of a company’s annual report, please
answer the question according to the report context. The final answer output should
be in the format of ’The answer is: <answer>’, and the <answer> must be simple
and short (e.g. just an accurate numerical value or phrases).

User ### Context: ... ### Question: What is the average price of the products?
### Response:

Assistant The answer is: 125.00

User ### Context: {context} ### Question: {question} ### Response:

FinHybrid
(Code Interpreter)

System

Given a section of a company’s annual report and corresponding question, please
generate the python codes to calculate the answer. You should firstly extract and list
the relevant information from the context, and then write the arithmetical python
codes in the following block format: ```python <python codes> ```If the answer does
not require any calculation, you should directly write the answer in the format of
"The answer is: <answer>".

User ### Context: ... ### Question: What is the average price of the products?
### Response:

Assistant

The price of product 1,2,3,4 is 700, and the price of product 5,6,7,8 is 900.
The python code is ```python products = [700, 700, 700, 700, 900, 900, 900, 900] \n
total_price = sum(products) \n average_price = total_price / len(products) \n
print(average_price)```

User ### Context: ... ### Question: What is the net income in 2009? ### Response:

Assistant The answer is: 1000 million

User ### Context: {context} ### Question: {question} ### Response:

back to retrieving the top 30 most relevant data segments to serve as the input context. Due to the
high cost of long context inference, we conduct this experiment on a subset of 600 documents, each
coupled with a corresponding Q&A pair.
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Table 14: Performance scores (Exact Match or LLM-Score) of LLMs using varying parsing strategies
on table-based Q&A tasks (supplement to Table 5).

Dataset LLM Name Well Parsed GPT-4-Omni Raw Text CV CV + LLM

Tabular FinHybrid (EM)
GPT-4-Turbo 71.9 72.4 68.0 61.3 52.4

Llama-3-8B 59.5 56.3 51.6 44.6 40.2

PaperTab (LLM-Score)
GPT-4-Turbo 54.3 56.3 54.3 53.5 52.5

Llama-3-8B 46.8 41.3 40.3 36.0 37.0

Table 15: End-to-end answer scores using retrieved and human-annotated context (with the LLM
evaluator, supplement to Table 7).

LLM Name Context Type FinHybrid TatHybrid PaperTab PaperText FetaTab NqText

Llama-3-8B
OpenAI Retrieval @5 37.9 22.5 39.9 43.2 69.0 82.5

Human-annotated 51.0 35.9 39.1 41.2 68.0 85.2

GPT-4-Turbo
OpenAI Retrieval @5 45.9 43.5 51.8 53.2 80.4 81.7

Human-annotated 69.4 57.7 53.0 60.3 75.0 81.8

Table 16: Performance scores between long-context and RAG mechanism (with the LLM evaluator,
supplement to Table 8).

LLM Name Input Type FinHybrid TatHybrid PaperTab PaperText FetaTab NqText

Qwen-1.5-7B
OpenAI Retrieval @5 21.0 26.6 40.0 44.2 68.0 73.0

Long Context 3.0 20.9 40.8 48.0 68.0 77.3

GPT-4-Turbo
OpenAI Retrieval @5 43.4 46.3 56.5 57.1 81.3 77.8

Long Context 37.4 36.9 50.0 57.8 81.0 78.8

Table 17: End-to-end performance scores of different LLMs (with the LLM evaluator, supplement to
Table 11).

LLM Name Avg FinHybrid TatHybrid PaperTab PaperText FetaTab NqText

GPT-4-turbo 59.4 45.9 43.5 51.8 53.2 80.4 81.7

GPT-3.5 55.3 36.6 33.9 46.2 51.1 76.1 87.9
Llama-3-70B 52.4 43.5 30.9 44.3 43.3 72.4 80.3

Mixtral-8x7B-v0.1 50.0 28.4 22.5 48.2 50.7 67.9 82.5

Llama-3-8B 49.2 37.9 22.5 39.9 43.2 69.0 82.5

Qwen-1.5-32B 45.8 31.3 27.9 39.7 43.5 66.5 65.6

Mistral-7B-v0.2 45.1 18.2 15.9 41.8 45.3 66.3 83.0

Qwen-1.5-7B 43.6 17.0 22.6 39.5 44.9 66.1 71.7

B.5 LLM Evaluator

We also incorporate the LLM-based method for a more comprehensive evaluation. Following the
previous work [32], we implement our LLM-based evaluator with few-shot in-context learning. Given
the question, ground-truth answer, and the generated response, the LLM evaluator scores the response
from 0 to 4 based on correctness. For the FinHybrid and TatHybrid datasets, where the answers are
digits or extractive words, the existing numeric or word-level matching is sufficient for scoring. For
the remaining datasets, PaperTab, PaperText, FetaTab, and NqText, with natural-language answers,
we apply the LLM evaluator to re-evaluate all of our experiments. The results are illustrated from
Table 14 to Table 17, where the scores are normalized to the 100-scale for clarity.

Our findings are further validated by the results from the LLM evaluator. For example, the long-
context and RAG mechanism yield comparable results on free-form and knowledge-based tasks, and
GPT-4-omni and raw-text parsing methods demonstrate decent performance. Unlike the rule-based
evaluation, the LLM evaluator works for varied but similar expressions and produces generally higher
absolute scores, while it may decrease the interpretability of how the scores are determined.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] In

supplemental material.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Both in the
supplemental material and as a URL in Abstract.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] There’s no training process in this paper.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] Due to the significant computational cost, the evaluation
of LLMs often doesn’t need multiple experimental iterations, supported by extensive
prior works.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 3
(b) Did you mention the license of the assets? [Yes] In supplemental material.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Both in the supplemental material and as a URL in Abstract.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] In supplemental material.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] In supplemental material.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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