
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Q-RAG: LONG CONTEXT MULTI-STEP RETRIEVAL
VIA VALUE-BASED EMBEDDER TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) methods enhance LLM performance by
efficiently filtering relevant context for LLMs, reducing hallucinations and infer-
ence cost. However, most existing RAG methods focus on single-step retrieval,
which is often insufficient for answering complex questions that require multi-
step search. Recently, multi-step retrieval approaches have emerged, typically
involving the fine-tuning of small LLMs to perform multi-step retrieval. This type
of fine-tuning is highly resource-intensive and does not enable the use of larger
LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Em-
bedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG
offers a competitive, resource-efficient alternative to existing multi-step retrieval
methods for open-domain question answering and achieves state-of-the-art results
on the popular long-context benchmarks BabiLong and RULER for contexts up to
10M tokens.

1 INTRODUCTION

Large language models (LLMs) have achieved impressive results across a wide range of tasks
(Novikov et al., 2025; Guo et al., 2025; Yang et al., 2025). However, they still face some sev-
eral fundamental limitations such as static knowledge, computational inefficiency on long contexts,
degraded performance caused by attention dilution, and hallucinations (Hsieh et al., 2024; Kuratov
et al., 2024; Liu et al., 2025). Retrieval-Augmented Generation (RAG) is one of the most widely
used techniques to address these issues (Yu et al., 2024).

RAG works by extracting only the most relevant parts from a large external corpus or context, such as
newly added knowledge or lengthy texts. This allows LLMs to operate on shorter and more focused
inputs, improving efficiency and output quality. Most current RAG methods rely on single-step re-
trieval. This setup performs well in relatively simple tasks like Needle-in-a-Haystack (Hsieh et al.,
2024). Still, more complex problems require multi-step interaction with the context. Multi-step
retrieval can be viewed as a form of search-based reasoning. There are several existing approaches
to multi-step retrieval reasoning. One direction involves constructing a knowledge graph from the
retrieved information (Ma et al., 2025; Li et al., 2024). These methods are often slow at infer-
ence time, since the LLM must process the entire context to build the graph for each new input.
Another line of work uses LLM agents, which interleave RAG queries with LLM-generated instruc-
tions (Singh et al., 2025; Anokhin et al., 2024). These systems are sensitive to noisy or inaccurate
retrieved passages, which may disrupt the generation of future queries. This shows the need for
joint optimization of the retrieval and generation components. Recently, methods have emerged that
fine-tune LLMs to interact more effectively with retrieval tools (Song et al., 2025; Jin et al., 2025;
Chen et al., 2025). These methods tend to perform better, but they require expensive fine-tuning
of the LLM itself. This makes them impractical for large models and limits accessibility for most
researchers and practitioners.

In this work, we focus on developing a resource-efficient multi-step RAG approach using reinforce-
ment learning. Instead of fine-tuning an LLM, we train an agent that performs retrieval directly in
the latent space of text chunk embeddings. This allows us to learn a compact and efficient model
using value-based RL methods.

Our approach achieves state-of-the-art results on long-context commonsence reasoning, multi-hop
QA, and NIAH tasks with contexts up to 10 million tokens. It also performs competitively on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

open-domain QA benchmarks such as Musique and HotpotQA (Yang et al., 2018;?), while being
significantly faster and cheaper to train and run compared to existing multi-step RAG methods. Our
contributions are the following:

• We propose a new method for training a multi-step retrieval agent using temporal difference
reinforcement learning.

• We achieve state-of-the-art results on benchmarks that require commonsense reasoning and
NIAH tasks over ultra long contexts (up to 10M tokens).

• We introduce a new way to incorporate temporal information into the multi-step embedder,
enabling temporal reasoning during retrieval. Our temporal reasoning mechanism general-
izes well to long contexts at inference time.

2 RELATED WORKS

There are several main directions for tackling complex retrieval scenarios on long context tasks.

A highly popular approach involves building fine-tuning free LLM Agents that combine off-the-shelf
retrievers with LLMs, such as Search-o1 (Li et al., 2025). Many of these works further enhance
retrieval quality by constructing large knowledge graphs over the context, which, while requiring
little additional training, are extremely slow at inference due to the need for LLMs to process the
entire context, e.g. GraphReader (Li et al., 2024), HippoRAG (Jimenez Gutierrez et al., 2024),
AriGraph (Anokhin et al., 2024).

Another line of work fine-tunes LRMs to perform multi-step retrieval, allowing the model to gener-
ate intermediate search queries inside the reasoning for long contexts. The first work to apply this
idea was IM-RAG (Yang et al., 2024), which fine-tuned the LLM with a frozen embedder using
PPO (Schulman et al., 2017). More recent papers, such as R1-Searcher (Song et al., 2025), Search-
R1 (Jin et al., 2025), RAG-RL (Huang et al., 2025), and ReSearcher (Chen et al., 2025), extended
this direction by employing GRPO (Shao et al., 2024) for the task. Unlike these methods, which
freeze the embedder and fine-tune the LLM, our approach fine-tunes only the embedder, allowing it
to pair with LLMs of any size, including proprietary ones, while keeping fine-tuning efficient and
inexpensive.

A different approach is to fine-tune the retriever itself using feedback from the LLM, as in Re-
Plug (Shi et al., 2024). This direction is most similar to ours, but RePlug did not address multi-step
reasoning or use reinforcement learning in this setting. BeamRetriever (Zhang et al., 2024) achieves
state-of-the-art results on short-context QA by training a reranker for BeamSearch-style planning.
In contrast, Q-RAG trains the embedder with reinforcement learning, enabling faster inference and
better scalability to long contexts through efficient vector similarity instead of transformer-based
trajectory scoring.

Extremely long-sequence processing is demonstrated by models that combine recurrence with
Transformer architecture. The Mamba family of state space models (Gu & Dao, 2024) replaces at-
tention with structured recurrent dynamics, offering linear-time scalability and strong performance
on long sequences, though often at the cost of weaker in-context learning and less expressive token-
to-token interaction compared to Transformer-based architectures. The Recurrent Memory Trans-
former (RMT) (Bulatov et al., 2022) introduces segment-level recurrence by passing memory tokens
between fixed-size segments, enabling Q&A on sequences up to 10M tokens. Titans (Behrouz et al.,
2024) frames recurrent memory training as a meta-learning problem, showing scaling beyond 2M
tokens. Building on this idea, ATLAS (Behrouz et al., 2025) increases memory capacity, achieving
better long-context performance than both RMT and Titans. The Associative Recurrent Memory
Transformer (ARMT) (Rodkin et al., 2024) employs quasi-linear, associative attention in each layer
and attains the best long-context scores among recurrent models. Our approach outperforms all of
these models on contexts beyond 1M tokens while belonging to a different class of methods.

LongRoPE2 (Shang et al., 2025) tackles the positional encoding bottleneck, extending the effective
context window of pre-trained LLMs to 128K tokens while retaining short-context performance
through RoPE rescaling and mixed-window training.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 METHODS

...John stayed
late at the office...

Q-RAG Agent

Environment

...He briefly
stopped by

home...

 hebought
something at the

pharmacy...

...that, he spent
twenty minutes at

a café...

Outside his
place, he realized

his keys were

...He stayed
overnight at his

neighbor?s place...

Question: Where
could John have

forgotten his keys?

Answer: cafe,
pharmacy

State Embedder

Action Embedder

Q values

reward
function /

critic

. . .

...that, he spent
twenty minutes at a

café...

Long-Context
Document

Next
timestep

Figure 1: Q-RAG agent interacts with multi-step retrieval environment. The starting state s0 contains
the initial query q. At the start of the episode, the agent embeds all chunks of the long context C.
At each step t, the agent computes a vector embedding of the current state st, which includes q
and all previously selected chunks. For every chunk ci ∈ At, the utility of retrieving it is evaluated
by the Q-function Qθ(st, a = ci). The policy πθ selects the next chunk from At with probability
proportional to its Qθ(st, c

i) value.

3.1 PRELIMINARIES

Let D be a dataset of triples (C, q, y), where C is a long context, q is an initial query, and y is
the gold answer. The query q can be either a user question about C or a generated claim whose
factuality or consistency with earlier parts of C must be verified. We assume C is pre-segmented
into non-overlapping1 text chunks C = {c(i)}mi=1 in document order. The agent’s goal is to identify
the information in C that is missing from q but necessary to produce the correct answer y. We model
multi-step retrieval as a finite-horizon Markov Decision Process, or MDP (S,A, p, r, γ), where A
is the action space, S is the state space, r is the reward function, p is the (deterministic) transition
function, and γ ∈ [0, 1] is the discount factor. At step t = 0, the action set is A0 = C, where
an action at ∈ At selects one chunk. At later steps, previously selected chunks are removed so
At = C \ {a0, . . . , at−1}. Superscripts indicate document positions and subscripts indicate episode
timesteps. The notation ai (equivalently c(i)) denotes the chunk/action at position i in the document;
selecting the chunk with index i at step t is written ait. Symbols c and a are used interchangeably,
depending on context.

States are ordered lists that always begin with the query, st = ord([q, a0, . . . , at−1]), where ord(·)
sorts by the original document order to avoid permutation ambiguity; the initial state contains only
the query, s0 = [q]. Transitions are deterministic, p(st, at) = ord([q, a0, . . . , at−1, at]). An episode
terminates either when a step budget T is reached or when a special STOP action is taken.

When supervision provides a set of support facts F ⋆ ⊆ C, we use a sparse terminal reward: the
reward is 0 at all intermediate steps, and at the end of the episode it is 1 if all support facts are
included in the final state (otherwise 0). When only answer supervision is available, one could
instead use an LLM to generate ŷ from the final state and define a terminal reward via an answer-
quality metric (e.g., exact match or F1). In this work we do not pursue LLM-based rewards; all
reported experiments rely on the support-fact signal, and exploring LLM-based reward design is left
for future work.

1Chunk overlapping may complicate the explanation but does not affect our proposed solution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 VALUE-BASED RL FOR EMBEDDER FINE-TUNING

Action selection in multi-step retrieval is performed by a value-based agent. Specifically, maximum-
entropy reinforcement learning (Ziebart, 2010; Haarnoja et al., 2018) is adopted together with the
corresponding definitions of the soft Qπ and V π value functions for a policy π:

Qπ(s, a) = r(s, a) + γV π(s′ = p(s, a)) (1)
V π(s) = Ea∼π(·|s) [Q

π(s, a)− α log π(a|s)] (2)

Here, α > 0 is a temperature that controls the strength of exploration. This choice is primarily mo-
tivated by the need for effective exploration in the long-context multi-step retrieval environment. In
Q-RAG, Q function is approximated using two embedders for states and actions. The state embed-
der Es(st; θ1) ∈ Rd produces vector embedding for the current state st, while the action embedder
Ea(a

i, i; θ2) ∈ Rd employ rotary position embeddings to encode both the candidate chunk content
and its document-position index i. Q values are then estimated by an inner product between two em-
beddings: Qθ(s, a

i) = ⟨Es(s; θ1), Ea(a
i, i; θ2)⟩. This factorization is theoretically grounded; we

derive its convergence guarantees with explicit rates in Appendix A. Given Qθ, the chunk selection
probability is computed using a Boltzmann policy:

π(at|st) =
exp 1

α (Qθ(st, at)− q)∑
a∈At

exp 1
α (Qθ(st, a)− q)

(3)

with q = maxa∈At
Qθ(st, a) and temperature α annealed from an initial value to zero during train-

ing (proportionally to the learning rate).

As the backbone Temporal Difference learning algorithm, we adopt the recent PQN method by
Gallici et al.. Compared to DQN (Mnih et al., 2015), PQN removes the need for a replay buffer. In
our setting with a large number of chunks, a replay buffer would require re-embedding all document
chunks for each sample drawn from the replay buffer to estimate V/Q values for subsequent states
st+1. Which significantly slows the training process and increases memory space requirements.
Using PQN enables an on-policy value-based training that avoids these costs. The key departures
in Q-RAG, relative to the original PQN backbone, are the use of soft value functions and target
networks. Ablation results demonstrating the benefit of these choices are reported in Section 4.5.

As the training target, rather than the one-step return (see r.h.s. in Eq. 1), a λ-return is used to
improve stability and learning speed:

Gλ
t = (1− λ)

T−t−1∑
n=1

λn−1 Gt:t+n + λT−t−1Gt,

where Gt:t+n =
∑n

k=1 γ
k−1rt+k + Vθ′(st+n). The approximation of the state value function can

be computed from Q values in the case of discrete actions:

Vθ′(st) = α log
∑
a∈At

exp

(
Qθ′(st, a)

α

)
(4)

Here θ′ denotes slowly updated target network parameters. The model parameters θ are finetuned to
minimize the mean squared error to the λ-returns:

LQ = E[(Qθ(st, at)−Gλ
t)

2] (5)

The Q-RAG pseudocode is presented in Algorithm 1.

3.3 TEMPORAL REASONING FOR LONG-CONTEXT SEARCH

When dealing with narrative text, the information contained in a text chunk c may be insufficient
to determine whether c helps us answer the question q. For example, we may need to know what
happened before some specific event. A standard retriever can find several relevant text chunks that
specify the character’s location, but choosing the correct one can be impossible without taking into
account temporal information. To address this, we propose a relative postional encoding of chunks
that explicitly encodes their position with respect to the facts already extracted into the state. At
step t, let St = {i1 < · · · < ik} be the (sorted) document indices of selected chunks and At the set

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Q-RAG

1: Hyperparameters:
2: Environments count K, retrieval steps T , temperature α, TD parameter λ, EMA τ .
3: Initialize:
4: State embedder Es(s; θ1)
5: Action embedder Ea(a

i, i; θ2) with position i
6: Critic Qθ(s, a

i) = Es(s; θ1)
TEa(a

i, i; θ2)
7: Critic target Qθ′(s, ai)

8: procedure COMPUTETARGETS({st, at, rt, vt}T+1
t=1)

9: Initialize λ-returns GT = rT + γvT+1

10: for t = T − 1 downto 1 do
11: Gt = rt + γ

[
(1− λ)vt+1 + λGt+1

]
12: end for
13: return {Gt}Tt=1
14: end procedure
15: Training (one update step)
16: for env k ∈ 1, . . . ,K in parallel do
17: s1,A1 = ResetQueryAndContext()
18: Compute Ea = Ea(A; θ) and E′

a = Ea(A; θ′)
19: for step t ∈ 1, . . . , T + 1 do
20: at ∼ softmaxa∈At

1
αEs(s; θ)

TEa

21: vt = α log
∑

a∈A exp 1
αEs(s; θ

′)TE′
a

22: rt = ComputeReward(st, at)
23: st+1 = concatenate(st, at)
24: At+1 = At \ {at}
25: end for
26: B = {st, at, rt, vt}T+1

t=1

27: {Gk
t }Tt=1 = ComputeTargets(B)

28: end for
29: ∇LQ = 1

TK

∑K
k=1

∑T
t=1∇θ(Qθ(s

k
t , a

k
t)−Gk

t)
2

30: Update θ using ∇LQ

31: Update target parameters: θ′ ← τθ + (1− τ)θ′

of available actions. The indices in St partition the document into k+1 disjoint intervals: “before
the earliest selected fact”, “between consecutive selected facts”, and “after the latest selected fact.”
The relative positional mapping ρt : N → R+ assigns to every original chunk index a real-valued
index that (i) identifies the interval it belongs to and (ii) preserves the relative order between chunks.
This mapping makes explicit between which extracted facts a chunk lies, while remaining invariant
to global shifts of absolute positions.

Formally, the interval boundaries are defined as b0=1, bj=ij for j=1:k, and bk+1=m+1 for C =

{c(i)}mi=1. To compute relative index ρt(i) for a chunk ci, find the unique j such that bj ≤ i < bj+1

and set

ρt(i) = j δ + ℓ
i− bj

bj+1 − bj
, (6)

where δ > 0 is the inter-interval step and ℓ ∈ (0, δ) controls the within-interval resolution (e.g.,
δ=10, ℓ=9 in our experiments). In the action embedder, the absolute position is replaced by the
relative one,

Ea

(
ai, i; θ2

)
⇒ Ea

(
ai, ρt(i); θ2

)
, (7)

which allows the Q-function to exploit the spatial relation of candidates to already retrieved evidence
while retaining local order within each interval. This design allows the retrieval agent to perform
strongly not only on fact-finding over disjoint document collections, but also on long-form narrative
tasks, enabling Q-RAG to compete with recurrent transformers (Bulatov et al., 2022; Rodkin et al.,
2024; Behrouz et al., 2025; 2024) and other long context approaches.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our approach, Q-RAG, on tasks that cover commonsence reasoning, temporal reason-
ing, a bunch of needle in a haystack tasks and open-domain multi-hop question answering tasks on
context lengths that range from 4k tokens to 10M tokens per sample. For commonsence and tempo-
ral reasoning we use BabiLong benchmark (Kuratov et al., 2024), for Needle-in-a-Haystack we use
RULER benchmark Hsieh et al. (2024). For open-domain multi-hop QA we use HotpotQA Yang
et al. (2018), Musique Trivedi et al. (2022) and RULER benchmarks. BabiLong and RULER re-
quire long contexts. Musique and HotpotQA use short contexts.

Baselines differ by task. Computing a uniform set of baselines across all datasets is difficult and
time-consuming. Many methods do not release code. Some methods were evaluated only on some
of these datasets. Even when the tasks match, the experimental settings often differ for the same
benchmarks. Some baselines provide code but require heavy resources (e.g., at least 8×A100 GPUs
Jin et al. (2025); Song et al. (2025); Huang et al. (2025)) to fine-tune, which are unavailable for us.
Therefore, we report three types of baselines, and we mark each baseline in tables accordingly:

• × Ablation: baselines that test the effectiveness of our proposed modifications.
• ✓ Reproduced: baselines that we finetuned and/or evaluated on our datasets using released

code or publicly available checkpoints.
• ◦ Reported: baselines whose scores we take directly from the original papers.

4.2 COMMONSENSE REASONING ON ULTRA-LONG CONTEXTS

On the BabiLong Kuratov et al. (2024) benchmark, we compared our method with the state-of-the-
art long-context processing approaches, including Titans Behrouz et al. (2024), Atlas Behrouz et al.
(2025), ARMT Rodkin et al. (2024), RMT Bulatov et al. (2022), as well as proprietary LLMs and
LLM-based agents. The results for most of these baselines were taken directly from the respective
original papers. As shown in Figure 2b, our approach achieves the highest average performance
on BabiLong in ultra-long contexts ranging from 1 to 10 million tokens, demonstrating superior
generalization to long contexts compared to other specialized long-context methods.

In Figure 2a, we present separate results for the QA3 subtask, which is the hardest subtask in the
BabiLong benchmark, which specifically requires the multistep search of at least 3 different facts
and temporal reasoning. Experimental results show that the majority of models perform worst on the
QA3 subtask. As the results indicate, alternative long-context approaches show even greater perfor-
mance degradation on this task with increasing context length. In contrast, Q-RAG shows virtually
no degradation, with the largest performance gap over all baselines observed on this most chal-
lenging subtask. We additionally fine-tuned the Beam-Retriever baseline specifically on the QA3

(a) (b)

Figure 2: Comparison of answer accuracy on the long-context benchmark BabiLong. Solid lines de-
note methods fine-tuned on the BabiLong, while dashed lines denote zero-shot methods. a) Average
performance across tasks Q1–QA5. b) Performance on the hardest task, QA3, which requires the
longest reasoning chain and temporal awareness.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

subtasks, given its strong performance on open-domain QA datasets. However, this method failed
to solve the task. Note that some methods, such as Titans Behrouz et al. (2024) and Atlas Behrouz
et al. (2025), are absent from the Figure as they did not report detailed breakdowns by a subtask.

4.3 NEEDLE IN A HAYSTACK AND LONG CONTEXT QA

While reasoning tasks are crucial for evaluating advanced retrieval systems, a substantial portion
of real-world applications reduces to Needle-in-a-Haystack (NIAH) problems, making it equally
important that models deliver consistently strong performance on these tasks.

RULER is a dataset that includes many long-context tasks. Most of these tasks follow the NIAH for-
mulation. The NIAH setup evaluates the ability to retrieve a specific “needle” from a long distracting
“haystack”.

For RULER benchmark we use Titans Behrouz et al. (2024), Atlas Behrouz et al. (2025), Mamba2
Waleffe et al. (2024), and LongRope2 Shang et al. (2025) as baselines. Titans, Atlas are recurrent
transformers. Mamba2 is a state space model (SSM) that combines transformer components with
SSM. LongRope2 is a method for extending the effective context window of LLMs. All methods
were fine-tuned either directly on RULER (Titans, Atlas, Mamba2) or on related synthetic NIAH-
style datasets (LongRope2). Q-RAG was also fine-tuned on the NIAH subtasks. For the Multi-hop
QA RULER subtask, Q-RAG was fine-tuned on HotpotQA and evaluated on the Multi-hop QA
subtask out-of-distribution.

The results are shown in Table 1. Q-RAG achieves near-perfect performance on all NIAH subtasks.
Q-RAG embedder was trained on 4K-length documents and generalizes to context lengths up to 1M
tokens without loss of accuracy. On the Multi-hop QA subtask, Q-RAG shows significantly better

Table 1: Results on the RULER benchmark, evaluating long-context retrieval performance across
various context lengths. S (Single-needle): Find one value for one key. MK (Multi-keys): Find one
value for one key among many. MV (Multi-values): Find all values for one key. MQ (Multi-query):
Answer multiple questions over the context. MH QA: open domain multi-hop question answering.

Length Methods S MK MV MQ NIAH Avg. MH QA
1-st 2-nd 3-rd 1-st 2-nd 3-rd

4K

◦Titans 98.4 99.8 89.4 n/a n/a n/a n/a n/a n/a n/a
◦Atlas 99.2 100 90.6 n/a n/a n/a n/a n/a n/a n/a
◦Mamba2-Hybrid 100 100 95.7 89.5 95.5 96 97.9 97.6 96.5 48.8
◦LongRoPe2-8B 100 100 99 100 100 100 99 99.7 99.7 60
✓Beam-Retriever 100 100 98 98 98 97 98 99 98.5 28.3
Q-RAG 100 100 100 100 100 100 100 100 100 67

16K

◦Titans 96.2 80.2 n/a n/a n/a n/a n/a n/a n/a n/a
◦Atlas 97 84 n/a n/a n/a n/a n/a n/a n/a n/a
◦Mamba2-Hybrid 100 100 81.5 92 92.2 83 89.8 90.2 91.1 44
◦LongRoPe2-8B 100 100 100 99 100 98 95 98.2 98.8 58
✓Beam-Retriever 100 100 97 96.5 96 95 80 98 95.3 28.3
Q-RAG 100 100 100 100 100 100 100 100 100 67

32K

◦Mamba2-Hybrid 100 100 96.7 84 76.5 81.5 84.3 80.9 88.0 38.5
◦LongRoPe2-8B 100 100 100 99 98 100 98 96.2 98.9 55
Q-RAG 100 100 100 100 100 100 100 100 100 67

128K
◦LongRoPe2-8B 100 100 99 96 91 94 96.5 97 96.7 50
Q-RAG 100 100 100 100 100 100 100 100 100 62

1M Q-RAG 100 100 100 100 98.5 99.0 100 100 99.7 57

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

results than all our baselines at all context lengths we consider. Some degradation with increasing
context length starts only from 128K.

4.4 OPEN-DOMAIN QUESTION ANSWERING

For our experiments on the HotPotQA and Musique datasets, we compared our method against
several strong baselines. The first baseline is Beam Retriever, which enables multi-step retrieval
by training a model to score sequences of retrieved chunks. During evaluation, Beam-Retriever is
given the oracle number of supporting facts (i.e., the gold hop count) and always retrieves exactly
that many facts. Although this approach is slower than traditional retrieval methods and does not
scale well to longer contexts, it achieves state-of-the-art results on HotPotQA. Another baseline
we considered is SearchR1, a recent method from a family of approaches that train the LLM itself
to compose text queries for multi-step retrieval. Additionally, we evaluated the performance of
LLM-agent-based methods, including GraphReader. Q-RAG and Beam-Retriever were fine-tuned
on HotPotQA and evaluated on Musique for out-of-distribution testing. Baseline numbers were
taken directly from the corresponding papers. Missing entries indicate metrics not reported by the
original authors.

The comparison results are presented in Table 2. Our method achieves fact retrieval accuracy on par
with Beam Retriever, surpasses all other baselines on HotPotQA, and matches the performance of
full-LLM-tuning Search-R1 while outperforming all alternatives on the out-of-distribution Musique
dataset, resulting in the best overall performance across benchmarks. Results also include another
Q-RAG version Plan Q-RAG that combines Q-RAG value function and beam search based planning
(see Appendix D). Plan Q-RAG showed similar performance to vanilla Q-RAG. For both methods
involving retrieval mechanism fine-tuning (Q-RAG and Beam Retriever), we used the QwQ-32B
model to produce the final answer.

Table 2: Comparison of methods on HotPotQA and Musique benchmarks. Bold text and underline
denote the best and second best scores respectively.

HotPotQA Musique (OOD) Avg
Methods Fact F1 Fact EM Ans F1 Ans EM Fact F1 Fact EM Ans F1 Ans EM Ans F1 Ans EM

Finetuned on HotPotQA

Plan Q-RAG 0.95 0.91 0.76 0.60 0.69 0.53 0.51 0.36 0.64 0.48
Q-RAG 0.93 0.89 0.76 0.59 0.71 0.55 0.52 0.37 0.64 0.48
✓Beam-Retriever 0.97 0.94 0.77 0.61 0.61 0.36 0.40 0.27 0.59 0.44
✓Search-r1 0.81 0.66 0.65 0.52 0.71 0.55 0.51 0.39 0.58 0.46
◦RAG-RL 0.82 – 0.69 – 0.65 – 0.47 – 0.58 –
×Multi-step RAG w.o. FT 0.73 0.54 0.65 0.50 0.51 0.30 0.40 0.27 0.53 0.39

Zero Shot methods
✓GraphReader – – 0.46 0.24 – – 0.40 0.20 0.43 0.22
✓Single step RAG – – 0.53 0.39 – – 0.28 0.17 0.41 0.28

4.5 ABLATION STUDY

To assess the impact of the architectural choices in Q-RAG, an ablation study was conducted on
the BabiLong-QA3 task. This benchmark was selected because it is among the most challenging
long-context tasks used in the experiments and it supports evaluation at arbitrary context lengths.
The following baselines were compared against Q-RAG:

Multi-step RAG w.o. FT. This baseline reproduces the full Q-RAG retrieval pipeline and uses
the same state and action embedders, but relies on their original pretrained weights without any
reinforcement learning fine-tuning. This setting tests whether RL fine-tuning of the embedders is
beneficial for multi-step retrieval quality.

Multi-step RAG w. SFT. This baseline applies supervised fine-tuning using ground-truth support
facts as supervision. The loss follows the objective used in BeamRetriever for trajectory supervision,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.00 0.01 0.02 0.03 0.04 0.05
Temperature parameter

0.86

0.88

0.9

0.92

0.94

0.96

Av
er

ag
e

re
tu

rn

QA2 QA3

(a)

0.4 0.5 0.6 0.7 0.8
TD parameter

0.93

0.94

0.95

0.96

0.97

0.98

Av
er

ag
e

re
tu

rn

QA2 QA3

(b) (c)

Figure 3: Ablation for (a) policy entropy coefficient (α) in soft Q function and (b) for λ-return
parameter. Inference runtime comparison (c), context length, tokens on x-axes.

adapted to the multi-step retrieval setting. This setting isolates the effect of RL by comparing it to
supervised learning on the same supervision signal.

Q-RAG w.o. target. This variant removes target networks from the PQN-based value learning,
following the original PQN recipe without target parameters. It measures the contribution of target
networks to stability and performance in the Q-RAG training loop.

Q-RAG w.o. Soft-Q. This variant replaces the maximum-entropy (soft) value functions with stan-
dard (non-entropy-regularized) Q-learning objectives. It evaluates the effect of entropy regulariza-
tion and the soft value formulation on retrieval performance.

All baselines were evaluated with three random seeds. Table 3 reports results at a 32k-token con-
text length on QA3. Figure 3 shows the sensitivity of Q-RAG to the λ-return parameter and the
temperature α (the strength of entropy regularization) on QA2 and QA3.

Table 3: Ablation results on BabiLong QA3. Table shows F1 score for support facts retrieval. All
values are averaged over 3 runs with different seeds.

Method 1K 4K 32K 128K 1M
Q-RAG 97.8± 0.17 97.4± 0.14 97.1± 0.08 96.8± 0.08 96.5± 0.16
×Q-RAG w.o. Soft-Q 95.9± 0.70 95.5± 0.80 94.5± 0.50 94.0± 0.30 93.3± 0.45
×Q-RAG w.o. Target 79.2± 26.0 78.1± 26.6 77.6± 27.2 77.4± 27.3 75.9± 28.2
×Multi-Step RAG w. SFT 20.33± 0.32 20.87± 0.35 20.10± 0.20 18.30± 0.36 —
×Multi-Step RAG w.o. FT 15.52± 0.11 16.38± 0.10 15.51± 0.16 15.34± 0.12 —

5 CONCLUSION

This work introduced Q-RAG, a resource-efficient method for multi-step retrieval trained with re-
inforcement learning directly in the latent space of text-chunk embeddings. Across long-context
benchmarks (e.g., BabiLong, RULER) and open-domain QA datasets (e.g., Musique, HotpotQA),
Q-RAG attains state-of-the-art or highly competitive results. Its advantage over baselines widens as
context length grows, and performance shows minimal degradation even at ultra-long scales.

A key practical benefit is compute efficiency: all training was performed on a single A100 GPU
with 80 GB memory, whereas recent RL-based multi-step retrievers such as Search-R1/R1-Searcher
typically report training on clusters of about eight A100 GPUs. By fine-tuning only the embedder
while keeping the LLM frozen, Q-RAG remains easy to pair with powerful pre-trained or proprietary
LLMs, enabling efficient training, flexible deployment, and strong retrieval over very long contexts.

Looking ahead, promising directions include using structured LLM feedback as a reward signal,
strengthening compositional and temporal reasoning directly in the embedding space, and exploring
tighter integration with generation while preserving the method’s efficiency and scalability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT.

We make all results reproducible by providing a code package with exact configs and run scripts;
all code is included in the supplementary materials. The package includes utilities to download
and minimally preprocess the public HotPotQA and MuSiQue datasets and to re-run every experi-
ment and table with fixed random seeds (Fact F1/EM, Answer F1/EM). We fine-tune only publicly
available embedders — multilingual-e5-large and facebook/contriever — strictly
following the hyperparameters and schedules described in Appendix G. All reported runs are repro-
ducible on a single GPU; our main experiments were executed on one A100-80GB device. The
repository contains evaluation scripts that reproduce the reported tables without modification; full
implementation specifics are referenced from Appendix G and the supplementary materials.

REFERENCES

Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Andrey Kravchenko, Mikhail Burt-
sev, and Evgeny Burnaev. Arigraph: Learning knowledge graph world models with episodic
memory for llm agents. arXiv preprint arXiv:2407.04363, 2024.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, Peilin Zhong, Meisam Raza-
viyayn, and Vahab Mirrokni. Atlas: Learning to optimally memorize the context at test time.
arXiv preprint arXiv:2505.23735, 2025.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances in
Neural Information Processing Systems, 35:11079–11091, 2022.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via reinforce-
ment learning. arXiv preprint arXiv:2503.19470, 2025.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. In The Thirteenth
International Conference on Learning Representations.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Jerry Huang, Siddarth Madala, Risham Sidhu, Cheng Niu, Hao Peng, Julia Hockenmaier, and Tong
Zhang. Rag-rl: Advancing retrieval-augmented generation via rl and curriculum learning. arXiv
preprint arXiv:2503.12759, 2025.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
ologically inspired long-term memory for large language models. Advances in Neural Information
Processing Systems, 37:59532–59569, 2024.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

10

https://arxiv.org/abs/2312.00752

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yury Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack.
Advances in Neural Information Processing Systems, 37:106519–106554, 2024.

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu,
Yangguang Li, Wanli Ouyang, et al. Graphreader: Building graph-based agent to enhance long-
context abilities of large language models. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 12758–12786, 2024.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025.

Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,
Chenchen Zhang, Ge Zhang, Jiebin Zhang, et al. A comprehensive survey on long context lan-
guage modeling. arXiv preprint arXiv:2503.17407, 2025.

Chuangtao Ma, Yongrui Chen, Tianxing Wu, Arijit Khan, and Haofen Wang. Large language mod-
els meet knowledge graphs for question answering: Synthesis and opportunities, 2025. URL
https://arxiv.org/abs/2505.20099.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Erich Novak and Henryk Woźniakowski. Tractability of Multivariate Problems: Volume I: Linear
Information, volume 6 of EMS Tracts in Mathematics. European Mathematical Society, Zürich,
2008.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

Ivan Rodkin, Yuri Kuratov, Aydar Bulatov, and Mikhail Burtsev. Associative recurrent memory
transformer. arXiv preprint arXiv:2407.04841, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ning Shang, Li Lyna Zhang, Siyuan Wang, Gaokai Zhang, Gilsinia Lopez, Fan Yang, Weizhu
Chen, and Mao Yang. Longrope2: Near-lossless llm context window scaling. arXiv preprint
arXiv:2502.20082, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 8364–8377,
2024.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. Agentic retrieval-augmented
generation: A survey on agentic rag, 2025. URL https://arxiv.org/abs/2501.09136.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
learning. arXiv preprint arXiv:2503.05592, 2025.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

11

https://arxiv.org/abs/2505.20099
https://arxiv.org/abs/2501.09136

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Chenghan Yang, Ruiyu Zhao, Yang Liu, and Ling Jiang. Survey of specialized large language model.
arXiv preprint arXiv:2508.19667, 2025.

Diji Yang, Jinmeng Rao, Kezhen Chen, Xiaoyuan Guo, Yawen Zhang, Jie Yang, and Yi Zhang.
Im-rag: Multi-round retrieval-augmented generation through learning inner monologues. In Pro-
ceedings of the 47th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pp. 730–740, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Tan Yu, Anbang Xu, and Rama Akkiraju. In defense of rag in the era of long-context language
models. arXiv preprint arXiv:2409.01666, 2024.

Jiahao Zhang, Haiyang Zhang, Dongmei Zhang, Liu Yong, and Shen Huang. End-to-end beam
retrieval for multi-hop question answering. In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies (Volume 1: Long Papers), pp. 1718–1731, 2024.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A INNER PRODUCT APPROXIMATION FOR Q-FUNCTION

The Universal Approximation Theorem (UAT) states that neural networks with a single hidden layer
can approximate any continuous function arbitrarily well under mild conditions. In this section, we
prove a variant of the UAT for functions decomposed as an inner product involving Rotary Position
Embedding (RoPE). Specifically, we show that any continuous q-function Q(s, ai) defined on a
compact domain can be approximated by functions of the form:

F (s, ai) = ⟨Es(s), Ea(a
i, i)⟩, Ea(a

i, i) = Rpos(i)Ea(a
i), (8)

where Es and Ea are continuous vector functions (e.g., neural networks) and Rt is the RoPE matrix
of dimension r (even) parameterized by t = pos(i):

Rt =

r/2⊕
j=1

[
cos(θjt) − sin(θjt)
sin(θjt) cos(θjt)

]
, (9)

where θj are fixed frequencies. For notational simplicity in the following derivations, we introduce
the following conventions:

(x, y) := (s, a), t := pos(i), h(x) := Es(s), g(y) := Ea(a
i).

For simplicity, we assume the domains of x, y and t are continuous, corresponding to the embed-
dings of text tokens.
Theorem 1. Let X ⊂ Rdx , Y ⊂ Rdy , and T ⊂ R be compact sets, and define the compact domain
K = X×Y ×T . Let C(K,R) be the space of continuous real-valued functions on K equipped with
the uniform norm. Let Rt be the RoPE matrix of dimension r, defined as a block-diagonal rotation
matrix (9). Define the function class:

A = {F (x, y, t) = ⟨h(x), Rtg(y)⟩ | h ∈ C(X,Rr), g ∈ C(Y,Rr)} . (10)

Then A is dense in C(K,R). That is, for any f ∈ C(K,R) and ϵ > 0, there exist continuous
functions h : X → Rd and g : Y → Rd such that:

sup
(x,y,t)∈K

|f(x, y, t)− ⟨h(x), Rtg(y)⟩| < ϵ. (11)

Proof. We prove the result via the Stone-Weierstrass theorem, which states that if a subalgebra
A ⊂ C(K,R) contains the constant functions and separates points, then A is dense in C(K,R).
Thus, we show that A satisfies these requirements.

A is a subalgebra. We prove closure under addition, scalar multiplication, and multiplication of
two arbitrary elements.

Scalar multiplication: Let F (x, y, t) = ⟨h(x), Rtg(y)⟩ ∈ A and c ∈ R. Define h′(x) = ch(x).
Then cF (x, y, t) = ⟨h′(x), Rtg(y)⟩ ∈ A.

Addition: Let F1(x, y, t) = ⟨h1(x), Rtg1(y)⟩ and F2(x, y, t) = ⟨h2(x), Rtg2(y)⟩. Define h(x) =

[h1(x);h2(x)] ∈ R2d and g(y) = [g1(y); g2(y)] ∈ R2d, and let R̃t be a block-diagonal extension of
Rt. Then

⟨h(x), R̃tg(y)⟩ = ⟨h1(x), Rtg1(y)⟩+ ⟨h2(x), Rtg2(y)⟩ = F1(x, y, t) + F2(x, y, t) ∈ A. (12)

Multiplication: Let F1 and F2 as above. Note that:

F1(x, y, t)F2(x, y, t) = ⟨h1(x)⊗ h2(x), (Rtg1(y))⊗ (Rtg2(y))⟩. (13)

Since (Rtg1(y))⊗(Rtg2(y)) = (Rt⊗Rt)(g1(y)⊗g2(y)), and Rt⊗Rt is a block-diagonal rotation
matrix with angles θj + θk (a RoPE matrix of dimension d2), define h(x) = h1(x)⊗ h2(x) ∈ Rd2

,
g(y) = g1(y)⊗ g2(y) ∈ Rd2

, and let R̃t be the RoPE matrix with frequencies {θj + θk}. Then:

F1(x, y, t)F2(x, y, t) = ⟨h(x), R̃tg(y)⟩ ∈ A. (14)

Thus, A is a subalgebra.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A contains the constant functions. Show the constant function 1 is in A. Augment the dimen-
sion: let d′ = d+1, and define h(x) = (1, 0, . . . , 0)T ∈ Rd′

, g(y) = (1, 0, . . . , 0)T ∈ Rd′
. Define a

modified RoPE matrix R′
t that acts as the identity on the first coordinate and as Rt on the remaining

d coordinates. Then
⟨h(x), R′

tg(y)⟩ = 1. (15)

A separates points. Let (x1, y1, t1) ̸= (x2, y2, t2) ∈ K. Construct F ∈ A such that
F (x1, y1, t1) ̸= F (x2, y2, t2).

Case 1: x1 ̸= x2 or y1 ̸= y2. Choose g(y) = v (a constant non-zero vector) and let h be continuous
with h(x1) ̸= h(x2). Then F (x, y, t) = ⟨h(x), Rtv⟩. Since Rtv traces a circle (for v with at least
two non-zero components), for generic v, Rt1v and Rt2v are not orthogonal to h(x1) − h(x2), so
F (x1, y1, t1) ̸= F (x2, y2, t2). The case when y1 ̸= y2 is identical to the 1st case.

Case 2: t1 ̸= t2. Choose h(x) = w and g(y) = v. Then F (x, y, t) = ⟨w,Rtv⟩. Since t 7→ Rtv
is injective (for v ̸= 0 and non-zero frequencies), Rt1v ̸= Rt2v. Choose w not orthogonal to
Rt1v −Rt2v, so F (x1, y1, t1) ̸= F (x2, y2, t2).

Thus, by the Stone-Weierstrass theorem, A is dense in C(K,R).

Theorem 1 establishes that our architecture is capable of approximating any continuous function
arbitrarily well. However, it does not specify how complex the network needs to be to achieve a
given accuracy. The following quantitative result addresses this by providing an explicit convergence
rate dependent on the smoothness of the target function.
Lemma 1 (Low-rank approximation of Sobolev kernels). Let Ωx ⊂ Rdx and Ωy ⊂ Rdy be bounded
Lipschitz domains, and let d = dx + dy .

Let s > d/2 and consider a real-valued kernel

a ∈ Hs(Ωx × Ωy). (16)

Then, for every integer r ≥ 1, there exist continuous functions

h : Ωx → Rr, g : Ωy → Rr (17)

such that
sup

x∈Ωx, y∈Ωy

∣∣a(x, y)− ⟨h(x), g(y)⟩Rr

∣∣ ≤ C r−s/d ∥a∥Hs(Ωx×Ωy). (18)

Here C > 0 depends only on s, dx, dy , and the diameters of Ωx,Ωy .

Proof. Since s > d/2 and Ωx × Ωy is a bounded Lipschitz domain in Rd, the Sobolev embedding
theorem implies

Hs(Ωx × Ωy) ↪→ C(Ωx × Ωy) (19)
continuously. In particular there exists Cemb > 0 such that

∥u∥L∞(Ωx×Ωy) ≤ Cemb∥u∥Hs(Ωx×Ωy) for all u ∈ Hs(Ωx × Ωy). (20)

Consider the unit ball

K :=
{
a ∈ Hs(Ωx × Ωy) : ∥a∥Hs(Ωx×Ωy) ≤ 1

}
. (21)

Let Rr denote the set of all functions on Ωx × Ωy of the form
∑r

j=1 uj(x)vj(y) with uj ∈
C(Ωx), vj ∈ C(Ωy).

Classical results on the Kolmogorov r-widths of Sobolev classes (see, e.g., Novak & Woźniakowski
(2008)) give

dr
(
K;L∞(Ωx × Ωy)

)
:= inf

dimV≤r
sup
a∈K

inf
b∈V
∥a− b∥L∞ ≤ C0 r

−s/d, (22)

where C0 depends only on s, d and the diameters of the domains. Moreover, the infimum can be
taken over subspaces V ⊂ Rr consisting of separable sums; hence the same rate is attainable by
rank-r approximations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Thus for any a ∈ Hs(Ωx × Ωy) with ∥a∥Hs = M , there exist continuous uj , vj such that

sup
x,y

∣∣∣a(x, y)− r∑
j=1

uj(x)vj(y)
∣∣∣ ≤ C0M r−s/d. (23)

Setting h(x) = (u1(x), . . . , ur(x)) and g(y) = (v1(y), . . . , vr(y)) yields the claim.

Theorem 2 (Approximation by RoPE-type feature maps). Let X ⊂ Rdx and Y ⊂ Rdy be bounded
Lipschitz domains, and let T = [0, 2π] with endpoints identified.

Let s > (dx + dy)/2 be an integer. Assume that

f ∈ C
(
T ; Hs(X × Y)

)
, ∂ℓ

tf ∈ C
(
T ; Hs(X × Y)

)
, 1 ≤ ℓ ≤ s. (24)

Define
M := max

0≤ℓ≤s

∥∥∂ℓ
tf

∥∥
C(T ;Hs(X×Y))

. (25)

Then there exist constants C > 0 and β > 0, depending on s, dx, dy , the diameters of X,Y , and on
M , such that for every integer r ≥ 1 one can find

• feature maps h : X → Cr, g : Y → Cr, and

• a family of unitary matrices {Rt}t∈T ⊂ Cr×r of the form

Rt = diag
(
eiω1t, . . . , eiωrt

)
, ωj ∈ Z, (26)

satisfying
sup

(x,y,t)∈X×Y×T

∣∣f(x, y, t)− ⟨h(x), Rtg(y)⟩Cr

∣∣ ≤ C r−β , (27)

where one may take β = s/(dx + dy + 1).

Proof. Since t 7→ f(·, ·, t) is s-times continuously differentiable as an Hs-valued map, it has a
Bochner–Fourier expansion

f(x, y, t) =
∑
k∈Z

ak(x, y) e
ikt, ∥ak∥Hs ≤M (1 + |k|)−s. (28)

A standard Jackson estimate gives the truncation bound

sup
(x,y,t)

∣∣∣ f − ∑
|k|≤N

ake
ikt

∣∣∣ ≤ C1MN−s. (29)

Let γ := s/(dx + dy). Apply Lemma 1 separately to real and imaginary parts of each ak (doubling
the rank) to obtain continuous maps hk : X → Crk , gk : Y → Crk with

sup
x,y

∣∣ak − ⟨hk, gk⟩
∣∣ ≤ C2M (1 + |k|)−sr−γ

k , (30)

where C2 depends only on s, dx, dy and the diameters. Define the total dimension r :=
∑

|k|≤N rk,
and set h := (hk)|k|≤N , g := (gk)|k|≤N . Let Rt act block-diagonally as Rt((zk)) := (eiktzk), so
that

⟨h(x), Rtg(y)⟩ =
∑

|k|≤N

eikt⟨hk(x), gk(y)⟩. (31)

The overall error then satisfies

sup
x,y,t

∣∣f − ⟨h,Rtg⟩
∣∣ ≤ C1MN−s + C2M

∑
|k|≤N

(1 + |k|)−sr−γ
k . (32)

To minimize the second term under the constraint
∑

rk = r, choose

rk ∼ (1 + |k|)−s/(γ+1). (33)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Then, since s/(γ + 1) = dx + dy ≥ 2,∑
|k|≤N

(1 + |k|)−sr−γ
k ≤ C3N

−γr−γ . (34)

Thus
sup
x,y,t

∣∣f − ⟨h,Rtg⟩
∣∣ ≤ C1MN−s + C4MN−γr−γ . (35)

Choosing N = ⌊rγ/(s+γ)⌋ balances the two terms and yields

sup
x,y,t

∣∣f − ⟨h,Rtg⟩
∣∣ ≤ CM r−sγ/(s+γ), (36)

with sγ/(s+ γ) = s/(dx + dy + 1).

B EARLY STOPPING EXPERIMENTS

In this section, we study a simple early stopping rule for the retrieval agent. Let

a = (a1, a2, . . . , aT)

be the full sequence of chunks the agent would select if no stopping threshold were applied, and let
G be a set of ground-truth chunks for the current question.

For each step t, the agent outputs a Q-value Qt for taking the next retrieval action. Given a fixed
Q-value threshold Qthreshold, we simulate an early-stopping policy that keeps taking actions while
Qt ≥ Qthreshold and terminates as soon as Qt < Qthreshold. We denote by tstop the number of actions
actually taken under this policy, i.e. the number of selected chunks:

tstop = number of steps until the first t with Qt < Qthreshold.

Independently of the stopping rule, we define tearliest as the earliest step at which all ground-truth
chunks have already been collected:

tearliest = min
{
t : {a1, . . . , at} ⊇ G

}
.

If the agent never collects all ground-truth chunks, i.e. such a t does not exist, we discard this episode
from the analysis below.

For comparison, we also consider an oracle stopping policy that is allowed to look at the ground
truth: it knows tearliest for each episode and simply stops at this step. By construction, this oracle
policy never stops too early or too late.

Depending on the relation between tstop and tearliest we distinguish three outcomes.

Early stop (“early”). If tstop < tearliest, the stopping rule terminates before all ground-truth chunks
have been selected. In this case the error is due to stopping too early and missing potentially useful
chunks.

Perfect stop (“perfect”). If tstop = tearliest, the stopping rule terminates exactly at the first step
when the set of selected chunks already contains all ground-truth chunks. In this case, the stopping
behavior is optimal with respect to our definition.

Late stop (“late”). If tstop > tearliest, then at some earlier step the agent had already collected all
ground-truth chunks but continued to retrieve additional chunks. This corresponds to stopping too
late and taking unnecessary steps.

Figure 4 (top row, panel (a)) shows how the proportions of early and late errors change as a function
of the Q-value threshold Qthreshold on HotPotQA. For small thresholds, the agent almost never stops
too early but may continue to retrieve redundant chunks, which leads to late errors. As the threshold
increases, late errors decrease, but the probability of stopping too early grows.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) (b) (c)

(d) (e) (f)

Figure 4: Early stopping analysis on HotPotQA (top row) and BabiLong QA2 (bottom row). Panels
(a,d) show the proportions of early and late errors as a function of the Q-value threshold Qthreshold.
Panels (b,e) show the proportion of perfect stops. Panels (c,f) show the average number of selected
chunks (episode length).

Table 4: HotPotQA early stopping experiments

Q-value threshold stopped early stopped later perfect stop TPR FPR Episode len Fact EM Fact F1 Ans EM Ans F1

-0.1 0 0.979 0.021 0.983 0.380 4.99 0.968 0.563 0.588 0.759
0.0 0.015 0.395 0.590 0.976 0.110 2.82 0.954 0.843 0.592 0.761
0.1 0.061 0.060 0.879 0.952 0.041 2.23 0.910 0.915 0.593 0.756
0.2 0.088 0.020 0.892 0.937 0.032 2.13 0.883 0.917 0.587 0.752
0.3 0.104 0.006 0.890 0.927 0.029 2.08 0.868 0.915 0.585 0.747
0.4 0.118 0.002 0.880 0.919 0.027 2.05 0.854 0.911 0.575 0.737
0.5 0.132 0 0.867 0.910 0.025 2.02 0.840 0.907 0.571 0.734
0.6 0.144 0 0.856 0.903 0.024 2.00 0.829 0.902 0.570 0.730
0.7 0.157 0 0.843 0.891 0.023 1.96 0.817 0.895 0.564 0.724
0.8 0.202 0 0.798 0.840 0.017 1.82 0.773 0.847 0.546 0.702
0.9 0.417 0 0.583 0.611 0.006 1.27 0.565 0.620 0.444 0.588
1.0 0.910 0 0.090 0.105 0.000 0.21 0.088 0.111 0.266 0.385
1.1 1.000 0 0 0 0 0 0 0 – –

Panel (b) of Figure 4 reports the proportion of “perfect” stopping events, peaking around thresholds
Qthreshold ≈ 0.1–0.3. Panel (c) shows the average number of selected chunks (episode length) under
the same policy. Larger thresholds lead to shorter episodes, but once the threshold becomes too high,
the early-stop error rate rapidly increases and performance degrades.

Table4 summarises these trade-offs quantitatively on HotPotQA for the GTE embedder with
penalize extra steps=True and never terminate=True. We report the fraction of
early, late and perfect stops, the average episode length, and the final Fact EM and Fact F1 scores,
as well as the corresponding true positive rate (TPR) and false positive rate (FPR) for the stopping
rule viewed as a binary classifier. The best Fact F1 is achieved at Qthreshold = 0.2, confirming that
moderate thresholds provide a good balance between taking enough retrieval steps and avoiding
unnecessary ones.

Using the TPR and FPR columns of Tables 4 and 5, we can plot the receiver operating characteristic
(ROC) curves of the early-stopping rule, shown in Figure 5. Panel (a) corresponds to HotPotQA and
panel (b) to BabiLong QA2. Each point on the curves corresponds to a particular Q-value threshold
Qthreshold. The red star in each panel marks the oracle stopping policy introduced above, which knows
tearliest and stops exactly at that step; this point serves as an upper bound on the achievable trade-off

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) HotPotQA

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve

ROC curve (area = 0.970)
Oracle Point

(b) BabiLong QA2

Figure 5: ROC curves for the early-stopping rule. Panel (a) shows HotPotQA; panel (b) shows Ba-
biLong QA2. The dashed line indicates random performance. Each point corresponds to a different
Q-value threshold Qthreshold. The red star denotes the oracle stopping policy that always stops at
tearliest, i.e. exactly when the last ground-truth chunk has been retrieved.

Table 5: BabiLong QA2 early stopping experiments.

Q-value threshold stopped early stopped later perfect stop Episode len Fact EM Fact F1 Ans EM Ans F1

-0.10 0.000 0.994 0.006 6.00 0.996 0.499 0.884 0.884
0.00 0.000 0.994 0.006 6.00 0.996 0.499 0.884 0.884
0.10 0.000 0.498 0.502 2.86 0.996 0.845 0.944 0.944
0.20 0.000 0.036 0.964 2.29 0.996 0.949 0.976 0.976
0.30 0.006 0.010 0.984 2.25 0.990 0.952 0.970 0.970
0.40 0.008 0.002 0.990 2.24 0.988 0.953 0.970 0.970
0.50 0.008 0.000 0.992 2.23 0.988 0.954 0.972 0.972
0.60 0.016 0.000 0.984 2.21 0.980 0.948 0.968 0.968
0.70 0.042 0.000 0.958 2.16 0.954 0.934 0.948 0.948
0.80 0.112 0.000 0.888 2.06 0.884 0.905 0.884 0.884
0.90 0.177 0.000 0.823 1.92 0.820 0.861 0.830 0.830
1.00 0.930 0.000 0.070 0.22 0.070 0.107 0.230 0.230
1.10 1.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000

between TPR and FPR. On HotPotQA the area under the curve (AUC) is 0.96, and BabiLong QA2
- 0.97.

Figure 4 (bottom row) and Table 5 report the same analysis on BabiLong QA2. Qualitatively, the
behaviour of the stopping rule is similar to HotPotQA: higher thresholds lead to shorter episodes
and more early stops, while lower thresholds reduce early-stop errors at the cost of more late stops
and longer episodes.

However, the transition between these regimes is much sharper on BabiLong QA2. For thresholds in
the range Qthreshold ∈ [0.2, 0.6] the fraction of perfect stops remains very high (≈ 0.95–0.99), while
the average episode length is reduced from about 6 to roughly 2.2 retrieval steps. In this region Fact
EM and Fact F1 stay close to their maximum values (Fact F1 around 0.95), and answer accuracy
(Ans EM/F1) is also near-optimal. Only when the threshold approaches 1.0, performance collapses,
as the agent stops almost immediately and misses relevant chunks.

C SENSITIVITY TO RETRIEVAL BUDGET

We investigate the dependence of final model performance on the number of Q-RAG retrievals
(i.e., the retrieval budget). For this analysis, we used a Q-RAG system with an Alibaba-NLP/gte-
multilingual-base embedder, trained on a combination of the HotpotQA and Musique datasets. This

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Sensitivity to the number of retrieves. Dataset: HotpotQA (1000 samples). Embedder
Alibaba-NLP/gte-multilingual-base was trained on Hotpotqa+Musique.

Retrievals Facts Qwen3-4B Qwen3-14B Qwen3-32B
EM F1 EM F1 EM F1 EM F1

2 0.832 0.903 0.439 0.620 0.556 0.708 0.504 0.675
3 0.935 0.771 0.481 0.657 0.570 0.730 0.510 0.692
4 0.962 0.652 0.493 0.664 0.577 0.734 0.513 0.695
5 0.978 0.565 0.481 0.656 0.584 0.744 0.512 0.692

embedder supports contexts of up to 8192 tokens, enabling the use of a larger retrieval budget. We
evaluated the system on 1000 samples from the HotpotQA dataset. The final generation of the
answers was performed by three LLMs: Qwen3-4B, Qwen3-14B, and Qwen3-32B.

The results are presented in Table6. Here, EM (Exact Match) indicates the number of correct
(ground-truth supporting) chunks retrieved, while F1 accounts for the inclusion of noise (non-
supporting) chunks. The table shows that increasing the number of retrieves from 2 to 3 improves
both the number of correct facts retrieved and the answer quality across all three LLMs. These
experiments suggest that, within a reasonable range of retrieval counts, final answer accuracy is pri-
marily dependent on the retrieval of correct chunks and is not degraded by the presence of noise
chunks.

D PLANNING FOR MULTI-STEP RETRIEVAL

We can apply planning at the multi-step retrieval stage, formulating source selection as a search over
the space of action trajectories; see § 4.4 for an application. In the spirit of Beam-Retriever, we can
run beam search where candidates are ranked by the learned action-value Qθ(s, a). However, our
planning is computationally cheaper because Qθ is computed as a dot product of state and action
embeddings, Qθ(s, a) = ⟨Es(s), Ea(a)⟩, so no new transformer forward passes are required for
each candidate chunk, whereas Beam-Retriever relies on a transformer reranker over trajectories,
incurring fresh forward passes at every expansion. Details of the embedding-based scoring are
provided in § 3.2. At inference, we perform beam search over Q and deterministically expand the
top-k actions by Qθ.

E METHOD COMPLEXITY AND EFFICIENCY

Q-RAG produces a final answer using two main components. The first is a multi-step retrieval agent
that performs iterative search over the full document to collect all context-relevant evidence (see
sec. 3.2). The second is an LLM Answerer that conditions on the retrieved chunks and generates
the final response. Importantly, only the retrieval agent interacts with the original long context; the
effective context length seen by the LLM Answerer depends solely on the retrieval hyperparameters
(e.g., number of retrieval steps T , maximum chunk length). Consequently, the time and memory
complexity of the LLM Answerer with respect to the original context length N are both O(1).
Retrieval agent consists of two embedders: state embedder Es and action embedder Ea (see sec.
3.2).

Chunks embedding. The action embedder computes embeddings for chunks of the original doc-
ument. If the document has length N and the chunk size is nc, embedding the entire document
takes O

(
N
nc

tact

)
, where tact is the embedding time per chunk (treated as a constant). The action

embedder performs a single pass over all chunks per retrieval episode; thus its complexity is linear
in N , i.e., O(N).

State Embedding. The state embedder processes the state K times per episode (once per search
step). From the construction of the state (see fig. 1), the total cost over an episode is O(K tstate),
where state embedding time tstate depends on nc and K, but not on N . Hence, the state embedder
is O(1) with respect to document length N .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Search Policy. To select the next chunk at each step, we compute the inner product between the cur-
rent state embedding and all action embeddings. With naive implementation, selecting all K actions
over the episode requires O

(
K demb

N
nc

)
= O(N), where demb is size of embedding vectors. This

can be reduced using approximate kNN methods that achieve sub-linear query time in practice (??).

Overall time complexity. Summing the terms above yields

O
(
N

nc
tact + K tstate + K demb

N

nc

)
= O(N),

since K, tact, tstate, and demb do not depend on N .

Space complexity. The main part that direcly depends on document length is the nubmer of chunk
embeddings we need to store: O

(
demb

N
nc

)
= O(N). In practice, embeddings are lightweight;

GPU memory is mainly consumed by the LLM weights and the action embedder forward passes. By
capping the action embedder’s batch size (parameter chunk batch), the growth of peak memory
with N becomes negligible.

Training Time Efficiency. A critical practical advantage of the Q-RAG framework is its efficient
and rapid training convergence, as demonstrated in Figure 6. The learning curves depict the model’s
performance evolution on two distinct and challenging benchmarks: BabiLong QA3 and HotPotQA.
The curves show a sharp initial rise in evaluation metric scores, followed by a stable plateau, indi-
cating that the model quickly learns the core retrieval-augmented generation task. Notably, this
convergence is achieved within approximately 12 hours of training time on a GPU setup.

0 1 2 3 4
Time (hours)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ev
al

 re
tu

rn

Babilong QA2

0 1 2 3 4 5 6
Time (hours)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ev
al

 re
tu

rn

HotPotQA2

Figure 6: Learning curves for HotPotQA and BabiLong QA3 runs. Both graphs the average episodic
return with respect to training time.

F EXTRA QA RESULTS

Table 7 compares multi-step retrieval methods on HotPotQA-distractors, Musique (in-distribution),
and Musique (out-of-distribution). It reports both fact-retrieval (Fact F1, Fact EM) and
answer-generation (Ans F1, Ans EM) scores. Q-RAG and its planned variant (Plan Q-RAG) achieve
strong overall results, especially on out-of-distribution data, while Beam-Retriever leads on Hot-
PotQA but generalizes less robustly. Methods with missing entries did not report results for the
corresponding dataset or metric.

G TRAINING DETAILS

We trained the model with AdamW (learning rate 1.5 × 10−5, β1=0.9, β2=0.98, ϵ=10−6, weight
decay 5× 10−4). The learning rate followed a linear schedule: we used a warm-up of 1,000 steps,
then linearly decayed the rate to 10% of its initial value over the remaining training steps. We applied

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Comparison of methods on HotPotQA-distractors, Musique (in-distribution), and Musique
(OOD). Bold text and underline denote the best and second best scores respectively.

HotPotQA Musique Musique (OOD) Average
Methods Fact F1 Fact EM Ans F1 Ans EM Fact F1 Fact EM Ans F1 Ans EM Fact F1 Fact EM Ans F1 Ans EM Ans F1 Ans EM

Plan Q-RAG + QwQ-32B 0.95 0.91 0.76 0.60 0.84 0.76 0.60 0.44 0.69 0.53 0.51 0.36 0.62 0.46
Q-RAG+QwQ-32B 0.93 0.89 0.76 0.59 0.81 0.72 0.59 0.43 0.71 0.55 0.52 0.37 0.62 0.46
Beam-Retriever+QwQ-32B 0.97 0.94 0.77 0.61 0.86 0.69 0.59 0.43 0.61 0.36 0.40 0.27 0.59 0.44
Search-r1 0.81 0.66 0.65 0.52 – – – – 0.71 0.55 0.51 0.39 – –
Search-o1 – – – – – – – – – – – – – –
GraphReader – – – – – – – – – – – – – –
HippoRAG – – – – – – – – – – – – – –

gradient clipping with a maximum ℓ2 norm of 2.0 and used gradient accumulation for 8 steps. The
base mini-batch size was 12; with accumulation this yields an effective batch size of 12 × 8 = 96
per update (scaled by the number of devices if using distributed training).

In the objective and algorithmic components we set γ=0.99, α=0.05, λ=0.5, and τ=0.02. Action
representations were capped at a maximum length of 220 tokens.

The end-to-end training of a single model did not exceed 12 hours on a single A100-80GB GPU.

Models per benchmark. For open-domain QA benchmarks (HotPotQA, Musique), we
trained an multilingual-e5-large encoder. For Ruler and BabiLong, we trained
facebook/contriever.

H EVALUATION DETAILS

LLM Models for generation. To compute answer-level metrics (Ans EM and Ans F1), we con-
dition the QwQ-32B model on the question and the retrieved text chunks. All answer-generation
results reported for Q-RAG and Plan Q-RAG on the HotPotQA and Musique benchmarks were ob-
tained under consistent generation settings: decoding with temperature 0.0 and a maximum output
length of max tokens = 8000. For the BabiLong and RULER experiments, we instead used
Qwen-4B with max tokens = 512 and reasoning disabled (enable thinking = False).

Retrieval configuration. For Q-RAG we limit the number of retrieval steps to T = 2 on Hot-
PotQA, RULER and Babilong we use T = 4. The same step limits are used when evaluating
Search-R1 and Beam Retriever.

We split documents into fixed-length, non-overlapping chunks, aiming not to break sentences across
chunk boundaries. The chunk length is primarily determined by the context window of the embed-
ders used in our main experiments (512 tokens) and the number of retrieval steps. For Needle-in-a-
Haystack and BabiLong we use a chunk length of 64 tokens. For open-domain QA tasks we set the
chunk length as a function of the number of retrieval steps i.e. for HotPotQA we segment the corpus
into chunks of at most 220 tokens (T = 2); for Musique we use action chunks of at most 110 tokens
(T = 4). In additional experiments with a ‘Alibaba-NLP/gte-multilingual-base‘ (8k context length)
we use a chunk length of 256 tokens.

heightDataset Setting Chunk size T Backbone retriever Answering LLM
HotPotQA Q-RAG / Plan Q-RAG 220 2 multilingual-e5-large QwQ-32B
HotPotQA Q-RAG (early stopping) 256 5 Alibaba-NLP/gte-multilingual-base QwQ-32B
Musique Q-RAG / Plan Q-RAG 110 4 multilingual-e5-large QwQ-32B
Babilong Q-RAG 64 4 facebook/contriever Qwen3-4B
RULER Q-RAG 64 4 facebook/contriever Qwen3-4B

Table 8: Retrieval and generation configuration for each dataset. Chunk size is in tokens; T is the
maximum number of retrieval steps.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Fact-level metrics. Let Sgt be the set of ground-truth supporting facts and Spred be the set of
predicted supporting facts returned by the retriever. Our Fact EM metric is defined as

Fact-EM =

{
1, if Sgt ⊆ Spred,

0, otherwise.

Equivalently, in code: em = 1.0 if gt sf.issubset(pred sf) else 0.0. Thus
Fact EM gives full credit whenever the prediction covers all ground-truth facts, even if it also con-
tains additional, irrelevant chunks; it does not require the predicted and ground-truth sets to be
exactly equal.

22

	Introduction
	Related Works
	Methods
	Preliminaries
	Value-based RL for Embedder Fine-Tuning
	Temporal reasoning for long-context search

	Experiments
	Experimental Setup
	Commonsense reasoning on ultra-long contexts
	Needle in a Haystack and Long Context QA
	Open-domain Question Answering
	Ablation Study

	Conclusion
	Reproducibility Statement.
	Inner product approximation for Q-function
	Early stopping experiments
	Sensitivity to retrieval budget
	Planning for Multi-Step Retrieval
	Method Complexity and Efficiency
	Extra QA results
	Training details
	Evaluation details

