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ABSTRACT

Retrieval-Augmented Generation (RAG) methods enhance LLM performance by
efficiently filtering relevant context for LLMs, reducing hallucinations and infer-
ence cost. However, most existing RAG methods focus on single-step retrieval,
which is often insufficient for answering complex questions that require multi-
step search. Recently, multi-step retrieval approaches have emerged, typically
involving the fine-tuning of small LLMs to perform multi-step retrieval. This type
of fine-tuning is highly resource-intensive and does not enable the use of larger
LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Em-
bedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG
offers a competitive, resource-efficient alternative to existing multi-step retrieval
methods for open-domain question answering and achieves state-of-the-art results
on the popular long-context benchmarks BabiLong and RULER for contexts up to
10M tokens.

1 INTRODUCTION

Large language models (LLMs) have achieved impressive results across a wide range of tasks
(Novikov et al., 2025; Guo et al., 2025; Yang et al., 2025). However, they still face some sev-
eral fundamental limitations such as static knowledge, computational inefficiency on long contexts,
degraded performance caused by attention dilution, and hallucinations (Hsieh et al., 2024; Kuratov
et al., 2024; Liu et al., 2025). Retrieval-Augmented Generation (RAG) is one of the most widely
used techniques to address these issues (Yu et al., 2024).

RAG works by extracting only the most relevant parts from a large external corpus or context, such as
newly added knowledge or lengthy texts. This allows LLMs to operate on shorter and more focused
inputs, improving efficiency and output quality. Most current RAG methods rely on single-step re-
trieval. This setup performs well in relatively simple tasks like Needle-in-a-Haystack (Hsieh et al.,
2024). Still, more complex problems require multi-step interaction with the context. Multi-step
retrieval can be viewed as a form of search-based reasoning. There are several existing approaches
to multi-step retrieval reasoning. One direction involves constructing a knowledge graph from the
retrieved information (Ma et al., 2025; Li et al., 2024). These methods are often slow at infer-
ence time, since the LLM must process the entire context to build the graph for each new input.
Another line of work uses LLM agents, which interleave RAG queries with LLM-generated instruc-
tions (Singh et al., 2025; Anokhin et al., 2024). These systems are sensitive to noisy or inaccurate
retrieved passages, which may disrupt the generation of future queries. This shows the need for
joint optimization of the retrieval and generation components. Recently, methods have emerged that
fine-tune LLMs to interact more effectively with retrieval tools (Song et al., 2025; Jin et al., 2025;
Chen et al., 2025). These methods tend to perform better, but they require expensive fine-tuning
of the LLM itself. This makes them impractical for large models and limits accessibility for most
researchers and practitioners.

In this work, we focus on developing a resource-efficient multi-step RAG approach using reinforce-
ment learning. Instead of fine-tuning an LLM, we train an agent that performs retrieval directly in
the latent space of text chunk embeddings. This allows us to learn a compact and efficient model
using value-based RL methods.

Our approach achieves state-of-the-art results on long-context commonsence reasoning, multi-hop
QA, and NIAH tasks with contexts up to 10 million tokens. It also performs competitively on
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open-domain QA benchmarks such as Musique and HotpotQA (Yang et al., 2018;?), while being
significantly faster and cheaper to train and run compared to existing multi-step RAG methods. Our
contributions are the following:

• We propose a new method for training a multi-step retrieval agent using temporal difference
reinforcement learning.

• We achieve state-of-the-art results on benchmarks that require commonsense reasoning and
NIAH tasks over ultra long contexts (up to 10M tokens).

• We introduce a new way to incorporate temporal information into the multi-step embedder,
enabling temporal reasoning during retrieval. Our temporal reasoning mechanism general-
izes well to long contexts at inference time.

2 RELATED WORKS

There are several main directions for tackling complex retrieval scenarios on long context tasks.

A highly popular approach involves building fine-tuning free LLM Agents that combine off-the-shelf
retrievers with LLMs, such as Search-o1 (Li et al., 2025). Many of these works further enhance
retrieval quality by constructing large knowledge graphs over the context, which, while requiring
little additional training, are extremely slow at inference due to the need for LLMs to process the
entire context, e.g. GraphReader (Li et al., 2024), HippoRAG (Jimenez Gutierrez et al., 2024),
AriGraph (Anokhin et al., 2024).

Another line of work fine-tunes LRMs to perform multi-step retrieval, allowing the model to gener-
ate intermediate search queries inside the reasoning for long contexts. The first work to apply this
idea was IM-RAG (Yang et al., 2024), which fine-tuned the LLM with a frozen embedder using
PPO (Schulman et al., 2017). More recent papers, such as R1-Searcher (Song et al., 2025), Search-
R1 (Jin et al., 2025), RAG-RL (Huang et al., 2025), and ReSearcher (Chen et al., 2025), extended
this direction by employing GRPO (Shao et al., 2024) for the task. Unlike these methods, which
freeze the embedder and fine-tune the LLM, our approach fine-tunes only the embedder, allowing it
to pair with LLMs of any size, including proprietary ones, while keeping fine-tuning efficient and
inexpensive.

A different approach is to fine-tune the retriever itself using feedback from the LLM, as in Re-
Plug (Shi et al., 2024). This direction is most similar to ours, but RePlug did not address multi-step
reasoning or use reinforcement learning in this setting. BeamRetriever (Zhang et al., 2024) achieves
state-of-the-art results on short-context QA by training a reranker for BeamSearch-style planning.
In contrast, Q-RAG trains the embedder with reinforcement learning, enabling faster inference and
better scalability to long contexts through efficient vector similarity instead of transformer-based
trajectory scoring.

Extremely long-sequence processing is demonstrated by models that combine recurrence with
Transformer architecture. The Mamba family of state space models (Gu & Dao, 2024) replaces at-
tention with structured recurrent dynamics, offering linear-time scalability and strong performance
on long sequences, though often at the cost of weaker in-context learning and less expressive token-
to-token interaction compared to Transformer-based architectures. The Recurrent Memory Trans-
former (RMT) (Bulatov et al., 2022) introduces segment-level recurrence by passing memory tokens
between fixed-size segments, enabling Q&A on sequences up to 10M tokens. Titans (Behrouz et al.,
2024) frames recurrent memory training as a meta-learning problem, showing scaling beyond 2M
tokens. Building on this idea, ATLAS (Behrouz et al., 2025) increases memory capacity, achieving
better long-context performance than both RMT and Titans. The Associative Recurrent Memory
Transformer (ARMT) (Rodkin et al., 2024) employs quasi-linear, associative attention in each layer
and attains the best long-context scores among recurrent models. Our approach outperforms all of
these models on contexts beyond 1M tokens while belonging to a different class of methods.

LongRoPE2 (Shang et al., 2025) tackles the positional encoding bottleneck, extending the effective
context window of pre-trained LLMs to 128K tokens while retaining short-context performance
through RoPE rescaling and mixed-window training.
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3 METHODS

...John stayed 
late at the office...

Q-RAG Agent

Environment

...He briefly 
stopped by 

home...

 hebought 
something at the 

pharmacy...

...that, he spent 
twenty minutes at 

a café...

Outside his 
place, he realized 

his keys were 

...He stayed 
overnight at his 

neighbor?s place...

Question: Where 
could John have 

forgotten his keys?

Answer: cafe, 
pharmacy

State Embedder

Action Embedder 

Q values

reward 
function / 

critic

. . .

...that, he spent 
twenty minutes at a 

café...

Long-Context 
Document

Next 
timestep

Figure 1: Q-RAG agent interacts with multi-step retrieval environment. The starting state s0 contains
the initial query q. At the start of the episode, the agent embeds all chunks of the long context C.
At each step t, the agent computes a vector embedding of the current state st, which includes q
and all previously selected chunks. For every chunk ci ∈ At, the utility of retrieving it is evaluated
by the Q-function Qθ(st, a = ci). The policy πθ selects the next chunk from At with probability
proportional to its Qθ(st, c

i) value.

3.1 PRELIMINARIES

Let D be a dataset of triples (C, q, y), where C is a long context, q is an initial query, and y is
the gold answer. The query q can be either a user question about C or a generated claim whose
factuality or consistency with earlier parts of C must be verified. We assume C is pre-segmented
into non-overlapping1 text chunks C = {c(i)}mi=1 in document order. The agent’s goal is to identify
the information in C that is missing from q but necessary to produce the correct answer y. We model
multi-step retrieval as a finite-horizon Markov Decision Process, or MDP (S,A, p, r, γ), where A
is the action space, S is the state space, r is the reward function, p is the (deterministic) transition
function, and γ ∈ [0, 1] is the discount factor. At step t = 0, the action set is A0 = C, where
an action at ∈ At selects one chunk. At later steps, previously selected chunks are removed so
At = C \ {a0, . . . , at−1}. Superscripts indicate document positions and subscripts indicate episode
timesteps. The notation ai (equivalently c(i)) denotes the chunk/action at position i in the document;
selecting the chunk with index i at step t is written ait. Symbols c and a are used interchangeably,
depending on context.

States are ordered lists that always begin with the query, st = ord([q, a0, . . . , at−1]), where ord(·)
sorts by the original document order to avoid permutation ambiguity; the initial state contains only
the query, s0 = [q]. Transitions are deterministic, p(st, at) = ord([q, a0, . . . , at−1, at]). An episode
terminates either when a step budget T is reached or when a special STOP action is taken.

When supervision provides a set of support facts F ⋆ ⊆ C, we use a sparse terminal reward: the
reward is 0 at all intermediate steps, and at the end of the episode it is 1 if all support facts are
included in the final state (otherwise 0). When only answer supervision is available, one could
instead use an LLM to generate ŷ from the final state and define a terminal reward via an answer-
quality metric (e.g., exact match or F1). In this work we do not pursue LLM-based rewards; all
reported experiments rely on the support-fact signal, and exploring LLM-based reward design is left
for future work.

1Chunk overlapping may complicate the explanation but does not affect our proposed solution.
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3.2 VALUE-BASED RL FOR EMBEDDER FINE-TUNING

Action selection in multi-step retrieval is performed by a value-based agent. Specifically, maximum-
entropy reinforcement learning (Ziebart, 2010; Haarnoja et al., 2018) is adopted together with the
corresponding definitions of the soft Qπ and V π value functions for a policy π:

Qπ(s, a) = r(s, a) + γV π(s′ = p(s, a)) (1)
V π(s) = Ea∼π(·|s) [Q

π(s, a)− α log π(a|s)] (2)

Here, α > 0 is a temperature that controls the strength of exploration. This choice is primarily mo-
tivated by the need for effective exploration in the long-context multi-step retrieval environment. In
Q-RAG, Q function is approximated using two embedders for states and actions. The state embed-
der Es(st; θ1) ∈ Rd produces vector embedding for the current state st, while the action embedder
Ea(a

i, i; θ2) ∈ Rd employ rotary position embeddings to encode both the candidate chunk content
and its document-position index i. Q values are then estimated by an inner product between two em-
beddings: Qθ(s, a

i) = ⟨Es(s; θ1), Ea(a
i, i; θ2)⟩. This factorization is theoretically grounded; we

derive its convergence guarantees with explicit rates in Appendix A. Given Qθ, the chunk selection
probability is computed using a Boltzmann policy:

π(at|st) =
exp 1

α (Qθ(st, at)− q)∑
a∈At

exp 1
α (Qθ(st, a)− q)

(3)

with q = maxa∈At
Qθ(st, a) and temperature α annealed from an initial value to zero during train-

ing (proportionally to the learning rate).

As the backbone Temporal Difference learning algorithm, we adopt the recent PQN method by
Gallici et al.. Compared to DQN (Mnih et al., 2015), PQN removes the need for a replay buffer. In
our setting with a large number of chunks, a replay buffer would require re-embedding all document
chunks for each sample drawn from the replay buffer to estimate V/Q values for subsequent states
st+1. Which significantly slows the training process and increases memory space requirements.
Using PQN enables an on-policy value-based training that avoids these costs. The key departures
in Q-RAG, relative to the original PQN backbone, are the use of soft value functions and target
networks. Ablation results demonstrating the benefit of these choices are reported in Section 4.5.

As the training target, rather than the one-step return (see r.h.s. in Eq. 1), a λ-return is used to
improve stability and learning speed:

Gλ
t = (1− λ)

T−t−1∑
n=1

λn−1 Gt:t+n + λT−t−1Gt,

where Gt:t+n =
∑n

k=1 γ
k−1rt+k + Vθ′(st+n). The approximation of the state value function can

be computed from Q values in the case of discrete actions:

Vθ′(st) = α log
∑
a∈At

exp

(
Qθ′(st, a)

α

)
(4)

Here θ′ denotes slowly updated target network parameters. The model parameters θ are finetuned to
minimize the mean squared error to the λ-returns:

LQ = E[(Qθ(st, at)−Gλ
t )

2] (5)

The Q-RAG pseudocode is presented in Algorithm 1.

3.3 TEMPORAL REASONING FOR LONG-CONTEXT SEARCH

When dealing with narrative text, the information contained in a text chunk c may be insufficient
to determine whether c helps us answer the question q. For example, we may need to know what
happened before some specific event. A standard retriever can find several relevant text chunks that
specify the character’s location, but choosing the correct one can be impossible without taking into
account temporal information. To address this, we propose a relative postional encoding of chunks
that explicitly encodes their position with respect to the facts already extracted into the state. At
step t, let St = {i1 < · · · < ik} be the (sorted) document indices of selected chunks and At the set

4
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Algorithm 1 Q-RAG

1: Hyperparameters:
2: Environments count K, retrieval steps T , temperature α, TD parameter λ, EMA τ .
3: Initialize:
4: State embedder Es(s; θ1)
5: Action embedder Ea(a

i, i; θ2) with position i
6: Critic Qθ(s, a

i) = Es(s; θ1)
TEa(a

i, i; θ2)
7: Critic target Qθ′(s, ai)

8: procedure COMPUTETARGETS({st, at, rt, vt}T+1
t=1 )

9: Initialize λ-returns GT = rT + γvT+1

10: for t = T − 1 downto 1 do
11: Gt = rt + γ

[
(1− λ)vt+1 + λGt+1

]
12: end for
13: return {Gt}Tt=1
14: end procedure
15: Training (one update step)
16: for env k ∈ 1, . . . ,K in parallel do
17: s1,A1 = ResetQueryAndContext()
18: Compute Ea = Ea(A; θ) and E′

a = Ea(A; θ′)
19: for step t ∈ 1, . . . , T + 1 do
20: at ∼ softmaxa∈At

1
αEs(s; θ)

TEa

21: vt = α log
∑

a∈A exp 1
αEs(s; θ

′)TE′
a

22: rt = ComputeReward(st, at)
23: st+1 = concatenate(st, at)
24: At+1 = At \ {at}
25: end for
26: B = {st, at, rt, vt}T+1

t=1

27: {Gk
t }Tt=1 = ComputeTargets(B)

28: end for
29: ∇LQ = 1

TK

∑K
k=1

∑T
t=1∇θ(Qθ(s

k
t , a

k
t )−Gk

t )
2

30: Update θ using ∇LQ

31: Update target parameters: θ′ ← τθ + (1− τ)θ′

of available actions. The indices in St partition the document into k+1 disjoint intervals: “before
the earliest selected fact”, “between consecutive selected facts”, and “after the latest selected fact.”
The relative positional mapping ρt : N → R+ assigns to every original chunk index a real-valued
index that (i) identifies the interval it belongs to and (ii) preserves the relative order between chunks.
This mapping makes explicit between which extracted facts a chunk lies, while remaining invariant
to global shifts of absolute positions.

Formally, the interval boundaries are defined as b0=1, bj=ij for j=1:k, and bk+1=m+1 for C =

{c(i)}mi=1. To compute relative index ρt(i) for a chunk ci, find the unique j such that bj ≤ i < bj+1

and set

ρt(i) = j δ + ℓ
i− bj

bj+1 − bj
, (6)

where δ > 0 is the inter-interval step and ℓ ∈ (0, δ) controls the within-interval resolution (e.g.,
δ=10, ℓ=9 in our experiments). In the action embedder, the absolute position is replaced by the
relative one,

Ea

(
ai, i; θ2

)
⇒ Ea

(
ai, ρt(i); θ2

)
, (7)

which allows the Q-function to exploit the spatial relation of candidates to already retrieved evidence
while retaining local order within each interval. This design allows the retrieval agent to perform
strongly not only on fact-finding over disjoint document collections, but also on long-form narrative
tasks, enabling Q-RAG to compete with recurrent transformers (Bulatov et al., 2022; Rodkin et al.,
2024; Behrouz et al., 2025; 2024) and other long context approaches.

5
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our approach, Q-RAG, on tasks that cover commonsence reasoning, temporal reason-
ing, a bunch of needle in a haystack tasks and open-domain multi-hop question answering tasks on
context lengths that range from 4k tokens to 10M tokens per sample. For commonsence and tempo-
ral reasoning we use BabiLong benchmark (Kuratov et al., 2024), for Needle-in-a-Haystack we use
RULER benchmark Hsieh et al. (2024). For open-domain multi-hop QA we use HotpotQA Yang
et al. (2018), Musique Trivedi et al. (2022) and RULER benchmarks. BabiLong and RULER re-
quire long contexts. Musique and HotpotQA use short contexts.

Baselines differ by task. Computing a uniform set of baselines across all datasets is difficult and
time-consuming. Many methods do not release code. Some methods were evaluated only on some
of these datasets. Even when the tasks match, the experimental settings often differ for the same
benchmarks. Some baselines provide code but require heavy resources (e.g., at least 8×A100 GPUs
Jin et al. (2025); Song et al. (2025); Huang et al. (2025)) to fine-tune, which are unavailable for us.
Therefore, we report three types of baselines, and we mark each baseline in tables accordingly:

• × Ablation: baselines that test the effectiveness of our proposed modifications.
• ✓ Reproduced: baselines that we finetuned and/or evaluated on our datasets using released

code or publicly available checkpoints.
• ◦ Reported: baselines whose scores we take directly from the original papers.

4.2 COMMONSENSE REASONING ON ULTRA-LONG CONTEXTS

On the BabiLong Kuratov et al. (2024) benchmark, we compared our method with the state-of-the-
art long-context processing approaches, including Titans Behrouz et al. (2024), Atlas Behrouz et al.
(2025), ARMT Rodkin et al. (2024), RMT Bulatov et al. (2022), as well as proprietary LLMs and
LLM-based agents. The results for most of these baselines were taken directly from the respective
original papers. As shown in Figure 2b, our approach achieves the highest average performance
on BabiLong in ultra-long contexts ranging from 1 to 10 million tokens, demonstrating superior
generalization to long contexts compared to other specialized long-context methods.

In Figure 2a, we present separate results for the QA3 subtask, which is the hardest subtask in the
BabiLong benchmark, which specifically requires the multistep search of at least 3 different facts
and temporal reasoning. Experimental results show that the majority of models perform worst on the
QA3 subtask. As the results indicate, alternative long-context approaches show even greater perfor-
mance degradation on this task with increasing context length. In contrast, Q-RAG shows virtually
no degradation, with the largest performance gap over all baselines observed on this most chal-
lenging subtask. We additionally fine-tuned the Beam-Retriever baseline specifically on the QA3

(a) (b)

Figure 2: Comparison of answer accuracy on the long-context benchmark BabiLong. Solid lines de-
note methods fine-tuned on the BabiLong, while dashed lines denote zero-shot methods. a) Average
performance across tasks Q1–QA5. b) Performance on the hardest task, QA3, which requires the
longest reasoning chain and temporal awareness.
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subtasks, given its strong performance on open-domain QA datasets. However, this method failed
to solve the task. Note that some methods, such as Titans Behrouz et al. (2024) and Atlas Behrouz
et al. (2025), are absent from the Figure as they did not report detailed breakdowns by a subtask.

4.3 NEEDLE IN A HAYSTACK AND LONG CONTEXT QA

While reasoning tasks are crucial for evaluating advanced retrieval systems, a substantial portion
of real-world applications reduces to Needle-in-a-Haystack (NIAH) problems, making it equally
important that models deliver consistently strong performance on these tasks.

RULER is a dataset that includes many long-context tasks. Most of these tasks follow the NIAH for-
mulation. The NIAH setup evaluates the ability to retrieve a specific “needle” from a long distracting
“haystack”.

For RULER benchmark we use Titans Behrouz et al. (2024), Atlas Behrouz et al. (2025), Mamba2
Waleffe et al. (2024), and LongRope2 Shang et al. (2025) as baselines. Titans, Atlas are recurrent
transformers. Mamba2 is a state space model (SSM) that combines transformer components with
SSM. LongRope2 is a method for extending the effective context window of LLMs. All methods
were fine-tuned either directly on RULER (Titans, Atlas, Mamba2) or on related synthetic NIAH-
style datasets (LongRope2). Q-RAG was also fine-tuned on the NIAH subtasks. For the Multi-hop
QA RULER subtask, Q-RAG was fine-tuned on HotpotQA and evaluated on the Multi-hop QA
subtask out-of-distribution.

The results are shown in Table 1. Q-RAG achieves near-perfect performance on all NIAH subtasks.
Q-RAG embedder was trained on 4K-length documents and generalizes to context lengths up to 1M
tokens without loss of accuracy. On the Multi-hop QA subtask, Q-RAG shows significantly better

Table 1: Results on the RULER benchmark, evaluating long-context retrieval performance across
various context lengths. S (Single-needle): Find one value for one key. MK (Multi-keys): Find one
value for one key among many. MV (Multi-values): Find all values for one key. MQ (Multi-query):
Answer multiple questions over the context. MH QA: open domain multi-hop question answering.

Length Methods S MK MV MQ NIAH Avg. MH QA
1-st 2-nd 3-rd 1-st 2-nd 3-rd

4K

◦Titans 98.4 99.8 89.4 n/a n/a n/a n/a n/a n/a n/a
◦Atlas 99.2 100 90.6 n/a n/a n/a n/a n/a n/a n/a
◦Mamba2-Hybrid 100 100 95.7 89.5 95.5 96 97.9 97.6 96.5 48.8
◦LongRoPe2-8B 100 100 99 100 100 100 99 99.7 99.7 60
✓Beam-Retriever 100 100 98 98 98 97 98 99 98.5 28.3
Q-RAG 100 100 100 100 100 100 100 100 100 67

16K

◦Titans 96.2 80.2 n/a n/a n/a n/a n/a n/a n/a n/a
◦Atlas 97 84 n/a n/a n/a n/a n/a n/a n/a n/a
◦Mamba2-Hybrid 100 100 81.5 92 92.2 83 89.8 90.2 91.1 44
◦LongRoPe2-8B 100 100 100 99 100 98 95 98.2 98.8 58
✓Beam-Retriever 100 100 97 96.5 96 95 80 98 95.3 28.3
Q-RAG 100 100 100 100 100 100 100 100 100 67

32K

◦Mamba2-Hybrid 100 100 96.7 84 76.5 81.5 84.3 80.9 88.0 38.5
◦LongRoPe2-8B 100 100 100 99 98 100 98 96.2 98.9 55
Q-RAG 100 100 100 100 100 100 100 100 100 67

128K
◦LongRoPe2-8B 100 100 99 96 91 94 96.5 97 96.7 50
Q-RAG 100 100 100 100 100 100 100 100 100 62

1M Q-RAG 100 100 100 100 98.5 99.0 100 100 99.7 57
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results than all our baselines at all context lengths we consider. Some degradation with increasing
context length starts only from 128K.

4.4 OPEN-DOMAIN QUESTION ANSWERING

For our experiments on the HotPotQA and Musique datasets, we compared our method against
several strong baselines. The first baseline is Beam Retriever, which enables multi-step retrieval
by training a model to score sequences of retrieved chunks. During evaluation, Beam-Retriever is
given the oracle number of supporting facts (i.e., the gold hop count) and always retrieves exactly
that many facts. Although this approach is slower than traditional retrieval methods and does not
scale well to longer contexts, it achieves state-of-the-art results on HotPotQA. Another baseline
we considered is SearchR1, a recent method from a family of approaches that train the LLM itself
to compose text queries for multi-step retrieval. Additionally, we evaluated the performance of
LLM-agent-based methods, including GraphReader. Q-RAG and Beam-Retriever were fine-tuned
on HotPotQA and evaluated on Musique for out-of-distribution testing. Baseline numbers were
taken directly from the corresponding papers. Missing entries indicate metrics not reported by the
original authors.

The comparison results are presented in Table 2. Our method achieves fact retrieval accuracy on par
with Beam Retriever, surpasses all other baselines on HotPotQA, and matches the performance of
full-LLM-tuning Search-R1 while outperforming all alternatives on the out-of-distribution Musique
dataset, resulting in the best overall performance across benchmarks. Results also include another
Q-RAG version Plan Q-RAG that combines Q-RAG value function and beam search based planning
(see Appendix D). Plan Q-RAG showed similar performance to vanilla Q-RAG. For both methods
involving retrieval mechanism fine-tuning (Q-RAG and Beam Retriever), we used the QwQ-32B
model to produce the final answer.

Table 2: Comparison of methods on HotPotQA and Musique benchmarks. Bold text and underline
denote the best and second best scores respectively.

HotPotQA Musique (OOD) Avg
Methods Fact F1 Fact EM Ans F1 Ans EM Fact F1 Fact EM Ans F1 Ans EM Ans F1 Ans EM

Finetuned on HotPotQA

Plan Q-RAG 0.95 0.91 0.76 0.60 0.69 0.53 0.51 0.36 0.64 0.48
Q-RAG 0.93 0.89 0.76 0.59 0.71 0.55 0.52 0.37 0.64 0.48
✓Beam-Retriever 0.97 0.94 0.77 0.61 0.61 0.36 0.40 0.27 0.59 0.44
✓Search-r1 0.81 0.66 0.65 0.52 0.71 0.55 0.51 0.39 0.58 0.46
◦RAG-RL 0.82 – 0.69 – 0.65 – 0.47 – 0.58 –
×Multi-step RAG w.o. FT 0.73 0.54 0.65 0.50 0.51 0.30 0.40 0.27 0.53 0.39

Zero Shot methods
✓GraphReader – – 0.46 0.24 – – 0.40 0.20 0.43 0.22
✓Single step RAG – – 0.53 0.39 – – 0.28 0.17 0.41 0.28

4.5 ABLATION STUDY

To assess the impact of the architectural choices in Q-RAG, an ablation study was conducted on
the BabiLong-QA3 task. This benchmark was selected because it is among the most challenging
long-context tasks used in the experiments and it supports evaluation at arbitrary context lengths.
The following baselines were compared against Q-RAG:

Multi-step RAG w.o. FT. This baseline reproduces the full Q-RAG retrieval pipeline and uses
the same state and action embedders, but relies on their original pretrained weights without any
reinforcement learning fine-tuning. This setting tests whether RL fine-tuning of the embedders is
beneficial for multi-step retrieval quality.

Multi-step RAG w. SFT. This baseline applies supervised fine-tuning using ground-truth support
facts as supervision. The loss follows the objective used in BeamRetriever for trajectory supervision,
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Figure 3: Ablation for (a) policy entropy coefficient (α) in soft Q function and (b) for λ-return
parameter. Inference runtime comparison (c), context length, tokens on x-axes.

adapted to the multi-step retrieval setting. This setting isolates the effect of RL by comparing it to
supervised learning on the same supervision signal.

Q-RAG w.o. target. This variant removes target networks from the PQN-based value learning,
following the original PQN recipe without target parameters. It measures the contribution of target
networks to stability and performance in the Q-RAG training loop.

Q-RAG w.o. Soft-Q. This variant replaces the maximum-entropy (soft) value functions with stan-
dard (non-entropy-regularized) Q-learning objectives. It evaluates the effect of entropy regulariza-
tion and the soft value formulation on retrieval performance.

All baselines were evaluated with three random seeds. Table 3 reports results at a 32k-token con-
text length on QA3. Figure 3 shows the sensitivity of Q-RAG to the λ-return parameter and the
temperature α (the strength of entropy regularization) on QA2 and QA3.

Table 3: Ablation results on BabiLong QA3. Table shows F1 score for support facts retrieval. All
values are averaged over 3 runs with different seeds.

Method 1K 4K 32K 128K 1M
Q-RAG 97.8± 0.17 97.4± 0.14 97.1± 0.08 96.8± 0.08 96.5± 0.16
×Q-RAG w.o. Soft-Q 95.9± 0.70 95.5± 0.80 94.5± 0.50 94.0± 0.30 93.3± 0.45
×Q-RAG w.o. Target 79.2± 26.0 78.1± 26.6 77.6± 27.2 77.4± 27.3 75.9± 28.2
×Multi-Step RAG w. SFT 20.33± 0.32 20.87± 0.35 20.10± 0.20 18.30± 0.36 —
×Multi-Step RAG w.o. FT 15.52± 0.11 16.38± 0.10 15.51± 0.16 15.34± 0.12 —

5 CONCLUSION

This work introduced Q-RAG, a resource-efficient method for multi-step retrieval trained with re-
inforcement learning directly in the latent space of text-chunk embeddings. Across long-context
benchmarks (e.g., BabiLong, RULER) and open-domain QA datasets (e.g., Musique, HotpotQA),
Q-RAG attains state-of-the-art or highly competitive results. Its advantage over baselines widens as
context length grows, and performance shows minimal degradation even at ultra-long scales.

A key practical benefit is compute efficiency: all training was performed on a single A100 GPU
with 80 GB memory, whereas recent RL-based multi-step retrievers such as Search-R1/R1-Searcher
typically report training on clusters of about eight A100 GPUs. By fine-tuning only the embedder
while keeping the LLM frozen, Q-RAG remains easy to pair with powerful pre-trained or proprietary
LLMs, enabling efficient training, flexible deployment, and strong retrieval over very long contexts.

Looking ahead, promising directions include using structured LLM feedback as a reward signal,
strengthening compositional and temporal reasoning directly in the embedding space, and exploring
tighter integration with generation while preserving the method’s efficiency and scalability.
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6 REPRODUCIBILITY STATEMENT.

We make all results reproducible by providing a code package with exact configs and run scripts;
all code is included in the supplementary materials. The package includes utilities to download
and minimally preprocess the public HotPotQA and MuSiQue datasets and to re-run every experi-
ment and table with fixed random seeds (Fact F1/EM, Answer F1/EM). We fine-tune only publicly
available embedders — multilingual-e5-large and facebook/contriever — strictly
following the hyperparameters and schedules described in Appendix G. All reported runs are repro-
ducible on a single GPU; our main experiments were executed on one A100-80GB device. The
repository contains evaluation scripts that reproduce the reported tables without modification; full
implementation specifics are referenced from Appendix G and the supplementary materials.
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A INNER PRODUCT APPROXIMATION FOR Q-FUNCTION

The Universal Approximation Theorem (UAT) states that neural networks with a single hidden layer
can approximate any continuous function arbitrarily well under mild conditions. In this section, we
prove a variant of the UAT for functions decomposed as an inner product involving Rotary Position
Embedding (RoPE). Specifically, we show that any continuous q-function Q(s, ai) defined on a
compact domain can be approximated by functions of the form:

F (s, ai) = ⟨Es(s), Ea(a
i, i)⟩, Ea(a

i, i) = Rpos(i)Ea(a
i), (8)

where Es and Ea are continuous vector functions (e.g., neural networks) and Rt is the RoPE matrix
of dimension r (even) parameterized by t = pos(i):

Rt =

r/2⊕
j=1

[
cos(θjt) − sin(θjt)
sin(θjt) cos(θjt)

]
, (9)

where θj are fixed frequencies. For notational simplicity in the following derivations, we introduce
the following conventions:

(x, y) := (s, a), t := pos(i), h(x) := Es(s), g(y) := Ea(a
i).

For simplicity, we assume the domains of x, y and t are continuous, corresponding to the embed-
dings of text tokens.
Theorem 1. Let X ⊂ Rdx , Y ⊂ Rdy , and T ⊂ R be compact sets, and define the compact domain
K = X×Y ×T . Let C(K,R) be the space of continuous real-valued functions on K equipped with
the uniform norm. Let Rt be the RoPE matrix of dimension r, defined as a block-diagonal rotation
matrix (9). Define the function class:

A = {F (x, y, t) = ⟨h(x), Rtg(y)⟩ | h ∈ C(X,Rr), g ∈ C(Y,Rr)} . (10)

Then A is dense in C(K,R). That is, for any f ∈ C(K,R) and ϵ > 0, there exist continuous
functions h : X → Rd and g : Y → Rd such that:

sup
(x,y,t)∈K

|f(x, y, t)− ⟨h(x), Rtg(y)⟩| < ϵ. (11)

Proof. We prove the result via the Stone-Weierstrass theorem, which states that if a subalgebra
A ⊂ C(K,R) contains the constant functions and separates points, then A is dense in C(K,R).
Thus, we show that A satisfies these requirements.

A is a subalgebra. We prove closure under addition, scalar multiplication, and multiplication of
two arbitrary elements.

Scalar multiplication: Let F (x, y, t) = ⟨h(x), Rtg(y)⟩ ∈ A and c ∈ R. Define h′(x) = ch(x).
Then cF (x, y, t) = ⟨h′(x), Rtg(y)⟩ ∈ A.

Addition: Let F1(x, y, t) = ⟨h1(x), Rtg1(y)⟩ and F2(x, y, t) = ⟨h2(x), Rtg2(y)⟩. Define h(x) =

[h1(x);h2(x)] ∈ R2d and g(y) = [g1(y); g2(y)] ∈ R2d, and let R̃t be a block-diagonal extension of
Rt. Then

⟨h(x), R̃tg(y)⟩ = ⟨h1(x), Rtg1(y)⟩+ ⟨h2(x), Rtg2(y)⟩ = F1(x, y, t) + F2(x, y, t) ∈ A. (12)

Multiplication: Let F1 and F2 as above. Note that:

F1(x, y, t)F2(x, y, t) = ⟨h1(x)⊗ h2(x), (Rtg1(y))⊗ (Rtg2(y))⟩. (13)

Since (Rtg1(y))⊗(Rtg2(y)) = (Rt⊗Rt)(g1(y)⊗g2(y)), and Rt⊗Rt is a block-diagonal rotation
matrix with angles θj + θk (a RoPE matrix of dimension d2), define h(x) = h1(x)⊗ h2(x) ∈ Rd2

,
g(y) = g1(y)⊗ g2(y) ∈ Rd2

, and let R̃t be the RoPE matrix with frequencies {θj + θk}. Then:

F1(x, y, t)F2(x, y, t) = ⟨h(x), R̃tg(y)⟩ ∈ A. (14)

Thus, A is a subalgebra.
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A contains the constant functions. Show the constant function 1 is in A. Augment the dimen-
sion: let d′ = d+1, and define h(x) = (1, 0, . . . , 0)T ∈ Rd′

, g(y) = (1, 0, . . . , 0)T ∈ Rd′
. Define a

modified RoPE matrix R′
t that acts as the identity on the first coordinate and as Rt on the remaining

d coordinates. Then
⟨h(x), R′

tg(y)⟩ = 1. (15)

A separates points. Let (x1, y1, t1) ̸= (x2, y2, t2) ∈ K. Construct F ∈ A such that
F (x1, y1, t1) ̸= F (x2, y2, t2).

Case 1: x1 ̸= x2 or y1 ̸= y2. Choose g(y) = v (a constant non-zero vector) and let h be continuous
with h(x1) ̸= h(x2). Then F (x, y, t) = ⟨h(x), Rtv⟩. Since Rtv traces a circle (for v with at least
two non-zero components), for generic v, Rt1v and Rt2v are not orthogonal to h(x1) − h(x2), so
F (x1, y1, t1) ̸= F (x2, y2, t2). The case when y1 ̸= y2 is identical to the 1st case.

Case 2: t1 ̸= t2. Choose h(x) = w and g(y) = v. Then F (x, y, t) = ⟨w,Rtv⟩. Since t 7→ Rtv
is injective (for v ̸= 0 and non-zero frequencies), Rt1v ̸= Rt2v. Choose w not orthogonal to
Rt1v −Rt2v, so F (x1, y1, t1) ̸= F (x2, y2, t2).

Thus, by the Stone-Weierstrass theorem, A is dense in C(K,R).

Theorem 1 establishes that our architecture is capable of approximating any continuous function
arbitrarily well. However, it does not specify how complex the network needs to be to achieve a
given accuracy. The following quantitative result addresses this by providing an explicit convergence
rate dependent on the smoothness of the target function.
Lemma 1 (Low-rank approximation of Sobolev kernels). Let Ωx ⊂ Rdx and Ωy ⊂ Rdy be bounded
Lipschitz domains, and let d = dx + dy .

Let s > d/2 and consider a real-valued kernel

a ∈ Hs(Ωx × Ωy). (16)

Then, for every integer r ≥ 1, there exist continuous functions

h : Ωx → Rr, g : Ωy → Rr (17)

such that
sup

x∈Ωx, y∈Ωy

∣∣a(x, y)− ⟨h(x), g(y)⟩Rr

∣∣ ≤ C r−s/d ∥a∥Hs(Ωx×Ωy). (18)

Here C > 0 depends only on s, dx, dy , and the diameters of Ωx,Ωy .

Proof. Since s > d/2 and Ωx × Ωy is a bounded Lipschitz domain in Rd, the Sobolev embedding
theorem implies

Hs(Ωx × Ωy) ↪→ C(Ωx × Ωy) (19)
continuously. In particular there exists Cemb > 0 such that

∥u∥L∞(Ωx×Ωy) ≤ Cemb∥u∥Hs(Ωx×Ωy) for all u ∈ Hs(Ωx × Ωy). (20)

Consider the unit ball

K :=
{
a ∈ Hs(Ωx × Ωy) : ∥a∥Hs(Ωx×Ωy) ≤ 1

}
. (21)

Let Rr denote the set of all functions on Ωx × Ωy of the form
∑r

j=1 uj(x)vj(y) with uj ∈
C(Ωx), vj ∈ C(Ωy).

Classical results on the Kolmogorov r-widths of Sobolev classes (see, e.g., Novak & Woźniakowski
(2008)) give

dr
(
K;L∞(Ωx × Ωy)

)
:= inf

dimV≤r
sup
a∈K

inf
b∈V
∥a− b∥L∞ ≤ C0 r

−s/d, (22)

where C0 depends only on s, d and the diameters of the domains. Moreover, the infimum can be
taken over subspaces V ⊂ Rr consisting of separable sums; hence the same rate is attainable by
rank-r approximations.
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Thus for any a ∈ Hs(Ωx × Ωy) with ∥a∥Hs = M , there exist continuous uj , vj such that

sup
x,y

∣∣∣a(x, y)− r∑
j=1

uj(x)vj(y)
∣∣∣ ≤ C0M r−s/d. (23)

Setting h(x) = (u1(x), . . . , ur(x)) and g(y) = (v1(y), . . . , vr(y)) yields the claim.

Theorem 2 (Approximation by RoPE-type feature maps). Let X ⊂ Rdx and Y ⊂ Rdy be bounded
Lipschitz domains, and let T = [0, 2π] with endpoints identified.

Let s > (dx + dy)/2 be an integer. Assume that

f ∈ C
(
T ; Hs(X × Y )

)
, ∂ℓ

tf ∈ C
(
T ; Hs(X × Y )

)
, 1 ≤ ℓ ≤ s. (24)

Define
M := max

0≤ℓ≤s

∥∥∂ℓ
tf

∥∥
C(T ;Hs(X×Y ))

. (25)

Then there exist constants C > 0 and β > 0, depending on s, dx, dy , the diameters of X,Y , and on
M , such that for every integer r ≥ 1 one can find

• feature maps h : X → Cr, g : Y → Cr, and

• a family of unitary matrices {Rt}t∈T ⊂ Cr×r of the form

Rt = diag
(
eiω1t, . . . , eiωrt

)
, ωj ∈ Z, (26)

satisfying
sup

(x,y,t)∈X×Y×T

∣∣f(x, y, t)− ⟨h(x), Rtg(y)⟩Cr

∣∣ ≤ C r−β , (27)

where one may take β = s/(dx + dy + 1).

Proof. Since t 7→ f(·, ·, t) is s-times continuously differentiable as an Hs-valued map, it has a
Bochner–Fourier expansion

f(x, y, t) =
∑
k∈Z

ak(x, y) e
ikt, ∥ak∥Hs ≤M (1 + |k|)−s. (28)

A standard Jackson estimate gives the truncation bound

sup
(x,y,t)

∣∣∣ f − ∑
|k|≤N

ake
ikt

∣∣∣ ≤ C1MN−s. (29)

Let γ := s/(dx + dy). Apply Lemma 1 separately to real and imaginary parts of each ak (doubling
the rank) to obtain continuous maps hk : X → Crk , gk : Y → Crk with

sup
x,y

∣∣ak − ⟨hk, gk⟩
∣∣ ≤ C2M (1 + |k|)−sr−γ

k , (30)

where C2 depends only on s, dx, dy and the diameters. Define the total dimension r :=
∑

|k|≤N rk,
and set h := (hk)|k|≤N , g := (gk)|k|≤N . Let Rt act block-diagonally as Rt((zk)) := (eiktzk), so
that

⟨h(x), Rtg(y)⟩ =
∑

|k|≤N

eikt⟨hk(x), gk(y)⟩. (31)

The overall error then satisfies

sup
x,y,t

∣∣f − ⟨h,Rtg⟩
∣∣ ≤ C1MN−s + C2M

∑
|k|≤N

(1 + |k|)−sr−γ
k . (32)

To minimize the second term under the constraint
∑

rk = r, choose

rk ∼ (1 + |k|)−s/(γ+1). (33)
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Then, since s/(γ + 1) = dx + dy ≥ 2,∑
|k|≤N

(1 + |k|)−sr−γ
k ≤ C3N

−γr−γ . (34)

Thus
sup
x,y,t

∣∣f − ⟨h,Rtg⟩
∣∣ ≤ C1MN−s + C4MN−γr−γ . (35)

Choosing N = ⌊rγ/(s+γ)⌋ balances the two terms and yields

sup
x,y,t

∣∣f − ⟨h,Rtg⟩
∣∣ ≤ CM r−sγ/(s+γ), (36)

with sγ/(s+ γ) = s/(dx + dy + 1).

B EARLY STOPPING EXPERIMENTS

In this section, we study a simple early stopping rule for the retrieval agent. Let

a = (a1, a2, . . . , aT )

be the full sequence of chunks the agent would select if no stopping threshold were applied, and let
G be a set of ground-truth chunks for the current question.

For each step t, the agent outputs a Q-value Qt for taking the next retrieval action. Given a fixed
Q-value threshold Qthreshold, we simulate an early-stopping policy that keeps taking actions while
Qt ≥ Qthreshold and terminates as soon as Qt < Qthreshold. We denote by tstop the number of actions
actually taken under this policy, i.e. the number of selected chunks:

tstop = number of steps until the first t with Qt < Qthreshold.

Independently of the stopping rule, we define tearliest as the earliest step at which all ground-truth
chunks have already been collected:

tearliest = min
{
t : {a1, . . . , at} ⊇ G

}
.

If the agent never collects all ground-truth chunks, i.e. such a t does not exist, we discard this episode
from the analysis below.

For comparison, we also consider an oracle stopping policy that is allowed to look at the ground
truth: it knows tearliest for each episode and simply stops at this step. By construction, this oracle
policy never stops too early or too late.

Depending on the relation between tstop and tearliest we distinguish three outcomes.

Early stop (“early”). If tstop < tearliest, the stopping rule terminates before all ground-truth chunks
have been selected. In this case the error is due to stopping too early and missing potentially useful
chunks.

Perfect stop (“perfect”). If tstop = tearliest, the stopping rule terminates exactly at the first step
when the set of selected chunks already contains all ground-truth chunks. In this case, the stopping
behavior is optimal with respect to our definition.

Late stop (“late”). If tstop > tearliest, then at some earlier step the agent had already collected all
ground-truth chunks but continued to retrieve additional chunks. This corresponds to stopping too
late and taking unnecessary steps.

Figure 4 (top row, panel (a)) shows how the proportions of early and late errors change as a function
of the Q-value threshold Qthreshold on HotPotQA. For small thresholds, the agent almost never stops
too early but may continue to retrieve redundant chunks, which leads to late errors. As the threshold
increases, late errors decrease, but the probability of stopping too early grows.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Early stopping analysis on HotPotQA (top row) and BabiLong QA2 (bottom row). Panels
(a,d) show the proportions of early and late errors as a function of the Q-value threshold Qthreshold.
Panels (b,e) show the proportion of perfect stops. Panels (c,f) show the average number of selected
chunks (episode length).

Table 4: HotPotQA early stopping experiments

Q-value threshold stopped early stopped later perfect stop TPR FPR Episode len Fact EM Fact F1 Ans EM Ans F1

-0.1 0 0.979 0.021 0.983 0.380 4.99 0.968 0.563 0.588 0.759
0.0 0.015 0.395 0.590 0.976 0.110 2.82 0.954 0.843 0.592 0.761
0.1 0.061 0.060 0.879 0.952 0.041 2.23 0.910 0.915 0.593 0.756
0.2 0.088 0.020 0.892 0.937 0.032 2.13 0.883 0.917 0.587 0.752
0.3 0.104 0.006 0.890 0.927 0.029 2.08 0.868 0.915 0.585 0.747
0.4 0.118 0.002 0.880 0.919 0.027 2.05 0.854 0.911 0.575 0.737
0.5 0.132 0 0.867 0.910 0.025 2.02 0.840 0.907 0.571 0.734
0.6 0.144 0 0.856 0.903 0.024 2.00 0.829 0.902 0.570 0.730
0.7 0.157 0 0.843 0.891 0.023 1.96 0.817 0.895 0.564 0.724
0.8 0.202 0 0.798 0.840 0.017 1.82 0.773 0.847 0.546 0.702
0.9 0.417 0 0.583 0.611 0.006 1.27 0.565 0.620 0.444 0.588
1.0 0.910 0 0.090 0.105 0.000 0.21 0.088 0.111 0.266 0.385
1.1 1.000 0 0 0 0 0 0 0 – –

Panel (b) of Figure 4 reports the proportion of “perfect” stopping events, peaking around thresholds
Qthreshold ≈ 0.1–0.3. Panel (c) shows the average number of selected chunks (episode length) under
the same policy. Larger thresholds lead to shorter episodes, but once the threshold becomes too high,
the early-stop error rate rapidly increases and performance degrades.

Table4 summarises these trade-offs quantitatively on HotPotQA for the GTE embedder with
penalize extra steps=True and never terminate=True. We report the fraction of
early, late and perfect stops, the average episode length, and the final Fact EM and Fact F1 scores,
as well as the corresponding true positive rate (TPR) and false positive rate (FPR) for the stopping
rule viewed as a binary classifier. The best Fact F1 is achieved at Qthreshold = 0.2, confirming that
moderate thresholds provide a good balance between taking enough retrieval steps and avoiding
unnecessary ones.

Using the TPR and FPR columns of Tables 4 and 5, we can plot the receiver operating characteristic
(ROC) curves of the early-stopping rule, shown in Figure 5. Panel (a) corresponds to HotPotQA and
panel (b) to BabiLong QA2. Each point on the curves corresponds to a particular Q-value threshold
Qthreshold. The red star in each panel marks the oracle stopping policy introduced above, which knows
tearliest and stops exactly at that step; this point serves as an upper bound on the achievable trade-off
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(a) HotPotQA
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Figure 5: ROC curves for the early-stopping rule. Panel (a) shows HotPotQA; panel (b) shows Ba-
biLong QA2. The dashed line indicates random performance. Each point corresponds to a different
Q-value threshold Qthreshold. The red star denotes the oracle stopping policy that always stops at
tearliest, i.e. exactly when the last ground-truth chunk has been retrieved.

Table 5: BabiLong QA2 early stopping experiments.

Q-value threshold stopped early stopped later perfect stop Episode len Fact EM Fact F1 Ans EM Ans F1

-0.10 0.000 0.994 0.006 6.00 0.996 0.499 0.884 0.884
0.00 0.000 0.994 0.006 6.00 0.996 0.499 0.884 0.884
0.10 0.000 0.498 0.502 2.86 0.996 0.845 0.944 0.944
0.20 0.000 0.036 0.964 2.29 0.996 0.949 0.976 0.976
0.30 0.006 0.010 0.984 2.25 0.990 0.952 0.970 0.970
0.40 0.008 0.002 0.990 2.24 0.988 0.953 0.970 0.970
0.50 0.008 0.000 0.992 2.23 0.988 0.954 0.972 0.972
0.60 0.016 0.000 0.984 2.21 0.980 0.948 0.968 0.968
0.70 0.042 0.000 0.958 2.16 0.954 0.934 0.948 0.948
0.80 0.112 0.000 0.888 2.06 0.884 0.905 0.884 0.884
0.90 0.177 0.000 0.823 1.92 0.820 0.861 0.830 0.830
1.00 0.930 0.000 0.070 0.22 0.070 0.107 0.230 0.230
1.10 1.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000

between TPR and FPR. On HotPotQA the area under the curve (AUC) is 0.96, and BabiLong QA2
- 0.97.

Figure 4 (bottom row) and Table 5 report the same analysis on BabiLong QA2. Qualitatively, the
behaviour of the stopping rule is similar to HotPotQA: higher thresholds lead to shorter episodes
and more early stops, while lower thresholds reduce early-stop errors at the cost of more late stops
and longer episodes.

However, the transition between these regimes is much sharper on BabiLong QA2. For thresholds in
the range Qthreshold ∈ [0.2, 0.6] the fraction of perfect stops remains very high (≈ 0.95–0.99), while
the average episode length is reduced from about 6 to roughly 2.2 retrieval steps. In this region Fact
EM and Fact F1 stay close to their maximum values (Fact F1 around 0.95), and answer accuracy
(Ans EM/F1) is also near-optimal. Only when the threshold approaches 1.0, performance collapses,
as the agent stops almost immediately and misses relevant chunks.

C SENSITIVITY TO RETRIEVAL BUDGET

We investigate the dependence of final model performance on the number of Q-RAG retrievals
(i.e., the retrieval budget). For this analysis, we used a Q-RAG system with an Alibaba-NLP/gte-
multilingual-base embedder, trained on a combination of the HotpotQA and Musique datasets. This
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Table 6: Sensitivity to the number of retrieves. Dataset: HotpotQA (1000 samples). Embedder
Alibaba-NLP/gte-multilingual-base was trained on Hotpotqa+Musique.

Retrievals Facts Qwen3-4B Qwen3-14B Qwen3-32B
EM F1 EM F1 EM F1 EM F1

2 0.832 0.903 0.439 0.620 0.556 0.708 0.504 0.675
3 0.935 0.771 0.481 0.657 0.570 0.730 0.510 0.692
4 0.962 0.652 0.493 0.664 0.577 0.734 0.513 0.695
5 0.978 0.565 0.481 0.656 0.584 0.744 0.512 0.692

embedder supports contexts of up to 8192 tokens, enabling the use of a larger retrieval budget. We
evaluated the system on 1000 samples from the HotpotQA dataset. The final generation of the
answers was performed by three LLMs: Qwen3-4B, Qwen3-14B, and Qwen3-32B.

The results are presented in Table6. Here, EM (Exact Match) indicates the number of correct
(ground-truth supporting) chunks retrieved, while F1 accounts for the inclusion of noise (non-
supporting) chunks. The table shows that increasing the number of retrieves from 2 to 3 improves
both the number of correct facts retrieved and the answer quality across all three LLMs. These
experiments suggest that, within a reasonable range of retrieval counts, final answer accuracy is pri-
marily dependent on the retrieval of correct chunks and is not degraded by the presence of noise
chunks.

D PLANNING FOR MULTI-STEP RETRIEVAL

We can apply planning at the multi-step retrieval stage, formulating source selection as a search over
the space of action trajectories; see § 4.4 for an application. In the spirit of Beam-Retriever, we can
run beam search where candidates are ranked by the learned action-value Qθ(s, a). However, our
planning is computationally cheaper because Qθ is computed as a dot product of state and action
embeddings, Qθ(s, a) = ⟨Es(s), Ea(a)⟩, so no new transformer forward passes are required for
each candidate chunk, whereas Beam-Retriever relies on a transformer reranker over trajectories,
incurring fresh forward passes at every expansion. Details of the embedding-based scoring are
provided in § 3.2. At inference, we perform beam search over Q and deterministically expand the
top-k actions by Qθ.

E METHOD COMPLEXITY AND EFFICIENCY

Q-RAG produces a final answer using two main components. The first is a multi-step retrieval agent
that performs iterative search over the full document to collect all context-relevant evidence (see
sec. 3.2). The second is an LLM Answerer that conditions on the retrieved chunks and generates
the final response. Importantly, only the retrieval agent interacts with the original long context; the
effective context length seen by the LLM Answerer depends solely on the retrieval hyperparameters
(e.g., number of retrieval steps T , maximum chunk length). Consequently, the time and memory
complexity of the LLM Answerer with respect to the original context length N are both O(1).
Retrieval agent consists of two embedders: state embedder Es and action embedder Ea (see sec.
3.2).

Chunks embedding. The action embedder computes embeddings for chunks of the original doc-
ument. If the document has length N and the chunk size is nc, embedding the entire document
takes O

(
N
nc

tact

)
, where tact is the embedding time per chunk (treated as a constant). The action

embedder performs a single pass over all chunks per retrieval episode; thus its complexity is linear
in N , i.e., O(N).

State Embedding. The state embedder processes the state K times per episode (once per search
step). From the construction of the state (see fig. 1), the total cost over an episode is O(K tstate),
where state embedding time tstate depends on nc and K, but not on N . Hence, the state embedder
is O(1) with respect to document length N .
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Search Policy. To select the next chunk at each step, we compute the inner product between the cur-
rent state embedding and all action embeddings. With naive implementation, selecting all K actions
over the episode requires O

(
K demb

N
nc

)
= O(N), where demb is size of embedding vectors. This

can be reduced using approximate kNN methods that achieve sub-linear query time in practice (??).

Overall time complexity. Summing the terms above yields

O
(
N

nc
tact + K tstate + K demb

N

nc

)
= O(N),

since K, tact, tstate, and demb do not depend on N .

Space complexity. The main part that direcly depends on document length is the nubmer of chunk
embeddings we need to store: O

(
demb

N
nc

)
= O(N). In practice, embeddings are lightweight;

GPU memory is mainly consumed by the LLM weights and the action embedder forward passes. By
capping the action embedder’s batch size (parameter chunk batch), the growth of peak memory
with N becomes negligible.

Training Time Efficiency. A critical practical advantage of the Q-RAG framework is its efficient
and rapid training convergence, as demonstrated in Figure 6. The learning curves depict the model’s
performance evolution on two distinct and challenging benchmarks: BabiLong QA3 and HotPotQA.
The curves show a sharp initial rise in evaluation metric scores, followed by a stable plateau, indi-
cating that the model quickly learns the core retrieval-augmented generation task. Notably, this
convergence is achieved within approximately 12 hours of training time on a GPU setup.
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Figure 6: Learning curves for HotPotQA and BabiLong QA3 runs. Both graphs the average episodic
return with respect to training time.

F EXTRA QA RESULTS

Table 7 compares multi-step retrieval methods on HotPotQA-distractors, Musique (in-distribution),
and Musique (out-of-distribution). It reports both fact-retrieval (Fact F1, Fact EM) and
answer-generation (Ans F1, Ans EM) scores. Q-RAG and its planned variant (Plan Q-RAG) achieve
strong overall results, especially on out-of-distribution data, while Beam-Retriever leads on Hot-
PotQA but generalizes less robustly. Methods with missing entries did not report results for the
corresponding dataset or metric.

G TRAINING DETAILS

We trained the model with AdamW (learning rate 1.5 × 10−5, β1=0.9, β2=0.98, ϵ=10−6, weight
decay 5× 10−4). The learning rate followed a linear schedule: we used a warm-up of 1,000 steps,
then linearly decayed the rate to 10% of its initial value over the remaining training steps. We applied
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Table 7: Comparison of methods on HotPotQA-distractors, Musique (in-distribution), and Musique
(OOD). Bold text and underline denote the best and second best scores respectively.

HotPotQA Musique Musique (OOD) Average
Methods Fact F1 Fact EM Ans F1 Ans EM Fact F1 Fact EM Ans F1 Ans EM Fact F1 Fact EM Ans F1 Ans EM Ans F1 Ans EM

Plan Q-RAG + QwQ-32B 0.95 0.91 0.76 0.60 0.84 0.76 0.60 0.44 0.69 0.53 0.51 0.36 0.62 0.46
Q-RAG+QwQ-32B 0.93 0.89 0.76 0.59 0.81 0.72 0.59 0.43 0.71 0.55 0.52 0.37 0.62 0.46
Beam-Retriever+QwQ-32B 0.97 0.94 0.77 0.61 0.86 0.69 0.59 0.43 0.61 0.36 0.40 0.27 0.59 0.44
Search-r1 0.81 0.66 0.65 0.52 – – – – 0.71 0.55 0.51 0.39 – –
Search-o1 – – – – – – – – – – – – – –
GraphReader – – – – – – – – – – – – – –
HippoRAG – – – – – – – – – – – – – –

gradient clipping with a maximum ℓ2 norm of 2.0 and used gradient accumulation for 8 steps. The
base mini-batch size was 12; with accumulation this yields an effective batch size of 12 × 8 = 96
per update (scaled by the number of devices if using distributed training).

In the objective and algorithmic components we set γ=0.99, α=0.05, λ=0.5, and τ=0.02. Action
representations were capped at a maximum length of 220 tokens.

The end-to-end training of a single model did not exceed 12 hours on a single A100-80GB GPU.

Models per benchmark. For open-domain QA benchmarks (HotPotQA, Musique), we
trained an multilingual-e5-large encoder. For Ruler and BabiLong, we trained
facebook/contriever.

H EVALUATION DETAILS

LLM Models for generation. To compute answer-level metrics (Ans EM and Ans F1), we con-
dition the QwQ-32B model on the question and the retrieved text chunks. All answer-generation
results reported for Q-RAG and Plan Q-RAG on the HotPotQA and Musique benchmarks were ob-
tained under consistent generation settings: decoding with temperature 0.0 and a maximum output
length of max tokens = 8000. For the BabiLong and RULER experiments, we instead used
Qwen-4B with max tokens = 512 and reasoning disabled (enable thinking = False).

Retrieval configuration. For Q-RAG we limit the number of retrieval steps to T = 2 on Hot-
PotQA, RULER and Babilong we use T = 4. The same step limits are used when evaluating
Search-R1 and Beam Retriever.

We split documents into fixed-length, non-overlapping chunks, aiming not to break sentences across
chunk boundaries. The chunk length is primarily determined by the context window of the embed-
ders used in our main experiments (512 tokens) and the number of retrieval steps. For Needle-in-a-
Haystack and BabiLong we use a chunk length of 64 tokens. For open-domain QA tasks we set the
chunk length as a function of the number of retrieval steps i.e. for HotPotQA we segment the corpus
into chunks of at most 220 tokens (T = 2); for Musique we use action chunks of at most 110 tokens
(T = 4). In additional experiments with a ‘Alibaba-NLP/gte-multilingual-base‘ (8k context length)
we use a chunk length of 256 tokens.

heightDataset Setting Chunk size T Backbone retriever Answering LLM
HotPotQA Q-RAG / Plan Q-RAG 220 2 multilingual-e5-large QwQ-32B
HotPotQA Q-RAG (early stopping) 256 5 Alibaba-NLP/gte-multilingual-base QwQ-32B
Musique Q-RAG / Plan Q-RAG 110 4 multilingual-e5-large QwQ-32B
Babilong Q-RAG 64 4 facebook/contriever Qwen3-4B
RULER Q-RAG 64 4 facebook/contriever Qwen3-4B

Table 8: Retrieval and generation configuration for each dataset. Chunk size is in tokens; T is the
maximum number of retrieval steps.
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Fact-level metrics. Let Sgt be the set of ground-truth supporting facts and Spred be the set of
predicted supporting facts returned by the retriever. Our Fact EM metric is defined as

Fact-EM =

{
1, if Sgt ⊆ Spred,

0, otherwise.

Equivalently, in code: em = 1.0 if gt sf.issubset(pred sf) else 0.0. Thus
Fact EM gives full credit whenever the prediction covers all ground-truth facts, even if it also con-
tains additional, irrelevant chunks; it does not require the predicted and ground-truth sets to be
exactly equal.
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