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Abstract

Illuminating interactions between proteins and small drug molecules is a long-
standing challenge in the field of drug discovery. Despite the importance of un-
derstanding these interactions, most previous works are limited by hand-designed
scoring functions and insufficient conformation sampling. The recently-proposed
graph neural network-based methods provides alternatives to predict protein-ligand
complex conformation in a one-shot manner. However, these methods neglect
the geometric constraints of the complex structure and weaken the role of local
functional regions. As a result, they might produce unreasonable conformations
for challenging targets and generalize poorly to novel proteins. In this paper, we
propose Trigonometry-Aware Neural networKs for binding structure prediction,
TANKBind, that builds trigonometry constraint as a vigorous inductive bias into
the model and explicitly attends to all possible binding sites for each protein by
segmenting the whole protein into functional blocks. We construct novel con-
trastive losses with local region negative sampling to jointly optimize the binding
interaction and affinity. Extensive experiments show substantial performance gains
in comparison to state-of-the-art physics-based and deep learning-based methods
on commonly-used benchmark datasets for both binding structure and affinity
predictions with variant settings.

1 Introduction

Proteins are the workhorses of human bodies. They have a wide range of interaction partners, small
molecules, other proteins, and DNA/RNA, for example. In this paper, we focus on drug-like small
molecules as the interaction partners for proteins. The words ligands, drugs, small molecules and
compounds are used interchangeably throughout the paper. Small molecules activate or inhibit
activities of target proteins through mostly non-covalent interactions. In 2021, FDA approved 60 new
drugs, among which 36 were small molecules |[Kinch et al.| [2022]]. Understanding the mechanism-
of-actions and off-target effects of drug molecules typically requires analyzing the structures of the
related protein-ligand complexes |Boopathi et al.| [2021], Xie et al.| [201 1], but solving the complex
structure experimentally is a an extremely challenging task. Despite tremendous effort spent on
this topic over the last 50 years, only about 19,000 protein-ligand complex structures have been
solved experimentally using X-ray, Cryo-EM or NMR [Liu et al.| [2015]. On the other hand, the
estimated chemical space of drug is 10%° and estimated number of unique proteins in human body is
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at least 20, 000, making the number of possible protein-ligand complex far exceeding the number of
experimentally solved structures |Reymond et al.| [2010]], [Ponomarenko et al.|[2016].

On the computational side, molecular docking is a commonly-used method for predicting the protein-
ligand complex structures the corresponding binding affinities [Trott and Olson|[2010], [Friesner et al.
[2004], |Ackloo et al.| [2022], |Gentile et al. [2022]]. Generally, the docking process involves three
main stages: (1) locating favorable binding sites given a protein target; (2) sampling the ligand
conformation as well as its position and orientation within these sites; (3) scoring and ranking
the conformations of the complex using physics-inspired empirical energy functions to refine the
structures and assess protein-ligand binding affinity. Due to its good interpretability and usability,
docking has been integrated in drug development process for a long time and a number of successful
cases have been reported |Anderson|[2003]. However, most open-source docking packages use atom-
level pairwise scoring functions, limiting the capacity to model the many-body effects. Moreover,
they need to sample a large range of possible ligand poses and protein side-chain conformations,
which leads to relatively high computational cost Trott and Olson! [[2010]], Jain| [2006].

To overcome these challenges, we propose a two-stage deep learning framework to neuralize the
molecular docking process and predict the binding structures with better accuracy and lower com-
putational cost. In the first stage, we segment the whole protein into functional blocks and predict
their interactions with the ligand, creating an protein-ligand interaction energy landscape using a
novel trigonometry-aware architecture. The trigonometry module has enough model capacity to
capture many-body effects. In the second stage, we prioritize the crystallized binding structures
by constrastively ensuring a weaker binding affinity for non-native interactions. In particular, our
model improves the drug-protein binding structure predictions with a combination of (i) a novel
trigonometry-aware architecture that jointly infuses trigonometry constraints and excluded-volume
effects as inductive biases, (ii) a new divide-and-conquer strategy that constructs the protein-ligand
local functional binding pairs in a contrastive manner. By doing so, we create a funnel-shape energy
landscape for the inter-molecular interaction, removing the need of extensive sampling Jumper et al.
[2021]], Jain| [2006]], [Chen et al.| [2020a], |(Onuchic et al.| [1997].

Our novel method is well-motivated by leveraging prior knowledge from physics and biology.
Physically, the inter-molecular trigonometry module, inspired by the intra-molecular Evoformer
module used in AlphaFold2 [Jumper et al.| [2021]], ensures that our energy landscape disfavors
configurations of protein-ligand complexes that are prohibited by laws of nature, for instance, no
two atoms could overlap and the distances between atoms have to satisfy triangle inequality theorem
in euclidean geometry. More details on these constraints is shown in section [3.3] Biologically, the
functional regions of proteins tend to be more conserved and closely associated with binding | De Juan
et al.| [2013]], |Glaser et al.| [2003]], allowing the model to learn critical information and generalize
better to unseen proteins.

We evaluate our algorithm against several state-of-the-art deep learning and physics-based docking
methods on task of binding structure prediction under multiple settings. Compared with baselines,
our model increase the fraction of predictions with ligand root-mean-square deviation (RMSD) less
than 5A by 16% in re-docking setting, 22% in self-docking setting, and 42% in the more difficult new-
protein setting. Our model is also capable of predicting binding affinities, achieving better correlations
with experimentally-measured values than sequence-based, structure-based and even complex-based
methods. We also show that TankBind has the potential to discover novel mechanism-of-actions of
drug molecules by identifying unseen protein binding sites.

2 Related Work

Geometric Deep Learning for drug discovery. There has been a surge of interest in integrating
geometric priors for representation learning in the domain of drug discovery Jumper et al.| [2021]],
Baek et al.|[2021]], Jing et al.[[2021]], Ganea et al.|[2021]], Jin et al.|[2021]], Ingraham et al.| [2019],
AlQuraishi|[2019]}, [Schiitt et al.| [2017], |Somnath et al.|[2021]]. Recent researches have incorporated
geometric information and symmetry properties of the input signals to improve the spatial perception
of the learned representations. These works have been shown great potential in various applications
like protein structure modeling Jumper et al.|[2021], Baek et al.|[2021]], Jing et al.|[2021]], Ganea et al.
[2021]], molecular low-energy generation prediction |Shi et al.| [2021]], Xu et al.|[2022], [Méndez-Lucio
et al.| [2021]], property/function prediction [Schiitt et al.[[2017]],[Somnath et al. [2021]] and molecule
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Figure 1: Overview of TankBind Model. The whole protein is divided into blocks of radius 204,
each block is going through the TankBind model along with the drug compound. Both protein blocks
and drug compound are modeled as graphs. The block-compound interaction matrix evolved multiple
times with additional input based on the distance maps of the protein block and the compound
through trigonometry module. Based on the updated interaction embedding, the model predicts the
binding affinity of the compound to the blocks and the block-ligand distance maps. A constrastive
loss function is used to ensure the native block binds stronger to the compound than decoys.

design Jin et al.|[2021]], Ingraham et al.|[2019]]. Among which, AlphaFold 2 achieved outstanding
performance in protein structure prediction Jumper et al.| [2021]], representing the state-of-the-art
geometry-aware method. Our work is inspired from this groundbreaking work, adapting it from the
intra-molecular structure prediction to the field of predicting the inter-molecular binding structure
and binding affinity.

Drug-protein Interaction (DPI) prediction. The goal of DPI prediction is to illustrate the binding
structure and binding affinity between protein and ligand. Apart from docking-based approaches |Trott
and Olson| [2010], [Friesner et al.|[2004]], prior machine learning-based works either use complex-free
models to predict the binding affinity directly from protein-ligand pairs Wang and Dokholyan|[2021],
Li et al.| [2020], Tsubaki et al.|[2019]],|Gao et al.|[2018]], Karimi et al.|[2019]],/Zheng et al.| [2020] or
make predictions through complex structure that has been previously obtained by experimental or
docking approaches Jiménez et al.| [2018]],|Lim et al.| [2019]], [ Morrone et al.|[2020]. The former ones
are less interpretable while the latter requires data involved in vast experimental costs and labour.
More recently, EquiBind [Stirk et al.| [2022] takes a new approach by directly predicting the key
points on both the protein and the compound, and aligning their key points through the ingeniously
designed optimal transport loss. However, this method may generate compound structures clashing
with the protein structures and currently lacks the capability to predict the binding affinity, limiting
its use in drug discovery. In contrast, our approach has a trigonometry module imposing geometry
constraints and a state-of-the-art binding affinity prediction capability.

3 TankBind Model

3.1 Overview of TankBind model

The general protocol of our model is shown in figure[I] The encoding of protein and compound is
described in section 3.2} The rationale and implementation of trigonometry module is detailed in
section[3.3] The design of loss functions for training is described in section[3.4] The generation of
atom coordinates from predicted inter-molecular distance map is introduced in section [3.3]

3.2 Structural encoders of protein and drug

Our model input is the separate structures of a protein and a drug compound, both encoded as graphs.
Indices i, k always operate on the residue dimension, j, &’ always on the compound dimension. 7 is
the number of protein nodes and m is the number of compound nodes.



Protein. The protein is represented as a proximity 3D graph following|Jing et al.|[2020]]. We denote
the protein graph as G¥ = (VP, EP), where each node v € VP corresponds to an amino acid, and

has feature h' p) with both scalar and vector features Each node also has a position x!' € R? equal
to the Cartesran coordinate of C,,. An edge ¢!, exists if v} is among the 30 nearest nerghbors of
o?. Each edge ¢f, € £? also encodes both the scalar and the vector features. We then apply the
geometric vector perceptrons (GVP)Jing et al.|[2020}2021] to embed the protein and arrive at feature
h? € R"** after graph propagation, where n is the number of nodes and s is the embedding size.

To implicitly model side-chain flexibility, we choose a residue-level representation ignoring the finer
details of protein structure, separating our method from other methods that use all-atoms or surface
vertexes representation [Jiang et al.| [2021]], |Gainza et al.|[2020]]. Also, as shown by Jumper et al.
[2021}2018]], residue-level embedding is enough to infer the side-chain conformation.

Motivated by protein co-evolution |De Juan et al.|[2013]] and divide-and-conquer theory, the protein
graph, GP, is further divided into subgraphs GP . Each subgraph G*" includes all the o? and e - inside

the functional block. The subgraph is denoted as G? = ({0v?, ¢/, } | [|x? — x,|| < 20A, ||x? — xo|| <
20A), where x, is the center of the functional block predicted by a widely-used ligand-agnostic
method, P2rank (published in 2018)Krivak and Hoksza|[2018]]. Justification for the size of radius and
use of P2rank is described in appendix |G|

Drug compound. The drug compound is represented as a graph using TorchDrug toolkit|Zhu et al.
[2022]. The compound graph is denoted as G = (V, £°) where each node v§ € V° corresponds to a
heavy atom (non-hydrogen atom), and has feature hgj) and each edge ¢f,;, has feature hgk/). We use
Graph Isomorphism Network (GIN) Xu et al.[[2018]] to embed the compound and arrive at feature
h¢ € R™*# after graph propagation, where m is the number of heavy atoms and s is the embedding
size.

3.3 Details of trigonometry module

The compound feature, h®, and the protein block feature,
h?, are used to form the initial interaction embedding

z(0) ¢ Rnxmxs 4 (O) = h? ® h¢. The interaction em-
bedding will be further updated with pair distance map of
protein nodes, DY, = ||x! — x| and pair distance map

C — C C
of compound nodes, Djk, = ||xj — X }

The rationale for including both the pair distance map of
the protein nodes and the pair distance map of the com- K
pound nodes in updating the protein-compound interaction \\ ey U e
embedding is explained with two simplified examples. As G ® .\J

shown in the upper part of figure |2} if a protein node A
is in close proximity with compound node B, then com-
pound node C will not be in contact with node A due to the
large distance constraint between node B and C. Distance
constraint between compound nodes B and D could also
force a node D to be in close contact with protein node A.

Figure 2: Rationale for including
trigonometry module. Upper: Protein
node in square, compound nodes in cir-
cles. Lower: Trigonometry module en-
sures that the interaction between protein
To build this observation of trigonometry constraints into  node 7 and compound node j depends on
our model, we design the following module to update the  all protein and compound nodes k, k'.
interaction embedding, in layer ¢, V(4, j):

n m
~ (¢ Y/ l l Y/
2 =2 + oY puty) + > tipcw;) oglz) (1
k=1 k'=1

where p;, = ¢(D?Y,) is the linear embedding of encoded pair distance between protein nodes. p €
R™*™x¢ n is the number of nodes in protein block, s is the embedding size. ¢, = qS(Djk,) is the

linear embedding of encoded pair distance between compound nodes. ¢ € R™*"*$ 1m is the number

()

of compound nodes. t(z) and t’ () are the same gated linear transformations of z;;” but with non-



shared parameters, tl(f) = Linear(zgf)) ® g(zl(.f)), t(6) g Rrxmxs, g(z%)) = sigmoid(Linear(zZ(f))),

® is a layernorm function followed by a linear transformation.

Another type of physical constraint need to be take into consideration is the excluded-volume (Van
Der Waals) and saturation effect. As shown in the upper figure 2] if protein node A forms a strong
interaction, hydrogen bonding for example, with compound node B, then node D is unlikely to form
the same type of interaction with node A because node A has limited number of hydrogen donors
or acceptors. To account for these effects, we designed a self-attention module to modulate the
interaction between a protein node and all compound nodes by taking the whole interaction between
this protein node and all compound nodes into consideration.

(0 ~(¢ - Oh_ (O)h (¢
zl(j) = zgj) + ®(concaty,( Z (ng,)c, vl(k)/ )® gh(zz(-j)))) (2)
k=1
.
wff?j = SOftman/(qgf)h kii)/h) (3)

, where qz(f)h, k%)h, vz(f)h are linear transformation of Zz(f), h is number of attention heads. Function

g’ is the standard g with reshaping the embedding into heads at the end, ® is a linear transformation.

Lastly, a non-linear transition module is added to transit the interaction embedding to the next

layer through multilayer perceptron, zZ(fH) = MLP(zZ@). The whole trigonometry module is
composed of three consecutive parts, the trigonometry update, the self-attention modulation, and
the non-linear transition module. Layernorm is applied on every input zl(-li) and a 25% dropout is
applied to the trigonometry update and self-attention modulation during training. The final outputs,
drug-protein binding affinity, a = >3;_; >>7%, Linear(zz(-jL)) , and inter-molecular distance map,

(L)

ij?“ed = g(zgf))Linear(zgj-L)), are predicted directly based on the last layer embedding z;;”, where

L is the number of module stacks.

3.4 Design of binding interaction and affinity loss functions

Many previous works model the interaction between compound and protein by only preserving the
interaction region, residues that far away are ignored [Townshend et al.| [2020], Méndez-Lucio et al.
[2021]. On the positive side, the computation and memory demand for characterize the interaction
between protein and the drug compound is greatly reduced by focusing on regional interaction. But
the fact of not binding to alternative binding sites is also a valuable information. By the nature of
crystallization, if a protein-compound complex could be successfully crystallized, other possible
binding sites on this protein definitely bind less strongly than the native binding site to the compound,
therefore, those other binding sites could be used as high-valued decoys. Based on this observation,
we designed a max-margin constrastive affinity loss, equation 4] following the idea of [Hadsell et al.
[2006]. Such that the compound’s predicted affinity, a, to the decoys is less than the experimentally
measured affinity, a, by a margin value, €.

Lattnity (G¢, a) = 1(¢)(a¢c — a)® + (1 — 1(¢)) max(0, ac — (a — €))? 4)

where G is the predicted affinity to block ¢, and indicator function 1(¢) = 1 when block ¢ encloses
the native ligand, and 1({) = 0 otherwise. We, therefore, take full use of information stored in
the whole protein instead of only the native binding region. We also include a mean squared erorr

(MSE) loss for native interaction distance map, Lgisance = 1(¢) = >0, Z?@:l(ijred — D;;)2.
The overall training objective of TankBind is: £ = Laffinity + Laistance-

3.5 Generation of drug coordinates based on predicted inter-molecular distance map.

The Cartesian coordinates, {)‘(;3} of the heavy atoms of a drug compound could be deduced ana-

Iytically based on the predicted inter-molecular distance matrix, ijmd, the coordinates of protein
nodes, {x?}, and the pair distance matrix of compound nodes, Djy., Masters et al.| [2022], Hoffmann
and Noé¢|[2019]. But since predicted distance matrix contains noise, we take a numerical approach
Masters et al.|[2022]],[Zsoldos et al.|[2007]. By minimizing the total 10ss, Lgeneration, Which consists of
two parts, the interaction loss and the compound configuration loss, we could derive the coordinates



Table 1: Blind self-docking. All models take a pair of ligand structure (generated by RDKit) and
protein structure as input, trying to predict the atom coordinates of the ligand after binding. In blind
docking, the protein binding site is assumed unknown. Test set is composed of 363 protein-ligand
structure crystallized after 2019 curated by PDBbind database. Details about model runtime and the
number of model parameters are in appendix [C

Ligand RMSD Centroid Distance
Percentiles | % Below Percentiles | % Below
Threshold T Threshold T

Methods 25% 50% 75% Mean 2A 5A  25% 50% 75% Mean 2A  5A
QVINA-W 25 7.7 237 136 209 402 09 37 229 119 41.0 54.6
GNINA 28 87 221 133 212 37.1 1.0 45 212 115 36.0 52.0
SMINA 38 8.1 179 121 135 339 13 3.7 16.2 9.8 38.0 559
GLIDE(c.) 26 93 28.1 162 218 336 08 56 269 144 36.1 48.7
VINA 5.7 10.7 214 147 55 212 19 62 201 121 26.5 47.1

EQUIBIND-U 33 57 97 78 72 424 13 26 74 56 40.0 675
EQUIBIND 38 62 103 82 55 391 13 26 74 56 400 675

TANKBind-R 2.8 52 112 94 160 479 10 23 77 173 449 694
TANKBind-C 24 45 84 82 196 548 09 19 54 63 532 733
TANKBind-P 2.6 45 8.1 8.5 163 540 09 19 52 64 532 744
TANKBind 24 40 177 74 193 617 09 17 42 55 565 774

of the docked drug coordinates, {X5}.

n m m m
ACgeneration = Linteraction + Lconﬁguration = Z Z(lng - ijredD + Z Z(|D;k/ - chk’ |) %)
i g j Kk

(6)

where n is the number of protein nodes, and m is number of compound nodes, and {X? } are the Carte-
sian coordinates of protein nodes. All inter-molecular distances are clamped to have an upper bound of
10A to focus on the direct interaction. In self-docking setting, when the compound configuration is un-
known, we add a local atomic structures (LAS) mask to the configuration loss to allow for compound
flexibility while enforcing basic geometric constraint, Leonfiguration = Z;n ZZ,L 1(5, k')( |D§k, fDJQk, )
where 1(j, k') = 1 when compound atom j and %’ are connected by connected by a bond, or 2-hop
away, or in the same ring structure, and 1(j, ¥’) = 0 otherwise [Stirk et al.|[2022], [Trott and Olson
[2010]. For every test protein-ligand pair, TankBind predicts the binding affinity of the ligand to
all segmented functional blocks and chooses the one with strongest affinity to generate the binding
structures.

N, P __ e 2 1T | BN N
Dyj = |[x} = %5, Dji = [1%5 — %5

4 Evaluation

4.1 Protein-ligand binding structure prediction

Dataset. We used publicly available PDBbind v2020 dataset |[Liu et al.| [2015]] which has the
structures of 19443 protein-ligand complexes along with their experimentally measured binding
affinity. PDBbind is a database curated based on the Protein Data Bank (PDB) Burley et al.|[2021]].
We followed the same time split as defined in EquiBind paper|Stérk et al.|[2022]] in which the training
and validation data are the protein-ligand complex structures deposited before 2019 and the test set
is the structures deposited after 2019. After removing a few structures that unable to process using
RDKit from the training set, we had 17787 structures for training, 968 for validation and 363 for
testingLandrum et al|[2013]]. We also reduced the possibility of encountering equally valid binding
sites by removing chains that have no atom within 10A from any atom of the ligand following the
protocol described in |Stirk et al.|[2022].

Baselines. We compared TankBind with the most widely-used docking method AutoDock VinaTrott
and Olson|[2010]] and the recent proposed geometry-based DL method EquiBind |Stirk et al.| [2022]].
We also included four popular docking methods QVina-W, GINAMcNutt et al.| [2021], SMINAKoes
et al.|[2013]] and GLIDEFriesner et al.|[2004] as listed in|Stirk et al.| [2022].



Table 2: Blind self-docking for unseen receptors. All models evaluated on 142 crystallized protein-
compound structures where the proteins have not been observed in training set.

Ligand RMSD Centroid Distance
Percentiles | % Below Percentiles | % Below
Threshold | Threshold |

Methods 25% 50% 75% Mean 2A  5A  25% 50% 75% Mean 2A 5A
QVINA-W 34 103 281 169 153 319 13 65 268 152 354 479
GNINA 45 134 278 167 139 278 20 10.1 270 151 257 395
SMINA 48 109 260 157 90 257 16 65 257 136 299 417
GLIDE 34 180 314 196 196 287 11 176 29.1 181 294 406
VINA 79 166 27.1 187 14 120 24 157 262 161 204 373

EQUIBIND-U 5.7 88 141 11.0 14 215 26 63 129 8.9 16.7 43.8
EQUIBIND 59 9.1 143 113 0.7 188 26 63 129 8.9 16.7 43.8

TANKBind-R 3.6 69 170 12.6 56 352 13 3.6 157 103 352 585
TANKBind-C 34 55 98 99 92 430 11 26 81 79 46.5 655
TANKBind-P 33 55 109 112 56 451 13 23 79 9.1 479 669
TANKBind 29 47 88 91 49 556 13 23 48 7.0 45.1 754

Evaluation metrics. We follow prior work [Stérk et al.|[2022] and use ligand root-mean-square
deviation (RMSD) of atomic positions and centroid distance to compare predicted binding structures
with ground-truths. The Ligand RMSD calculates the normalized Frobenius norm of the two
corresponding matrices of ligand coordinates. The centroid distance is defined as the the distance
between the averaged 3D coordinates of the predicted and ground-truth bound ligand atoms, indicating
the model capability of identifying correct binding region. Hydrogens are not involved in the
calculation.

Performance in blind flexible self-docking We start with a real-world blind self-docking experi-
ment, in which the ligand conformation is not fixed, and the result of re-docking experiment, in which
the native ligand conformation is given, is reported in Appendix A. As shown in the table[T} TankBind
achieves state-of-the-art performance, outperforming geometry DL-based model EquiBind. This
advantage is particularly evident in the top 25% and top 50% ligand RMSD, which allows our method
to predict 22% more qualified (below Threshold 5A) binding poses than EquiBind. This results are
also consistent in the metrics of centroid distance, demonstrating that our method also has a clear
advantage in the identification of binding region. Even though GLIDE (commercial) and Autodock
Vina are established docking software with more than a decade of continuous development, our
model remarkably frequently outperforms them. At the same time, we are orders of magnitude faster
than them, and on the same level as EquiBind (Appendix [C). In addition, we explore the possible
of TankBind-R, where we randomly segment the protein, TankBind-P, where we only doing the
summation over protein nodes in equation [T} and TankBind-C, where we only sum over compound
nodes. The performance reduction on the these variants supports our view that trigonometry message
passing between proteins and ligand and segmentation choice are critical to the prediction of binding
structures.

Performance in self-docking unseen protein We next focus on the new protein setting, in which
the tested proteins have not been observed in the training set. Table 2] shows that Tankbind leads to
larger improvements over EquiBind and docking methods with regard to ligand-RMSD and centriod
distance.This is in line with our expectation that TankBind has better generalization ability due to the
physical-inspired trigonometry module and explicit consideration of conservative functional blocks.
In this setting, as shown in Figure |3 and table [2| for fractions smaller than ZA, 5A and ISA, the
performance between EquiBind and other docking method are comparable, while TankBind is always
better by a large margin, further confirming the effectiveness of our method and indicating that the
proposed strategy has practical values for the virtual screening of new proteins.
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Figure 3: Estimator of the Cumulative Distribution Function (ECDF) plot for ligand RMSD (left)
and Centroid Distance (right) from result evaluated on new receptors subset. The x axis of the figure

stops at 15A because comparison for larger RMSD is less meaningful when the predicted location of
the ligand is away from the true binding site, a RMSD of 15A is not better than RMSD of 50A.

Methods RMSE| Pearsont SpearmanT MAE| Methods  Ligand] Centroid) Below2A7T Below5AT
TransCPI 1.741 0.576 0.540 1.404 w/oP2Rank 9.37 7.30 44.90 69.42

MONN 1.438 0.624 0.589  1.143  w/o Trig 8.73 6.44 44.08 74.93
PIGNet 2.640 0511 0489 2.110 TAPE 8.81 6.89 50.69 73.00
IGN 1433 0.698 0.641 1.169 GAT 8.27 6.23 56.47 78.51

HOLOPROT 1.546  0.602 0.571 1.208 TankBind-P 8.47 6.44 53.17 74.38
STAMPDPI 1.658 0.545 0.411 1.325 TankBind-C 8.20 6.27 53.17 73.28

TANKBind 1.346 0.726 0.703 1.070 Origin 7.43 5.51 56.47 77.41

Table 3: Binding affinity prediction. TankBind Table 4: Ablation results. We listed four main
achieves SOTA on all four metrics. metrics here, a complete table is in appendix [E]

4.2 Protein-ligand binding affinity prediction

TankBind is also capable of predicting protein-ligand binding affinity because of the constrastive
affinity loss function. Since we segmented the whole protein into protein blocks, the predicted binding
affinity of ligand to the whole protein is equal to the binding affinity to the one protein block that
predicted to bind strongest with the ligand. To demonstrate the ability, we compared TankBind with
the state-of-the-art binding affinity prediction models.

Dataset. We split the dataset into training, test and validation splits based on the same time split
described earlier. The experimentally measured affinity data in PDBbind dataset has three different
names, depending on the exact experiment setups, 50% inhibiting concentration (IC50), inhibition
constant (/;), and dissociation constant (K p), all converted to the unit of molar concentration.
Similar to previous methods [Somnath et al.| [2021]], Townshend et al.| [2020]], we predict negative
log-transformed binding affinity.

Baselines and evaluation metrics. We compare TankBind against two state-of-the-art sequence-
based methods, TransformerCPI|Chen et al.|[2020b] and MONN [Li et al.[[2020], two complex-based
methods, IGN Jiang et al.|[2021]] and PIGNetMoon et al.|[2022] both requiring prior knowledge
of the inter-molecular structure to predict affinity, and two structure-based methods, HOLOPTOT
Somnath et al.|[2021] and STAMPDPI Wang et al.|[2022]]. For evaluating various methods, we use
four metrics — root mean squared error (RMSE), Pearson correlation coefficient, Spearman correlation
coefficient and mean absolute error (MAE). We also include the mean and standard deviation across
3 experimental runs in appendix [D}
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Figure 4: (a) An example of TankBind identifying an unseen binding site. The protein is shown in
white, co-crystallized compounds of three PDBs in the training set is shown in purple. The ligand of
6K1S is shown in green. TankBind is able to find this correct pose for the compound, shown in red,
while the other two, Vina in orange, and Equibind in cyan, place the compound away from the true
binding site. (b) For PDB 6QRG, both protein and compound have not been seen in the training set.
But TankBind still find the correct pose. Crystallized ligand colored in green, TankBind prediction in
red, EquiBind in cyan and Vina result in organ.

Result As shown in Table EL our model obtains the best performance in PDBbind test set, con-
sistently outperforms SOTA binding affinity prediction methods. Note that even without the prior
interaction information, TankBind also achieves better result than complex-based methods (PIGNET
and IGN), proving that the predicted binding structural information provided considerable gain to the
affinity prediction task.

4.3 Ablation study

We conducted ablation studies to investigate factors that influence the performance of proposed
TankBind framework. As shown in Table[d] the original version of TankBind with the trigonometry
message passing between protein and ligand shows the best performance among all architectures.
Replacing the P2rank with a randomly split of blocks performed the worst, which verifies our
hypothesis that functional block segmentation can improve generalization. Simple architecture
substitutions for protein (TAPE) Rao et al.|[2019] and molecular representation (GAT) Velickovic
et al.| [2017]] decrease slightly the model performance. Replacing the intra-trigonometry module
with the uni-modal variants (TankBind-P and TankBind-C) both caused noticeable decreases in
performances.

4.4 Case studies

TankBind correctly identifies an unseen binding site for a new drug compound. As a represen-
tative case, in PDB 6K18S, a seen protein binds to a new drug compound at a site that has not been
observed before. This protein has three co-crystallized complex structures in the training set, PDB
4X60, 4X61, 4X63. As shown in the left of figure EL our method, shown in red, aligns well with the
true ligand, shown in green, despite our method has never seen any compound locates at this site
before. While other two methods, EquiBind in cyan, Vina in orange identify an incorrect site for this
compound. Packages Kalign, Biopython, and Smith-Waterman library are used to systematically
analyze the results [Lassmann| [2020], |Cock et al.| [2009], |L1 et al.| [2020], [Zhao et al.|[2013] (see

Appendix [H).

TankBind finds the correct pose when both compound and protein are unseen. We picked two
representative examples with both compound and protein are unseen, one, PDB 6QRG, in the right of
figure @ and another, PDB 6KQI, in appendix [B] Both PDB 6QRG and PDB 6KQI have max protein



similarity below 0.8 (6QRG 0.78, 6KQI 0.57), and max compound similarity below 0.4 (6QRG 0.36,
6KQI 0.27).

5 Conclusion

In this work, we propose a novel binding structure and affinity prediction model, TankBind, that
builds trigonometry constraints into the model and explicitly attends to all possible binding sites by
segmenting the whole protein into functional blocks. We observe significant improvements on task of
binding structure prediction over existing deep learning methods: a 22% increase in the fraction of
prediction below 5A in ligand RMSD, and a 42% increase when the proteins have not been observed
in the training set. Moreover, we demonstrate that the model is able to predict affinity and outperform
SOTA methods on PDBbind. This work opens a new direction for modelling the inter-molecular
interaction between protein and drug molecule. Numerous directions for further exploration include
incorporating a ligand conformer generation module, enhancing the dataset with AlphaFold-predicted
structure and public available SAR data, integrating the segmentation of functional block in an
end-to-end manner, and combining the model with protein backbone dynamics modeling to handle
larger scale conformation changes induced by drug-protein interactions.
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