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Abstract

Multi-agent reinforcement learning methods struggle with the nonstationarity of
multi-agent systems and fail to learn online when tested with novel agents. Here,
we leverage large language models (LLMs) to create an autonomous agent that can
handle these challenges. Our agent, Hypothetical Minds, consists of a cognitively-
inspired architecture, featuring modular components for perception, memory, and
hierarchical planning over two levels of abstraction. We introduce the Theory
of Mind module that scaffolds the high-level planning process by generating hy-
potheses about other agents’ strategies in natural language. It then evaluates and
iteratively refines these hypotheses by reinforcing hypotheses that make correct
predictions about the other agents’ behavior. Hypothetical Minds significantly
improves performance over previous LLM-agent and RL baselines on a range of
competitive, mixed motive, and collaborative domains in the Melting Pot bench-
mark, including both dyadic and population-based environments. Additionally,
comparisons against LLM-agent baselines and ablations reveal the importance of
hypothesis evaluation and refinement for succeeding on complex scenarios.

1 Introduction

A goal of AI research is to create autonomous agents that act adaptively in rich embodied social
worlds. One approach involves training reinforcement learning models that can learn adaptive policies.
However, multi-agent reinforcement learning (MARL) methods suffer from various drawbacks,
including high sample complexity, poor generalization to agents not seen in training, and limited
reasoning capabilities.

Another approach deploys foundation models as the backbone to autonomous agents, with specialized
modules that mediate the decomposition of long horizon planning [Wang et al., 2023b,a, Brohan et al.,
2023a, Park et al., 2023]. LLMs are not only powerful reasoners and in-context learners, but they are
also particularly suited for social tasks given the utility of language for scaffolding Theory of Mind
(ToM) [Astington and Baird, 2005, de Villiers, 2007, 2021, Kosinski, 2023, Gandhi et al., 2024]. Thus,
we introduce Hypothetical Minds (HM), a LLM agent that produces adaptive policies in competitive,
cooperative, and mixed-motive multi-agent scenarios. HM builds on the generative agents architecture
that integrates cognitive modules for perception, memory, and hierarchical planning and introduces
novel ToM machinery inspired by cognitive science and MARL methods [Park et al., 2023, O’Doherty
et al., 2021, Vezhnevets et al., 2020].
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Figure 1: A. Hypothetical Minds architecture and model workflow. B. ToM module generates
hypotheses about agent strategies. Previously generated hypotheses and values are shown for
refinement. Top k hypotheses predict agent’s next behavior ˆϕ(τ), considering counterfactual scenarios.
Highest-valued hypothesis informs high-level planning. Later, hypotheses are evaluated against
observed behavior ϕ(τ), updating values with intrinsic reward. Hypotheses are validated at a
threshold.

High-level planning is performed by the Theory of Mind module, which generates hypotheses about
other agents’ strategies and capabilities to facilitate effective coordination or counter-strategies.
High-level plans are subsequently passed to a subgoal module to sequence together embodied action
plans. The ToM module evaluates multiple hypotheses in parallel until a hypothesis provides a
sufficient explanation of each other agent’s behavior, thereby representing multiple modes in the
distribution of possible explanations and weighing the uncertainty over these modes in a principled
way. This hypothesis evaluation mechanism queries the LLM to make counterfactual predictions
about what other agents’ next actions will be conditional on each hypothesis. Hypotheses can then
be scored based on the accuracy of these predictions, approximating Bayesian inference over latent
variables. Additionally, a hypothesis refinement mechanism displays the highest-valued hypotheses
in the prompt, giving the LLM the ability to self-improve its reasoning based on previously generated
hypotheses. Thus, our agent finds useful explanations of other agents’ behaviors in-context, affording
it the ability to adapt to the inferred strategies and achieve high rewards.
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We evaluate our model on the Melting Pot MARL benchmark that encompasses diverse challenges
and social dynamics [Agapiou et al., 2022]. Collaborative Cooking Asymmetric requires effective
coordination and division of labor among agents. Running With Scissors necessitates strategic
reasoning about opponents’ policies and the ability to exploit predictable patterns in a competitive
setting, with the eight-player version offering a unique challenge to the model’s scalability. More-
over, the mixed-motive environment Prisoner’s Dilemma involves a tension between individual and
collective interests. Diverse evaluation scenarios stress test playing with a wide array of agents with
fixed or adaptive policies, necessitating contextual adaption. Hypothetical Minds surpasses LLM
agent baselines on a majority of evaluation scenarios in every environment, and performs better than
MARL baselines on 3/4 environments despite the fact that those methods are trained on upwards of a
billion steps. To our knowledge, Hypothetical Minds is the first LLM agent for diverse multiagent
environments, with strong performance across collaborative, competitive, and mixed-motive domains,
unlike previous works limited to collaborative settings. Our contributions are as follows:

• We propose the Hypothetical Minds model (HM), an embodied LLM agent for multi-agent
environments that integrates modular components for perception, memory, and hierarchical
planning conditioned on ToM inferences.

• HM incorporates a novel Theory of Mind (ToM) module, which generates, evaluates, and
refines hypotheses about other agents’ strategies or goals in natural language. Through
ablations and comparisons against LLM-agent baselines, we identify the critical role of
hypothesis evaluation and refinement within the ToM Module.

• We demonstrate the effectiveness of Hypothetical Minds across multiple multi-agent environ-
ments in the Melting Pot benchmark, including competitive, collaborative, and mixed-motive
domains, and 30 distinct evaluation scenarios. Our agent significantly outperforms LLM-
agent and RL baselines in every environment and in a large majority of evaluation scenarios,
showcasing its generalizability.

2 Related Work

2.1 LLM-based Agents

A burgeoning area of research involves building autonomous agents rooted in large language models
Wang et al. [2023b], Sumers et al. [2023]. This involves deploying LLMs as central controllers
across many different domains by leveraging their extensive background knowledge from training.
Applications span a wide range from equipping LLMs with external tools to interface with databases
and APIs [Schick et al., 2023, Shen et al., 2023, Qin et al., 2023, Ge et al., 2023, Yao et al., 2022] to
using them for high-level planning and control in robotics [Huang et al., 2022, Brohan et al., 2023b,
Rana et al., 2023, Brohan et al., 2023a]. The most relevant branch of this research direction includes
works where LLMs are used as planners in embodied virtual environments. Voyager autonomously
builds complex skills in Minecraft by storing and retrieving behaviors in a skill library of executable
code and uses the skill library to solve progressively harder tasks [Wang et al., 2023a]. Octopus and
Jarvis-1 use vision-language models to plan long horizon behaviors in virtual environments [Yang
et al., 2023, Wang et al., 2023d]. Dynalang and DECKARD use language to guide world modeling
for model-based RL policies in virtual environments [Lin et al., 2023, Nottingham et al., 2023]. In
this work, we use an LLM for long horizon high-level planning and predicting the future states of
other agents in multi-agent environments.

Previous papers have also incorporated LLM-based agents into embodied multi-agent environments.
Park et al. [2023] introduce a interactive simulation of a rich social environment, where each agent
autonomously selects goals and builds relationships with others. We extend the cognitive module
framework developed in this work for multi-agent environments of varied dynamics by introducing
the novel Theory of Mind module. SAMA uses an LLM to plan out sequences of subgoals for
language-based goal-conditioned RL policies in environments requiring multi-agent coordination Li
et al. [2023]. Another study builds cooperative embodied agents, by using an LLM for planning and
communication between agents Zhang et al. [2023b]. ProAgent develops a method for improving
zero-shot coordination in Overcooked by using an LLM to infer the intentions of teammates based on
the present state Zhang et al. [2023a]. As these works have focused solely on collaborative domains,
here we present a generalizable and scalable method that addresses the challenge of inferring other
agents intentions’ across a wide spectrum of social dynamics.
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2.2 Reasoning and Hypothesis Search with LLMs

LLMs have shown impressive reasoning abilities, augmented by Chain-of-Thought methods that
scaffold the thought process [Wei et al., 2022, Zhang et al., 2023c]. [Wang et al., 2023c] investigates
LLMs’ inductive reasoning by generating and evaluating hypotheses on the Abstraction and Reasoning
Corpus (ARC), while [Qiu et al., 2023] refines LLM-generated hypotheses using task-specific
symbolic interpreters. Similarly, we generate, evaluate, and refine hypotheses based on feedback,
computing values for each hypothesis by predicting another agent’s goals. STaR [Zelikman et al.,
2022] also learns from feedback by finetuning language models on rationales that produced correct
answers. [Akata et al., 2023] assessed LLMs’ ability to reason in matrix games requiring ToM,
showing mixed results. We demonstrate that asking the LLM to predict the opponent’s actions
improves results, highlighting the importance of ToM reasoning in game-theoretic tasks.

2.3 Multi-agent Decision-Making and Theory of Mind

Decision-making in multi-agent settings has been thoroughly explored in the field of multi-agent RL
(MARL). To systematically evaluate and benchmark MARL agents in diverse social interactions, the
Melting Pot multi-agent benchmark was introduced [Agapiou et al., 2022]. Melting Pot provides a
comprehensive suite of environments that test agents across a spectrum of social dynamics, includ-
ing cooperative, competitive, and mixed-motive scenarios. Each environment consists of several
evaluation scenarios with background agents that employ strategies unseen during training, thereby
assessing generalization.

MARL methods have made significant strides in addressing the complexities inherent in multi-agent
interactions. Algorithms such as MADDPG [?] and MAPPO [?] extend traditional RL methods to
multi-agent settings by using centralized training with decentralized execution, allowing agents to
learn policies from a shared critic that has access to comprehensive state information during training.

Specialized models incorporate Theory of Mind principles by explicitly modeling the intentions of
other agents [????Vezhnevets et al., 2020, ?]. For example, OPRE learns a latent representation
of another agent’s goals from local observations, which informs high-level strategy in games like
Running With Scissors (spatially and temporally extended rock, paper, scissors) by conditioning
the policy on this latent representation [Vezhnevets et al., 2020]. Hypothetical Minds similarly uses
natural language to represent other agent’s strategies and generates high-level plans conditioned on
these inferred strategies. However, OPRE’s performance didn’t generalize to the newer version of
Running With Scissors in the Melting Pot benchmark, even after a billion steps of training [Agapiou
et al., 2022]. This underscores the difficulties in MARL. Performance of MARL algorithms are
often hindered by limited compute, extensive hyperparameter tuning, and instability due to the
nonstationarity of optimizing multiple agents simultaneously. LLM-based agents provide a useful
alternative, leveraging pre-trained knowledge and rapid in-context learning.

3 Method

3.1 Partially-observable Markov games

Our method is directly applicable to any multi-agent environment where states are partially observable
and agent(s)’ policies are hidden. We formally define this as a Markov game for N players in a
partially observable setting. Let the finite set S represent the possible states of the game. Each
player i receives observations given an observation function χi : S → O, representing their limited
point of view. Additionally, each player i can take actions from their action space Ai, and when all
players choose actions (a1, . . . , aN ) ∈ A1 × · · · × AN := A, the state transitions according to a
probability distribution T : S ×A→ D(S). The reward function for each player i is represented as
ri : S ×A→ R, mapping the current state and joint actions to a real-valued reward.

3.2 Hypothetical Minds Model

The Hypothetical Minds model consists of several cognitive modules that altogether form an em-
bodied LLM agent (Figure 1A). The egocentric observations are represented by a textual map/state
representation, which is added to a memory system after every step. The memory system also logs
rewards and other important state information like the inventories from previous interactions in
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Running With Scissors. Two cognitive modules depend on an LLM, a Theory of Mind module and a
Subgoal module, which output high-level goals and action plans respectively. An action planner takes
an action plan (i.e. "move to coordinate (13, 5)") and creates a sequence of actions that achieves that
action plan with a pathfinding algorithm. Each cognitive module is explained in more detail in the
Appendix. Below we describe the key novel contributions of our method that implement hierarchical
planning.

Theory of Mind Module In multi-agent environments, other agents’ behavior can be influenced
by various latent variables, such as their strategies, goals, competence levels, and locations in
space. These latent variables are often not directly observable and must be inferred from the agent’s
observations. We represent these latent variables as a multidimensional space Θ = θ1, θ2, . . . , θm,
where each dimension θi corresponds to a specific latent variable. The ToM module (Figure 1B)
maintains a set of hypothesesH = h1, h2, . . . , hn in its working memory, where each hypothesis ht

is a natural language representation of a belief about the latent variables hi = p(Θ). A hypothesis at
time t is generated by asking an LLM to infer another agent’s strategy, conditioned on HM’s memory
M of important past observations O. Additionally, the LLM is shown the top k valued previously
generated hypotheses, such that it can perform hypothesis refinement (see Appendix and code for
more details and prompts):

ht = LLM(M, h<t) (1)

whereM is a memory buffer storing an agent’s past actions, observations, and rewards.

Each hypothesis hi is scored based on how well it predicts the other agent’s future behavior, noted
here formally as a distribution of trajectories p(τ). We formalize this scoring mechanism using a
likelihood function p(τ |hi) representing the probability of an agent exhibiting trajectory τ given the
hypothesis hi. The best hypothesis h∗ is selected using the Maximum a Posteriori (MAP) estimate:

h∗ = argmax
hi∈H

p(hi|τ) = argmax
hi∈H

p(τ |hi)p(hi)

p(τ)
(2)

where p(hi) is the prior probability of hypothesis hi and p(τ) is the marginal probability of the
observed action a and has no effect on the argmax. The likelihood is approximated by a hypothesis
evaluation mechanism described below. The LLM predicts the other agent’s future behavior con-
ditioned on each hypothesis separately. Hypotheses leading to correct predictions will have higher
values reflecting higher likelihoods. The prior p(hi) corresponds both to the background knowledge
embedded in the weights of an LLM from pretraining and to the refinement mechanism that shows
the top valued hypotheses to the LLM when the LLM generates a hypothesis. By continuously
updating and selecting the best hypothesis based on observed information, the ToM module can
effectively infer the latent variables governing the other agents’ behavior and adapt its own strategies
accordingly.

Hypothesis Evaluation Drawing on cognitive modeling approaches [Rescorla, 1972, Daw and
Tobler, 2014], multiple hypotheses are scored with a value system Vhi

= E[r] where r reflects
intrinsic reward based on the accuracy of the predictions the hypothesis generates. We compute
self-supervised intrinsic rewards bootstrapped from the LLM’s own predictions. Let ϕ(τ) be a
particular behavior, a feature from an observed trajectory, and ˆϕ(τ) be the predicted behavior by the
LLM, such as the inventory played by an agent in Melting Pot environments. The intrinsic reward
function ri can then be defined as:

ri =

{
c if ˆϕ(τ) = ϕ(τ)

−c if ˆϕ(τ) ̸= ϕ(τ)

where c is a hyperparameter. Vhi
is then dynamically updated with a Rescorla Wagner update rule

[Rescorla, 1972] , expressed as:
δ = ri − Vhi

Vhi
← Vhi

+ α · δ

modulated by learning rate α via a prediction error δ. The learning rate dictates how much to weigh
recent interactions, a useful property when playing against evaluation scenarios where agents change
their strategy within an episode. When the value of a hypothesis meets a threshold Vthr, the ToM
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Figure 2: Results for all models. Average reward per episode (with normalized steps for variable
length episodes) for each environment and scenario. 5 seeds are generating for each model, with
errorbars reflecting the SEM across those 5 episodes.

module marks the hypothesis as validated and uses this hypothesis to condition high-level plans
(using the highest-valued one if multiple pass the threshold). This hypothesis will then continue to be
used for planning until it no longer makes good predictions and its value subsequently falls below the
threshold. If no hypothesis meets the threshold, by default the latest generated hypothesis (with the
most updated information) is used for conditioning high-level plans. The highest value hypothesis
could also be used. The top_k hyperparameter allows cost trade-offs, representing how many of the
top_k old hypotheses are continually evaluated in parallel. Each ToM module call uses 3 LLM calls +
top_k times for behavior prediction if no hypothesis is validated yet. We achieved good performance
with top_k = 5 (See Table 4 in Appendix for all hyperparameters and Table 5 for costs).

Conditioning High-Level Plans The ToM module then conditions its high-level plans on the
inferred latent variables represented by the hypotheses. A high-level plan z is a natural language
description of HM’s overall strategy, goal, or intention, conditioned on the best hypothesis h∗ and
memory of past events:

z = LLM(M, h∗) (3)
By conditioning the high-level plans on the hypotheses, HM can adapt its strategy based on its
understanding of the other agents’ latent states.

Subgoal Module Finally, the Subgoal module selects a sequence of subgoals. Let g = g1, g2, . . . , gk
be a sequence of subgoals, where each subgoal gi is an action or short sequence of actions that the
agent needs to take to achieve the high-level plan z:

g = LLM(O,M, z) (4)

The sequence is generated by conditioning the LLM on the high-level plan, observations, and
memory, and prompt to achieve the high-level plans. The LLM outputs a sequence of specified
subgoal function calls, which are then parsed and mapped to the corresponding actions in the
environment by a hardcoded Action Planner (see Appendix).

4 Experiments
Here we investigate the following to analyze the generalizability and scalability of our method:

Q1. How does Hypothetical Minds perform compared to LLM agent and RL baselines in embodied
competitive zero-sum environments?

Q2. How does Hypothetical Minds perform compared to LLM agent and RL baselines in a collabora-
tive domain that requires adaptation to a partner’s role and competence?
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Figure 3: HM’s reward per number of interactions before or after a hypothesis meets the validation
threshold and is used for high-level strategy selection in RWS. Vertical green line indicates the
average reward at the point where a hypothesis is validated, and positive and negative numbers on the
x-axis indicate how many interactions before or after this point. Shaded region represents the range
where the good hypothesis is typically first generated with a 95% confidence interval.

Q3. How does Hypothetical Minds perform compared to LLM agent and RL baselines in a mixed-
motive setting?

Q4. Does the Hypothetical Minds agent scale effectively to environments with larger populations of
agents?

Q5. How do the different components of the Hypothetical Minds agent and the Theory of Mind
module contribute to its overall performance?

We directly test our LLM-based agent on the evaluation scenarios in four Melting Pot environments
(Fig. 3). The key evaluation method is to test agents against different bots with various policies.
Across environments, this consists of 30 distinct evaluation scenarios. Crucially, our agent has no
knowledge about which strategies they may be playing in the prompts given. Strategies have to be
ascertained online within an episode via in-context learning.

Baselines

ReAct synergizes reasoning and acting in language models, allowing them to generate both reasoning
traces and task-specific actions in an interleaved manner [Yao et al., 2022]. Reflexion includes three
main components: an Actor module that generates actions and text, an Evaluator that scores these
actions, and a Self-Reflection module that uses the evaluations to provide constructive feedback
stored for subsequent use [Shinn et al., 2024]. PlanReAct To provide a hierarchical baseline to
test against our hierarchical model, we include the PlanReAct architecture introduced in [Liu et al.,
2023]. This structure allows the agent to plan before interacting with the environment. PPO is a
model-free RL baseline [Schulman et al., 2017] and we train agents in a population of models with
the same parameters. OPRE is a hierarchical MARL method where agents learn high-level options
as strategic responses to other agents’ behaviors [Vezhnevets et al., 2020]. The high-level controller
selects options based on observations of other agents, and the low-level controller executes actions
conditioned on these options. We include the OPRE results from the Melting Pot 2.0 paper [Agapiou
et al., 2022] as a baseline to compare against a hierarchical MARL approach that, like our model,
aims to adapt dynamically to other agents’ strategies.

Prompts and architectures are shared across baselines to provide a fair comparison and natural
ablations of our model. The Subgoal module provides a baseline actor shared between LLM
baselines, and the only difference between PlanReAct and Hypothetical Minds is that high-level
planning is mediated by the Theory of Mind module, including hypothesis generation, evaluation,
and refinement.

4.1 How does Hypothetical Minds perform in competitive environments?

Running With Scissors in the Matrix Repeated (RWS) is a zero-sum competitive environment with
two players moving around a map and collecting yellow, purple, or blue resources that correspond
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Figure 4: Comparing base LLM models. 3 seeds are generated per LLM.
to rock, paper, and scissors respectively. Zapping your opponent causes an interaction, with one
agent getting positive reward and the other agent getting an opposite negative reward according to the
inventories of resources picked up by each player, mirroring the rock, paper, scissors matrix game.

RWS presents nine distinct evaluation scenarios, which range in complexity. These include three
straightforward strategies where opponents consistently play rock, paper, or scissors. The remaining
scenarios introduce more dynamic and adaptive strategies (see Appendix for details and full list).
Therefore in order to succeed on the scenarios, an agent needs to correctly infer the strategy and
exploit it. Against the simple policies, the agent should play the same type of inventory every round
rather than playing randomly or anticipating a change in its opponent’s policy. In contrast, success
against the adaptive strategies demands not only the anticipation of the opponent’s next move based
on personal previous plays but also selecting the most advantageous counter.

Figure 2 and Appendix Table 1 demonstrate how Hypothetical Minds model consistently achieves
large magnitude rewards and performs reliably better than the baselines on every single scenario.
Hypothetical Minds performs the best on the static strategies, scenarios 0, 6, 7, 8 representing fixed
policies that play for the same inventory on every interaction (6: rock, 7: paper, 8: scissors, 0: random
sample from 6-8). Therefore it is able to exploit the static strategy reliably once it correctly infers
it. The agent is also able to consistently return positive rewards against the difficult scenario 1, the
adaptive bot that plays the best response to your last round. In contrast, baselines are failing to achieve
consistent positive rewards. OPRE, a method designed specifically for a earlier version of this task,
gets rewards near zero for every scenario. PlanReAct is the only other model to achieve positive
rewards on the difficult best response bot, illustrating the usefulness of a hierarchical structure for this
evaluation in particular. Reflexion performs second best overall, underscoring the value of evaluative
reflection for this environment.

Figure 3 showcases HM’s dynamics, depicting the agent’s reward per interaction before and after
hypothesis validation. Upon validation, the agent consistently achieves high positive returns, while
rewards are near zero or negative during the information-gathering phase. The upward trajectory
in reward after generating a good hypothesis and the significant increase just before the validation
threshold demonstrate the agent’s ability to exploit accurate hypotheses effectively.

4.2 How does Hypothetical Minds perform in collaborative environments?

In the Collaborative Cooking: Asymmetric environment, two players on distinct sides of a divided
kitchen must collaborate to efficiently cook tomato soup. The layout provides distinct advantages to
each side—one side is closer to the goal delivery but farther from the tomato dispenser, and vice versa
for the other side. To maximize rewards, the two players should specialize based on their proximity
to resources: one handles tomato dispensing and delivery, and the other manages dish retrieval and
soup delivery. Evaluation scenarios challenge the focal agent to demonstrate dual forms of adaptation:
adjusting to the specialized role dictated by their side of the kitchen and to the varying competence of
their partner, from skilled and specialized to entirely unresponsive.

Again, Hypothetical Minds achieves higher rewards than the baselines on every scenario (Figure 2).
Interestingly, HM performs significantly better than the baselines on the scenarios where there is
a functional partner (Appendix Table 1). This suggests that if there is value in a partner, HM can
take advantage of this and adapt its behavior accordingly, highlighting the model’s usefulness for
complex, dynamic environments where cooperative interaction is crucial. The LLM baselines perform
relatively well with the negligent partner, where success hinges on repeatedly executing an intuitive
sequence of actions — filling and delivering pots — without the need to take into account the actions
of another mind. For instance, baseline LLM agents struggled when encountering a pot already at
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capacity while attempting to add tomatoes. PPO showed the opposite relative weakness, performing
moderately with the skilled partner but has a dramatic lack of generalization to the unhelpful partner
scenario, as it is used to role specialization from self play. OPRE performs poorly on every scenario.

4.3 How does Hypothetical Minds perform in mixed-motive environments?

In the Prisoner’s Dilemma in the Matrix Repeated (PD) environment, agents navigate a similar
grid world to RWS and collect resources corresponding to cooperation or defection in the iterated
prisoner’s dilemma game. The payoff matrix incentivizes mutual defection in a single interaction, but
the highest total welfare is achieved through mutual cooperation across an episode.

Hypothetical Minds achieves the highest reward among LLM agents and in 5/10 scenarios (Figure
2, Appendix Table 1). This highlights its ability to perceive the background agent’s strategy and
adapt accordingly. HM outperforms the LLM baselines relatively more with dynamic partners. With
tit-for-tat for example (scenarios 5 and 6), Hypothetical Minds achieves the highest score among
all models, by engaging in more consistent cooperation while demonstrating some forgiveness to
avoid cycles of alternating defection, a pattern that plagues LLM baselines. In scenarios 8 and 9,
Hypothetical Minds showcases a capacity for "corrective punishment." By defecting against these
partners that initially defect, it persuades them to switch to conditional cooperation. The agent then
shifts to a forgiving cooperation strategy to maintain a mutually beneficial equilibrium.

However, OPRE achieves the highest rewards overall on Prisoner’s Dilemma. Fixed heuristic policies
such as always defecting, playing tit-for-tat, etc. can achieve high rewards without needing to
correctly infer the policy it is playing against. One potential explanation is that advanced RL methods
like OPRE collect resources more efficiently than Hypothetical Minds in Prisoner’s Dilemma, due
to the limited spatial reasoning abilities of ungrounded LLMs like GPT4. One limitation of HM
is that the agent frequently travels across the environment to pick up resources that were closer to
its original location. On the other hand, HM demonstrates good reasoning about the strategies it is
playing against, and good hypotheses are frequently found and validated. This illustrates the tradeoffs
between these two methods. LLM agents provide better abstract reasoning about things like other
agent’s goals right out of the box due to their extensive training data, but lack the low-level control
necessary to maximize performance in a dense reward embodied environment (which RL excels at).

4.4 How does Hypothetical Minds scale to environments with larger populations of agents?

Running With Scissors in the Matrix Arena (RWS Arena) is an eight-player extension of RWS,
where the agent controls one player against a population of 7 strategies. This adds additional
complexity to the decision-making process and tests the scalability of models, as agents now must
infer the strategies of separate agents and maintain this information in memory. Hypothetical Minds
is set up for this by maintaining separate hypothesis evaluation streams for every agent. Additionally,
in order to maximize reward, agents should only interact with opponents that it knows it can beat
with its current inventory. Models are therefore tasked with integrating uncertainty and seeking out
opponents for which they have high confidence about their strategy.

Hypothetical Minds achieves higher rewards than the baselines in RWS Arena (Figure 2) and is the
best model on 6/8 scenarios (Appendix Table 1). HM performs particularly well on homogeneous
populations of rock, paper, or scissors (scenarios 5-7). Scenarios 2-4 consist of heterogeneous
populations where 2/3rds of the population are one pure strategy and the remaining 1/3rd represents
the pure strategy that would beat the best response to the majority strategy (e.g., scenario 2 is 2/3 rock
and 1/3 scissors). HM performs the best on 2 out of 3 of these difficult scenarios, and performance
for scenario 4 is dragged down by one highly negative episode in which the agent was exploited by
the minority strategy. In contrast, all baseline models struggle to achieve rewards of more than 10 on
average in nearly every scenario. This highlights the difficulty of the environment, for which proper
coordination between high-level plans, the embodiment, and memory is crucial for success. These
results also suggest that Hypothetical Minds scales well to population-based environments in which
you need to either handle distinct agents differently or make population-level inferences.

4.5 Ablations
As previously discussed, we compared baseline LLM agents with our models to perform natural
ablations, maintaining similar prompts but varying information flows. We also compare base LLMs
between GPT4 (default), GPT 3.5, and Llama-3-70B-Instruct (Figure 4). GPT4 performs by far
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Figure 5: Comparing different versions of HM. Errorbars reflect SEM across 5 episodes.

the best across environments, and GPT 3.5 performs poorly. Llama3’s performance lies in between
these two on RWS Repeated and Collaborative Cooking, and slightly below GPT 3.5 on Prisoner’s
Dilemma. Due to input context limitations, we could not run Llama-3 on RWS Arena.

We also conducted detailed ablation analysis on the ToM module for the challenging environment,
RWS Repeated. Vanilla Mind Prompting (VMP): Utilizes a single API call for all ToM module
steps, excluding hypothesis evaluation and refinement (see Appendix and code for more details).
Modular Mind Prompting (MMP): Ablates hypothesis evaluation and refinement, while introducing
a more modular approach where the LLM is queried separately for each step. Hypothesis Evaluation
and Refinement w/o Mind Prompting (HE + HR): Ablates ToM prompting and isolates hypothesis
evaluation and refinement. Prompts do not include opponent strategy predictions but ask for a
high-level strategy, treated as a hypothesis and evaluated based on rewards (see Appendix for details).
Full Hypothetical Minds model, adding hypothesis refinement to MMP + HE.

Figure 5 shows key scenario results and Figure 8 (Appendix) shows all scenarios, with MMP
outperforming VMP in most cases. MMP + HE and MMP + HE + HR achieved positive returns of
10+ in every scenario, with the full model performing well against the challenging best response bot
(SC 1). This suggests that modular structures and hypothesis evaluation enhance reasoning stability
and strategy optimization. GPT4 could identify correct hypotheses through reasoning about its
previous interactions, though it does not do so consistently, highlighting the importance of hypothesis
evaluation in maintaining multiple potential strategies. See Figure 6 and 7 in Appendix for examples
of HM finding a good hypothesis.

The HE + HR model, which lacks ToM prompts, excelled against adaptive opponents but struggled
with fixed strategies. This indicates that without explicit modeling of the opponent’s strategy, the
LLM agent fails to recognize it’s facing a static strategy, instead expecting an adaptive opponent like
itself. Being able to represent another agent’s beliefs and preferences as being different than your
own is a hallmark of Theory of Mind [Rakoczy, 2022]. Additionally, HE + HR produced longer,
disorganized responses with irrelevant guidelines, resulting in less effective hypotheses (see Appendix
Fig. 9).

5 Conclusion

Here we evaluate the Hypothetical Minds model on challenging multi-agent environments with varied
dynamics. One limitation of our method is the human in the loop component necessary to set up the
scaffolding and prompting for the agent. Additionally, knowledge of the game rules and mechanics
are listed in the prompts. An avenue for future research is learning these concepts and the appropriate
types of scaffolding within the cognitive modules autonomously from environmental feedback.
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A Appendix

Scenario Agent Type
HM (ours) Reflexion ReAct PlanReAct PPO OPRE

Running With
Scissors Repeated

0: Mix of all 3 50.8 ± 8.6 21.0 ± 10.2 -1.0 ± 3.9 5.5 ± 3.6 -2.9 ± 1.8 0.0 ± 0.0
1: Best Response 23.2 ± 4.7 -3.5 ± 3.5 -2.3 ± 4.2 21.1 ± 5.0 0.5 ± 1.6 -0.1 ± 0.0
2: 0 ∪ 1 54.6 ± 4.3 29.3 ± 12.5 17.1 ± 7.2 16.6 ± 6.1 -1.1 ± 2.0 0.0 ± 0.0
3: Flip After 2 40.6 ± 11.1 30.9 ± 5.4 12.8 ± 4.7 13.2 ± 6.4 0.8 ± 0.5 0.0 ± 0.0
4: Flip After 1 48.5 ± 6.3 1.9 ± 4.2 -1.5 ± 6.1 9.0 ± 5.1 -2.4 ± 1.8 0.0 ± 0.0
5: Gullible 12.9 ± 5.1 8.2 ± 3.2 2.5 ± 1.9 7.2 ± 3.4 0.1 ± 0.6 0.1 ± 0.0
6: Rock 50.5 ± 4.4 17.9 ± 9.5 14.3 ± 8.6 15.6 ± 4.3 1.2 ± 2.0 0.2 ± 0.0
7: Paper 59.6 ± 4.0 13.2 ± 6.8 2.7 ± 2.3 13.0 ± 4.4 -0.1 ± 1.0 0.1 ± 0.0
8: Scissors 63.8 ± 5.1 31.0 ± 6.5 29.0 ± 4.3 14.4 ± 3.3 -4.2 ± 1.4 -0.3 ± 0.0

Running With
Scissors Arena

0: Mix of all 3 13.3 ± 6.9 1.1 ± 3.6 3.5 ± 3.2 -8.0 ± 4.1 -0.5 ± 1.5 0.1 ± 0.2
1: Gullible -2.6 ± 3.4 -1.8 ± 2.3 -5.6 ± 4.0 0.9 ± 3.6 -0.4 ± 1.0 -0.6 ± 0.2
2: Rock + Flip After 2 16.2 ± 3.9 -1.7 ± 2.2 -4.4 ± 2.0 2.1 ± 3.2 -1.0 ± 1.1 0.5 ± 0.4
3: Paper + Flip After 2 11.6 ± 4.5 1.6 ± 2.2 -4.2 ± 3.6 0.9 ± 3.6 1.3 ± 1.4 0.3 ± 0.3
4: Scissors + Flip After 2 -2.6 ± 5.7 10.6 ± 2.2 -1.2 ± 3.3 -2.4 ± 3.1 -2.1 ± 1.0 0.2 ± 0.3
5: Rock 21.8 ± 3.0 1.4 ± 2.0 -4.3 ± 3.1 -7.1 ± 2.0 1.7 ± 0.8 0.5 ± 0.4
6: Paper 24.9 ± 2.5 -1.1 ± 1.4 -10.7 ± 2.5 -4.0 ± 3.1 -2.4 ± 1.0 0.4 ± 0.5
7: Scissors 32.1 ± 1.8 11.8 ± 4.5 11.6 ± 2.0 -0.2 ± 2.6 0.9 ± 0.9 0.7 ± 0.3

Collaborative Cooking
Asymmetric

0: Skilled Partner 628.3 ± 35.1 292.6 ± 38.2 225.4 ± 60.0 402.9 ± 70.1 244.0 ± 76.1 21.5 ± 15.0
1: Semi-skilled Partner 498.8 ± 78.2 402.9 ± 65.0 254.2 ± 39.1 455.6 ± 55.7 86.0 ± 28.9 36.6 ± 28.0
2: Unhelpful Partner 426.8 ± 42.5 398.1 ± 33.6 383.7 ± 21.4 292.6 ± 36.7 0.0 ± 0.0 62.0 ± 62.0

Prisoner’s Dilemma in the Matrix
0: 1 ∪ 2 40.6 ± 12.9 44.5 ± 13.2 57.9 ± 13.0 37.0 ± 15.3 20.7 ± 5.7 67.2 ± 1.2
1: Cooperator 78.7 ± 2.4 87.2 ± 1.7 77.3 ± 1.0 78.8 ± 2.2 40.0 ± 5.4 102.5 ± 1.0
2: Defector 21.9 ± 0.5 22.1 ± 0.8 24.0 ± 0.3 22.5 ± 0.5 9.1 ± 2.0 34.5 ± 0.9
3: Grim Reciprocator 31.6 ± 4.7 28.8 ± 0.4 29.2 ± 1.3 25.2 ± 0.4 13.0 ± 1.1 36.3 ± 1.0
4: Grim Reciprocator (2 strikes) 27.8 ± 1.2 29.3 ± 1.7 30.7 ± 1.7 28.0 ± 1.2 16.5 ± 1.4 38.1 ± 1.2
5: Tit-for-tat 52.5 ± 1.1 33.9 ± 0.7 35.8 ± 0.7 42.2 ± 2.1 15.4 ± 2.1 37.4 ± 0.5
6: Noisy tit-for-tat 46.7 ± 2.2 40.3 ± 2.4 41.9 ± 2.7 42.0 ± 1.3 17.3 ± 2.7 47.8 ± 0.6
7: Cooperates then defects 20.9 ± 0.5 25.1 ± 1.0 28.4 ± 0.7 24.9 ± 0.6 8.8 ± 0.9 38.3 ± 0.9
8: Defector that turns tit-for-tat 42.1 ± 1.5 31.0 ± 1.4 30.1 ± 1.4 36.8 ± 0.9 8.1 ± 2.0 38.7 ± 0.6
9: Defector that turns to noisy tit-for-tat 45.3 ± 1.8 34.7 ± 1.7 36.6 ± 1.6 40.6 ± 1.1 15.1 ± 2.5 46.7 ± 0.9

Table 1: Average reward and SEM for different agents across substrates and scenarios. Note that
the variance in scenarios that are a union of two scenarios may be related to which scenarios were
sampled.
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Figure 6: Example of GPT4-based agent finding a good hypothesis and employing good reasoning to
select its next target inventory.

Validated hypothesis: {'Opponent_strategy': 'My 
opponent seems to be adapting to my previous 
inventory by playing the counter resource. They 
are not sticking to a pure strategy but are 
responsive to my last move.', 'value’: 0.79}

Interaction 14

Reward: 0.94

vs.

: 4

: 1

: 1

: 4

: 1

: 3

…… ……

…… … ……

Hypothesis based on Interaction 1-5:
{'Opponent_strategy': My opponent seems to be 
adapting to my previous inventory by playing the 
counter resource. They are not sticking to a pure 
strategy but are responsive to my last move.'}

Interaction 5

Highest-valued hypothesis: {'Opponent_strategy': 
'Based on the interaction history, the opponent 
appears to be consistently playing a pure 
paper/purple strategy, collecting around 3 purple 
resources each time.', 'value': 0.36}

Other hypothesis: {'Opponent_strategy': 'My 
opponent seems to be adapting to my previous 
inventory by playing the counter resource. They 
are not sticking to a pure strategy but are 
responsive to my last move.', 'value': 0.09}

Reward: -6.4

vs.

: 1

: 5

: 1

: 1

: 1

: 5

Interaction 6

Hypothesis based on Interaction 1-6:
{'Opponent_strategy': 'The opponent primarily 
plays a paper/purple strategy, often collecting 
around 3 purple resources, but may switch to 
rock/yellow if anticipating a scissors/blue 
strategy from me.'}

Highest-valued hypothesis: {'Opponent_strategy': 
'Based on the interaction history, the opponent 
appears to be consistently playing a pure 
paper/purple strategy, collecting around 3 purple 
resources each time.', 'value': 0.55}

Other hypothesis: {'Opponent_strategy': 'My 
opponent seems to be adapting to my previous 
inventory by playing the counter resource. They 
are not sticking to a pure strategy but are 
responsive to my last move.', 'value': 0.13}

Reward: 0.63

vs.

: 2

: 1

: 7

: 1

: 1

: 3

Interaction 13

Hypothesis based on Interaction 1-13: {The 
opponent adapts their strategy based on our last 
strong move, showing a preference for 
paper/purple but switching to rock/yellow to 
counter scissors/blue. They are responsive and do 
not consistently play a pure strategy.}

Highest-valued hypothesis: {'Opponent_strategy': 
'The opponent primarily plays a paper/purple 
strategy, often collecting around 3 purple 
resources, but may switch to rock/yellow if 
anticipating a scissors/blue strategy from me.', 
'value': 0.61.}

Other hypothesis: {'Opponent_strategy': 'My 
opponent seems to be adapting to my previous 
inventory by playing the counter resource. They 
are not sticking to a pure strategy but are 
responsive to my last move.', 'value': 0.59}

Reward: 0

vs.

: 1

: 1

: 5

: 1

: 1

: 5

Highest-valued hypothesis: {'Opponent_strategy': 
'Based on the interaction history, the opponent 
appears to be consistently playing a pure 
paper/purple strategy, collecting around 3 purple 
resources each time.', 'value': 0.09}

Interaction 3

Hypothesis based on Interaction 1-3:
{'Opponent_strategy': 'My opponent seems to be 
adapting to my previous inventory by playing the 
counter resource. They are not sticking to a pure 
strategy but are responsive to my last move.'}

Reward: -3.7

vs.

: 6

: 2

: 1

: 1

: 5

: 1

Figure 7: Example of a successful evolution of a hypothesis for MMP + HE + HR playing a Best
Response bot. It shows the process of how the LLM-based agent generated a good hypothesis about
the opponent’s strategy, which was eventually validated.
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Figure 8: Average reward per episode on all evaluation scenarios for each version of the ToM module
using the full version. Errorbars reflect SEM across 5 episodes. Reward is normalized per 1200
timesteps to reduce variance with variable length episodes.

Example generated strategy for HE + HR playing rock bot

Given the interaction history and the current state of the game, it seems that a strategy that
adapts to the opponent’s recent choices while maintaining an element of unpredictability could be
effective. The opponent’s strategy is not entirely clear from the interaction history, but there
are patterns of losses and wins that can be used to inform our strategy.

Here’s a high-level strategy for player_0:
1. Observe the opponent’s recent strategy: Look at the last few interactions to determine if
the opponent is favoring a particular resource. If a pattern is detected, prepare to counter it.
2. Adapt based on interaction history: If we win an interaction, introduce a slight randomness
to our next choice to avoid being predictable. If we lose, counter the opponent’s last winning
resource. In the case of a tie, either maintain the current resource or switch based on the
observed pattern of the opponent.
3. Efficient resource collection: Focus on collecting resources that align with our strategy
while avoiding unnecessary collection of other resources. This will help in building a strong
inventory for the next duel.
4. Strategic duel initiation: Initiate duels when we have a strong inventory that counters
the opponent’s likely choice. Use memory and observation to infer the opponent’s strategy and
position.
5. Avoid unnecessary resource collection: Once we have enough of a particular resource to play
a strong strategy, avoid collecting more of that resource and instead focus on positioning for a
duel or collecting a different resource if our strategy requires it.
6. Maintain flexibility: Be ready to adapt our strategy based on new information from the
opponent’s actions and the outcomes of interactions.

Now, let’s summarize this strategy in a Python dictionary format:
“‘python
{
’my_strategy’: ’Adaptive Strategy with Randomness and Countering’,
’observe_recent_opponent_strategy’: True, ’adapt_based_on_interaction_history’:
True, ’introduce_randomness_post_win’: True, ’efficient_resource_collection’: True,
’strategic_duel_initiation’: True, ’avoid_unnecessary_resource_collection’: True,
’maintain_flexibility’: True, ’interaction_guidelines’: { ’if_win_next’: ’introduce slight
randomness to avoid predictability’, ’if_lose_next’: ’counter opponent’s last winning resource’,
’if_tie_next’: ’maintain or switch based on observed opponent pattern’
}
} “‘

Figure 9: Example of a failure mode for HE + HR playing rock bot. Generated strategies make little
sense given the interaction history and requested format.
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Example of a successful embodied exploration at the beginning of an episode

, First subgoals: Subgoal Plan: Since I am currently at (21, 10) with an orientation facing
North and my high-level strategy is to collect 5 yellow resources to play a pure rock strategy, I
need to find and move towards the nearest yellow box locations. However, there are no observable
yellow box locations in my immediate vicinity. Therefore, my first subgoal is to explore the
environment to find yellow boxes. I should move towards the center of the map where I am more
likely to find resources and encounter the other player for a potential duel.

Given that I am at the edge of the map, I should move left (West) towards the center. I will
move to (20, 10), then to (19, 10), and continue in this direction until I find yellow boxes
or reach a more central location on the map. If I encounter yellow boxes along the way, I
will adjust my path to collect them. Once I have collected 5 yellow boxes, I will look for the
opponent to initiate a duel.
Action Plan:
“‘python
{
action_plan: [ move_to((21, 10), (20, 10)), move_to((20, 10), (19, 10)), move_to((19, 10), (18,
10)), move_to((18, 10), (17, 10)), move_to((17, 10), (16, 10))]
} “‘

Figure 10: Example of a subgoal module exploring the environment at the beginning of an episode
to build up a cognitive map of where resources are located.

B Environments

B.1 Running With Scissors Repeated

Specifically, here we evaluate our model on the Running With Scissors in the matrix: Repeated
environment (RWS) in the Melting Pot multi-agent decision-making benchmark [Agapiou et al.,
2022]. This is a zero-sum competitive environment with two players moving around a map and
collecting yellow, purple, or blue resources that correspond to rock, paper, and scissors respectively.
In addition to movement, the agents have an action to fire an "interaction" beam which initiates a
duel with the other player when that player is within range of the beam. An interaction results in one
agent getting positive reward and the other agent getting an opposite negative reward according to
the inventories of resources picked up by each player. Specifically a player will collect an inventory,
which is only observable by that player:

ρ = (ρyellow, ρpurple, ρblue).

Reward is determined by matrix multiplication operations mirroring the rock, paper, scissors matrix
game:

rrow = vT
rowArowvcol, rcol = −rrow

where vi =
ρi∑K

j=1 ρj
and

Arow =

[
0 −10 +10

+10 0 −10
−10 +10 0

]
.

The partially-observable input in Melting Pot consists of a 5x5 window around the agent such that it
can see three grids in front of itself and one behind it, and two on each side.

B.1.1 Scenarios

Description of scenarios for each substrate are reproduced directly from [Agapiou et al., 2022]:

SC0: Versus mixed strategy opponent. Here the focal agent must defeat an opponent that was
trained to play a pure strategy: either rock, paper, or scissors. However, the specific opponent
is sampled at test time so it could be any of those. All opponents commit strongly to their
choice, aiming to collect at least three resources before interacting. To defeat them, the
focal agent should scout out which pure strategy its opponent is playing and then collect
the resources to implement its counter strategy. Since this is a one-shot interaction, success
requires the focal agent to pay close attention to which resources are missing since they
provide a clue to which strategy their opponent is implementing.
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SC1: Versus opponent who plays the best response to what the focal player did in the last round.
Here the focal agent must defeat an opponent who may change their strategy with each
interaction. The opponent will always select the best response to what the focal player
selected in the previous interaction. For instance, if the focal player plays rock in one
interaction then its opponent will play paper in the next interaction. On the first interaction
of each episode it chooses one of the three pure strategies at random. The opponent always
commits strongly to its choice, aiming to collect at least five resources before interacting. To
win the focal player can trick its opponent into choosing a specific strategy and countering
it. This requires changing strategy from interaction to interaction, cycling around the three
options.

SC2: Versus opponent who sometimes plays a pure strategy but sometimes plays the best response
to what the focal player did in the last round. Focal player must defeat an opponent sampled
from the union of the background populations used in SC 0 and SC 1. The probability of
sampling a pure opponent is 3/4 while the probability of sampling a best response opponent
is 1/4.

SC3: Versus mixture of opponents who often flip to other strategies after two interactions. Focal
player must defeat an opponent that may initially play any pure strategy and, with probability
1/3, may flip after the second interaction to the best response to the best response to its initial
strategy. For example if it starts out playing rock then the best response to that would be
paper, so after the second interaction it would switch to playing the best response to paper
i.e. scissors. It only weakly commits to its strategy for the first two interactions. That is,
it aims to collect only one resource before interacting. After two interactions, at the point
when it changes strategy, it also starts committing more strongly to its choice, aiming to
collect five resources before each interaction. With probability 2/3, the opponent instead
plays a pure strategy throughout the entire episode. In half of the pure opponent episodes
the bot fully commits to its pure strategy, aiming to collect five resources before interacting,
while the other half of the time it commits less strongly, aiming to collect only one resource
before interacting. Note that opponents may be weakly committed to their strategy for the
first two interactions regardless of whether they will ultimately flip strategy or not so it’s
not possible for the focal agent to observe weak commitment early on as a cue to predict
whether or not their opponent will later flip strategies.

SC4: Versus mixture of opponents who either flip to another strategy after one interaction and keep
it forever or continue to change, always best responding to what the focal player just did.
Two kinds of opponents are possible. Both change their strategy after the first interaction.
With probability 3/4 the opponent will be a bot that flips to a different strategy after the
first interaction and then follows it till the end of the episode. It always flips to the best
response to the best response to its initial strategy (so if it initially plays rock then it will flip
to scissors). With probability 1/4 the other kind of opponent is sampled. This opponent is
identical to the one in SC 1. Both kinds of opponents always fully commit to their choice,
aiming to collect at least five resources before interacting so its not possible to observe the
opponent’s commitment level to predict which kind they are. To win the focal player must
figure out which kind of opponent it is playing against and either best respond by selecting
the same choice in all interactions after the first if paired with the first kind of opponent, or
apply the cyclic strategy described as the solution to SC 1 if paired with the second kind of
opponent.

SC5: Versus gullible opponent. Here the focal agent must defeat an opposing agent that was
trained to best respond to agents playing pure strategies. The opponent should attempt to
scout out what strategy the focal agent is playing so it can pick the appropriate counter. To
defeat it, the focal agent should feint toward one resource and then collect the counter to
its counter. So for example, if the focal agent successfully feinted that it would pick rock,
inducing its opponent to pick paper, the focal agent should then collect and play scissors.
This opponent is fairly weak.

SC6: Versus pure rock opponent. Opponent always plays rock, and commits to it strongly, aiming
to collect five resources before interacting. The focal player gets a high score when it picks
paper and commits strongly to that choice.

SC7: Versus pure paper opponent. Same as SC 6 but opponent plays paper so focal player should
play scissors.
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SC8: Versus pure scissors opponent. Same as SC 6 but opponent plays scissors so focal player
should play rock."

It should be noted that scenario 5 includes a gullible opponent, that attempts to scout out what strategy
you are playing and pick the appropriate counter. From first principles, to beat this opponent an agent
should feint towards one resource to fool the opponent and then select the counter to its counter.
Since our ToM module selects strategies on a higher-level of abstraction than the embodiment, it
was not specifically designed to beat this opponent. Integrating high-level strategy information with
relevant embodied information is the subject of future research. However, in practice the gullible bot
does not effectively scout out our agent, and it frequently plays the same strategy, which is exploited
by our agent, leading to positive rewards on this scenario on average for all model versions.

B.2 Running With Scissors Arena

We also evaluate our model on Running With Scissors in the matrix: Arena environment in the Melting
Pot multi-agent decision-making benchmark [Agapiou et al., 2022]. This environment has the same
dynamics as Running With Scissors in the matrix: Repeated with the main exception being that their
are 8 players in this substrate playing on a larger 25 by 24 matrix with a 11 by 11 observability
window, skewed towards viewing more in front of the agent. All scenarios under this agent represent
one focal resident (agent) playing against 7 others with varying fixed and dynamic policies, attempting
to maximize reward decided by the payoff matrix equivalent to the one in Running with Scissors
Repeated.

B.2.1 Scenarios

SC0: Versus a background population containing bots implementing all three pure strategies. Here
one focal player joins seven from the background population. The background population
contains bots who implement all three pure strategies: rock, paper, and scissors. They
may either commit to their strategy moderately (aiming to collect three resources before
interacting) or more strongly (aiming to collect five). The task for the focal agent is to watch
its opponents, see what strategy one of them is implementing, and act accordingly.

SC1: Versus gullible bots. Here one focal player joins seven from the background population. The
background population consists entirely of weak bots who were trained to best respond to
agents playing pure strategies. They are weak opponents.

SC2: Versus mixture of opponents who play rock and some who flip to scissors after two interac-
tions Here one focal player joins seven from the background population. The focal player
should pay attention to what each prospective partner has collected since 2/3 of them play
rock while 1/3 play scissors after the first two interactions. Choosing paper to best respond
to rock is a bad choice if accidentally paired with an opponent playing scissors.

SC3: Versus mixture of opponents who play paper and some who flip to rock after two interactions.
Like SC2 but with bots playing paper and bots switching from paper to rock.

SC4: Versus mixture of opponents who play scissors and some who flip to paper after two in-
teractions. Like SC 2 but with bots playing scissors and bots switching from scissors to
paper.

SC5: Visiting a population of pure paper bots. Here one focal player joins seven from the
background population. All seven background bots play paper so the focal player can get a
high score by playing scissors.

SC6: Visiting a population of pure rock bots Here one focal player joins seven from the background
population. All seven background bots play rock so the focal player can get a high score by
playing paper.

SC7: Visiting a population of pure scissors bots. Here one focal player joins seven from the
background population. All seven background bots play scissors so the focal player can get
a high score by playing rock.

B.3 Prisoners Dilemma Repeated

The Prisoners Dilemma in the Matrix Repeated environment is a mixed-motive one where two
individuals collect resources that represent ‘defect’ (red) or ‘cooperate’ (green) and compare inven-
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tories in an encounter, analogous to the Running With Scissors substrates. Consequences of the
inventory comparison are congruent with the classic Prisoner’s Dilemma matrix game, exposing
tension between reward for the group and reward for the individual. Reward is delivered after an
interaction weighted by the proportion of items in each agent’s inventory, as described above for
Running With Scissors. The payoff matrix for the interaction is

Arow = AT
col =

[
3 0
5 1

]
B.3.1 Scenarios

SC0: Partner may play either cooperate or defect The optimal strategy is simply to unconditionally
defect. However, given that the focal doesn’t know the strategy of the background player, a
good strategy is more subtle. A reasonable strategy is to be a grim reciprocator cooperator,
which would cooperate with the cooperator, and defect to the defector. Alternatively the
focal player might try to ascertain whether the background player is exploitable. Doing so,
however, carries a risk, for if the background player were to be a Grim reciprocator (like in
other scenarios), this would cause them to defect for the rest of the episode.

SC1: Partner typically plays cooperate. The optimal strategy is simply to unconditionally defect.
The same considerations about uncertainty of the background player’s strategy from Scenario
0 apply here.

SC2: Partner typically plays defect The optimal strategy is simply to unconditionally defect.
However, because the focal player doesn’t a priori know the strategy of the background
player, they must first try to find out their strategy. This can be done by looking at which
resources they collect or by paying attention to the results of the first few interactions. Once
the focal has identified its background partner is defecting then it may have confidence
that it should defect as well. The focal player should also consider the possibility that the
background bot is corrigible, i.e. that it could be persuade to switch from defection to
cooperation. This is not the case here but the background populations used in SC 8 and SC
are corrigible.

SC3: Partner is a hair-trigger grim reciprocator, i.e. one who initially cooperates but, if defected
on once, will retaliate by defecting forever after. The optimal strategy is simply to cooperate.
Grim reciprocator background players are non-exploitable, and there is no way to know
how they will react to a defection ahead of time. Because of this uncertainty, testing for
exploitability can lead to poor performance of the focal player. Conditional cooperators who
cooperate first but retaliate if defected on should achieve a high score.

SC4: Partner is a two-strikes grim reciprocator, i.e. one who initially cooperates, but if defected
on twice, will retaliate by defecting forever after The optimal strategy is simply to cooperate.
Grim reciprocator background players are non-exploitable, and there is no way to know
how they will react to a defection ahead of time. Because of this uncertainty, testing for
exploitability can lead to poor performance of the focal player. In principle, it would be
possible to defect once against the background player leading to higher reward. But since it
is not possible to know the background player is a two-strikes grim reciprocator, and testing
it against a hairtrigger grim reciprocator leads to defection, in practice is better simply to
cooperate. Conditional cooperators who cooperate first but retaliate if defected on should
achieve a high score.

SC5: Partner is a tit-for-tat conditional cooperator The optimal strategy is simply to cooperate.
Defecting against a tit-for-tat agent, even occasionally, might lead to miscoordinated interac-
tions where one player cooperates and the other defects, in an alternating way. Forgiveness
is one way to break out of such cycles of recrimination. Conditional cooperators who
cooperate first but retaliate if defected on should also be forgiving to ensure they do well in
this scenario.

SC6: Partner is a tit-for-tat conditional cooperator who occasionally plays defect instead of
cooperate. Like the previous scenario, except the tit-for-tat background player occasionally
will defect instead of cooperate. This is known as trembling hand in game theory. A strict
tit-for-tat focal player would occasionally fall into miscoordinated interactions with the
background player resulting in alternating cooperation and defection. As in SC5, focal
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conditional cooperators must also be forgiving to ensure they do well in this scenario.
Forgiveness is even more important here since the background player will defect relatively
frequently itself but will still implement tit-for-tat retaliation when defected on itself.

SC7: Partner plays cooperate for a while then switches to defect Similar considerations to the
previous scenarios. A good strategy is a grim reciprocator, or tit-for-tat for the focal player.
Unconditional cooperation would be exploited by the background player.

SC8: Partner tries to take advantage of the focal player by playing defect, but if punished, partner
then switches to tit-for-tat conditional cooperation Related to Scenario 2, the optimal strategy
is for the focal player to persuade the background player to stop defecting by punishing it
through defecting itself. Once persuaded, the background player implements a conditional
cooperation (tit-fortat) strategy. So it is safe to start cooperating with them once you have
verified that they are themselves consistently cooperating.

SC9: Partner tries to take advantage of the focal player by playing defect, but if punished, partner
then switches to noisy tit-for-tat conditional cooperation Like the previous scenario, except
the focal player must implement a more generous form of conditional cooperation after
persuading the background player to switch from defection.

B.4 Collaborative Cooking Asymmetric

In the Collaborative Cooking Asymmetric substrate, players need to collaborate to follow recipes.
The environment described in [Agapiou et al., 2022] follows the regular pseudoreward scheme, which
is turned off by default. The asymmetric environment is a version of the Collaborative Cooking with
an asymmetric advantages map. This is to test whether players can choose high-level strategies that
play to their strengths.

B.4.1 Scenarios

SC0: Collaborate with a skilled chef Here the background player implements a particular policy
that can be very effective when its partner does its part. The two players are on two distinct
and disconnected sides of the map. On one side the goal delivery location is close to cooking
pots and the tomato dispenser is far away whereas on the other side the the goal delivery
location is far from the cooking pots but the tomato dispenser is close. The players should
collaborate, each specializing in the part of the task that it is most efficient for them to do on
the side of the map where they spawned. The background player implements this kind of
policy, which depends on the actions of its partner to complete the task. The background
player was trained with the V-MPO algorithm.

SC1: Collaborate with a semi-skilled apprentice chef This scenario is similar to SC 0 but the
background player is not as well trained. In fact the background population used here is
the same as in SC0 but from an earlier point in training. The importance of evaluating
cooperation with bots of varying skill levels, and different points in training.

SC2: Succeed despite an unhelpful partner In this scenario the background player never moves or
helps in any way. On this map it is less efficient to implement all steps of the recipe alone
versus to work together with a partner. But it is still possible for either player to perform all
the steps on their own. The task is to realize that the background player won’t do their part
of the joint policy so the focal agent had better do everything itself.

C Methods

C.1 Textual Map

Pixel images of the global state are preprocessed into a text-based state representation. The images
are divided into 8x8 patches, each corresponding to a cell within the Melting Pot grid that entities
can occupy. Each patch may represent one of four types: an agent, a resource, a wall, or a blank
space. The patches are labeled by comparing them to manually labeled reference patches of each
type of entity, including the numerous possible body orientations and hat colors an agent can embody
in Running With Scissors. The global state can then be fully represented in text by coordinates in
a 23x15 grid and the entity label at each coordinate. Egocentric states are then created from this
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according to the partially-observable 5x5 box around an agent (dependent on its orientation). We tried
several representations of feeding this textual map to GPT, and in practice the best representation
consists of printing each entity type with a list of all the coordinates where that entity type is present.
For example “Player Position: {’player_0-S’: [(21, 4)]}, Observable Yellow Box Locations: [(13,
10), (14, 11)]}, Observable Blue Box Locations: [], Observable Purple Box Locations: [(13, 11), (15,
11)]“ encodes the player position and orientation (south) along with the observable box locations.
The player’s current inventory is also included in the textual state representation, as it is in the default
Running With Scissors state representation.

C.2 Memory

The memory system consists of two parts. The first data structure appends the observed states in
the previous step to lists of each entity type in a tuple with the step it was observed. For example:
‘yellow_box’: [((13, 3), ‘Step: 1087’), ((13, 4), ‘Step: 1087’), ((7, 3), ‘Step: 1091’)]. The LLM is
prompted that its memory can be outdated and therefore should take the step it was last observed into
account.

The second data structure in the memory system contains a list of the agent’s inventories and rewards
from the interactions that occurred so far. This specific information, distinct from the previously
observed states, is relayed to the ToM module.

C.3 Theory of Mind Module

The Theory of Mind Module is queried periodically after discrete events. For the * in the Matrix
substrates, this occurred after an interaction. For collaborative cooking, this occurred after a dish was
delivered.

The ToM module consisted of a 5 step process, as depicted in Figure 2 for the * in the Matrix
substrates:

1. Record the observed behavior from the other agent’s trajectory ϕ(τ). Here this refers to
whether they played rock, paper, or scissors, the argmax of the inventory (or cooperate/defect
in Prisoner’s Dilemma). Since the opponent’s inventory is never observed, we have to
estimate it given the inventory Hypothetical Minds played and the reward it received. Thus,
we ask the LLM to estimate the opponent’s inventory given this information, and note the
output as the empirical opponent’s inventory.

2. Evaluate Hypotheses about opponent’s strategy. In the previous interaction, the top k
hypotheses are used to generate predictions about the opponent’s next inventory ˆϕ(τ). These
argmax of the inventory predictions are compared to the argmax of the empirical opponent’s
inventory (did they play rock, paper, or scissors). As described in the main text, Hypotheses
that led to correct predictions get a positive intrinsic reward and negative otherwise. If a
hypothesis is validated, meeting Vthr, then step 3 is skipped and this hypothesis is used for
step 4 until the hypothesis falls below the threshold (meaning its not longer making good
predictions)

3. Generate new and refine old hypotheses. The LLM is tasked with generating a hypothesis
about the other agent’s strategy given the entire interaction history (see prompt below
for more details). The prompt also includes the top k hypotheses generated so far if the
hypotheses have a value above 0 (meaning at least one correct prediction) such that the LLM
can refine previously generated hypotheses.

4. Guess opponent’s next goal. The LLM is prompted to guess the opponent’s next inventory
given a hypothesis and the interaction history. If no hypothesis has yet surpassed Vthr, then
guesses are made for the top k hypotheses and the last generated hypothesis. The prediction
from the last generated hypothesis would be used to select a counter inventory in the next
step. Moreover, all the predictions will be used for step 2 (hypothesis evaluation) after the
next interaction. If a hypothesis crosses Vthr, then only it will be used in this step.

5. Select goal to counter opponent. The LLM is prompted to select a counter inventory
given the prediction about the opponent’s next inventory. Since this step involves straightfor-
ward reasoning given the opponent’s predicted inventory, it is done simultaneously in the
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API/LLM call with the previous step. Therefore, the LLM is specifically tasked with out-
putting both the predicted opponent’s next inventory ˆϕ(τ) and its own goal/target inventory
z in a single API/LLM call.

In RWS Arena, step 4 is done separately than step 5. The LLM is first prompted to guess the next
inventory for the opponent they just played. Then in a subsequent step, it is asked again to select
which opponents to seek out, and to guess what inventory they will play (this could be a different
opponent than the one interacted with in the last round). Therefore, the ToM module can evaluate the
hypotheses for each opponent based on the quality of the predictions they make for that particular
opponent, and this process is separable from selecting the target inventory in the next interaction (see
prompts).

A similar process occurs for Collaborative Cooking Asymmetric. Step 1 is hardcoded and not LLM
dependent; the other agent’s actions/behavior ϕ(τ) are labeled by custom code given the observations
(abstracting away the problem of action recognition from textual observations). These actions include
"Teammate picked up a dish", "Teammate put down a dish", "Teammate picked up cooked soup in
dish", "Teammate delivered cooked soup", "Teammate picked up a tomato", or nothing. In step 4, the
LLM is prompted to guess the teammate’s next behavior ˆϕ(τ) in natural language. Another LLM
instance is used in step 2 to assess whether the prediction was correct or not, prompting the LLM to
output True or False, and giving each hypothesis the appropriate intrinsic reward. Step 5 is completed
in a separate API call for Collaborative Cooking, and the LLM is prompted: "what strategy do you
want to take next and why? Teammate’s observed strategy: ”. Think step by step about how to adapt
to their behavior and maximize all resources and efficiency accordingly."

C.4 Subgoal Module

The subgoal module is responsible for generating efficient subgoal plans for the agent. Given the
high-level strategy and the current state of the game, the module decomposes the strategy into a
sequence of subgoals in the form of action function calls to efficiently implement the strategy. The
subgoal module uses the LLM to generate these plans as a sequence of action function calls (usually
3-6). The prompt includes the current step of the game, the high-level strategy/target inventory
previously decided upon, details about the current observations (including player position, orientation,
inventory, observable resource locations, other agent locations), valid movement locations, memory,
and instructions about the action functions.

Action functions for the * in the Matrix substrates:

• move_to(src_coord, target_coord): Efficiently move agent from source coordinate to target
coordinate.

• fire_at(target_coord): Stay around specified coordinate and fire interaction when opponent
is spotted to initiate duel.

Action functions for Collaborative Cooking Asymmetric:

• move_to(src_coord, target_coord): Efficiently move agent from source coordinate to target
coordinate. Only move to valid move_to locations where counters or objects are not present.

• interact(target_coord): Move to and interact with the entity at the target coordinate, such as
picking up ingredients or delivering dishes of cooked soup. To place an object on a counter
to free your hands, use interact(counter_coord).

• wait(target_coord): Wait for the pot at target_coord to finish cooking. Check the progress of
the pots and only use valid locations where pots are present.

C.5 Action Planner

The action planner turns the sequence of subgoals specified by the subgoal module into a se-
quence of atomic actions compatible with the Melting Pot environment. These actions include
step forward, backward, left, or right, turn left or right, fire zapping beam, and noop. For the
move_to(source_coordinate, target_coordinate) function, the A* algorithm find the most
efficient path given a set of obstacles. Walls are always considered obstacles, and other resources are
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conditionally added as obstacles. If a path can be found without picking up another resource, the
action planner will return it. However, in many cases the language model picks a target coordinate
where other resources cannot be avoided. The action planner will use a priority system in this case,
privileging paths where only resources of the same type as the target coordinate will be picked up.
The fire_at function returns a sequence of actions to turn towards the opponent and zap them when
the agent is within the extent of the zapping beam’s range. If the opponent is not in view, then the
fire_at function turns the agent continually clockwise until the other agent is found.

C.6 Self-Reflection - Collaborative Cooking

For Collaborative Cooking Asymmetric, an evaluator and self-reflection mechanism was added as in
the Reflexion baseline [Shinn et al., 2024]. This was added such that if the agent was making action
plans that did not change the state of the world, for example trying to pick up a tomato while holding
a dish, these action plans were not repeated with the same state information. By first reflecting on
whether the previous action plan was successful, the agent was able to make less mistakes over the
course of the episode. This additional cognitive module for self-reflection could in principle also be
added for the other substrates, but was not necessary for good performance on the * in the matrix
games because the state transitions were simpler for LLMs to understand.

D Baselines

D.1 ReAct

The ReAct [Yao et al., 2022] agent combines reasoning traces with task-specific actions in an
interleaved manner. This approach allows the agent to generate both reasoning steps and actions
within the same language model framework. In our context, the reasoning consists of chain of thought
reasoning preceding a subgoal plan in the specified format of utilizing action functions. The agent is
prompted to think about the other agents’ strategies and come up with a subgoal plan accordingly.
Thus, ReAct is functionally an ablation of Hypothetical Minds such that there is only a subgoal
module and not a theory of mind module. Three example responses are shown as few-shot prompts,
consistent with the ReAct framework.

D.2 Reflexion

Reflexion adds evaluation and self-reflection to the ReAct agent backbone serving as the Actor
module. After a subgoal plan is completed, the LLM is queried to evaluate the outcomes of that plan.
Outcomes are represented as the reward during the plan, and salient state information pre and post
plan. This state information includes the position and the inventory of the agent for the * in the matrix
games. For Collaborative Cooking Asymmetric, the given state information included position, what
the agent is holding, and the state of the two pots.

D.3 PlanReAct

We include the PlanReAct architecture introduced in [Liu et al., 2023] as a hierarchical baseline. This
model first generates a high-level plan in language and then feeds this plan to a subgoal module that
outputs a subgoal plan based on the high-level plan. Thus, the only difference between PlanReAct
and Hypothetical Minds is that high-level planning is mediated by the multiple processing steps of
the theory of mind module, including hypothesis generation, evaluation, and refinement.

D.4 PPO

We train RL agents in a population of PPO agents [Schulman et al., 2017] on each substrate. The
weights are randomly initialized for each agent in the population and weights are not shared. Therefore
the agents are not playing against identical copies of themselves and see a greater diversity during
training than traditional self-play. Models were trained in PyTorch using the Ray Rllib pipeline and
this starter code https://github.com/rstrivedi/Melting-Pot-Contest-2023. Optimal parameters were
searched over and the final models were trained for 1e8 steps.
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D.5 OPRE

We include the Options as REsponses model (OPRE) introduced in the first version of the Running
With Scissors environment [Vezhnevets et al., 2020]. OPRE is a hierarchical MARL method where
agents learn high-level options as strategic responses to other agents’ behaviors. The high-level
controller selects options based on observations of other agents, and the low-level controller executes
actions conditioned on these options. As this was included as a baseline in the Melting Pot 2.0 paper,
we reuse the results reported in that paper [Agapiou et al., 2022].

E Ablation Details

The Hypothesis Evaluation + Hypothesis Refinement model had a different evaluation procedure than
the other models. Rather than computing values based on predicting the opponent’s inventory, here
we use extrinsic reward and counterfactual reward. If a hypothesis is used online for goal selection,
then the rewards received in the next interaction can be directly used for evaluating it. For the other
considered hypotheses, we simulate counterfactual reward by 1. asking GPT to generate a target
inventory given the hypothesis/strategy and the given situation and 2. after the next interaction we ask
GPT again to reason about what the reward would have been if it played the inventory from 1. GPT
is asked to output, positive, negative, or neutral, which we convert to reward with the c parameter.

F Hyperparameters

Hyperparameter Value
Alpha (α) 0.3
Intrinsic reward c 1.0
Threshold for Hypothesis Value (Vthr) 0.7
Top k Hypotheses Considered (k) 5

Table 2: Hyperparameters of the Hypothetical Minds model

Hyperparameter Value
Alpha (α) 0.3
Counterfactual reward c 3.0
Threshold for Hypothesis Value (Vthr) 3.0
Top k Hypotheses Considered (k) 5

Table 3: Hyperparameters of the HE + HR model

Hyperparameter GPT-4 GPT-3.5 Llama3
Model "gpt-4-1106-preview" "gpt-3.5-turbo-1106" "Meta-Llama-3-70B-Instruct"
Max tokens 4000 2000 2000
Temperature 0.1 0.2 0.2
Top p 1.0 1.0 1.0
n 1 1 10

Table 4: Hyperparameters of Various Models

G Experiments Compute Resources

In Table 5 and ??, we show the cost of running an episode with 1000 steps. For Llama3 experiments
which required 4 GPUs, we ran our experiments on three compute nodes with A40s or L40s.

H Prompts

All prompts can be seen in our public repository: https://github.com/locross93/Hypothetical-Minds/.
The most representative prompts are also reproduced below.
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Money ($) Time (mins)
HM-GPT4 10 45
Reflexion 8 42

ReAct 6 14
PlanReAct 4 21

HM-GPT3.5 1 24
HM-Llama3 - 58

Table 5: Experiment costs for a single episode

H.1 Running With Scissors: Arena Prompts

RWS Arena System Message

You are Agent 0 in the eight player ’running_with_scissors’ Melting Pot multiagent
reinforcement learning environment that is a 25x24 (x by y) grid with resources to
collect and walls to navigate around. 8 Players can move around the map and collect
resources of 3 discrete types corresponding to rock, paper, and scissors strategies
- Yellow box = rock - Purple box = paper - Blue box = scissors. Rock/yellow beats
scissors/blue, paper/purple beats rock/yellow, and scissors/blue beats paper/purple.
In addition to movement, the agents have an action to fire an "interaction" beam which
initiates a duel with one player getting positive reward and the other agent getting
an opposite negative reward according to their inventories.
All players carry an inventory with the count of resources picked up since last
respawn and for each respawn start with an inventory of 1 resource each. This
inventory is visible in the state with the key ’inventory’.
To play a pure strategy strongly, pick up at least 5 resources or more of the color
and then fire the interaction beam at another player. To commit less strongly to a
strategy, pick up around 3 resources of the color and then fire the interaction beam
at another player.
Usually you will only want to pick up one type of resource before an interaction, in
order to gain the most information about the other players’ strategies and to not
waste time collecting other resources.
You also want to maximize the number of interactions so after you pick up 4-6
resources, you should seek out a duel to reset your inventory and gain more
information about the other players’ strategies.
Your opponents will also almost always only pick up one type of resource before an
interaction.
For example, player0_inventory = [7, 1, 1] (Yellow, Purple, Blue) is a good inventory
that will lead to an informative duel, whereas player0_inventory = [2, 2, 2] (Yellow,
Purple, Blue) will not be informative.
Your reward is the result of a matrix multiplication involving your inventory in a
vector format, and your opponent’s inventory vector, and a payoff matrix similar to
rock paper scissors.
r_t = transpose(your_inventory) * A_payoff * opponent_inventory where A_payoff =
np.array([[0, -10, 10], [10, 0, -10], [-10, 10, 0]])
The reward usually ranges from (5, -5) depending on the inventories of both players
(the min is -10 and max 10, but it is rare to get these magnitudes). Typically +/-
3-5 is a high magnitude, and a reward near 0 suggests both players played a similar
inventory.
State Description: This environment is partially-observable, you can observe an 11x11
grid around your agent depending on your position and orientation (you can see more in
front of you than behind).
Previously seen states will be represented in memory, but note that these states could
potentially be outdated. For example, the other agent could collect a resource that
you previously saw.
Given the partially-observable nature of the environment, you will need to explore the
environment appropriately and select goals based on the information you’ve gathered.
Also pay attention to your opponents’ positions when you see them in order to duel
with them and gain information about their strategy.
To find a specific player, you can first move towards the last known location of the
player and then move randomly around the map.
Hanging around the center of the map and waiting for a player to come to you is not a
good strategy for this environment.
After you gather information about your opponents’ strategies, seek out opponents
whose strategy you know and can exploit and play a counter-strategy.
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H.1.1 Hypothetical Minds

Subgoal Module Message

Current State Description:
- Global Map Size: {map_size} grid (Walls are located at the boundaries of the map
and in other places that are invalid for move_to).
- Valid Locations for move_to: {movable_locations}
- Player Position: {player_position}
- Player Orientation: {player_orientation}
- Player Inventory (yellow, purple, blue): {player_inventory}
- Egocentric Observations Size: 11x11 grid around your agent. You currently can
observe the following based on your position and orientation:
- Observable Yellow Box Locations (format: ((x,y), distance from current location)):
{yellow_locations_with_distance}
- Observable Blue Box Locations: {blue_locations_with_distance}
- Observable Purple Box Locations: {purple_locations_with_distance}
- Observable Opponent Locations: {opponent_locations}
- Previously seen states from memory (format: ((x,y), step last observed, distance
from current location)): {self.memory_states}
Execution Outcomes:
{execution_outcomes}
Error for extracting and executing actions from the response:
{get_action_from_response_errors}
Rewards:
{rewards_str}
Strategy Request:
You are at step {step} of the game.
You have decided to execute a high-level strategy/target inventory in a previous
response given what you predicted your opponent will do.
Select subgoals in order to achieve the strategy, including first achieving a target
my_next_inventory: {self.hls_next_inventories}.
Once you achieve the target inventory, STOP picking up resources and immediately seek
out a duel with an opponent close to you that you can exploit based on your hypothesis
about their strategy and your current inventory.
So once you’ve picked up about 5-7 resources in total, seek out a duel to receive
rewards, get more information about strategies, and reset your inventory.
Here are your hypotheses about each player’s strategy: {self.opponent_hypotheses}
If you’ve generated a hypothesis about a player’s strategy, you can use this to inform
your strategy about whether to interact with them or not.
Each strategy is paired with a value on how well it explains the data observed so far,
starting at 0.
A hypothesis is validated when its value is greater than: {self.good_hypothesis_thr}.
Your task is to devise efficient action plans for player {self.agent_id}, reason
through what the next subgoals should be given the state information.
Your response should be broken up into two parts:
1. Subgoal Plan - based on the current state and the high-level strategy you
previously specified above, decompose this strategy into a sequence of subgoals and
actions to efficiently implement this strategy. Think step by step about this. This
could be fairly long.
2. Action Plan - output this sequence of actions in the following Python dictionary
format, parsable by ast.literal_eval() starting with:

{{ ’action_plan’: [’move_to((11, 7), (9, 5))’, ’move_to((9, 5), (13, 5))’] }}

Example response 1, 2, and 3 are formatted similarly, detailing other strategies and
actions.
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ToM Module User Message 1

An interaction with another player has occurred at step {step},
{self.interaction_history[self.last_played_id][-1]}.
What was my opponent’s likely inventory in the last round given the inventory
I played and the reward received?
Think step by step about this. First think about what resource you had the
most of in your inventory, and then think about which resource would beat
that if you received a negative reward of -1 or worse or which resource would
lose to yours if you received a positive reward of 1 or more.
If you received a small magnitude reward near 0 and in between (-1, 1), then
your opponent may have played a similar inventory to you.
Then depending on the magnitude of the reward and the number of resources you
played, you can infer the opponent’s inventory and whether they played that
strategy strongly (5+ of that resource) or weakly ( 3 of that resource).
An inventory of {’rock/yellow’: 1, ’paper/purple’: 1, ’scissors/blue’: 1}
is not possible because you need at least 2 resources of a type to play a
duel.
Here are some example interactions to help you reason about how the reward
function works:
’your_inventory’: {’rock/yellow’: 3, ’paper/purple’: 1, ’scissors/blue’:
1}, ’rewards’: -2.285, ’possible_opponent_inventory’: {’rock/yellow’: 1,
’paper/purple’: 5, ’scissors/blue’: 1}
’your_inventory’: {’rock/yellow’: 5, ’paper/purple’: 1, ’scissors/blue’:
1}, ’rewards’: 3.571, ’possible_opponent_inventory’: {’rock/yellow’: 1,
’paper/purple’: 1, ’scissors/blue’: 6}
’your_inventory’: {’rock/yellow’: 1, ’paper/purple’: 4, ’scissors/blue’:
1}, ’rewards’: 2.0, ’possible_opponent_inventory’: {’rock/yellow’: 3,
’paper/purple’: 1, ’scissors/blue’: 1}

In the 2nd part of your response, output the predicted opponent’s inventory
in following Python dictionary format, parsable by ast.literal_eval()
starting with: ’possible_opponent_inventory’: {’rock/yellow’: 1,
’paper/purple’: 1, ’scissors/blue’: 5}
Example output:
Given that I last played a strong paper strategy with an inventory of
{’rock/yellow’: 1, ’paper/purple’: 5, ’scissors/blue’: 1} and received
a reward of -3.428, I believe my opponent played a strong scissors strategy.
The reward suggests that my paper was beaten by their scissors, which means
their inventory likely had a higher count of blue/scissors resources.
A possible inventory for them could be {’rock/yellow’: 1, ’paper/purple’: 1,
’scissors/blue’: 5} or a similar distribution favoring scissors.
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ToM Module User Message 2

Total Rewards: {rewards_str}
Strategy Request:
An interaction with another player has occurred at step {step},
{self.interaction_history[self.last_played_id][-1]}.
The total interaction history with this opponent is:
{self.interaction_history[self.last_played_id]}.
If self-improvement is a focus:
Here are your previous hypotheses about the algorithm this opponent is
playing: {self.top_hypotheses[self.last_played_id]}.
What is your opponent’s likely policy given the inventories and the reward
function? Think step by step about this given the interaction history.
If your previous hypotheses are useful, you can iterate and refine them to
get a better explanation of the data observed so far.
If a hypothesis already explains the data very well, then repeat the
hypothesis in this response.
They may be playing the same pure policy every time, a complex strategy to
counter you, or anything in between.
They are not necessarily a smart agent that adapts to your strategy, you are
just playing an algorithm.
Are you getting high positive or negative reward when playing the same type
of inventory? For example, getting high positive reward every time you play
many paper resources. If so, this opponent may be playing a pure strategy
and you can exploit this by playing the counter strategy.
Once you have output a hypothesis about this opponent’s strategy with step by
step reasoning, you can use the hypothesis to inform your strategy.
In the 2nd part of your response, summarize your hypothesis in a concise
message following Python dictionary format, parsable by ast.literal_eval()
starting with: ’rock/yellow’: 1, ’paper/purple’: 1, ’scissors/blue’: 5
{’Opponent_strategy’: ’I think my opponent is always playing a pure scissors
strategy and collecting around 5 blue resources.’}
Otherwise:
What is this opponent’s likely policy given the inventories and the reward
function? Think step by step about this given the interaction history.
They may be playing the same pure policy every time, a complex strategy to
counter you, or anything in between.
They are not necessarily a smart agent that adapts to your strategy.
Are you getting high positive or negative reward when playing the same type
of inventory? For example, getting high positive reward every time you play
many
paper resources. If so, this opponent may be playing a pure strategy and you
can exploit this by playing the counter strategy.
Once you have output a hypothesis about this opponent’s strategy
with step by step reasoning, you can use hypothesis to inform your strategy.
In the 2nd part of your response, summarize your hypothesis in a concise
message following Python dictionary format, parsable by ast.literal_eval()
starting with: {’Opponent_strategy’: ’I think my opponent is always playing
a pure scissors strategy and collecting around 5 blue resources.’}
You will be prompted again shortly to select subgoals and action plans to
execute this strategy that achieves the target inventory, so do not include
that in your response yet right now.
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ToM Module User Message 3

An interaction with self.last_played_id has occurred at step {step}, The
total interaction history with {self.last_played_id{ is: You previously
made the following guess about this player’s strategy: Think step by step
and predict what this opponent will play the next time you interact with
them. Given the above mentioned guess about the opponent’s policy/strategy,
and the last inventory you played (if their strategy is adaptive, it may
not be), what is their likely inventory in the next round. In the 2nd
part of your response, output the predicted opponent’s next inventory
in following Python dictionary format, parsable by ‘ast.literal_eval()‘
starting with “‘python. Example response 1: ’Opponent_next_inventory’:
Given that my opponent is playing a rock policy, I believe their next
inventory will be inventory={’rock/yellow’: 5, ’paper/purple’: 1,
’scissors/blue’: 1}. “‘python { ’predicted_opponent_next_inventory’:
{’rock/yellow’: 5, ’paper/purple’: 1, ’scissors/blue’: 1} } “‘ Example
response 2: ’Opponent_next_inventory’: Since my guess is that this player
is playing a scissors policy, I predict that their next inventory will be
{’rock/yellow’: 1, ’paper/purple’: 1, ’scissors/blue’: 5}. “‘python {
’predicted_opponent_next_inventory’: {’rock/yellow’: 1, ’paper/purple’: 1,
’scissors/blue’: 5} } “‘ Example response 3: ’Opponent_next_inventory’:
Since my opponent is following a paper strategy, I predict their upcoming
inventory will be inventory={’rock/yellow’: 1, ’paper/purple’: 5,
’scissors/blue’: 1}. “‘python { ’predicted_opponent_next_inventory’:
{’rock/yellow’: 1, ’paper/purple’: 5, ’scissors/blue’: 1} }
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ToM Module User Message 4

An interaction with self.last_played_id has occurred at step {step}, The
total interaction history with self.last_played_id is: The total interaction
history overall is: . You previously made the following guesses about all
the other players’ strategies: possible_opponent_strategy. High-level
strategy Request: Provide the next high-level strategy for your player
self.agent_id. This response should include step by step reasoning in
parts 1-3 about which strategy to select based on the entire interaction
history in the following format: 1. ’Opponents_to_seekout’: Given
the hypotheses about your opponent’s strategies and their values, which
players should you seek out to duel with next and why? If possible,
select opponents you have a good hypothesis about so you can exploit it
and maximize your reward. Try to select multiple players if possible as
one player might be hard to find or is respawning. Are you noticing any
patterns across the population as a whole? 2. ’Opponent_next_inventory’:
Given the above mentioned guess about the opponent’s policy/strategy what
is their likely inventory in the next round. 3. ’My_next_inventory’:
Given the opponent’s likely inventory in the next round, what should your
next inventory be to counter this? 4. In the 4th part of your response,
output the opponent to seekout, the predicted opponent’s next inventory,
and your next inventory in following Python dictionary format, parsable
by ‘ast.literal_eval()‘ starting with “‘python. Example response 1: 1.
’Opponent_to_seekout’: Given that I am fairly certain that player_1 and
player_5 is playing a rock policy, I believe I should seek out either
player_1 or player_5 to duel with next. 2. ’Opponent_next_inventory’:
Given that these opponents are playing a rock policy, I believe their next
inventory will be something like inventory={’rock/yellow’: 5, ’paper/purple’:
1, ’scissors/blue’: 1}. 3. ’My_next_inventory’: Given that these players
are playing a rock policy, I believe my next inventory should be a paper
policy inventory={’rock/yellow’: 1, ’paper/purple’: 5, ’scissors/blue’:
1}. “‘python { ’opponents_to_seekout’: [’player_1’, ’player_5’],
’predicted_opponent_next_inventory’: {’rock/yellow’: 5, ’paper/purple’: 1,
’scissors/blue’: 1} ’my_next_inventory’: {’rock/yellow’: 1, ’paper/purple’:
5, ’scissors/blue’: 1} } Example response 2: 1. ’Opponents_to_seekout’:
Considering all the interactions, player_2, player_3, and player_5
seem to heavily favor the scissors/blue strategy with consistent picks.
Engaging either of these players could offer a high reward opportunity. 2.
’Opponent_next_inventory’: Based on the observed behavior of player_2,
player_3, and player_5, it is likely they will continue with a strong
scissors/blue strategy, potentially having an inventory of {’rock/yellow’:
1, ’paper/purple’: 1, ’scissors/blue’: 5}. 3. ’My_next_inventory’:
To effectively counter the scissors/blue strategy, my optimal approach
would be to adopt a rock/yellow strategy. An inventory geared towards
this would be {’rock/yellow’: 5, ’paper/purple’: 1, ’scissors/blue’: 1}.
“‘python { ’opponents_to_seekout’: [’player_2’, ’player_3’, ’player_5’],
’predicted_opponent_next_inventory’: {’rock/yellow’: 1, ’paper/purple’:
1, ’scissors/blue’: 5}, ’my_next_inventory’: {’rock/yellow’: 5,
’paper/purple’: 1, ’scissors/blue’: 1} }

H.2 Running with Scissors: Repeated

The prompts for Running with Scissors Repeated remain very similar as Running with Scissors:
Arena with the modification of the prompts being in a 2 player setting.
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H.3 Prisoner’s Dilemma: Repeated
System Message

You are Agent {self.agent_id} in the two player ’prisoner_dilemma_in_the_matrix’ Melting
Pot multiagent reinforcement learning environment that is an 23x15 (x by y) grid with
resources to collect and walls to navigate around. Your goal is to maximize reward.
Players can move around the map and collect resources of 2 discrete types corresponding
to cooperate and defect strategies - Green box = cooperate - Red box = defect. You and
another agent will collect resources and compare inventories in an encounter in repeated
rounds. In addition to movement, the agents have an action to fire an "interaction"
beam which initiates a duel to compare inventories and distribute rewards. All players
carry an inventory with the count of resources picked up since last respawn and for each
respawn start with an inventory of 1 resource each. This inventory is visible in the
state with the key ’inventory’. Here is how the payoff matrix in the generic prisoner
dilemma works:

• If both players cooperate, they both receive a reward of around 3,

• If one player cooperates and the other defects, the defector receives a reward of
around 5 and the cooperator receives a reward of around 0,

• If both players defect, they both receive a reward of around 1.

The nuance of ’prisoner_dilemma_in_the_matrix__repeated’ is that the rewards are using
the payoff rules of the classic prisoner dilemma, but the interaction is repeated and the
rewards are distributed based on the inventory of resources collected by each player.

• If both agents cooperate, the one with more cooperate resources will receive a
reward lower than the one with less cooperate resources,

• If one agent cooperates and the other defects, the more defect resources the
defector has, the higher the reward for the defector,

• If both agents defect, the one with more defect resources will receive a higher
reward than the one with less defect resources.

Your goal before each interaction is to try and infer what the other player will play
and how their strategy over time is affected by your plays. You will only want to
pick up one type of resource before an interaction. For example, the inventories
{’cooperate/green’: 1, ’defect/red’: 1} and {’cooperate/green’: 3, ’defect/red’: 3}
will both result in the same reward, so don’t waste time collecting more than you need.
Player 1 will also always only pick up one type of resource before an interaction. To
play a strategy strongly, pick up at least 6 resources or more of only one color and then
fire the interaction beam at the other player. To commit less strongly to a strategy,
pick up around 2 resources of only one color and then fire the interaction beam at the
other player. State Description: This environment is partially-observable, you can
observe a 5x5 grid around your agent depending on your position and orientation (you can
see more in front of you than behind). Previously seen states will be represented in
memory, but note that these states could potentially be outdated. For example, the other
agent could collect a resource that you previously saw. Given the partially-observable
nature of the environment, you will need to explore the environment appropriately and
select goals based on the information you’ve gathered. Also pay attention to Player
1’s position when you see it in order to duel with them and gain information about their
strategy. Your goal is to maximize reward attained over an entire episode, so keep in
mind the long-term consequences of your actions. Look at events in a gestalt manner.
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H.4 Collaborative Cooking Prompts

System Message for Collaborative Cooking Asymmetric

You are Player {self.agent_id} in the Collaborative Cooking Asymmetric environment, the goal is
to cook and deliver tomato soup dishes with a partner. The environment consists of a kitchen
with a tomato dispenser, pots, delivery locations, and dish dispensers. Each agent (of 2) has
access to specific parts of the kitchen and can perform actions like picking up ingredients,
putting soup in a dish, and delivering cooked soup dishes. There is an impassable barrier in
the middle of the kitchen that separates the agents’ sides at x=4, where the pots are located.
The goal is to work together with the other agent to efficiently cook and serve as many dishes
of tomato soup as possible to maximize the collective reward. However, communication is not
possible, so you must infer your partner’s strategy from their actions and adapt accordingly to
coordinate tasks. To cook tomato soup, 1. put 3 tomatoes in a pot, 2. pick up a dish when
it is finished cooking, 3. put the cooked soup in a dish, and 4. deliver it to the delivery
location. Your team receives a reward of 20 for each successfully delivered dish. Only interact
with objects on your side of the kitchen. You can only hold one tomato at once. You cannot
pick up a tomato from the tomato dispenser with another item like a dish in your hand. You
need to pick up a dish before you pick up cooked soup from a pot. The environment is partially
observable, and you can only see a 5x5 grid around your agent. You will be prompted at different
points to provide high-level strategies and lower-level action plans to achieve them.
Use these three functions for lower-level action plans:

• move_to(src_coord, target_coord): Efficiently move agent from source coordinate to
target coordinate. Only move to valid move_to locations where counters or objects are
not present. Use sparingly.

• interact(target_coord): Move to and interact with the entity at the target coordinate,
such as picking up ingredients or delivering dishes of cooked soup. To place an object
down on a counter to free your hands, use interact(counter_coord). Mostly use this
function.

• wait(target_coord): Wait for the pot at target_coord to finish cooking. Check the
progress of the pots and only use valid locations where pots are present. You probably
only want to use this when both pots are full to maximize efficiency.

Most of the time you will just want to use the interact function because it both moves to and
interacts with objects, therefore all the cooking steps can be completed with the interact
function. To put down an item to pick something else up, interact with a counter to free your
hands. Do not put down items on the floor or the delivery location.

H.4.1 Hypothetical Minds
High Level Strategy Message (in ToM Module of HM) for Collaborative Cooking Asymmetric

Strategy Request:
You are at step {step} of the game.
Provide a strategy for agent {self.agent_id}.
Your response should outline a high-level strategy - what strategy do you
want to take next and why?
Teammate’s observed strategy: {self.teammate_strategy}
Think step by step about how to adapt to their behavior and maximize all
resources and efficiency accordingly.
This response will be shown to you in the future in order for you to select
lower-level actions to implement this strategy.
Example response:
High-level strategy: I want to focus on cooking tomato soup dishes.
You will be prompted again shortly to select subgoals and action plans to
execute this strategy, so do not include that in your response yet.
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Subgoal Module Message

Strategy Request:
You are at step {step} of the game.
Your task is to devise efficient action plans for agent {self.agent_id},
reason through what the next subgoals should be given the state information.
Your previously specified high-level strategy is: {self.my_strategy}
Your response should be broken up into two parts:

1. Subgoal Plan - Based on the current state and the high-level strategy
you previously specified, decompose this strategy into a sequence
of subgoals and actions to efficiently implement this strategy. For
every subgoal, think step by step about the best action function and
parameter to use for that function. This could be fairly long.

2. Action Plan - Output this sequence of actions in the following Python
dictionary format, parsable by ast.literal_eval() starting with:

{{ ’action_plan’: [’interact((5, 1))’] }}

Example response 1:
Subgoal Plan: Given the current state and my high-level strategy to focus on
cooking tomato soup dishes, I should:
Move to the tomato dispenser and pick up a tomato.

{{ ’action_plan’: [’interact((5, 1))’] }}

Example response 2:
Subgoal Plan: Given the current state and my high-level strategy to focus on
delivering tomato soup dishes, I should:
Move to the dish dispenser and pick up a dish, then plate the cooked soup.

{{ ’action_plan’: [’interact((3, 4))’, ’interact((4, 2))’] }}

Example response 3:
Subgoal Plan: Next I should move to the delivery location and deliver the
cooked soup.

{{ ’action_plan’: [’interact((3, 1))’] }}
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Evaluate Action Outcomes/Self-Reflection

User Message Preamble:
If subgoal failed:
You are an action plan evaluator.
The last subgoal included an interact action that failed.
Your task is to look at the subgoal the agent took, the state of the
environment before and after the subgoal,
and evaluate why the subgoal was unsuccessful and provide feedback about what
the agent should do next time.
We will next plan an entire new action plan, so suggest specific action plans
and action functions to use next when applicable.

If subgoal succeeded:
You are an action plan evaluator.
Your task is to look at the action plan the agent took, the state of the
environment before the plan and the state of the environment after the plan,
and evaluate whether the action plan was successful, and if not, provide
feedback about what failed and what the agent should do next time.
Take into account that your teammate could have influenced the outcome of the
subgoal in some circumstances.
Suggest specific action plans and action functions to use next when
applicable.

Infer Teammate Strategy Message

User Message:
Based on the observed actions of your teammate (player_1), what do you think
their strategy is?
Are they specializing in any specific activity or subtask?

Teammate’s observed actions:
{self.teammate_actions}

Here are your previous hypotheses about the strategy your partner is playing:
{self.top_hypotheses}.

Think step by step and provide an analysis of their strategy, any
specialization you infer from their behavior, and their competence.
Then analyze how you can adapt your strategy to maximize efficiency and
coordination with your teammate.
Remember communication is not allowed.
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Predict Teammate Behavior Message

A dish has been delivered at step {step}.
You previously guessed that your teammate’s (player_1) policy is:
{possible_teammate_strategy}
Based on the proposed hypothesis about your teammate (player_1), what do you
think they will do next?
Output a concise label about your teammate’s next behavior in the following
Python dictionary format, parsable by ast.literal_eval() starting with:

python
{{ ’predicted_next_behavior’: ’placing tomatoes into pot (4,2)’ }}

Evaluate Predicted Behavior

A dish has been delivered at step {step}.
You previously guessed that your teammate’s (player_1) would perform this
behavior in this round: {predicted_next_behavior}
Here is the observed behavior of your teammate (player_1) in this round:
{latest_teammate_actions}
Did your prediction match the observed behavior?
Concisely output True or False in the below Python dictionary format,
parsable by ast.literal_eval() starting with:

{{ ’evaluate_predicted_behavior’: True }}
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [NA]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA]

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [NA]

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: [NA]

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [NA]

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [NA]

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [NA]

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]
Justification: [NA]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [NA]

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
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