
A Near-Linear Time Approximation Algorithm for Beyond-Worst-Case Graph
Clustering

Vincent Cohen-Addad * 1 Tommaso d’Orsi * 1 2 Aida Mousavifar * 1

Abstract
We consider the semi-random graph model of
(Makarychev et al., 2012), where, given a random
bipartite graph with α edges and an unknown
bipartition (A,B) of the vertex set, an adver-
sary can add arbitrary edges inside each com-
munity and remove arbitrary edges from the cut
(A,B) (i.e. all adversarial changes are mono-
tone with respect to the bipartition). For this
model, a polynomial time algorithm is known
to approximate the Balanced Cut problem up to
value O(α) (Makarychev et al., 2012) as long as
the cut (A,B) has size Ω(α). However, it consists
of slow subroutines requiring optimal solutions
for logarithmically many semidefinite programs.
We study the fine-grained complexity of the prob-
lem and present the first near-linear time algo-
rithm that achieves similar performances to that of
(Makarychev et al., 2012). Our algorithm runs in
time O(|V (G)|1+o(1) + |E(G)|1+o(1)) and finds
a balanced cut of value O(α) . Our approach ap-
pears easily extendible to related problem, such as
Sparsest Cut, and also yields an near-linear time
O(1)-approximation to Dagupta’s objective func-
tion for hierarchical clustering (Dasgupta, 2016)
for the semi-random hierarchical stochastic block
model inputs of (Cohen-Addad et al., 2019).

1. Introduction
Graph clustering and partitioning problems are central in
combinatorial optimization. Their study has led to a large
variety of key results, leading to new fundamental ideas and
impactful practical outcomes. The sparsest cut and balanced
cut problems are iconic examples: On the one hand, they
have served as a testbed for designing new breakthrough

*Equal contribution 1Google Research 2BIDSA, Boc-
coni. Correspondence to: Tommaso d’Orsi <tom-
maso.dorsi@unibocconi.it>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

algorithmic techniques, from the seminal paper of Leighton
and Rao (Leighton & Rao, 1988) up to the results of Arora,
Rao, and Vazirani (Arora et al., 2004) and Sherman (Sher-
man, 2009). On the other hand, they are models for graph
partitioning problems in various data mining and unsuper-
vised machine learning applications and have thus inspired
widely-used heuristics in more applied fields.

Beyond worst-case instances A frustrating gap exists
between the impressive theoretical results obtained over
the last three decades and the success of heuristics used
in practice. While poly-logarithmic approximation algo-
rithms have been developed for balanced cut and sparsest
cut (and related problem such as minimum bisection (Räcke,
2008), multicut (Garg et al., 1996), min uncut (Goemans
& Williamson, 1995; Agarwal et al., 2005)), the algorithm
design community has had little success in obtaining con-
stant factor approximation algorithms for these problems.
In fact, the Unique Games Conjecture even suggests that
such bounds may be very hard to obtain (Khot et al., 2007;
Khot & Vishnoi, 2015; Raghavendra, 2008; Raghavendra
et al., 2012). Thus, to be able to show good approximation
bounds and design algorithms that are tailored to real-world
instances, one must shift the focus from the worst-case to
the so called beyond-worst-case complexity of the problems.

This conclusion has seeded a long line of work aimed at
modeling average instances encountered in practice and
designing algorithms for these models (Dyer & Frieze, 1986;
Bui et al., 1987; Boppana, 1987; Feige & Kilian, 2001;
McSherry, 2001) (or analyzing existing algorithms in these
models (Jerrum & Sorkin, 1993; Dimitriou & Impagliazzo,
1998; Bilu & Linial, 2012b)). For the model to be relevant
it should forbid pathological instances that are extremely
unlikely in practice while capturing the essence of the real-
world instances without oversimplifying them.

While there has been a significant amount of work on infer-
ence in random and semi-random graph models, the work of
Makarychev, Makarychev and Vijayaraghavan (Makarychev
et al., 2012) is among the first to analyze the approxima-
bility and complexity of the graph partitioning objectives
mentioned above for extremely general families of semi-
random graphs. In their settings, the input is generated from

1

Fast Algorithm for Beyond-Worst-Case Graph Clustering

a distribution over graphs that exhibit a cluster structure.
Concretely, the graph consists of two communities and a
planted random cut between the communities, the adversary
can modify the graph in agreement with the cluster struc-
ture by arbitrarily adding edges within the communites and
/ or sparsifying the random cut across communities,1 see
Model 1.1 for a precise definition. In this context, the goal
is not to recover the underlying cluster structure – which
may be information-theoretically impossible – but rather to
provide a good approximation to the cut objectives.

The motivation for studying such models is the following. In
practice, the graphs we aim at clustering have an unknown
underlying cluster structure that we would like to identify –
and that’s why we are running a clustering algorithm in the
first place. In this context, on the one hand the intra-cluster
topology may be very peculiar and so possibly adversarial
(hence we would like to let the adversary freely choose the
intra-cluster topology2), on the other hand the inter-cluster
topology is often more random, sometimes interpreted as
noise between clusters and hence modeled as a random cut,
see also the discussion and motivating examples provided
in (Makarychev et al., 2012).

Of course, allowing the adversary to make the planted cut
denser – and by doing so to smooth out the underlying
cluster structure – would bring us back to the worst-case
setting; the semi-random model proposed above is thus a
step in between.

Hence, with the idea of bridging the gap between worst-
case complexity of the problems and real-world instances,
Makarychev, Makarychev, Vijayaraghavan (Makarychev
et al., 2012) developed a general algorithmic framework
for graph partitioning problems in the above semi-random
instances which achieves an O(1)-approximation algorithm
(for a wide array of parameters) for balanced cut and sparsest
cut and related problems such as multicut, min uncut and
small set expansion.

While the result of (Makarychev et al., 2012) is close to opti-
mal in the sense that it achieves an O(1)-approximation for
several classic graph partitioning problems and a wide range
of parameters, it relies on an heavy machinery that requires
to iteratively solve multiple semi-definite programs. In fact
the running time is not stated in the paper and seem to re-
quire Ω(n3) time for the rounding on top of the time it takes
to obtain optimal solutions to polylogarithmically many
semi-definite programs with more than Ω(n3) constraints.3

1These are often times referred to as monotone perturbations.
Such perturbations may have surprising effects on the statistical
and computational aspects of the problem. For instance see (Moitra
et al., 2016; Liu & Moitra, 2022).

2We remark this model is significantly more general than the
stochastic block model, see Section 1.2

3We point out that the algorithm requires an actual feasible

We initiate the study of the fine-grained complexity of the
problem and ask: How fast can we solve beyond-worst-case
instances (involving semi-random perturbations)?

1.1. Results

Before providing our main theorem, we introduce the model
of interest.

Model 1.1 (Random cut with monotone perturbations). We
consider graphs over n vertices generated through the fol-
lowing process. Let a ∈ (0, 1/2), η(n) ∈ (0, 1):

(i) The adversary partitions [n] into sets A,B satisfying
|A|, |B| > an.

(ii) Each edge between A and B is drawn randomly and
independently with probability η.

(iii) The adversary arbitrarily adds edges within A and
within B.

(iv) The adversary arbitrarily removes edges between A
and B.

Our main result is an algorithm that, given an instance of
Model 1.1 with a Ω(n2 ·η)-sized (A,B) cut, returns aO(1)-
approximation in almost linear time.4

Theorem 1.2. Let G be a graph over n vertices gener-
ated through Model 1.1 with parameters a > 0, η >

Ω((logn)2·(log logn)2

n) . There exists an algorithm that on in-
put G, with probability 1− o(1), outputs an Ω(a)-balanced
cut of value at most O(n2 ·η), namely a cut where each side
has size at least Ω(a · n).

Moreover, the algorithm runs in time
O
(
|V (G)|1+o(1)

+ |E(G)|1+o(1)
)

.

Theorem 1.2 is a significant step toward bridging the gap be-
tween the theoretically-oriented work of (Makarychev et al.,
2012) and the practical motivation behind semi-random
models. The error guarantees of the underlying algorithm
match those of (Makarychev et al., 2012), but the running
time is nearly linear. Despite the fact that further steps re-
mains to be taken to provide algorithmic solutions that both
matches the theoretical guarantees of (Makarychev et al.,
2012) and whose running time is competitive with state-of-
the-art Bisection heuristics, our algorithm is a first example
that general beyond-worst-case graph clustering can be done
in near linear time.

Finally, we believe that understanding the fine-grained com-
plexity of balanced cut and related problems beyond-the-

solution with nearly optimal objective value and not a rounded
solution.

4We write o(1) to denote real-valued functions tending to zero
as n grows.

2

Fast Algorithm for Beyond-Worst-Case Graph Clustering

worst case is an important line of work and the techniques
presented here could lead to further improvements for other
related problems for which the beyond-worst-case analy-
sis has been studied (e.g.: Bilu-Linial stability for multi-
cut (Bilu & Linial, 2012a; Angelidakis et al., 2017)).

Generalizations Our approach appears to also be easily
extendable to other graph problems. As a concrete exam-
ple, we consider the semi-random hierarchical stochastic
block model (henceforth HSM) of (Cohen-Addad et al.,
2019). In (Cohen-Addad et al., 2019), the authors studied
the celebrated objective function for hierarchical clustering
introduced by Dasgupta (Dasgupta, 2016) and investigate
how well it can be approximated beyond-the-worst-case.
Assuming the Small Set Expansion hypothesis (Raghaven-
dra & Steurer, 2010), the problem cannot be approximated
within any constant factor. The authors thus introduce a
generative model for hierarchical clustering inputs called
the hierarchical stochastic block model that naturally gener-
alizes the classic stochastic block model, and show that one
can approximate Dasgupta’s objective up to a constant fac-
tor in that model and under semi-random perturbation (the
precise definition of the model can be found in Appendix D).
In this paper, we significantly improve the complexity of
the algorithm of (Cohen-Addad et al., 2019).

Theorem 1.3. Let G be a graph generated from the HSM
(Definition D.4) with pmin = Ω

(
log n/n2/3

)
. Then,

there exists a randomized algorithm that runs in time
O
(
|V (G)|1+o(1)

+ |E(G)|1+o(1)
)

with probability 1 −
o(1) outputs a tree T such that

cost(T ;G) = O(OPT (Ḡ)), (1)

where OPT (Ḡ) denotes the value of the optimal tree for Ḡ
and we note that OPT (Ḡ) = cost(T̃ ; Ḡ), where T̃ is the
generating tree. Furthermore, the above holds even in the
semi-random case, i.e., when an adversary is allowed to
remove any subset of the edges from G.

1.2. Related Research

There has been extensive research on graph partitioning
problems for random and semi-random models. Perhaps
the most extensively studied example is the stochastic block
model (see (Abbe, 2017) for a broad overview). In its sim-
plest form, the model describes graphs where both the inter-
community and the intra-community topologies are random.
That is the graph is randomly partitioned into two subsets
(A,B) of the same size such that every edge between the set
A and set B exists with probability η, and edges inside com-
munities A, and B exists with probability µ > η.5 Many
algorithms are known to succesfully recover the partition

5We remark that from both a computational and a statistical
point of view, sharp phase transitions appear depending on the

for typical instances of the model (Decelle et al., 2011; Mas-
soulié, 2014; Mossel et al., 2015; Hopkins & Steurer, 2017;
Mossel et al., 2018). In recent years, an ongoing line of work
has aimed to extend these algorithmic techniques to more
general semi-random models (Feige & Kilian, 2001; Moitra
et al., 2016; Montanari & Sen, 2016; Ding et al., 2022; Hua
et al., 2023), first by introducing monotone perturbations
(Feige & Kilian, 2001; Moitra et al., 2016; Fei & Chen,
2019; Liu & Moitra, 2022) (a perturbation is monotone with
respect to the bipartition (A,B) if it adds edges inside the
comunities or remove edges accross communities) and then
by allowing a small but constant fraction of adversarially
chosen edge (Ding et al., 2022) or vertex (Liu & Moitra,
2022; Hua et al., 2023) perturbations. These results still
crucially rely on the randomness of the intra-cluster topol-
ogy and thus cannot work in the significantly more general
context of Model 1.1, where the structure inside A and B is
arbitrarily and not random. (We remark that random settings
with 0 < µ 6 η have been investigated in the statistical
physics literature.6 These results also cannot be used in the
presence of monotone perturbations.)

Model 1.1 was extended in (Makarychev et al., 2014), where
the same set of authors introduced the so-called PIE model.
Here the main assumption concerning the edges across the
(A,B) partition is that they were sampled from a permuta-
tionally invariant distribution (w.r.t to edges). Their error
guarantees are comparable to those of (Makarychev et al.,
2012) in the denser regime η > O(polylog(n)

n) . We leave it
as an open question to extend Theorem 1.2 to this model.

Less general semi-random models, in which adversarial
perturbations are applied before sampling the random edges,
have also been studied. Interestingly, for these significantly
weaker adversaries, spectral algorithms have been shown to
achieve nearly optimal guarantees (Chierichetti et al., 2022).
However, as already mentioned, these algorithms are known
to be fragile to perturbations such as in Model 1.1 and thus
cannot be expected to lead to error guarantees comparable
to those in Theorem 1.2.

Further recent work (Peng, 2020) developed a sublinear ro-
bust algorithm for local reconstruction of noisy (k, φin, φout)-
clusterable graphs. Such graphs consists of k expanders
with inner conductance at least φin and outer conductance
at most φout and an adversary is allowed to modify at most
ε fraction of edges within clusters. This result holds under
the assumption φout 6

ε·φin
logn·kO(1) .

relation between the expected average degree and the community
bias. We omit a detailed discussion and refer the interested reader
to the aforementioned survey.

6The model is usually referred to as the antiferromagnetic
model.

3

Fast Algorithm for Beyond-Worst-Case Graph Clustering

2. Techniques
We present here the main ideas contained in the proof of
Theorem 1.2. Throughout the section let G be a random
graph sampled through steps (i) and (ii) of Model 1.1 and
let G◦ be the resulting graph after steps (iii) and (iv). We
let α 6 (1 + o(1)) · n2 · η be the number of edges in G and
thus an upper bound on the optimal balanced cut in G◦ with
high probability.

Slow algorithms for balanced cut in the semi-random
model In order to present our techniques for obtaining
a near linear time algorithm with constant approximation
factor for Model 1.1, it is necessary to first understand how
the known slow algorithm of (Makarychev et al., 2012)
works. Consider the random graph G and let v1, . . . , vn ∈
Rn be the embedding given by the returned SDP solution,
where vi corresponds to the embedding of the i-th vertex
of G.7 The algorithm of (Makarychev et al., 2012) is an
iterative procedure that cycles over two subroutines: first,
the algorithm solves the canonical balanced cut SDP as in
(Arora et al., 2004); second, the algorithm carefully removes
clusters of vertices that are particularly close to each other
in the embedding given by the found optimal SDP solution.

Concretely, the latter step identifies so-called (δ, n)-heavy
vertices, namely vertices i such that its embedding vi in the
SDP solution is at distance at most δ from at least 10δ2n
embeddings of other vertices in the SDP solution8. Then, the
algorithm carves out a ball of radius δ: It creates a cluster
containing i and all the vertices j s.t. vj is at distance at
most δ from vi. Here δ is a parameter chosen appropriately.
At the end of this process, the algorithm has removed a set
Hδ ⊆ V (G) of vertices from the instance.

The crucial observation here is that, in every feasible em-
bedding of the random graph G, if the random cut is dense
enough, then when restricted to the non-heavy vertices, it
will satisfy a one-sided Chebyshev-like inequality of the
form:

P
ij
u.a.r.∼ E(G\Hδ)

(
‖vi − vj‖2 6 δ

)
6 1/δ2 .

That is, with high probability only a O(δ2)-fraction of the
edges between non-heavy vertices is shorter than δ in the
embedding. This property is called geometric expansion.

Now the crux of the argument is that, given a feasible embed-
ding v1, . . . , vn ∈ Rn of G, if by removing heavy vertices
we don’t cut more than O(α) edges, then the geometric
expansion property guarantees that the minimum balanced
cut in the remaining graph has cardinality at most O(δ2 ·α).
Thus after several iterations of the algorithm we have de-

7See Section 4 for a definition of the program.
8Notice that a ball of radius 2δ centered at any heavy vertex v

contains at least δ2n vertices.

creased the value of the minimum balanced cut by at least a
O(1/

√
log n) factor (and in fact, we will need to decrease

it by a 1/ log n factor in order to use the algorithm of (Sher-
man, 2009) in near linear time) and so a simple application
of the SDP rounding of (Arora et al., 2004) returns now a
cut of optimal value α. Importantly, the geometric expan-
sion property is robust to monotone changes – namely to
the changes that the adversary can make to the graph at the
last two steps of the generative model (Model 1.1) and thus,
the exact same reasoning applies for the graph G◦ as well.

Roadblocks to speeding up the algorithms via the ma-
trix multiplicative weights framework While semidefi-
nite programs are computationally expensive to solve, there
is by now a rich literature on fast algorithms to approxi-
mately solve them (e.g. see (Arora & Kale, 2007; Sherman,
2009; Steurer, 2010), see Appendix A for a comprehensive
description). These results rely on the matrix multiplicative
weight method (henceforth MMW) (Arora & Kale, 2007).9

The framework aims at obtaining a ”feasible enough” so-
lution to the SDP so that the desired rounding argument
works out. On a high level, the approach is based on the
following steps: (i) find an assignment of the program vari-
ables that is only approximately feasible, in the sense that
only a subset of constraints is approximately satisfied, (ii)
round this infeasible solution into a feasible, integral solu-
tion. The key underlying idea is that, for many problems, if
the subset of constraints that gets satisfied is chosen care-
fully, then the rounding algorithm works even though the
starting assignment is far from being feasible. The running
time improvement is obtained by designing an ORACLE algo-
rithm that efficiently answers yes, if the candidate solution
is feasible enough, or otherwise answers no and exhibits
constraints that are violated by the current solution. These
will then be used to pick the direction of movement in the
underlying mirror descend algorithm. The running time
of the oracle depends on the so-called oracle’s width (see
Appendix A) and thus the challenge is usually to design
oracles of bounded width.

In the context of balanced cut for arbitrary graphs, this
approach has been extremely successful, leading to an
O(
√

log n/ε) approximation algorithm running in time
O(n1+ε log n+m) when combining (Sherman, 2009) and
maximum flow algorithm of (Chen et al., 2022).

With respect to our settings, a natural question to ask is
whether this matrix multiplicative framework may be used
at each iteration of the slow algorithm above to improve
its running time. While this intuition is –in principle– cor-
rect, to obtain significant running time speed ups, additional
fundamental challenges need to be solved. First, the heavy

9This can be seen as an application of the mirror descent algo-
rithm with the von Neumann negative entropy as the chosen mirror
map.

4

Fast Algorithm for Beyond-Worst-Case Graph Clustering

vertices removal procedure, that requires to find out all the
heavy vertices of the graph – or in other words, all the partic-
ularly dense balls in the SDP solution– is slow. Second and
most important, this subroutine crucially relies on having
access to an optimal SDP solution. Hence the procedure
cannot work with the infeasible solutions computed by the
MMW framework.

To overcome these obstacles we need to deviate from the
canonical matrix multiplicative weights paradigm.

Approximate heavy vertices removal Our first improve-
ment, thus, consists of designing a faster algorithm to
replace the subroutine that identifies all the dense balls
of the optimal SDP solution. Identifying dense balls
in high-dimensional Euclidean spaces (say of dimension
Ω(ε−2 log n)) is a well studied problem. We make use of
subsampling techniques to approximately solve this problem.
Namely, our procedure will recover all the heavy vertices
but may yield false positives, namely balls that are almost
dense – up to a constant factor away from the target den-
sity. Concretely, we ask for balls that contain at least 10δ2n
vertices but are of radius

√
2δ instead of δ. While we can

achieve this in time Õ(|V (G)|), we now have to modify
the next steps of the rounding to take the false positive into
account in the rounding.

Main challenge: rounding and the matrix multiplicative
weights framework The second challenge is more signif-
icant. Our idea is the introduction of a probabilistic oracle
of small width that leverages the geometric expansion of the
planted cut. Concretely, recall in the previous paragraph we
introduced an approximate heavy vertex removal procedure
with the property that, with constant probability, only a few
edges will be cut if applied to a feasible solution of small
objective value. It is important to notice that if the procedure
cuts few edges even when applied to an infeasible solution
of high objective value, we would still be satisfied since we
would be making good progress in the graph partitioning
at low cost. That is, even if a candidate solution is overall
far from being feasible, it turns out to be sufficiently good
for us if it is close to being feasible on the heavy vertices
and their neighborhoods. We thus mainly have to deal with
the case where too many edges get cut. The crux of the
argument then is that if the procedure cuts too many edges,
we can show how with reasonable probability there exists
a hyperplane of small width separating our solution from
the set of feasible solutions of small objective value, and
moreover we can identify it efficiently. This means we can
make progress and obtain a better solution through applying
a step of the matrix multiplicative weights framework.

The intuition behind the no-case of this probabilistic ora-
cle is that, on average, the probability that an edge with
exactly one endpoint in these heavy balls is cut throughout

the removal procedure must be larger than for feasible em-
beddings with small objective value. Indeed otherwise we
could have expected our procedure to cut fewer edges. Thus
we can conclude that with constant probability, either the
current solution has significantly larger objective value, or
several triangle inequalities must be violated at the same
time and thus we can provide a feedback matrix of small
width.

To ensure that our heavy vertices removal procedure would
have indeed cut fewer edges if given a feasible solution, we
repeat this process poly-logarithmically many times.

Remark 2.1 (On the minimum edge density η in the cut).
As already briefly discussed, Theorem 1.2 requires η >

Ω((logn)2·(log logn)2

n). In comparison (Makarychev et al.,

2012) only requires a lower bound of Ω((
√

logn·(log logn)2

n).
This discrepancy comes from the fact that a near linear time
budget only allows us to only obtain a O(log n) approxi-
mation to balanced cut using (Sherman, 2009; Chen et al.,
2022). We offset these worse guarantees leveraging stronger
geometric expansion properties, which may not hold for
η < O((logn)2·(log logn)2

n) . What density is necessary for
constant approximation to be possible, remains a fascinating
open question.

2.1. Perspective

There is also a second perspective from which we may see
Theorem 1.2. The last decade has seen tremendous advance-
ments in the design of algorithms for inference problems
that are robust to adversarial corruptions (among many we
cite (d’Orsi et al., 2020; Ding et al., 2022; Liu & Moitra,
2022; Bakshi et al., 2022; Guruswami et al., 2022; Hua
et al., 2023), see also the survey (Diakonikolas & Kane,
2019)). The emerging picture, which unfortunately appears
hard to formalize, is that certain algorithmic techniques
–such as semidefinite programming– appear robust while
others –such as low-degree polynomials or local search–
can be fooled by carefully chosen perturbations. In particu-
lar, the use of optimal solutions for semidefinite programs
have been a fundamental tool behind these results. Unfor-
tunately, the computational budget required to find such
objects is often large, making comparable results hard to
achieve in near linear time. Theorem 1.2 is a first significant
example in which one can retain this ”robustness property”
while working with a near-linear time computational budget,
hence providing a first step towards more practical robust
algorithms.

3. Organization and notation
The rest of the paper is organized as follows. In Section 4
we present the algorithm. We provide necessary background
on the matrix multiplicative framework and on other notions

5

Fast Algorithm for Beyond-Worst-Case Graph Clustering

used throughout the paper in Appendix A. We present our
ORACLE in Appendix C, which combined with the results
in Section 4 yields Theorem 1.2. We then study the hierar-
chical stochastic block in Appendix D.

We hide multiplicative factors poly-logarithmic in n us-
ing the notation Õ(·) , Ω̃(·). Similarly, we hide absolute
constant multiplicative factors using the standard notation
O(·) ,Ω(·) ,Θ(·). Often times we use the letter C to denote
universal constants independent of the parameters at play.
Given a function g : R → R, we write o(g) for the set of
real-valued functions f such that limn→∞

f(n)
g(n) = 0. Simi-

larly, we write g ∈ ω(f) if f ∈ o(g). Throughout the paper,
when we say ”an algorithm runs in time O(q)” we mean
that the number of basic arithmetic operations involved is
O(q). That is, we ignore bit complexity issues.

Vectors and matrices We use Idn to denote the n-by-n
dimensional matrix and 0 to denote the zero matrix. For
matricesA,B ∈ Rn×n we writeA � B ifA−B is positive
semidefinite. For a matrix M , we denote its eigenvalues by
λ1(M) , . . . , λn(M); we simply write λi when the context
is clear. We denote by ‖M‖ the spectral norm of M . Let
Sn ⊂ Rn be the set of real symmetric n-by-n matrices and
let ∆n(r) := {X ∈ Sn | TrX 6 r ,X � 0}. For X ∈ Sn,
the matrix exponential is exp(X) =

∑∞
i=0

Xi

i! . We remark
that exp(X) is positive semidefinite for all symmetric X
as exp(X) =

(
exp(1

2X)
)
T exp(1

2X). For a vector v ∈ Rn,
we write v > 0 if all entries of v are non-negative. We use
Sn ⊆ Rn to denote the unit sphere.

Graphs We denote graphs with the notationG(V,E). We
use V (G) to denote the set of vertices in G and similarly
E(G) to denote its set of edges. For a graph G we write
LG for the associated combinatorial Laplacian, which is a
matrix with rows and columns indexed by the nodes of G
such that (LG)ii =

∑
ij∈E(G) 1, i.e. the degree of node i,

and for i 6= j (LG)ij is −1 if ij ∈ E(G) and 0 otherwise.
When the context is clear we drop the specification of G.
Unless specified otherwise, we use n to denote |V (G)|. For
a partition (A,B) of the vertices of G, we write E(A,B) ⊆
E for the set of edges in theA-B cut. We say that a partition
(A,B) is a-balanced if |A| / |B| > a assuming |A| 6 |B|.

4. A fast algorithm for semi-random balanced
cut

We present here our main theorem which implies Theo-
rem 1.2. To solve the balanced cut problem we consider its
basic SDP relaxation. Given a graph G, the relaxation for

the a-balanced cut problem is:

min
∑
ij∈E

cij ‖vi − vj‖2

‖vi‖2 = 1 ∀i ∈ [n]

‖vi − vj‖2 + ‖vj − vk‖2

> ‖vi − vk‖2 ∀i, j, k,∈ [n]∑
i,j∈[n]

‖vi − vj‖2 > 4an2


(2)

We refer to the first constraint as the unit norm constraint,
to the second as the triangle inequality constraint and to
the third as the balance constraint. Equation (2) may be
rewritten in its canonical form

min〈L,X〉
Xii = 1 ∀i ∈ [n]

〈Tp, X〉 > 0 ∀ paths p of length 2

〈KV , X〉 > 4an2

 (3)

where L is the combinatorial Laplacian of the graph, KS

is the Laplacian of the complete graph over vertex set S
and, for a path p, Tp is the difference between the Laplacian
of p and the Laplacian of the single edge connecting its
endpoints. Notice that v1, . . . , vn are the Gram vectors of
X . To ease the reading we will sometimes use the vectors
representation and others the matrix representation. We
denote by α the optimal value for a given instance of Equa-
tion (3). In particular, we say a graph G has optimal cut α
if minimum solutions to Equation (2) have objective value
α. Notice that for graphs generated as in Model 1.1, with
high probability we have α 6 (1 + o(1))n2 · η .

Before stating the main theorem we require a couple of
definitions concerning the embedding of graphs. These are
based on (Makarychev et al., 2012).

Definition 4.1 (Heavy vertex). Let δ, n, n′ > 0. Let
G(V,E) be a graph on n vertices and let X be the Gram
matrix of an embedding v1, . . . , vn ∈ Rn of G onto Rn. A
vertex i ∈ V is said to be (δ, n′)-heavy if∣∣∣{j ∈ V (G)

∣∣∣ ‖vi − vj‖2 6 δ
}∣∣∣ > δ2 · n′ .

We denote the set of (δ, n′)-heavy vertices in the embed-
ding X by Hδ,n′(X,V). For a subset of vertices V ′ we let
Hδ,n′(X,V

′) be the set of vertices that are (δ, n′) heavy in
the subgraph induced by V ′.

In other words, a vertex is (δ, n′)-heavy if it is close to
δ2n′ other vertices in the given embedding. The next struc-
tural property of graphs is what will separate semirandom
instances from worst-case instances.

6

Fast Algorithm for Beyond-Worst-Case Graph Clustering

Definition 4.2 (Geometric expansion). A graphG(V,E) on
n vertices satisfies the geometric expansion property at scale
(δ, n′, α) if, for every feasible solution X to Equation (2) on
inputG and every subset V ′ ⊆ V such thatHδ,n′(X,V

′) =
∅, it holds∣∣∣{ij ∈ E ∩ (V ′ × V ′)

∣∣∣ ‖vi − vj‖2 6 δ
}∣∣∣ 6 10 · δ2 · α .

That is, a graph is geometrically expanding if the uniform
distribution over the edges of non-heavy vertices satis-
fies a one-sided Chebyshev’s inequality. For simplicity,
we say that a graph G is geometrically expanding up to
scale (100−z, n, α) if it is geometrically expanding at scale
(100−i, n, α) for all 1 6 i 6 z . We remark that Defini-
tion 4.2 is equivalent to the geometric expansion property
defined in (Makarychev et al., 2012).

We are now ready to present the main theorem of the section.

Theorem 4.3 (Main theorem). There exists a randomized
algorithm that on input a, α > Ω(1) , κ , δ > 1/ log n and
a graph G such that:

1. there exists an a-balanced partition (A,B) with
|E(A,B)| 6 α ,

2. G(V,E(A,B)) is a geometric expander up to scale
(100δ, n, α),

returns an Ω(a)-balanced partition (S, T) with cut

|E(S, T)| 6 O(α)(1 + δ · κ ·
√

log n)

with probability 1− o(1). Moreover, the algorithm runs in

time Õ
(
|V (G)|1+O(1/κ2)+o(1)

+ |E(G)|1+O(1/κ2)+o(1)
)

.

Theorem 1.2 essentially follows from Theorem 4.3 observ-
ing that graphs generated through Model 1.1 are good ge-
ometric expanders. To show this first observe that random
bipartite graphs are good geometric expanders.

Theorem 4.4 (Geometric expansion of random graphs,
(Makarychev et al., 2012)). Let t > 0. Let G be a graph
over n vertices generated through the first two steps (i), (ii)
of Model 1.1 with parameters a, η > 0 . Then, with proba-
bility 1− n−Ω(1), G is geometrically expanding up to scale(
100−t, n,Θ(n2 · η + 100t · n · t2)

)
.

Second, observe that geometric expansion in bipartite
graphs is a property that is to some extent robust to changes
monotone with respect to the bipartition.
Fact 4.5 (Robustness of geometric expansion, (Makarychev
et al., 2012)). Let G be a graph over n vertices generated
through the first two steps (i), (ii) of Model 1.1 and let G◦

be a graph obtained after applying steps (iii), (iv). If G
is geometrically expanding up to scale (δ, n, τ), then so is
G◦(V,E(A,B)).

This statement above implies that for η >

Ω
(

(logn)2·(log logn)2

n

)
, with high probability

G◦(V,E(A,B)) is a good geometric expander. Now
Theorem 1.2 immediately follows combining Theorem 4.3
Theorem 4.4 and Fact 4.5.

4.1. The algorithm

We present here the algorithm behind Theorem 4.3. Since
we will work using the matrix multiplicative framework
(see Appendix A for the necessary definitions), our main
challenge is that of designing an appropriate oracle. For
simplicity, we split ORACLE in three parts, the first two are
due to (Arora & Kale, 2007; Sherman, 2009) the third part
is our crucial addition and the main technical contribution
of this work. Recall we denote by α the minimum objective
of the program at hand.
Lemma 4.6 ((Arora & Kale, 2007)). Let a > Ω(1).
There exists a Õ(α/n)-bounded, Θ(log n)2-robust, Θ(1)-
separation oracle that, given a candidate solution to Equa-
tion (2) with input graphG on n vertices and a-balanced cut
of value at most α, outputs no if one of the following condi-
tions are violated. Let W :=

{
i ∈ [n] | ‖vi‖2 > 2

}
⊆ [n]

and S := [n] \W .

• Flatness: |W | < n
(logn)100 .

• Balance:
∑
i,j∈S ‖vi − vj‖

2 > 2an.

Moreover, the oracle is T -lean for some T 6
O ((|V (G)|+ |E(G)|)

We omit the proof of Lemma 4.6 as it can be found in (Arora
& Kale, 2007). If both the flatness and the balance condition
are satisfied, then we apply the following oracle, due to
(Sherman, 2009).
Lemma 4.7 ((Sherman, 2009)). Let κ, a > 0 , 0 <
δ < 1/200, a > Ω(1). There exists a Õ(α/n)-bounded,
O(log n)2-robust, Θ(1)-separation oracle that, given a can-
didate solution to Equation (3) with input graph G on n
vertices and a-balanced cut of value at most α, outputs yes
only if it finds an Ω(a)-balanced partition (P, P ′) of V (G)
satisfying ∑

i∈P ,j∈P ′ ,ij∈E(G)

‖vi − vj‖2 6 O(α)

|E(P, P ′)| 6 O(α · κ) ·
√

log n .

Moreover, the oracle is T -lean for some T 6

Õ
(
|V (G)|1+O(1/κ2)+o(1)

+ |E(G)|1+O(1/κ2)+o(1)
)

.

The proof of Lemma 4.7 can be found in (Sherman, 2009).
The improvement on the time complexity follows by The-
orem A.1. The next result is the crucial addition we need

7

Fast Algorithm for Beyond-Worst-Case Graph Clustering

to the oracle of (Arora & Kale, 2007; Sherman, 2009). We
prove it in Appendix C.1.

Lemma 4.8. Let 0 < ` 6 1 , α, a > 0 and 0 < δ 6 1/200.
Let G be a graph on ` · n vertices such that

• it has a a-balanced partition (A,B) with |E(A,B)| 6
α ,

• G(V,E(A,B)) is geometrically expanding up to scale
(δ, n, α).

There exists a Õ(α/` · n)-bounded, O(log n)100-robust,
Θ(1/ log n)-separation oracle that, given a candidate solu-
tion to Equation (3) with input graph G, either outputs no,
or outputs a set of edges E∗ ⊆ E(G) of cardinality O(α/δ)
and partition (P1, P2, V

′) of V (G) such that

1. |E(P1, P2, V
′) \ E∗| 6 O

(
α
δ

(
1 + `

δ

))
.

2. ||P1| − |P2|| 6 a · n/2 .

3. ∀ij ∈ E(G)\E∗ with i, j ∈ V ′ it holds ‖vi − vj‖2 6
δ .

4. Hδ,n(X,V ′) = ∅ .

Moreover the oracle is T -lean for some T 6
Õ (|V (G)|+ |E(G)|) and 1−O(log n)−50-reliable.

Before presenting the algorithm that uses the oracle above,
let’s briefly discuss its meaning. Notice the heavy vertices
condition (4). This ensures that in the subgraph G(V ′, E \
E∗) any feasible embedding has weight at most 10α · δ2 on
the edges in (E(A,B) \ E∗) ∩ (V ′ × V ′). In other words,
after paying the edges in the cut of the partition (P1, P2, V

′),
geometric expansion of the underlying graph guarantees that
the minimum objective value of Equation (2) now decrease
by a 10δ2 factor.

Next we present the algorithm behind Theorem 4.3 and
prove its correctness. We denote by ORACLE a combination
of the oracles in Lemma 4.6, Lemma 4.7 and Lemma 4.8
obtained applying them sequentially (in this order).

Proof of Theorem 4.3. We set T such that δ(T) = 100δ
where δ(0) = 1/200. By construction of ORA-
CLE and Corollary A.10 the algorithm runs in time
Õ
(
|V (G)|1+O(1/κ2)+o(1)

+ |E(G)|1+O(1/κ2)+o(1)
)

.

Now consider a fixed iteration i, we assume α(0) =
α , `(0) = 1. Let α(i) be the cost of the minimum feasi-
ble solution on the remaining graph G(i) on `(i) · n vertices.
Let E(i) be the set of edges removed at iteration i and
(P

(i)
1 , P

(i)
2 , V ′(i)) the partition at iteration i. Notice that if

Algorithm 1 Fast and robust algorithm for balanced cut
Input: A graphG with minimum a-balanced cut of value
at most α, T , κ, d, δ > 0.

Set δ(0) = 1/200.
for i = 1 to T do

Let G(i) be the current remaining graph with optimal
cut value α(i) and

∣∣V (G(i))
∣∣ =: n(i).

Run the approximate matrix multiplicative weights
algorithm (Algorithm 3) for program 3 using ORACLE
(with parameter δ(i)).
Let W ∗ ∈ Rd,×n be the returned embedding,
E(i) the set of edges found and (P (i), P ′(i)) ,

(P
(i)
1 , P

(i)
2 , V ′(i)) the partitions found by ORACLE .

Remove the edges in E(i).
if
∣∣E(P (i), P ′(i))

∣∣ 6 O(α · (1 + δ · κ ·
√

log n)) then
Exit the loop.

else
Remove vertices in P (i)

1 and in P (i)
2 . Set δ(i+1) to

δ(i)/100.
end if

end for
Let (P, P ′) be the bipartition found by ORACLE in its last
iteration.
Arbitrarily assign sets P

(1)
1 , P

(1)
2 , . . . , P

(i)
1 , P

(i)
2 re-

moved in previous iterations to P or P ′, keeping the
two sides a-balanced.
Return the resulting bipartition.

at some point α(i) 6 O(α · (1 + δ · κ ·
√

log n)) then the
algorithm breaks the cycle and returns a balanced partition.

So we may assume that at the current iteration i, α(i) >
ω(α · ((1 + δ · κ ·

√
log n)). Now the result follows by

showing that, at each step, it holds

α(i) 6 10 · α(i−1) ·
(
δ(i−1)

)2

. (4)

Indeed suppose the claim holds. By construction all the
edges in the final cut are in(⋃

i<T

E(i)

)
∪

(⋃
i<T

E(P
(i)
1 , P

(i)
2 , V ′(i)) \ E(i)

)
∪ E(P (T), P ′(T)) .

By Equation (4) we can bound the first term as |
⋃
i6T

E(i)| 6

O(α) . For the second term:∣∣∣∣∣∣
⋃
i6T

E(P
(i)
1 , P

(i)
2 , V ′(i))

∣∣∣∣∣∣ 6
∑
i6T

O

(
α(i)

δ(i)

(
1 +

`(i)

δ(i)

))

8

Fast Algorithm for Beyond-Worst-Case Graph Clustering

6 O

∑
i6T

α(i)

δ(i)
+
α(i) · `(i)(
δ(i)
)2


6 O

∑
i6T

α(i)
(
δ(i) + `(i+1)

)
6 O

∑
i6T

α(i) ·
(
δ(i) + `(i)

)
6 α ·O

∑
i6T

δ(i) + `(i)


6 O(α) ,

where in the second step we used the inequalities

α(i)

δ(i)
6 103 · α(i−1) · δ(i−1) ,

α(i) · `(i)(
δ(i)
)2 6 105 · α(i−1) · `(i) ,

both following from Equation (4). For the third term we
have α(T) 6 O (α · δ) by construction. Thus by Lemma 4.7
we get

∣∣E(P (T), P ′(T))
∣∣ 6 O

(
α · κ · δ

√
log n

)
.

It remains to prove Equation (4). At each iteration i, the set
V (G(i)) does not contain edges of length more than δ(i) in
the embedding as well as (δ(i), n) heavy vertices. Thus by
Definition 4.2, the set V (G(i)) has a Ω(a)-balanced cut of
value O(α(i)) . Then Equation (4) follows as desired.

Acknowledgments
Tommaso d’Orsi is partially supported by the project MUR
FARE2020 PAReCoDi.

Impact statement
This paper presents work whose goal is to advance the field
of theoretical Machine Learning. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.

References
Abbe, E. Community detection and stochastic block models:

recent developments. The Journal of Machine Learning
Research, 18(1):6446–6531, 2017.

Agarwal, A., Charikar, M., Makarychev, K., and
Makarychev, Y. o(

√
log n) approximation algorithms

for min uncut, min 2cnf deletion, and directed cut prob-
lems. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pp. 573–581, 2005.

Angelidakis, H., Makarychev, K., and Makarychev, Y.
Algorithms for stable and perturbation-resilient prob-
lems. In Hatami, H., McKenzie, P., and King, V. (eds.),
Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pp. 438–451. ACM,
2017. doi: 10.1145/3055399.3055487. URL https:
//doi.org/10.1145/3055399.3055487.

Arora, S. and Kale, S. A combinatorial, primal-dual
approach to semidefinite programs. In Proceedings
of the 39th Annual ACM Symposium on Theory of
Computing, San Diego, California, USA, June 11-13,
2007, pp. 227–236, 2007. doi: 10.1145/1250790.
1250823. URL https://doi.org/10.1145/
1250790.1250823.

Arora, S., Rao, S., and Vazirani, U. V. Expander
flows, geometric embeddings and graph partitioning.
In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June
13-16, 2004, pp. 222–231, 2004. doi: 10.1145/
1007352.1007355. URL https://doi.org/10.
1145/1007352.1007355.

Bakshi, A., Diakonikolas, I., Jia, H., Kane, D. M., Kothari,
P. K., and Vempala, S. S. Robustly learning mixtures of
k arbitrary gaussians. In Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
1234–1247, 2022.

Bilu, Y. and Linial, N. Are stable instances easy? Comb.
Probab. Comput., 21(5):643–660, 2012a. doi: 10.1017/
S0963548312000193. URL https://doi.org/10.
1017/S0963548312000193.

Bilu, Y. and Linial, N. Are stable instances easy? Com-
binatorics, Probability and Computing, 21(5):643–660,
2012b.

Boppana, R. B. Eigenvalues and graph bisection: An
average-case analysis. In 28th Annual Symposium on
Foundations of Computer Science (sfcs 1987), pp. 280–
285. IEEE, 1987.

Bui, T. N., Chaudhuri, S., Leighton, F. T., and Sipser, M.
Graph bisection algorithms with good average case be-
havior. Combinatorica, 7(2):171–191, 1987.

Chen, L., Kyng, R., Liu, Y. P., Peng, R., Gutenberg, M. P.,
and Sachdeva, S. Maximum flow and minimum-cost
flow in almost-linear time. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 612–623. IEEE, 2022.

Chierichetti, F., Panconesi, A., Re, G., and Trevisan, L.
Spectral robustness for correlation clustering reconstruc-
tion in semi-adversarial models. In Camps-Valls, G.,

9

https://doi.org/10.1145/3055399.3055487
https://doi.org/10.1145/3055399.3055487
https://doi.org/10.1145/1250790.1250823
https://doi.org/10.1145/1250790.1250823
https://doi.org/10.1145/1007352.1007355
https://doi.org/10.1145/1007352.1007355
https://doi.org/10.1017/S0963548312000193
https://doi.org/10.1017/S0963548312000193

Fast Algorithm for Beyond-Worst-Case Graph Clustering

Ruiz, F. J. R., and Valera, I. (eds.), International Con-
ference on Artificial Intelligence and Statistics, AISTATS
2022, 28-30 March 2022, Virtual Event, volume 151 of
Proceedings of Machine Learning Research, pp. 10852–
10880. PMLR, 2022. URL https://proceedings.
mlr.press/v151/chierichetti22a.html.

Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., and
Mathieu, C. Hierarchical clustering: Objective functions
and algorithms. Journal of the ACM (JACM), 66(4):1–42,
2019.

Dasgupta, S. A cost function for similarity-based hierar-
chical clustering. In Wichs, D. and Mansour, Y. (eds.),
Proceedings of the 48th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2016, Cam-
bridge, MA, USA, June 18-21, 2016, pp. 118–127. ACM,
2016. doi: 10.1145/2897518.2897527. URL https:
//doi.org/10.1145/2897518.2897527.

Decelle, A., Krzakala, F., Moore, C., and Zdeborová, L.
Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications. Phys-
ical Review E, 84(6):066106, 2011.

Diakonikolas, I. and Kane, D. M. Recent advances in algo-
rithmic high-dimensional robust statistics. arXiv preprint
arXiv:1911.05911, 2019.

Dimitriou, T. and Impagliazzo, R. Go with the winners
for graph bisection. In SODA, volume 98, pp. 510–520,
1998.

Ding, J., d’Orsi, T., Nasser, R., and Steurer, D. Robust
recovery for stochastic block models. In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science
(FOCS), pp. 387–394. IEEE, 2022.

d’Orsi, T., Kothari, P. K., Novikov, G., and Steurer, D.
Sparse pca: algorithms, adversarial perturbations and
certificates. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 553–564.
IEEE, 2020.

Dyer, M. E. and Frieze, A. M. Fast solution of some random
np-hard problems. In 27th Annual Symposium on Foun-
dations of Computer Science (sfcs 1986), pp. 331–336.
IEEE Computer Society, 1986.

Fei, Y. and Chen, Y. Achieving the bayes error rate in
stochastic block model by sdp, robustly. In Beygelz-
imer, A. and Hsu, D. (eds.), Conference on Learning
Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ,
USA, volume 99 of Proceedings of Machine Learning
Research, pp. 1235–1269. PMLR, 2019. URL http://
proceedings.mlr.press/v99/fei19a.html.

Feige, U. and Kilian, J. Heuristics for semirandom graph
problems. Journal of Computer and System Sciences, 63
(4):639–671, 2001.

Garg, N., Vazirani, V. V., and Yannakakis, M. Approximate
max-flow min-(multi) cut theorems and their applications.
SIAM Journal on Computing, 25(2):235–251, 1996.

Goemans, M. X. and Williamson, D. P. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM (JACM), 42(6):1115–1145, 1995.

Guruswami, V., Kothari, P. K., and Manohar, P. Algorithms
and certificates for boolean csp refutation: smoothed is no
harder than random. In Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
678–689, 2022.

Hopkins, S. B. and Steurer, D. Efficient bayesian estima-
tion from few samples: community detection and related
problems. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 379–390.
IEEE, 2017.

Hua, Y., Ding, J., d’Orsi, T., and Steurer, D. Reaching
kesten-stigum threshold in the stochastic block model un-
der node corruptions. In The Thirty Sixth Annual Confer-
ence on Learning Theory, pp. 4044–4071. PMLR, 2023.

Jerrum, M. and Sorkin, G. B. Simulated annealing for graph
bisection. IEEE, 1993.

Johnson, W. B. Extensions of lipschitz mappings into a
hilbert space. Contemp. Math., 26:189–206, 1984.

Khot, S., Kindler, G., Mossel, E., and O’Donnell, R. Op-
timal inapproximability results for max-cut and other
2-variable csps? SIAM Journal on Computing, 37(1):
319–357, 2007.

Khot, S. A. and Vishnoi, N. K. The unique games conjec-
ture, integrality gap for cut problems and embeddability
of negative-type metrics into `-1. Journal of the ACM
(JACM), 62(1):1–39, 2015.

Leighton, F. T. and Rao, S. An approximate max-flow
min-cut theorem for uniform multicommodity flow prob-
lems with applications to approximation algorithms. In
29th Annual Symposium on Foundations of Computer Sci-
ence, White Plains, New York, USA, 24-26 October 1988,
pp. 422–431, 1988. doi: 10.1109/SFCS.1988.21958.
URL https://doi.org/10.1109/SFCS.1988.
21958.

Liu, A. and Moitra, A. Minimax rates for robust community
detection. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 823–831.
IEEE, 2022.

10

https://proceedings.mlr.press/v151/chierichetti22a.html
https://proceedings.mlr.press/v151/chierichetti22a.html
https://doi.org/10.1145/2897518.2897527
https://doi.org/10.1145/2897518.2897527
http://proceedings.mlr.press/v99/fei19a.html
http://proceedings.mlr.press/v99/fei19a.html
https://doi.org/10.1109/SFCS.1988.21958
https://doi.org/10.1109/SFCS.1988.21958

Fast Algorithm for Beyond-Worst-Case Graph Clustering

Makarychev, K., Makarychev, Y., and Vijayaraghavan, A.
Approximation algorithms for semi-random partitioning
problems. In Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pp. 367–384, 2012. doi: 10.
1145/2213977.2214013. URL https://doi.org/
10.1145/2213977.2214013.

Makarychev, K., Makarychev, Y., and Vijayaraghavan, A.
Constant factor approximation for balanced cut in the PIE
model. In Shmoys, D. B. (ed.), Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May
31 - June 03, 2014, pp. 41–49. ACM, 2014. doi: 10.
1145/2591796.2591841. URL https://doi.org/
10.1145/2591796.2591841.

Massoulié, L. Community detection thresholds and the
weak ramanujan property. In Proceedings of the forty-
sixth annual ACM symposium on Theory of computing,
pp. 694–703, 2014.

McSherry, F. Spectral partitioning of random graphs. In
Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pp. 529–537. IEEE, 2001.

Moitra, A., Perry, W., and Wein, A. S. How robust are
reconstruction thresholds for community detection? In
Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pp. 828–841, 2016.

Montanari, A. and Sen, S. Semidefinite programs on sparse
random graphs and their application to community de-
tection. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pp. 814–827, 2016.

Mossel, E., Neeman, J., and Sly, A. Reconstruction and
estimation in the planted partition model. Probability
Theory and Related Fields, 162(3):431–461, 2015.

Mossel, E., Neeman, J., and Sly, A. A proof of the block
model threshold conjecture. Combinatorica, 38(3):665–
708, 2018.

Peng, P. Robust clustering oracle and local reconstructor
of cluster structure of graphs. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2953–2972. SIAM, 2020.

Räcke, H. Optimal hierarchical decompositions for con-
gestion minimization in networks. In Proceedings of the
fortieth annual ACM symposium on Theory of computing,
pp. 255–264, 2008.

Raghavendra, P. Optimal algorithms and inapproximability
results for every csp? In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pp.
245–254, 2008.

Raghavendra, P. and Steurer, D. Graph expansion and the
unique games conjecture. In Proceedings of the forty-
second ACM symposium on Theory of computing, pp.
755–764, 2010.

Raghavendra, P., Steurer, D., and Tulsiani, M. Reductions
between expansion problems. In 2012 IEEE 27th Con-
ference on Computational Complexity, pp. 64–73. IEEE,
2012.

Sherman, J. Breaking the multicommodity flow barrier for
o(vlog n)-approximations to sparsest cut. In 50th Annual
IEEE Symposium on Foundations of Computer Science,
FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA,
pp. 363–372, 2009. doi: 10.1109/FOCS.2009.66. URL
https://doi.org/10.1109/FOCS.2009.66.

Steurer, D. Fast SDP algorithms for constraint sat-
isfaction problems. In Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010, pp. 684–697, 2010. doi: 10.1137/1.
9781611973075.56. URL https://doi.org/10.
1137/1.9781611973075.56.

11

https://doi.org/10.1145/2213977.2214013
https://doi.org/10.1145/2213977.2214013
https://doi.org/10.1145/2591796.2591841
https://doi.org/10.1145/2591796.2591841
https://doi.org/10.1109/FOCS.2009.66
https://doi.org/10.1137/1.9781611973075.56
https://doi.org/10.1137/1.9781611973075.56

Fast Algorithm for Beyond-Worst-Case Graph Clustering

A. Background
We introduce here background notion used throughout the paper.

Maximum flow Let G(V,E) be a graph. For a flow which assigns value fp to path p define fe to be the flow on edge
e ∈ E(G), i.e. fe :=

∑
p3e fp. Define fij to be the total flow between nodes i , j, i.e. fij =

∑
p∈Pij fp, where Pij is the

set of paths from i to j. Similarly, define fi to be flow from node i. That is, fi =
∑
j∈[n] fij . A valid d-regular flow is one

that satisfies the capacity constraints: ∀e ∈ E : fe 6 1 and ∀i ∈ V : fi 6 d. For a partition (A,B) of G, the maximum
d-regular flow between A and B is the maximum d-regular flow between vertices s and t in the graph obtained from G as
follows: (1) connect all vertices in A to a new vertex s by edges of capacity d, (2) connect all vertices in B to a new vertex t
by edges of capacity d.

Through the paper we always assume the capacities d to be integral and bounded by O(poly(n)). We assume the algorithm
used to compute the maximum flow is the near linear time algorithm in (Chen et al., 2022), captured by the result below:

Theorem A.1 (Maximum flow in almost linear time (Chen et al., 2022)). Let G be a graph on n vertices and let d be
integral of value at most O(poly(n)). There exists an algorithm computing the maximum d-regular flow between two
vertices in time at most O(|E(G)|1+o(1)

).

A.1. The matrix multiplicative weights method for SDPs

We recall here how the matrix multiplicative method can be used to approximately solve semidefinite programs. (Arora &
Kale, 2007; Steurer, 2010). As most of the notions presented here already appeared in (Arora & Kale, 2007; Steurer, 2010),
we encourage the knowledgeable reader to skip this section, move directly to Section 4 and come back when needed. We
focus on minimization problems although the same framework applies to maximization problems.

A primal semidefinite program over n2 variables (i.e. the n-by-n matrix variable X) and m constraints can be written in its
canonical form as 

min 〈L,X〉
∀j ∈ [m] , 〈Aj , X〉 > bj

X � 0

 (5)

Here A1, . . . , Am, L are symmetric matrices. We denote the feasible set of solutions by X and the optimal objective value
by α. For simplicity we assume that A1 = −Idn and b1 = −r. This serves to bound the trace of the solution so that
X ⊆ ∆n(r). The associated dual, with variables y1, . . . , ym, is the following program


max 〈b, y〉∑

j∈[m]

Ajyj � L

y > 0

 (6)

where b is the m-dimensional vector with entries b1, . . . , bm.

For a convex set X ∗ ⊆ ∆n(r) (think of X ∗ as the set of feasible solution to a program of the form Equation (5) with
objective value close to the optimum) a γ-separation ORACLE is an algorithm that , given a candidate matrix X , outputs one
of the following:

• yes: the ORACLE determines X is ”close” (the precise notion of closeness is problem dependent) to X ∗.

• no: the ORACLE finds a hyperplane that separates X from X ∗ by a γ-margin. That is, it outputs a symmetric matrix M
such that for all X ′ ∈ X ∗ we have 〈M,X ′〉 > 0 while 〈M,X〉 < −γα.

A γ-separation ORACLE is said to be ζ-bounded if ‖M‖ 6 ζ for any hyperplaneM found by the ORACLE . The boundedness
of the ORACLE will be relevant for the running time of our algorithms. It is important to notice that the parameters ζ, γ are
not independent, in particular one may increase γ by scaling up the corresponding matrix M . We keep them distinct for
convenience .

12

Fast Algorithm for Beyond-Worst-Case Graph Clustering

Concretely, given a program of the form Equation (5) and a candidate solution X , we will consider ORACLE algorithms that,
in the no case, find a pair (y, F) where F is a matrix in Sn satisfying F � L and y is a candidate solution10 for the dual
program Equation (6) such that y ∈ {y | 〈b, y〉 > α , y > 0} and

〈
∑
j∈[m]

Ajyj − F,X〉 6 −γ · α .

It is easy to see that this is indeed a separating hyperplane as for any feasible solution X ′ with objective value less than
α(1 + γ)

〈
∑
j∈[m]

Ajyj − F,X ′〉 >
∑
j∈[m]

bjyj − 〈L,X ′〉 > α− (1 + γ)α = −γ · α

, .

We will use our oracle algorithms in the following framework.

Algorithm 2 Matrix multiplicative weights algorithm for SDPs
Input: A program of the form Equation (5) with optimal value α, a ζ-bounded γ-separation ORACLE , parameters T, ε, r.

Set X(1) = r
n Idn.

for t = 1 to T do
Run the ORACLE with candidate solution X(t).
if the ORACLE outputs yes then

Return X(t).
else

Let (y(t), F) be the pair generated by ORACLE . Set Y (t) =
(∑

j∈[m]Ajy
(t)
j − F + ζIdn

)
/2ζ.

end if
Compute X(t+1) = r · exp

(
ε
∑
t′6t Y

(t′)
)
/Tr exp

(
ε
∑
t′6t Y

(t′)
)

end for

The choice of the iterative updates in step 4 is based on the matrix multiplicative weights method. In particular, this allows
one to obtain the following crucial statement.

Theorem A.2 ((Arora & Kale, 2007)). Consider Algorithm 2. Let ε 6 γα/(2ζ · r) and T > 2ε−2 log n. If there exists a
feasible solution with value at most α(1 + γ), then ORACLE will output yes within T iterations.

A.1.1. APPROXIMATE MATRIX EXPONENTIATION, ROBUST AND RELIABLE ORACLES

There are two issues with Theorem A.2 if one aims for near linear running time: first, already writing down X(t) requires
time quadratic in n; second, algorithms known to compute the matrix exponentiation are slow . One can circumvent these
obstacles computing the exponentiation only approximately while also keeping only an approximate representation of X(t).
To formalize this we introduce additional notation. For a positive semidefinite n-by-n matrix M , we let P6p(M) be the
degree-p approximation of the matrix exponential exp(X):

P6p(M) :=
∑
i6p

1

i!
M i .

Recall that for a matrix M , the Gram decomposition of the exponential exp(M) is exp(M) = exp(1
2M)T exp(1

2M) thus
we may see P6p(

ε
2

∑
t′6t Y

(t′)) as a a matrix having as columns low-degree approximations of the Gram vectors of
exp(M). One can then embed these vectors in a low dimensional space, without distorting their pair-wise distance by
projecting them onto a random d-dimensional subspace:

10Not necessarily feasible.

13

Fast Algorithm for Beyond-Worst-Case Graph Clustering

Lemma A.3 ((Johnson, 1984)). Let Φ be a d-by-n Gaussian matrix, with each entry independently chosen from N(0, 1/d).
Then, for every vector u ∈ Rn and every ε ∈ (0, 1)

P (‖Φu‖ = (1± ε) ‖u‖) > 1− e−Ω(ε2d) .

We will follow this strategy to speed up Algorithm 2.

Algorithm 3 Approximate matrix multiplicative weights algorithm for SDPs
Input: A program of the form Equation (5) with optimal value α, a ζ-bounded γ-separation ORACLE , parameters
T, ε, r, d, p, a d-by-n random matrix Φ with i.i.d entries from N(0, 1/d).

Set W (1) = r
n (ΦIdn)/Tr(ΦIdn).

for t = 1 to T do
Run the ORACLE with candidate solution W (t).
if the ORACLE outputs yes then

Return W (t).
else

Let (y(t), F) be the pair generated by ORACLE . Set Y (t) =
(∑

j∈[m]Ajy
(t)
j − F + ζIdn

)
/2ζ.

end if
Sample a d-by-n random matrix Φ with i.i.d entries from N(0, 1/d).
Compute W (t) = r · ΦP6p(

ε
2

∑
t′6t Y

(t′))/Tr
(

ΦP6p(
ε
2

∑
t′6t Y

(t′))
)

.
end for

Observe that P6p(
ε
2

∑
t′6t Y

(t′)) corresponds to a low degree approximation of the Gram vectors of the matrix X(t) in step
4 of Algorithm 2. We then compute W (t) by embedding these vectors in a random d-dimensional space.

The statement below shows that in many cases we can compute such matrices W (t) very efficiently.

Lemma A.4 ((Steurer, 2010)). Suppose we can perform matrix-vector multiplication with the matrices Y (t) in time T .
Then, for every t, we can compute W (t) in time O(t · p · d · T).

A priori it is not clear whether Algorithm 3 can provide the same guarantees of Algorithm 2. However, the next result show
this is the case under reasonable circumstances.

Definition A.5 (d-robust oracle, extension of (Steurer, 2010)). We say that a ζ-bounded γ-separation oracle is d-robust if
for every matrix X ∈ ∆(r) with X = WTW

PΦ∼N(0,1/d)d×n

(
ORACLE outputs no on input (ΦW)TΦW and 〈Y (t), X〉 > −3

4
γα

)
6

(γα/ζr)2

(log n)10
.

Lemma A.6 ((Steurer, 2010)). Consider Algorithm 3. Let ε 6 γα/(2ζ · r), T > 2ε−2 log n and p > 10ε−1 log n. Suppose
we have a d-robust ζ-bounded γ-separation ORACLE . If there exists a feasible solution with value at most α(1 + 2γ), then
ORACLE will output yes within T iterations with probability at least 1−O(log n)−10.

We can combine Lemma A.6, Lemma A.4 and Fact A.8 to obtain a user-friendly statement concerning the running time of
Algorithm 3. We introduce two additional definitions.

Definition A.7 (T -lean oracle). We say that a ζ-bounded γ-separation d-robust is T -lean if:

• the oracle compute its outputs in time at most O(T).

• If the oracle outputs no, the matrix-vector multiplication between an arbitrary vector and the feedback matrix(∑
j∈[m]Ajyj − F + ζIdn

)
/2ζ can be computed in time O(T).

14

Fast Algorithm for Beyond-Worst-Case Graph Clustering

We remark that one can upper bound the time needed for matrix-vector multiplication by the number of non-zero entries in
the matrix of interest.
Fact A.8. Let M ∈ Rn×n be a matrix with m non-zero entries and let v ∈ Rn. There exists an algorithm that computes
Mv in time O(m+ n).

The next definition formalizes the idea of oracles that may find a separating hyperplane only with certain probability.

Definition A.9 (q-reliable). We say that a ζ-bounded, γ-separation, d-robust, T -lean oracle is q-reliable if the probability
(over random bits) that it outputs no for any feasible solution with objective value at most (1 + 2γ)α is at most 1− q.

For oracles that are 1-reliable we omit mentioning their reliability. We are ready to present a user-friendly running time
statement, which we will use as a black box.

Corollary A.10 (Running time of Algorithm 3). Let ORACLE be a ζ-bounded, γ-separation, d-robust, T -lean q-reliable
oracle. Then, for ε 6 γα/(2ζ ·r), T > 2ε−2 log n and p > 10ε−1 log n, with probability at least 1−O(log n)−10−(1−q)T
over random bits, Algorithm 3 terminates in time O

(
T 2 · T · d · p

)
.

Proof. The Corollary follows immediately from Lemma A.4, Lemma A.6, Definition A.7 and Definition A.9.

B. Proof of Theorem 4.3
We show here correctness of Algorithm 1, thus obtaining Theorem 4.3.

C. The heavy vertices removal oracle
We prove here Lemma 4.8. In Appendix C.1 we introduce a procedure that the oracle uses to find either the partition or a
separating hyperplane. Then in Appendix C.2 we prove the Lemma. Throughout the section we consider the following
parameters range:

n, α > 0 ,Ω(1) 6 a 6 1 , 0 < ` 6 1 ,Ω(1 log n) 6 δ 6 1/200 . (7)

C.1. The fast heavy vertices removal procedure

We introduce the main procedure used by ORACLE . The central tool of the section is the following statement.

Lemma C.1. Consider the parameter settings of Equation (7). Let G be a graph on ` · n vertices with a-balanced cut of
value at most α that is geometrically expanding up to scale (δ, n, α).

Let X be a feasible solution for Equation (2) on input G, with objective value O(α). There exists a randomized procedure
(Algorithm 4) that outputs a set of edges E∗ ⊆ E(G) of cardinality O(α/δ) and a partition (P1, P2, V

′) of V (G) satisfying
(2) , (3) , (4) in Lemma 4.8 and such that

E [|E(P1, P2, V
′) \ E∗|] 6 C · α

δ

(
1 +

`

δ

)
,

where C > 0 is a universal constant. Moreover, if the solution is given in the form of v1, . . . , vn ∈ RO(polylogn), the
procedure runs in time Õ(|V (G)|+ |E(G)|).

The first building block towards a proof of Lemma C.1 is the result below, which introduces a subroutine to identify heavy
vertices.

Lemma C.2. Consider the settings of Lemma C.1. Let ρ > 2. There exists a randomized procedure that outputs with
probability at least 1− 1/n a set of vertices V ∗ and a mapping f : V → V ∗ ∪ {(∗)} such that

1. Each vertex i of V ∗ satisfies
∣∣∣{j ∈ V ∣∣∣ ‖vi − vj‖2 6 ρδ

}∣∣∣ > 10δ2n; and

2. The set W := {i | f(i) = (∗)} does not contain a vertex i such that
∣∣∣{j ∈ V ∣∣∣ ‖vi − vj‖2 6 δ

}∣∣∣ > 10δ2n.

15

Fast Algorithm for Beyond-Worst-Case Graph Clustering

3. f(i) = j if there exists some j ∈ V ∗ with ‖vi − vj‖2 6 ρδ ,

4. f(i) = (∗) otherwise.

Moreover, if the solution is given in the form of v1, . . . , vn ∈ RO(polylogn), the procedure runs in time
O
(

1
δ2 · |V (G)|polylog n

)
.

Proof. We propose and analyze the following algorithm:

1. S ← Sample 100δ−2 log n points uniformly at random.

2. For each point i ∈ S, compute N(v) =
{
j ∈W

∣∣∣ ‖vi − vj‖2 6 ρδ
}

.

3. V ∗ ← S \
{
i ∈ S

∣∣ |N(v)| < 10δ2n
}

4. For each vertex i, if there exists j ∈ V ∗ such that ‖vi − vj‖2 6 ρδ then f(i) = j otherwise f(i) = (∗).

Clearly the above procedure runs in time O(|V (G)| · |S| · polylog n) as desired, where the bulk of the work is done
in the second and fourth steps. By the definition of the procedure, the first, third and fourth bullets of the theorem
statement are satisfied. We thus need to show that the set W := {i | f(i) = (∗)} does not contain a vertex i such that∣∣∣{j ∈W ∣∣∣ ‖vi − vj‖2 6 δ

}∣∣∣ > 10δ2n.

A simple coupon collector argument implies that with probability at least 1 − 1/n2, for each vertex i, if∣∣∣{j ∈ V (G)
∣∣∣ ‖vi − vj‖2 6 δ

}∣∣∣ > 10δ2n, then
{
j ∈ V (G)

∣∣∣ ‖vi − vj‖2 6 δ
}
∩ S 6= ∅. Thus, let j∗ be a vertex in{

j ∈ V (G)
∣∣∣ ‖vi − vj‖2 6 δ

}
∩S 6= ∅. Then, since ρ > 2, we have that

∣∣∣{j ∈ V (G)
∣∣∣ ‖vj∗ − vj‖2 6 ρδ

}∣∣∣ > 10δ2n and
so j∗ ∈ V ∗ and f(i) 6= (∗) as desired. It remains to take a union bound over the probability of failure for each individual
vertex, and we conclude that the overall failure probability is at most 1/n.

We use the procedure in Lemma C.2 as a subroutine of the one presented next, which for feasible embeddings finds a
paritition satisfying (2) , (3) , (4) in Lemma 4.8 and (1) in expectation.

Algorithm 4 Fast heavy vertex removal procedure
Input: A graph G on ` · n vertices, a candidate solution X to Equation (2) on input G, parameters a, δ > 0 , C > 200 .

Remove all edges of length at least δ in the embedding. Let E∗ be the set of such edges.
Find the set V ∗ via the subroutine in Lemma C.2 with ρ = 2.
Pick a maximal set U of vertices in V ∗ at pairwise squared distance at least 10 · Cδ in the embedding.
if |U | > a

C·δ : then
Pick r u.a.r.∼ [1, 2].
For each i ∈ U , remove i and all vertices at distance 6 2r · δ in the embedding. Let Ui be the set of removed vertices
via i.
Repeat the algorithm on the remaining graph.

else
Run the subroutine Algorithm 5 on the remaining graph and obtain additional sets Ui’s.

end if
Distribute evenly the vertices in the Ui’s among two sets P1, P2 so that if j, k ∈ Ui then j, k are in the same set. Let
V ′ = V \ (P1 ∪ P2) .
Return the partition (P1, P2, V

′) .

Fact C.3. Algorithm 4 runs in time Õ (|V (G)|+ |E(G)|) .

16

Fast Algorithm for Beyond-Worst-Case Graph Clustering

Proof. Step 1 requires O(E) time. The steps 2-4 can be repeated at most C · `/(a · δ) times. Indeed no vertex can be in
both Ui and Ui′ at the same time (even if X does not satisfy the triangle inequality constraints) and since by definition each
Ui contains at least 10δ2 · n vertices, in C · `/(a · δ) iterations we will have removed all vertices form the graph. For each of
these iterations, step 2 requires time Õ

(
1
δ2 |V (G)|

)
and step 3 requires time O(|V (G)| · poly(1/aδ) . Step 4 runs in time at

most O(|V (G)| /aδ) .

As we show in Fact C.4, Algorithm 5 also runs in time Õ (|V (G)|+ |E(G)|). Step 6 can be done in time Õ(|V (G)|) after
ordering the sets Ui’s. Thus the statement follows as δ > 1/ poly log(n) , a > Ω(1) .

The subroutine of step 5 in Algorithm 4 is presented below.

Algorithm 5 Subroutine of fast heavy vertex removal procedure
Input: A graph G on ` · n vertices, a candidate solution X to Equation (2) on input G, the list of vertices V ∗, parameters
a, δ > 0 .

Consider the graph G∗(V ∗, ∅).
for ij ∈ E(G) do

if ‖vi − vj‖2 6 200δ and f(i) 6= (∗) , f(j) 6= (∗) then
Connect f(i) to f(j) in G∗ (excluding self-loops).

end if
end for
Pick r u.a.r.∼ [1, 2] and for each connected component U in G∗, remove all vertices at distance 6 2r · δ to some vertex
i ∈ U . Index the resulting sets by arbitrary representative vertices in each component.
Return the resulting sets Ui’s.

Fact C.4. Algorithm 5 runs in time Õ (|V (G)|+ |E(G)|) .

Proof. We use the mapping of Lemma C.2. We can then construct the graph G∗ in time O(|E(G)|). Moreover, notice that
|E(G∗)| 6 |E(G)| . We can find the connected components in G∗ in time O(|E(G∗)|+ |V (G∗)|) and partition the vertices
in G according to such connected components in time Õ(|V (G)|). The result follows.

Next we bound the probability that an edge gets cut in Algorithm 4.

Lemma C.5. Consider the settings of Lemma C.1. At each iteration of steps 2-4 in Algorithm 4 as well as the one using
Algorithm 5 the following holds:

∀i s. t. fi 6= (∗) P (∃Uk ∈ U s. t. i ∈ Uk , j /∈ Uk) 6
‖vi − vj‖2

2 · δ
.

Proof. Consider first an iteration of steps 1-3 in Algorithm 4. By construction each vertex i can be in at most one set
Uk. Since r is chosen uniformly at random in the interval [1, 2] the claim follows. So consider Algorithm 5. Again, by
construction each vertex i can be in at most one set Uk so by choice of r the inequality holds.

Now Lemma C.1 follows as a simple corollary.

Proof of Lemma C.1. By Fact C.3, steps 1-3 in Algorithm 4 are repeated at most C · `/δ times while Algorithm 5 runs only
once. By Lemma C.5 we then have ∀ij ∈ E(G) \ E∗

P (ij ∈ E(P1, P2, V
′) \ E∗) 6 C∗

‖vi − vj‖2

δ
· (1 + C · `/δ) ,

for some C∗ > 0 . Then the bound on E [|E(P1, P2, V
′) \ E∗|] follows by linearity of expectation. By definition of V ∗, the

set V ′ does not contain (δ, n)-heavy vertices as well as no edges of length at least δ. so it satisfies conditions (3), (4) in
Lemma 4.8 . Finally condition (2) follows by the spreadness condition of feasible solutions.

17

Fast Algorithm for Beyond-Worst-Case Graph Clustering

C.2. The oracle

We prove here Lemma 4.8. To simplify the description of the oracle, as in (Arora & Kale, 2007), we consider the following
modification of Equation (3), which contains additional constraints. The two programs are equivalent as these constraints
are implied by the ones in Equation (3).


min〈L,X〉

Xii = 1 ∀i ∈ [n] (unit norm)

〈Tp, X〉 > 0 ∀paths p (triangle inequality)

〈K,X〉 > 4an2 (balance)

 (8)

Remark C.6. We remark that, as we need not to explicitly write down the program, but only efficiently find separating
hyperplanes, the use of Equation (8) does not imply an increase in the running time of the overall algorithm.

We consider the dual program of Equation (8), which has variables x1, . . . , xn for each vertex, fp for every path p and an
additional variable z for the set [n] considered in the primal.

max
∑
i∈[n]

xi + an2z

diag(x) +
∑
p

fpTp + zK � L

fp, z > 0 ∀ paths p


(9)

Now, given a candidate solution X , our starting point is the procedure of Lemma C.1, which we use to remove vertices that
are heavy in the current embedding.

Proof of Lemma 4.8. Throughout the proof, whenever we write a feedback matrix, all the variables that are not specified
are set to 0. Let X be the matrix denoting the current embedding. We may assume without loss of generality that both the
oracles in Lemma 4.6 and Lemma 4.7 outputted yes on X . We claim there are at most C̄ · α/δ edges of length at least δ in
the embedding for some large enough constant C̄ > 0. Suppose this is not the case, consider the following procedure:

• Pick uniformly at random an a-balanced bipartition A,B.

• Compute the max d-regular A-B flow with d = O(α)/n .

In expectation the flow is larger than C̄α (if it is smaller we have found a cut). If the flow is larger than C̄α then let F
be the Laplacian of the flow graph and let D be the Laplacian of the complete weighted graph where only edges ij with
i ∈ A , j ∈ B have weight fij , and the rest have 0 weight . Then by definition

∑
p fpTp = F − D . Thus we may set

xi = α/ |V (G)| for all i ∈ V (G), fp as in the computed flow for all p and all other variables to 0. The feedback matrix Y
becomes α

|V (G)| Id + F −D − F = α
|V (G)| Id−D and we have

〈 α

|V (G)|
Id−D,X〉 6 α− (C̄ − 1) · α < −α < 0 .

Notice also that
∥∥∥ α
|V (G)| Id−D

∥∥∥ 6 O(α/ |V (G)|) . We repeat this procedure O(log n)100 times, by Markov’s inequality

the claim follows with probability at least 1−O(log n)−99 . Let E∗ ⊆ E(G) be the set of edges of length at least δ in the
embedding. Notice that we must have |E∗| 6 O(α/δ) .

Now we run the heavy vertex removal procedure Algorithm 4. Let (P1, P2, V
′) be the resulting partition. If the partition

satisfies (1), (2), (3), (4) in Lemma 4.8 the result follows. Else, since the oracles in Lemma 4.6 and Lemma 4.7 outputted
yes on X , since there are no edges longer than δ in E(G) \ E∗ and since by construction V ′ does not contain (δ, n) heavy
vertices, it must be that ∣∣∣E(P1, P2, V

′) ∩
{
ij ∈ E(G)

∣∣∣ ‖vi − vj‖2 6 δ
}∣∣∣ > C∗ · α

δ
·
(

1 +
`

δ

)
, (10)

18

Fast Algorithm for Beyond-Worst-Case Graph Clustering

for some large enough constant C∗ > 1010C, where C > 0 is the universal constant of Lemma C.1.

Let d = 100 · C∗ ·
(

α
|V (G)|·δ

(
1 + `

δ

))
. We compute the maximum d-regular flows for each of the partitions (P1 ∪ P2 , V

′),
(P1 , P2 ∪ V ′), (P2 , P1 ∪ V ′) as described in Appendix A using the algorithm in Theorem A.1. By Equation (10) at least
one of these cuts has flow C∗

3 ·
α
δ ·
(
1 + `

δ

)
as otherwise by duality we have found a (a/2)-balanced cut of value at most

C∗ · αδ ·
(
1 + `

δ

)
+ |E∗| 6 O

(
α
δ

(
1 + `

δ

))
as desired. Without loss of generality we may always assume this is the partition

(P1 ∪ P2 , V
′). We distinguish two cases:

1.
∑
ij∈E(P1∪P2 ,V ′)\E∗ fij ‖vi − vj‖

2 > C∗

109

(
α
(
1 + `

δ

))
,

2.
∑
ij∈E(P1∪P2 ,V ′)\E∗ fij ‖vi − vj‖

2
< C∗

109

(
α
(
1 + `

δ

))
.

Suppose we are in case 1. Let F be the Laplacian of the weighted graph corresponding to the flow and let D be the Laplacian
of the complete weighted graph where only edges ij with i ∈ P1 ∪ P2 and j ∈ V ′ have weight fij , and the rest have 0
weight. Since we are in case 1 we have

〈D,X〉 > C

109

(
α

(
1 +

`

δ

))
.

Moreover, by definition
∑
p fpTp = F −D . Thus we set xi = α/ |V (G)| for all i ∈ V (G), fp as in the computed flow for

all p and all other variables to 0. The feedback matrix Y becomes α
|V (G)| Id + F −D − F = α

|V (G)| Id−D and we have

〈 α

|V (G)|
Id−D,X〉 6 α− C

109
· α
(

1 +
`

δ

)
< −α < 0 .

Moreover notice that
∥∥∥ α
|V (G)| Id−D

∥∥∥ 6 O
(

α
|V (G)|

)
+ d 6 Õ

(
α

|V (G)|

)
where in the last step we used the inequality

δ > Ω(1/ log n). In conclusion, in this case the ORACLE finds a separating hyperplane and outputs no. Notice also that by
construction D has at most O(m+ n) non zero entries so the feedback matrix can be computed in time O(m+ n).

It remains to consider case 2. By Lemma C.1 and Markov’s inequality, we know that for any feasible solution X∗ to
Equation (2) with objective value at most α, it holds with probability at least 1/2:

E
[∣∣∣E(P1, P2, V

′) ∩
{
ij ∈ E(G)

∣∣∣ ‖vi − vj‖2 6 δ
}∣∣∣] 6 C · α

δ
·
(

1 +
`

δ

)
,

where C < C∗/1010. Thus repeating the procedure (log n)100 times, we get that, for any feasible solutionX∗ with objective
value α, with probability at least 1−O(log n)−100, for at least one of the resulting partitions (P1, P2 , V

′)∣∣∣E(P1, P2 , V
′) ∩

{
ij ∈ E(G)

∣∣∣ ‖vi − vj‖2 6 δ
}∣∣∣ 6 C · α

δ
·
(

1 +
`

δ

)
.

Now consider again our candidate solution X satisfying Equation (10). If after (log n)100 trials we still satisfy Equation (10)
and are always in case 2, then with probability 1− O(log n)−100 there exist at least C

∗

10 ·
α
δ ·
(
1 + α

δ

)
edges of length at

most δ/108 crossing the cut E(P1 ∪ P2 , V
′) \ E∗.

By design of Algorithm 4, then it must be the case that there exists a set of size Ω(n) of triplets {i, j, k} ⊆ C with ij ∈ E(G)

and k ∈ V ∗ such that ‖vi − vj‖2 6 δ/108, ‖vj − vk‖2 6 ‖vi − vk‖2 but

P
r
u.a.r.∼ [1,2]

(
‖vk − vj‖2 6 δ(1 + r) and ‖vk − vi‖2 > δ(1 + r)

)
> 104 · ‖vi − vj‖

2

δ
.

Indeed if this scenario does not apply then we would have seen a partition violating Equation (10) with probability at least
1−O(log n)−100 by the argument used in the proof of Lemma C.5.

So suppose this scenario applies, and consider such a triplet {i, j, k}. Then we must have

‖vi − vk‖2 > ‖vj − vk‖2 + 104 · ‖vi − vj‖2 (11)

19

Fast Algorithm for Beyond-Worst-Case Graph Clustering

so we are violating the triangle inequality. Furthermore, we know that the sum over each such triplets must satisfy∑
{i,j,k} satisfying Equation (11)

‖vi − vj‖2 > Ω

(
α

δ

(
1 +

`

δ

))
.

as otherwise with probability 1−O(log n)−100 we would have found a cut violating Equation (10). Notice now that we can
find such triangle inequalities in linear time by looking at the edges being cut and the vertices being picked at each iteration
of Algorithm 4.

Thus set xi = α/ |V (G)| for all i ∈ V (G) and fp = C∗α
n for Θ(n) such violated triangle inequalities and a large enough

constant C∗ > 0. We set F = 0 and

〈 α

|V (G)|
Id +

∑
fpTp, X〉 6 α−O

(α
δ

)
6 −α < 0 ,

where in the last step we used the assumption δ < 1 . The width of the feedback matrix is at most O(α/ |V (G)|) and it has
O(m+ n) entries, thus it can be computed in O(m+ n) time.

Finally we remark that choosing d = O(log n)100 the oracle is d-robust by Lemma A.3.

D. The semi-random hierarchical stochastic model
In this section we consider the semi-random hierarchical stochastic model (HSM) from (Cohen-Addad et al., 2019) and
develop a nearly linear time algorithm that estimates the Dasgupta’s cost of the underlying hierarchical clustering model
upto constant factor. The main idea is to recursively compute an O(1)-approximation to Balanced Cut which produces a
graph with O(1)-approximation to the Dasgupta’s cost (Dasgupta, 2016). Essentially most of this section is directly cited
from (Cohen-Addad et al., 2019) and we only provide it for the completeness. However, note that using Theorem 1.2 we can
improve the running time of the algorithm to the nearly linear time. In the following subsection, we formally define the
Dasgupta’s cost of the graph and the hierarchical stochastic model.

D.1. Related notions

Let G = (V,E,w) be an undirected weighted graph with weight function w : E → R+, where R+ denotes non-negative
real numbers. For simplicity we let w(x, y) = w(y, x) = w({x, y}). For set U ⊆ V we define G[U] to be the subgraph
induced by U . A hierarchical clustering T of graph G is a rooted binary tree with exactly |V | leaves, such that each leaf is
labeled by a unique vertex x ∈ V .

For G = (V,E) and a hierarchical-clustering tree T we denote the lowest common ancestor of vertex x and y in T by
LCAT(x, y). For any internal node N of T , we let TN to be the subtree of T rooted at N and we define V (N) to be the
set of leaves of the subtree rooted at N . Finally, for a weighted graph G = (V,E,w) and any subset of vertices A ⊆ V
we define w(A) =

∑
x,y∈A w(x, y), and for any set of edges E0, we let w(E0) =

∑
e∈E0 w(e).For any sets of vertices

A,B ⊆ V , we also define w(A,B) =
∑
x∈A,y∈B w(x, y).

Equipped with these notation we define the Dasgupta’s cost of a graph for a tree as follows:

Definition D.1 ((Dasgupta’s cost(Dasgupta, 2016; Cohen-Addad et al., 2019))). Dasgupta’s cost of the tree T for the graph
G = (V,E,w) is defined as

cost(T ;G) =
∑

(x,y)∈E

leaves(T [LCA(x; y)]) · w(x, y).

Definition D.2 (Ultrametric (Cohen-Addad et al., 2019)). A metric space (X, d) is an ultrametric if for every x, y, z ∈ X ,
d(x, y) 6 max{d(x, z), d(y, z)}.

We say that a weighted graph G = (V,E,w) is generated from an ultrametric if there exists an ultrametric (X, d), such that
V ⊆ X , and for every x, y ∈ V , x 6= y, e = {x, y} exists, and w(e) = f(d(x, y)), where f : R+ → R+ is a non-increasing
function. For a weighted undirected graph G = (V,E,w) generated from an ultrametric, in general there may be several
ultrametrics and corresponding functions f mapping distances in the ultrametric to weights on the edges, that generate the

20

Fast Algorithm for Beyond-Worst-Case Graph Clustering

same graph. It is useful to introduce the notion of a minimal ultrametric that generates G. Let (X, d) be an ultrametric
that generates G = (V,E,w) and f the corresponding function mapping distances to similarities. Then we consider the
ultrametric (V, d̃) as follows: (i) d̃(u, u) = 0 and (ii) for u 6= v

d̃(u, v) = d̃(v, u) = max
u′,v′

d(u′, v′)|f(d(u′, v′)) = f(d(u, v))

Definition D.3 (Generating Tree (Cohen-Addad et al., 2019)). Let G = (V,E,w) be a graph generated by a minimal
ultrametric (V, d). Let T be a rooted binary tree with |V | leaves and |V | − 1 internal nodes; let N denote the internal nodes
and L the set of leaves of T and let σ : L→ V denote a bijection between the leaves of T and nodes of V . We say that T is
a generating tree for G, if there exists a weight function W : N → R+, such that for N1, N2 ∈ N , if N1 appears on the
path from N2 to the root, W (N1) 6W (N2). Moreover for every x, y ∈ V , w(x, y) = W (LCAT (σ−1(x), σ−1(y))).

We say that a graph G is a ground-truth input if it is a graph generated from an ultrametric. Equivalently, there exists a tree
T that is generating for G.

Now we are ready to define Hierarchical Stochastic Model graphs as follows:

Definition D.4 (Hierarchical Stochastic Model (HSM) (Cohen-Addad et al., 2019)). . Let T̃ be a generating tree for
an n-vertex graph Ḡ, called the expected graph, such that all weights are in [0, 1]. A hierarchical stochastic model is
a random graph G such that for every two vertices u and v, the edge {u, v} is present independently with probability
w({u, v}) = W (LCAT (σ−1(u), σ−1(v))), where w and W are the weights functions associated with T̃ as per Definition
D.3.

In other words, the probability of an edge being present is given by the weight of the lowest common ancestor of the
corresponding vertices in T̃ .

D.2. The algorithm for the semi-random hierarchical stochastic model

We generate a random graph, G = (V,E), according to HSM (Definition D.4). The semi-random model considers a random
HSM graph generated as above where an adversary is allowed to only remove edges from G. Note that the comparison is to
the cost of the generating tree on the graph Ḡ (Definition D.4). In this section we present the proof of Theorem 1.3.

Proof of Theorem 1.3 is a variant of Theorem 6.1 from (Cohen-Addad et al., 2019) with nearly-linear running time that uses
our fast algorithm for finding Balanced-Cut.

Let Ḡn = (V̄n, Ēn, w) be a graph generated according to an ultrametric, where for each e ∈ Ēn, w(e) ∈ (0, 1) (Definition
D.3). Let G = (V,E) be an unweighted random graph with |V | =

∣∣V̄n∣∣ = n generated from Ḡ as follows. For every
u, v ∈ V̄n the edge (u, v) is added to G with probability w((u, v)) (Definition D.4).

We assume that V = V̄n and let T be a generating tree for Ḡ. Let U ⊆ V . Let T̃ |U denote the restriction of T to leaves
in U Let N(U) be the root of T̃ |U . Consider the following procedure where the nodes appear as leaves in the left and
right subtrees of the root of T̃ |U . Suppose we follow the convention that the left subtree is never any smaller than the right
subtree in T̃ |U . We say that the canonical node of T̃ |U is the first left node NL encountered in a top-down traversal starting
from N(U) such that (1− b) · |U | > V (NL) > b · |U |, where, 0 < b < 1/2 is a constant. We define UL = V (NL), and
UR = U \ UL. We say that (UL, UR) is the canonical cut of U . It is easy to see that such a cut always exists since the tree
is binary and left subtrees are never smaller than right subtrees. Let Ernd = {(u, v) ∈ E|u ∈ UL, v ∈ UR}.
Lemma D.5 ((Cohen-Addad et al., 2019)). For a random graph G generated as described in Theorem 1.3, with probability
at least 1− o(1), for every subset U of size at least n2/3

√
log n, the subgraph (U,Ernd) is geometrically expanding up to

scale (1/
√
D,n, α) where

α = C.max{w(L,R), |U | ·D · log2D, |U | ·D · log n}, (12)

Furthermore, the result also applies in the semi-random setting where an adversary may remove any subset of edges from
the random graph G.

Theorem D.6. For any graph G = (V,E), and weight function w : E → R+, the φ-sparsest-cut algorithm from
(Cohen-Addad et al., 2019) outputs a solution of cost at most O(φ ·OPT).

Now we show the proof of Theorem 1.3 which is a variant of Theorem 6.1 from (Cohen-Addad et al., 2019) using our
nearly-linear time agorithm for Balanced-Cut.

21

Fast Algorithm for Beyond-Worst-Case Graph Clustering

Proof of Theorem 1.3. Let b = 1/3. By Theorem D.6, the recursive sparsest cut algorithm approximates Dasgupta’s cost up
to factor O(φ) assuming that at every recursion step, the algorithm is provided with a φ-approximation to the b-Balanced
Cut problem (i.e., minimize cut subject to the constraint that both sides have at least b fraction of vertices being cut)

Note that cost(T̃ ; Ḡ) = Ω(n3 ·pmin) = Ω
(
n7/3 · log n

)
. Therfore, once we obtain sets U of size (n0 = n2/3 · log n), since

there are at most n/n0 of them, even if we use an arbitrary tree on any such U , together this can only add O(nn0
· n3

0) =

O(n13/9 · (log n)2) = O
(
n7/3 · log n

)
to the cost. Thus, we only need to obtain suitable approximations during the

recursive procedure as long as |U | > n2/3 · log n. This is precisely given by using Lemma D.5. Let D = O(log n),
δ = 1√

D
= O

(
1√

logn

)
, let κ > Ω(

√
log n). Observe that in Equation 12, w(L,R) = Ω(|U |2 · pmin) = Ω

(
n2/3(log n)3

)
,

|U |D log2D = o(|U |D log n), and D|U | log n = O
(
n2/3(log n)3

)
. Let α = O(w(L,R)). Thus, by Theorem 4.3 there

exists an algorithm that runs in time Õ (|V (G)|+ |E(G)|) and returns a cut that is an approximation to the Ω(b)-balanced
partition (S, T) with cut of size |E(S, T)| 6 O(α · (1 + δ · κ ·

√
log n)) = O(α) on the induced subgraph of Ḡ on the

vertex set U . This observation together with the case where subgraphs have size less than n2/3 log n finishes the proof.

22

