
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEM-MOE: SEMANTIC-AWARE MODEL-DATA COLLAB-
ORATIVE SCHEDULING FOR EFFICIENT MOE INFER-
ENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Prevailing LLM (Large Language Model) serving engines employ expert paral-
lelism (EP) to implement multi-device inference of massive Mixture-of-Experts
(MoE) models. However, the efficiency of expert parallel inference is largely
bounded by inter-device communication, as EP embraces expensive all-to-all collec-
tives to route tokens to the remote experts if not collocating on the same GPU/NPU
device. Nevertheless, state-of-the-art schemes treat expert device-placement and
request (or token) device-scheduling as separate concerns, triggering excessive
communication between them and compromising inference efficiency
This paper proposes Sem-MoE, a novel model-data collaborative scheduling
framework to minimize the steep communication costs in EP-centric MoE serv-
ing. Sem-MoE maximally collocates experts and their activating tokens onto the
same device using proactively modeled activation likelihood between them and
introduces three key techniques: (1) Offline model scheduling, which prelimi-
narily clusters and collocates experts onto devices based on their co-activation
tendencies for certain classes of input. (2) Online inter-request data scheduling
for Attention-DP setups, which proactively rebatches incoming requests onto the
device that hosts experts most likely and frequently activated by the corresponding
requests. (3) Online intra-request data scheduling for Attention-TP setups, which
seamlessly fuses a token reshuffling procedure into the original inference pipeline
and proactively reschedules tokens to devices to reduce dispersed remote routing.
We build Sem-MoE into a prevailing LLM serving engine SGLANG. Experiments
show our collaborative scheduling approach can effectively reduce the all-to-all
communication volume in EP and achieve superior inference throughput compared
to existing solutions.

1 INTRODUCTION

The democratization of large language models (LLMs) has been largely driven by continuous model
scaling. Over the past five years, the parameter count of the largest trained LLMs has increased by
three orders of magnitude, posing significant challenges to the scalability and economic viability of
both training and inference under modern AI hardware constraints.

To mitigate these challenges, the Mixture-of-Experts (MoE) architecture Fedus et al. (2022); Artetxe
et al. (2022); Jiang et al. (2024) has been introduced. Unlike dense models, MoE models sparsely
activate one or more expert sub-networks per input, enabling training of trillion-parameter models
without compromising accuracy, while maintaining a sub-linear increase in computational cost. This
approach has gained widespread adoption in recent industrial-strength LLMs, including DeepSeek-
V3 DeepSeek-AI (2024b)/DeepSeek-R1 DeepSeek-AI (2025), GPT-OSS OpenAI et al. (2025), the
Qwen3-Series Yang et al. (2025), and Kimi-K2 Team et al. (2025).

However, at inference time, massive MoE models still require substantial GPU/NPU1 resources to
compute, store, and load both expert and attention parameters. To achieve scalability and meet latency
requirements, existing inference frameworks deploy multi-dimensional parallelism strategies that

1We use GPU and NPU interchangeably in this paper.
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Figure 1: Latency breakdown for DeepSeek-V2-Lite inference over a single MoE layer. Hardware:
8-GPU (96GB) server with fast inter-GPU network (900GB/s).

distribute experts and attention blocks across interconnected devices. An efficient parallelization
scheme must effectively partition input tokens and model parameters, maximize resource utilization,
and minimize communication overhead.

To address the memory demands of large-scale MoE deployment and leverage aggregate memory
bandwidth, modern inference engines such as SGLang Zheng et al. (2024) and vLLM Kwon et al.
(2023) employ expert parallelism (EP), whereby experts are distributed across devices. Attention
layers are typically parallelized via data parallelism (DP) or tensor parallelism (TP). While EP enables
parallel computation of experts across GPUs, it introduces significant communication overhead:
intermediate activations must be dispatched from the gating module on a source GPU to the destination
GPUs hosting the routed experts, and later combined back after expert computation. These operations
often result in cluster-wide any-to-any token shuffling, typically implemented via two all2all
collective operations (e.g., NCCL’s all2all).

Our analysis reveals that the inference performance of MoE models remains severely constrained
by these costly all2all operations. For instance, a preliminary experiment running SGLang on
the DeepSeek-V2-Lite model with 8 GPUs shows that EP communication accounts for up to 59.2%
of the forward-pass latency in the MoE layers, respectively—even on high-speed interconnects (see
Figure 1). This bottleneck is further exacerbated on slower interconnects such as PCI-e or Ethernet.
Therefore, systematically reducing EP communication has become a critical task for improving the
efficiency and scalability of MoE inference.

In this paper, we demonstrate that the communication overhead of EP can be substantially reduced
through a novel semantic-aware model–data collaborative scheduling approach. This method
forecasts expert routing paths for both requests and individual tokens, and proactively co-schedules
tokens and experts to eliminate redundant communication. We present Sem-MoE, a framework that
implements this idea via two key techniques:

First, Sem-MoE performs offline model scheduling to reduce expert dispersion. Experts that are
frequently activated together are clustered and placed on the same device or server based on predicted
token-expert affinities. This grouping is performed periodically offline to avoid runtime overhead.

Second, Sem-MoE employs online data scheduling to align input tokens with their corresponding
expert groups. This includes: (1) Inter-request scheduling for DP-based attention: dynamically
batching requests to maximize expert affinity and minimize cross-device transfers. (2) Intra-request
scheduling for TP-based attention: proactively shuffling token activations during the TP commu-
nication phase. Specifically, Sem-MoE replaces the standard post-attention allreduce with a
shuffled-reduce-scatter and a deferred shuffled-allgather, effectively merging
proactive token routing with necessary data transformation.

By integrating collaborative model-data scheduling, Sem-MoE significantly reduces communica-
tion volume and improves inference throughput, as demonstrated through extensive experiments
implemented on top of SGLang.

We list Sem-MoE’s contributions as follows.

1. We conduct a comprehensive data analysis and reveal a significant context-independent
correlation between tokens and experts in large-scale MoE models, which provides a
foundational insight for optimizing expert placement and token routing.
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2. We design and implement an efficient model-data collaborative scheduling algorithm that
leverages the observed token–expert affinity. Our scheduler improves local activation rate
by 15.4% compared to baseline methods, substantially reducing unnecessary cross-device
communication.

3. We implement Sem-MoE on top of the state-of-the-art inference engine SGLang and
perform extensive evaluations. The results demonstrate that Sem-MoE achieves a throughput
improvement of up to 2.78x under specific SLOs in Attention-DP scenarios and up to 24.9%
latency reduction under Attention-TP setups, validating the practical effectiveness of our
approach.

2 BACKGROUND

Mixture-of-Experts The Mixture-of-Experts (MoE) architecture is a conditional computation
paradigm designed to scale model capacity without a proportional increase in computational cost [1].
Unlike dense models, where all parameters are activated for every input, an MoE model consists of a
multitude of expert sub-networks (typically Feed-Forward Networks, FFNs) and a gating network
(or router). For each input token, the gating network predicts a sparse combination of experts (e.g.,
the top-k experts) to which the token is dispatched. Only the selected experts are activated for
computation. The most common gating function is the Top-K Gating, which selects the k experts with
the highest scores. This design enables models to possess a vast number of parameters (e.g., trillions)
while keeping the FLOPs per token roughly constant, as only a small, fixed number of experts (e.g.,
k = 2) are active per token. This has made MoE the de facto standard for building state-of-the-art
large language models, such as the DeepSeek series DeepSeek-AI (2024a;b; 2025), the GPT-OSS
series OpenAI et al. (2025), and the Qwen series Qwen-Team (2024); Yang et al. (2025).

MoE Training Systems. There has been extensive research on optimizing systems of MoE training
systems, including FastMoE He et al. (2021), FasterMoE He et al. (2022), TA-MoE Chen et al. (2022),
SmartMoE Zhai et al. (2023), and FlexMoE Nie et al. (2023). However such optimizations can not
directly translate to inference scenarios as inference is workload-sensitive and strongly emphasizes
latency over throughput.

MoE Inference Systems. Integrated serving engines such as DeepSpeed-MII Holmes et al. (2024),
TensorRT-LLM NVIDIA, vLLM Kwon et al. (2023), and SGLang Zheng et al. (2024) have holistic
optimization for LLM inference that spans serving schedulers (e.g., continuous batching), dedicated
high-performance kernels, efficient parallelization, quantization, and elaborate compiler passes
for graph-level optimizations. Built upon these general holistic optimizations for LLM inference,
DeepSpeed-MoE Rajbhandari et al. (2022); Singh et al. (2023) and Tutel Hwang et al. (2022)
specifically optimize MoE models’ computation and communication. Following the design paradigm
of DeepSpeed-MoE, popular industry and open-sourced inference engines like vLLM and SGLang
also adopted expert parallelism deployment. Sem-MoE specializes in optimizing MoE parallelization
(particularly EP) and inherits holistic optimizations from prior work.

MoE Load-balancing and Experts Re-grouping. Lina Li et al. (2023) probes the variation of
expert hotness and allots non-uniform expert replicas to achieve load-balanced expert computation.
Similar studies Huang et al. (2023) exist to pursue expert load balancing and mitigate other sources
of MoE computing inefficiencies. EPS-MoE Qian et al. (2025) optimizes the computation of MoE
FeedForward Network (FFN) modules by dynamically selecting the best backend implementation
of GroupGemm and DenseGemm. DeepSeek also adopts EPLB (expert-parallelism load balancing)
in its real-world deployment DeepSeek-AI (2024b). ExFlow Yao et al. (2024) exploits the affinity
between experts across adjacent layers to reduce remote routing and collocate closely related experts.
Exflow only considers the model scheduling for MoE models, and requires a heavy allgather
before the execution of each model layer, which significantly incurs memory pressure and extra
communication overhead. MoETuner Go & Mahajan (2025) optimizes the MoE model serving by
finding an optimal expert placement strategy to minimize inter-device communication.

MoE Offloading and Prefetching. Existing prediction-based work on MoE inference primarily
focuses on prefetching offloaded experts and strategically saving GPU memories Yi et al. (2023);
Xue et al. (2024); Zhong et al. (2024), though offloading can extend inference latency and is rarely
used in latency-critical serving scenarios. In contrast, Sem-MoE focuses on the speculative reduction
of communication overheads and exposes no risks to compromise latency. The work also constructs
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probabilistic models to predict the token-expert routing paths, while Sem-MoE’s features modelling
more comprehensive MoE information, i.e., intra-layer and inter-layer expert affinity and token-
expert affinity, compared to prior work. Pre-gated MoE Hwang et al. (2024) modifies the MoE model
architecture to predict the experts to route at the next layer. Sem-MoE requires no modification to
MoE architecture.
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Figure 2: The workflow of Sem-MoE.

3 METHODOLOGY

3.1 SEMANTIC-AWARE MOE (SEM-MOE): OVERVIEW

Figure 2 illustrates the overall workflow of Sem-MoE, where solid and dashed lines represent
online and offline operations, respectively. The process begins with Sem-MoE collecting token
activation profiles, which include token identifiers and token-expert activation frequencies (Step 1⃝
in Figure 2). Based on these profiles, Sem-MoE probabilistically models the token-expert routing
likelihood and formulates a balanced token-expert co-clustering problem to generate scheduling
hints. These hints are materialized as lightweight lookup tables: a token-to-expert-group table T 2, an
expert-group-sequence-to-expert-group table A, and an expert grouping table E .

These scheduling tables drive the subsequent collaborative model-data scheduling. In the model
scheduling phase (Step 2⃝), Sem-MoE utilizes the expert-to-device table E to reconfigure the place-
ment of experts across all layers. In the data scheduling phase (Step 3⃝), different policies are applied
depending on the parallelism strategy of the attention layers:

• For attention layers deployed with Data Parallelism (DP), Sem-MoE employs inter-request
data scheduling. This policy reorders incoming requests according to the token-to-device
table T to maximize request-expert-group affinity, thereby reducing the all2all commu-
nication overhead across DP domains.

• For attention layers partitioned via Tensor Parallelism (TP), Sem-MoE adopts intra-request
data scheduling. This technique proactively shuffles tokens during the post-attention
reduce-scatter operation, directing them to devices predicted to host their target
experts in advance, thus minimizing potential token redistribution in subsequent MoE layers.

Figure 3 provides a concrete example of Sem-MoE’s operation. In the baseline of Case 1 (top
row), requests are distributed across DP ranks for independent attention computation. After expert
assignment, tokens are dispatched to their respective expert devices via all2all operations. With
Sem-MoE’s inter-request scheduling, requests are intelligently mapped to DP ranks to enhance
data locality, reducing all2all volume. This effect is further amplified by complementary model
scheduling that optimizes expert placement. In Case 2, which involves TP for attention, tokens require
reduction before dispatch and gathering after combination. Sem-MoE’s intra-request scheduling
predicts expert routes prior to the gating module, allowing tokens to be shuffled and scattered via a
customized shuffled-reduce-scatter (SRS) operator. Combined with model scheduling,
this approach achieves a higher local activation rate, significantly cutting down all2all traffic.

The inference acceleration achieved by Sem-MoE stems from the increased local activation rate
enabled by collaborative model-data scheduling. Let G denote the number of devices, B the

2We use expert group and expert cluster interchangeably.
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Figure 3: An illustrating example of Sem-MoE. In Case #1 (Attention with DP), Sem-MoE resched-
ules requests and adjusts expert placement in Layer 1, reducing the number of remotely activated
tokens (Remote activated tokens refer to the total number of tokens dispatched to and combined
from remote devices) from 16 to 4. In Case #2 (Attention with TP), token rescheduling via
shuffled-reduce-scatter and expert repositioning in Layer 1 reduce remote token acti-
vations from 12 to 2.

global batch size, S the sequence length, and k the number of experts activated per token. The
communication volume of an all2all operation is given by αkBS

G , where α represents the fraction
of non-local activations. By maximizing the local activation rate (i.e., minimizing α), Sem-MoE
effectively trims communication overhead. The subsequent sections detail the offline modeling and
online scheduling algorithms.

3.2 PREDICTING EXPERT ROUTING PATH

The routing choice of each MoE layer is given by the gating function: GL(hL,j) =
top-k(softmax(WL,ghL,j + bL,g)). Accurate prediction of token-expert routing patterns in
advance is fundamental to Sem-MoE’s scheduling optimization.

Context-Independent Token Activation Prediction. We observe that despite the theoretical de-
pendence of expert routing on contextual semantics (as expressed by the gating function GL(hL,j)),
in practice, tokens exhibit strong context-independent affinities to specific experts. This enables
effective prediction based solely on token identity. Through offline profiling on datasets such as
Sharegpt using models including DeepSeek-V2-lite and Qwen3-30B-A3B (see Appendix Figure 6),
we construct a token-to-expert activation table T(L) ∈ Nt×N(L)

for each MoE layer L, where
T

(L)
j,k counts how frequently token xj activates expert E(L)

k . The corresponding routing probability is:

Pr(E
(L)
k |xj) = T

(L)
j,k /

∑N(L)

k=1 T
(L)
j,k . For efficient online inference, these probabilities are tabulated

in a token-to-expert confidence table Cp ∈ Rt×N . Out-of-vocabulary tokens are handled via
nearest-neighbor matching in the embedding space.

The token-level predictions form the basis for scheduling in both Attention-DP and Attention-
TP scenarios. For Attention-DP, the affinity of an entire request to an expert group is derived
by aggregating the predictions of its constituent tokens, enabling request-level scheduling. For
Attention-TP, the fine-grained token-level predictions are directly utilized, and are further refined by
modeling inter-layer dependencies, as discussed in Section 3.3. This predictive framework provides
the essential guidance for Sem-MoE’s collaborative scheduling optimization detailed next.

3.3 MODEL-DATA COLLABORATIVE SCHEDULING

We illustrate how such expert-routing forecasting models can guide the co-dispatching of tokens and
experts. Sem-MoE formulates the model-data co-scheduling problem as a 0-1 integer programming
(ILP) -based co-clustering problem.

From the offline profiling, we obtain the number of deduplicated (un-deduplicated) tokens t (S), the
number of experts per layer N , the number of clusters E (also EP degree), the token j frequency aj ,
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and the activation probability Cp,jk that token j activates expert k. The decision integer variables are
set as the routing Rij ∈ {0, 1} of token j to cluster i, and the placement Cij ∈ {0, 1} of expert j to
cluster i.

We aim to minimize an objective function L = θ
∑E

i=1

∣∣∣∑t
j=1 (Rijaj)− S

E

∣∣∣ + (1 −

θ)
∑

i1 ̸=i2

(∑t
j=1

∑N
k=1 (Ri1jCi2kCp,jkaj)

)
, where the left part is to ensure that the token fre-

quencies of different clusters as even as possible to promote load balancing among EP ranks, and the
right part is to minimize the all2all communication overhead caused by remote activation (i.e.,
the summation of all the activations of tokens and experts belonging to different clusters), a factor
θ ∈ (0, 1) controlling the percentage of two sub-objectives. We further require that each token be-
longs to only one class, each expert belongs to only one class, and the number of experts in each class
is equal by adding hard constraints

∑E
i=1 Rij = 1, for j = 1 . . . t,

∑E
i=1 Cij = 1, for j = 1 . . . N ,

and
∑N

j=1 Cij =
N
E , i = 1 . . . t.

The above ILP problem is difficult to solve directly using LP solvers, given a large number of
intermediate variables introduced in the linearization process. Sem-MoE provides an alternating
optimization algorithm. It can quickly obtain a feasible solution while ensuring load balancing. The
detailed co-clustering algorithm can be referred to in § B in the Appendix. The solution can then be
applied to offline model scheduling and online inter-/intra-request data scheduling.

Model scheduling. Before deployment, Sem-MoE adjusts the expert placement layout according to
the solved C, placing expert j to device k if Cjk = 1. Accordingly, Sem-MoE shuffles the column
of the gate matrix, thereby realizing a transparent expert re-distribution.

Data scheduling: Attention-DP Scenarios. In Attention-DP setups, where requests are processed
independently across DP ranks, scheduling operates at the request granularity. We use the variable
Sr ∈ JEK to denote the cluster to which request r needs to be scheduled. Once the scheduling
of tokens is determined, the scheduling of the request r can be determined by aggregating the
routing result of its tokens, Sr = argmaxj∈JEK

∑
i∈r Rij . Meanwhile, to achieve runtime load

balance, Sem-MoE realizes a workload-aware balanced request scheduling algorithm. For continual
E requests, Sem-MoE guarantees these requests are distributed to all E ranks, such that the loads of
all ranks would not skew in decoding stage. Detailed algorithm could be referred to in Algorithm 2
in § B. This request-level scheduling minimizes cross-device communication by collocating entire
requests with their most likely expert group (i.e., DP rank).

Data Scheduling: Attention-TP Scenarios. In Attention-TP setups, the attention computation
itself is distributed, requiring fine-grained, token-level scheduling. Here, we enhance the basic token-
expert prediction with inter-layer expert-expert affinity. We observe that expert selections exhibit
Markovian dependencies across layers: the experts chosen at layer L depend on selections at previous
layers. We model this using an n-gram device transition model: Pr(D

(L)
k |D(L−1), . . . , D(L−n))

where D(l) ∈ {1, . . . , Q}, where D(l) ∈ 1, . . . , Q denotes the device index of the expert selected at
layer l. These transitions are stored in an expert-group-sequence-to-expert-group confidence table
Ap (we use 2-gram in practice). Together with the token routing matrix R, we can achieve more
accurate proactive scheduling during the TP communication phase. The detailed algorithm can be
found in Algorithm 3.

3.4 IMPLEMENTATION AND SYSTEM OPTIMIZATION

Sem-MoE is implemented as a plug-in module for the SOTA LLM inference engine SGLang. Our
system comprises approximately 5,000 lines of Python code, along with several custom Triton OpenAI
kernels for high-performance communication operations.

To support affinity-aware scheduling in the Attention-DP scenario, we extend SGLang’s request
scheduler to incorporate token–expert affinity information derived from our prediction models. This
enables the runtime to batch requests with similar expert activation patterns onto the same device,
minimizing cross-device communication.

For the Attention-TP scenario, we implement two fused communication primitives:
shuffled-reduce-scatter (SRS), and shuffled-allgather (SAG). These ker-
nels integrate speculative token shuffling—based on predicted expert routes—into standard
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reduce-scatter and allgather collectives. The shuffling logic relies on an optimized
argsort kernel, which outperforms the native PyTorch implementation by 25%. The overall
overhead of embedding shuffling into the ring-based communication schedule is negligible, measured
at approximately 1%. Furthermore, for efficient all2all, Sem-MoE integrates frontier MoE
communication libraries deepep Zhao et al. (2025).

By combining offline expert reorganization with online token- and request-level scheduling, Sem-
MoE achieves significant reductions in all2all communication volume, leading to improved
end-to-end inference throughput in both DP and TP configurations.

4 EXPERIMENT

4.1 EXPERIMENTAL ENVIRONMENTS

We evaluate Sem-MoE on an 8-GPU server, representing commercial GPU servers unified for both
training and inference, which are configured with 96GB-HBM per GPU and fast homogeneous
interconnects. GPUs inside a server can communicate with each other at a premium bandwidth
(900GBps). The server is equiped with two 44-core Intel CPUs and 2TB DDR5 memory.

4.2 MODELS, DATASETS AND WORKLOAD TRACES

Models. We choose two types of typical MoE models for evaluation, i.e., Qwen3-30B-A3B with 128
experts per layer and DeepSeek-V2-Lite with 64 routed experts per layer. Both Qwen3-30B-A3B
and DeepSeek-V2-Lite are prevailing open-sourced MoE models.

Datasets. We use the following three representative datasets MMLU Hendrycks et al. (2021b;a),
lmsys-chat-1m Zheng et al. (2023), ShareGPT-Vicuna-unfiltered Datasets (2023). In the experiments,
we only focus on the prompt parts of these datasets. These datasets contain data from different
domains, representing real-world user request patterns, and can effectively evaluate the affinity of
requests and tokens from different domains for experts.

4.3 BASELINES AND PERFORMANCE METRICS

We select SGLang and MoETuner as the baselines to compare, representing the SOTA LLM inference
engine and SOTA MoE model scheduling technique.

SGLang: SGLang Zheng et al. (2024) is a prevailing open-source LLM inference framework,
incorporating numerous optimizations, including but not limited to continuous batching, paged
attention, flash attention, radix-attention, advanced quantization, etc. SGLang declares optimizations
for MoE models with high-performance, fused triton kernels OpenAI, supporting DP and TP for
attention layers and EP for MoE layers. SGLang is the SOTA open-sourced LLM inference engine,
which we set as a strong baseline to compare.

MoETuner: MoETuner Go & Mahajan (2025) is an optimization framework that enhances MoE
model serving performance by finding an optimal expert placement strategy. It addresses critical
bottlenecks in expert parallelism, namely imbalanced token processing loads across GPUs and skewed
inter-GPU communication, which lead to significant tail latency. The core of MoETuner is an Integer
Linear Programming (ILP) formulation that leverages predictable token routing dependencies across
layers. It jointly optimizes expert-to-GPU assignments to balance computational workloads and
minimize communication costs, thereby reducing end-to-end execution time. We embed MoETuner
into SGLang as a comparable baseline.

Metrics: To mitigate performance fluctuating, we set the input length and output length fixed. Then
we vary the request rate from 10 to 175 req/s, and observe the following metrics. Throughput is
the number of tokens (tokens/s) that an inference system can process per unit time. TTFT (Time
to First Token) measures the duration between the request’s arrival and the first token’s generation
time. E2E (End-to-End) Latency measures the duration between the request’s arrival and the last
token’s generation time. Following prior work Wu et al. (2024b;a), we set the latency SLO as 5× of
the latency under the lightest input load (minimal request rate). For each dataset, we use 20% of the
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Figure 4: Attention-DP Scenario: Inference throughput under TTFT and E2E latency SLOs.

Models Input Length p99 TTFT (ms) Median E2E Latency (ms)
SGLang MoETuner Sem-MoE SGLang MoETuner Sem-MoE

DeepSeek-V2-Lite
256 84.87 80.96 75.63 617.87 604.46 603.10
512 98.10 92.17 88.69 609.81 602.02 599.89
1024 111.19 119.76 100.74 608.96 606.54 604.45

Qwen3-30B-A3B
256 85.72 87.24 74.46 758.60 763.97 750.26
512 104.76 101.86 83.87 766.80 759.41 759.16
1024 107.73 107.36 103.69 769.83 764.16 762.30

Table 1: Attention-TP Scenario: TTFT and E2E latency under different

data to train the token activation prediction model and generate the expert placement table, and the
remaining 80% is used to sample experimental requests.

4.4 END-TO-END INFERENCE PERFORMANCE

Figure 4 shows the end-to-end performance evaluation of Sem-MoE and two baselines.

Attention-DP Scenario. For the attention-DP scenario, requests are scheduled to different DP ranks
for attention and synchronized at MoE layer. The latency of each layer is determined by the slowest
DP(EP) rank. Thus we use token throughput to measure the overall performance in attention-DP.
We draw a latency-throughput curve to measure the highest throughput a system can achieve under
pre-defined SLOs, shown in Figure 4. Data points near the bottom-right corner are better. For
Deepseek-V2-Lite, Sem-MoE achieves throughput improvements of 31% and 221% against SGLang
with DeepEP under TTFT and end-to-end latency SLO constraints, and 32% and 278% against
MoETuner, respectively. For Qwen3-30B-A3B, Sem-MoE’s throughput improvement peaks at 98%
and 11% against SGLang under SLO constraints, while also achieving gains of 35% and 32% against
MoETuner. As the request rate increases continually, baselines stock a bunch of unprocessed requests,
yielding a steeper curve, resulting in the above high throughput improvement (221% and 278%). The
results demonstrate that Sem-MoE can obtain certain performance gains by scheduling the requests
across different DP ranks and co-placing the experts in appropriate devices.

Attention-TP Scenario. For the attention-TP scenario, there is no scheduler for a single inference
instance, as different TP ranks receive the same input. Meanwhile, latency becomes a main concern in
TP settings. Therefore, we set the request rate to 1 req/s and vary the input sequence length to observe
the TTFT and end-to-end latency directly as shown in Table 1. For Deepseek-V2-Lite, Sem-MoE
outperforms the best baseline in TTFT by 12.21%, 10.60%, and 18.89% under input lengths of
256, 512, and 1024. For Qwen3-30B-A3B, the performance optimization ratio is 17.16%, 24.90%,
3.80%. Thanks to the load-balance and inter-layer communicaiton optimizing effect, MoETuner
gains performance improvement in some cases, yet may slow down in the other cases. Model-data
collaborative scheduling can bring holistic performance boosting in all tested scenarios. The speedup
of TTFT also translates to the shrinking of end-to-end inference latency, just as shown in Table 1. We
would delve into the execution of MoE layers to analyze the rationale behind the breakdown of the
inference speedup.
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Figure 5: Breakdown Evaluation

4.5 A DETAILED LOOK AT EP COMMUNICATION REDUCTION

In Figure 5(a), we show the local activation rate and the resulting latency of a single MoE layer
under the attention-TP scenario. Local activation means the tokens’ activation is routed to an expert
collocated on the same GPU device, and thus, remote routing and its associated EP communication
can be skipped. Results show that, compared with the vanilla placement, Sem-MoE can increase LAR
by 37% and 43% for DeepSeek-V2-Lite and Qwen3-30B-A3B, which translates to 41.8%/46.6%
latency reduction of the belonging expert layer. Besides Vanilla and Sem-MoE, other bars in the figure
are measured by mocking the routing module of SGLang and skipping the delays in communication
to fabricate hypothetical baselines just for reference. Note that a 100% LAR may not be achieved in
theory, as different tokens can contradict each other to group their own hot experts, but GPU memory
is limited.

4.6 ALGORITHM EVALUATION

The model-data collaborative scheduling algorithm needs to find balanced co-clusters of tokens and
experts, with experts having a maximal likelihood of being gated (routed) from tokens within the
same cluster, and minimal likelihood across clusters. An additional regularizer is load balancing
that ensures hot and cold experts are relatively evenly distributed. Sem-MoE adopts Algorithm 1 to
approximately solve the problem and is evaluated against two baselines, the vanilla scheduling policy
(original expert placement policy and round-robin scheduling) and MoETuner. Figure 5(b) shows the
averaged local activation rate (ratio of tokens computed at the local device) and load imbalance rate
(maximum load divided by the median load) of all the MoE layers in DeepSeek-V2-Lite. Sem-MoE
achieves the best local activation rate with balanced expert clusters outperforming the best baseline
by 15.4% and 36.7% under EP8 setting.

5 CONCLUSION

The communication overhead of expert parallelism renders a significant bottleneck in serving large-
scale MoE models. We present Sem-MoE, which can proactively and losslessly trim EP’s all2all
communication volume via model-data collaborative scheduling, leveraging the intrinsic affinity
between model experts and input tokens. Experiments show that Sem-MoE can significantly reduce
communication overhead and boost inference throughput under differently specified SLO constraints,
both in attention-DP and attention-TP scenarios.
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A EMPIRICAL STUDY OF TOKEN-EXPERT AFFINITY

A.1 IMPACT OF REQUEST SEMANTICS ON EXPERT ACTIVATION

To better illustrate the impact of request semantics on expert activation, we selected requests from
several different types of topics in the MMLU dataset and profiled the expert activations in the
24th layer of Qwen3-30B-A3B, as shown in Figure 6(a). After performing t-SNE dimensionality
reduction, it can be observed that requests from similar topics exhibit similarity in activated experts.
Requests from the math-related topics of abstract algebra and college mathematics activate similar
experts, whereas requests from humanities topics, such as philosophy and professional law, are
relatively distant from the math-related ones in the reduced-dimensional space. Sem-MoE leverages
this semantic affinity between requests to perform co-scheduling of data and models for requests
under the Attention-DP scenario.

A.2 INTRA-LAYER BI-CLUSTERED TOKEN-EXPERT CONJUGACY

Within each MoE layer, each expert module in an LLM layer is trained to process a particular semantic
domain of tokens. Tokens and experts exhibit high affinity in different dimensions. We profile the
intermediate activation of the gating module in each MoE layer in the DeepSeek-V2-Lite. One
important observation shows that strong bi-clustered conjugacy between tokens and experts, as shown
in Figure 6. That is, experts are likely to be activated by a certain sub-group of tokens with high
semantic affinity, while they are not likely to be activated by other general tokens in the vocabulary.
And from the tokens’ perspective, it is true that semantically similar tokens are likely to activate
a certain sub-group of experts. This is the preliminary motivation for model-data collaborative
scheduling.
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Inter-layer expert-expert affinity The left picture of Figure 6(c) shows the activation correlation
of the 4th and 5th layer of the Mixtral-8x7B model. The x-/y-axis represents the expert groups of a
layer. For Mixtral-8x7B, each token is routed to 2 out of 8 experts at each layer. Thus, the number of
expert groups at each layer is

(
8
2

)
= 28. When tokens choose some concrete experts at the fourth

layer, they tend to choose a rather fixed set of experts at the next layer with high probability. We
name this phenomenon inter-layer expert-expert affinity.

Simple conditional probability model for token activation path The above examples illustrate
the tabularized relationship between tokens and experts. We argure that, simple conditional probability
model can work to predict the activation path of tokens by combining the above intra-layer conjugacy
and/inter-layer affinity. We first calculate the kurtosis3 of each token’s activation map. The right
picture of Figure 6(b) shows most of the kurtosis values are higher than 8, indicating that the to-route
experts for each token concentrate on a narrowed set, regardless of the context. We further use
partial (25%) of the profile dataset to calculate each tokens’ most routed top-k experts. Then the
static top-k experts are used to predict the tokens activation using the left part (75%) of the profile
dataset, achieving a 96.3% precision and a 78.8% F1 score. The right part of Figure 6(c) predicts
the next-layer-activation via looking back the prior layers. As we know more about the previous
activation sequence at layer L, we can predict the activation at layer L+ 1 with higher confidence
(about 70% when looking back 5 layers).

Expert pre-grouping and token re-batching Leveraging the intrinsic conjugacy between tokens
and experts in MoE models to achieve token-expert co-dispatching, may help reduce communication
volume and boost distributed parallel inference. First, similar experts can be pre-grouped together at
deployment time based on pre-profiled and modeled affinity. Second, on the fly, individual tokens
can be re-shuffled and re-batched to the GPU devices that host the expert groups whose member
experts have largest modeled conjugacy with the token. Such co-scheduling aims to avoid scattered,
cross-device token-expert activations, or equivalently, maximize the probability of intro-device,
local activations. Figure 6(d) shows an micro-benchmark experiment, testing the all2all latency
under different local activation rate using the nccl all2allv API. With the local activation rate
(α) varying from 0.2 to 0.9, the latency decreases gradually, showing the performance gains with
improved expert-token co-scheduling.

B ALGORITHM FOR THE MODEL-DATA CO-SCHEDULING SOLVER

Algorithm 1 describes the model-data co-scheduling alternating optimization algorithm in Sem-MoE.
The algorithm achieves optimal performance by alternating between optimizing the scheduling of
requests and the placement of experts. Initially, requests are clustered based on their affinity to experts
to determine their scheduling (line 44). In each iteration, the algorithm alternates between optimizing
expert placement with fixed requests and request scheduling with fixed experts. For optimizing expert
placement, experts are first sorted by their hotness in descending order. Given the current request
scheduling and expert placement, the affinities between experts and the cluster’s experts/requests
are computed and aggregated via weights αe and βe, which is adjusted by the cluster’s current load
to derive a final affinity score (lines 11-13). The expert is assigned to the highest-scoring cluster,
with saturated clusters masked (line 14). The algorithm then performs ft steps fine-tuning rounds,
randomly selects two clusters and swaps their experts if it improves the affinity score (lines 20-25).
Request scheduling optimization is similar to expert placement. The req-req affinity and req-expert
affinity for each cluster are calculated, aggregated to obtain an affinity score, and the request is
scheduled to the cluster with the highest score (lines 28-42).

By now, the token-device scheduling table T , token-device scheduling confidence table Tp, and
expert-device scheduling table E are generated. After the scheduling table E is constructed, the
experts at each layer need to be rearranged according to the scheduling table during online inference
service deployment. In addition, the Sem-MoE rearranges the gating module by column to implement
transparent expert shuffle. The semantics of other layers are not affected. The rearranged experts are
highly boxed, so that the token activation at each layer is de-cohesive, and the redundant network
communication overhead caused by dispersive activation is reduced.

3Kurtosis is a measure of the tailedness of a distribution. High Kurtosis indicates a token favors several fixed
experts during multiple occurrences.
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(b) Example of intra-layer token-expert activation map (1st MoE layer of
DeepSeek-V2-Lite profiled using the Sharegpt dataset). Darker color in the
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(c) Example of inter-layer expert-expert correlation map (4th/5th MoE layer of
Mixtral-8x7B profiled using the LongBench dataset). Darker color in the map
indicates stronger correlation.
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Figure 6: Conjugacy illustration and collective communication micro-benchmark.
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Algorithm 1: Alternating-based data-model co-scheduling algorithm
input: n steps: number of iteration steps;
Cp: the token-2-expert confidence table; a: the token frequency;
r: requests list; K: number of requests;
N : number of experts per layer; E: number of co-clusters;
t: number of tokens;
output: E : expert labels; T : token labels;
Tp: confidence of tokens choosing specific experts

1 p matrix ep opt← zeros(N , E) / E
2 p matrix req opt← zeros(K, E) / E
3 Function expert place(Cp, p matrix req, αe, βe):
4 loads← compute per expert load by (Cp)
5 sort by load(e, loads)
6 mask, cnter← ones(E), zeros(E)
7 EAfE, EAfR← zeros(N , E), zeros(N , E)
8 p matrix ep← zeros(N , E) / E
9 loads cls← zeros(E)

10 for e in e do
11 EAfE[e]← compute expert-expert affinity by (mask, p matrix ep, Cp)
12 EAfR[e] compute req-expert affinity by (mask, p matrix req, Cp)
13 aff score← αr ∗ EAfE[e] + βr ∗ EAfR[e]− γe ∗ loads cls
14 clse← argmaxcls aff score
15 p matrix ep[e][clse]← 1
16 cnter[clse]← cnter[clse] + 1
17 if cnter[clse] >= N/E then
18 maks[clse]← 0

19 loads cls[clse]← loads cls[clse] + loads[e]

20 repeat
21 cls1, cls2← randomly select a cluster in JEK
22 e1, e2← randomly select experts in p matrix ep[:][cls1] and p matrix ep[:][cls2]
23 if aff gain(e1, e2, cls1, cls2) > 0 then
24 swap(e1, e2, p matrix ep)

25 until iterating for ft steps steps
26 return p matrix eq

27

28 Function request schedule(Cp, p matrix ep, αr , βr):
29 sort by len(r)
30 mask, cnter← ones(E), zeros(E)
31 RAfR, RAfE← zeros(K, E), zeros(K, E)
32 p matrix req← zeros(K, E) / E
33 for r in r do
34 RAfR[r]← compute req-req affinity by (mask, p matrix req, Cp)
35 RAfE[r]← compute req-expert affinity by (mask, p matrix ep, Cp)
36 aff score← αr ∗RAfR[r] + βr ∗RAfE[r]
37 clsr ← argmaxcls aff score
38 p matrix req[r][clsr]← 1
39 cnter[clsr]← cnter[clsr] + 1
40 if cnter[clsr] >=K/E then
41 maks[clsr]← 0

42 return p matrix req

43

44 p matrix req← cluster based on expert affinity
45 repeat
46 p matrix ep← expert place(Cp, p matrix req, αe, βe)
47 p matrix req← request schedule(Cp, p matrix ep, αr , βr)
48 scores← summation the max load and communication cost given p matrix eq and p matrix req
49 better scheduling← samples with scores
50 update p matrix ep opt and p matrix req opt
51 until iterating for n steps steps
52

53 E ← argmax(p matrix ep opt, axis=1)
54 p matrix tk opt← count the tokens per req in p matrix req opt
55 T , Tp← argmax with values(p matrix tk opt, axis=1)
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B.1 MODELING INTER-LAYER ACTIVATION CONJUGACY

Leveraging the conditional probability model described in § A.2, we use a simple probability-based
first-order Marcov chain to model the inter-layer activation conjugacy. To reduce the combination
space, we model the activation device sequence rather than the activation expert sequence, because
we only care about the device-level token rebatching. When looking back l layers, we construct
a table shaped like [El, E], where the row of the table indicates the sequence of devices selected
at the previous l layers and the column indicates the probability of activating the E devices in the
current layer. Like the § B shows, we also calculate the activation sequence to device table A and the
confidence table Ap. In practice, we set the number of looking-back layers as 2.

Algorithm 2: Online request scheduling based on fast lookup
input: R ∈ Nn: Input requests; T : token-to-expert-cluster Schedule Table; E: number of DP size

1 dev mask← ones(E)
2 Function get dp rank(R, T ):
3 dev score← sum(T [R, :], dim = 0)
4 dev score[ dev mask]←− inf
5 dev id← argmax(dev score)
6 dev mask[dev id]← False
7 if dev mask all are False then
8 dev mask← ones(E)

9 return dev id

10 dev id← get dp rank(R, T )
11 schedule(R, dev id)

B.2 SPECULATIVE TOKEN SHUFFLING ON THE FLY BASED ON FAST LOOKUP

To reduce the combination space, we model the activation device sequence rather than the activation
expert sequence, because we only care about the device-level token rebatching. We implement a
fast online token re-batching mechanism based on fast looking-up tables in both Attention-DP and
Attention-TP (Algorithm 2 & Algorithm 3).

Data Scheduling: Attention-DP Scenarios. The algorithm 2 queries the token-to-expert-cluster
scheduling table T based on the token IDs appearing in the request R, and aggregates the results to
obtain a score for each device for that request (line 3). Then R is scheduled to the device with the
max valid score (line 5). To prevent requests biased toward a subset of experts, which could skew the
load during the decoding phase, we introduce a dev mask. The device is masked after it is allocated
(line 4-5). Once a round of allocation is completed and all devices are masked, the dev mask is
reset and enters a new round (line 7-8). This ensures that Sem-MoEachieves expert affinity while
maintaining load balance across devices.

Data Scheduling: Attention-TP Scenarios. The algorithm 3 queries the token-to-expert-cluster
scheduling table T and expert-cluster-sequence-to-expert-cluster table S, together with their confi-
dences first. Then, the table with higher confidence is adopted to obtain the device ID list to which
the current batch token needs to be shuffle (line 2). The algorithm performs the argsort operation to
obtain the shuffle indicators (line 3) of the token. Then, the final shuffle indicators are obtained by
grouping, aligning, and concatenation, and the token is shuffled (line 4 to line 7). After rebatching is
complete, Sem-MoE calls the reduce-scatter operation. After MoE computing is complete,
Sem-MoE runs the allgather operation to collect tokens. Finally, the order of tokens are shuffled
back based on the previously calculated shuffle indicators (lines 14-18).

The both algorithm do not involve complex load calculation and decision-making. They are directly
completed by querying tables. The runtime overhead mainly involves large token matrix shuffling,
which we optimize via high-performance kernels. The memory occupation of the scheduling tables
is negligible. For example, for DeepSeek-V2, the memory space that the token-to-device table T
occupies is 102400×60×2

10242 ≈ 11.72MB (assuming the data format is int16).
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Algorithm 3: Online token re-batching based on fast lookup
input: B ∈ Nn: Input token IDs; T : token-to-expert-cluster Schedule Table;
A: expert-cluster-sequence-to-expert-cluster Schedule Table

1 Function rebatch tokens(B, T ):
2 dev ids← cond(Tp [B] > Ap [B], T [B], A [B])
3 shf indices← argsort(dev ids)
4 g shf indices← group by key(shf indices)
5 g shf indices← align(g shf indices)
6 shf indices← concat(g shf indices)
7 B ← B [shf indices]
8 return shf indices

9

10 Function resume tokens(B, shf indices):
11 r shf indices← argsort(shf indices)
12 B ← B [r shf indices]

13

14 shf indices← rebatch tokens(B, T )
15 Blocal← reduce scatter(B)
16 executing MoE layer
17 B ← allgather(Blocal)
18 resume tokens(B,shf indices)
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