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Abstract

Deep kernel learning (DKL) marries the uncer-
tainty quantification of Gaussian processes (GPs)
and the representational power of deep neural
networks. However, training DKL is challeng-
ing and often leads to overfitting. Most notably,
DKL often learns “non-local” kernels — incur-
ring spurious correlations. To remedy this issue,
we propose using amortized inducing points and
a parameter-sharing scheme, which ties together
the amortization and DKL networks. This de-
sign imposes an explicit dependency between the
ELBO’s model fit and capacity terms. In turn,
this prevents the former from dominating the op-
timization procedure and incurring the aforemen-
tioned spurious correlations. Extensive experi-
ments show that our resulting method, amortized
varitional DKL (AVDKL), i) consistently outper-
forms DKL and standard GPs for tabular data;
ii) achieves significantly higher accuracy than
DKL in node classification tasks; and iii) leads
to substantially better accuracy and negative log-
likelihood than DKL on CIFAR100.

1. Introduction
In the late ’90s, preceding the advent of the deep learning
era, Gaussian Processes (GPs) gained popularity as alterna-
tives to neural networks (NNs), owing to their inherent un-
certainty quantification and frequently superior performance
(McKay, 1998). During this period, benchmarking datasets
primarily consisted of tabular data, fostering the perception
that it was reasonable to completely bypass representation
learning, concentrating solely on the relationship between
vectors in the input space. However, in the early 2010s, a
series of works harnessing the inductive biases of domain-
specific NNs redirected the community’s focus toward more
intricate domains, encompassing images (Krizhevsky et al.,
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(a) SVGP. (b) AVDKL. (c) SVDKL.

(d) Prior entropy along the training epochs.

Figure 1. Example of the prior covariance matrix computed via
the kernel function for SVGP, AVDKL and SVDKL, considering
an 1D toy-dataset (see Figure 4(a)). Both AVDKL and SVDKL
perform nonlinear input projection before applying the kernel
function. One can notice that the SVDKL induces undesired corre-
lations, since the original data comes from a smooth GP sample
with squared exponential kernel. The same effect can also be seen
in Figure 1(d), where the SVDKL, after a few training epochs,
decreases too much the prior entropy.

2012), sequences (Mikolov et al., 2010), and speech (Hin-
ton et al., 2012). This shift in attention, however, did not
favor GPs due mainly to the challenge of tailoring kernels
that embody useful inductive biases for these diverse do-
mains. In response, works proposed methods for learning
GP kernels directly from data (e.g., Wilson & Adams, 2014;
Duvenaud et al., 2013). These approaches aimed to enhance
the adaptability of GPs to diverse datasets by capturing
relevant features automatically.

In this context, deep kernel learning (DKL) emerged as a
solution to the kernel versus NN dichotomy (Wilson et al.,
2016a) along with its scalable variant: stochastic variational
DKL (SVDKL) (Wilson et al., 2016b). DKL combines
the strengths of both approaches, using an NN to extract
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meaningful representations that are subsequently fed into
a standard GP. Importantly, the DKL framework allows
for learning all model parameters in end-to-end fashion.
Both kernel hyperparameters and network parameters can be
jointly trained, either by maximizing the marginal likelihood
or using variational inference (Wilson et al., 2016b).

Nonetheless, the flexibility of deep NNs may be a double-
edged sword when training DKL models. In particular,
Ober et al. (2021) have identified a behavior in DKL lead-
ing to severe overfitting. DKL tends to correlate all input
points, “hacking” the Gram matrix to reduce the impact of
the complexity penalty term of the marginal likelihood, as il-
lustrated in Figure 1. Ober et al. (2021) overcome this issue
by carrying full Bayesian inference over the network pa-
rameters, for instance, by using Markov Chain Monte Carlo
(MCMC) methods, such as Hamiltonian Monte Carlo (Neal
et al., 2011). However, MCMC methods scale poorly for
high-dimensional posteriors (e.g., over NN parameters), and
monitoring their convergence can be challenging.

In this work, we propose amortized variational DKL
(AVDKL), a novel method that counteracts the overfitting of
DKL by locally smoothing predictions. More specifically,
AVDKL uses deep NNs to both i) compute the embeddings
which will be fed into the kernel function and ii) learn vari-
ational distributions over inducing points in an amortized
manner. Such an amortization allows AVDKL to yield differ-
ent variational mean and covariance structures for different
regions of the input space, inspired by the recent proposition
of input-dependent sparse GPs (Jafrasteh et al., 2022). To
achieve this local effect, we share all parameters of both
NN components underlying AVDKL, except for the last lay-
ers. We argue that the latter effectively avoids the spurious
correlations of DKL and better adjusts the predictive vari-
ances. AVDKL reaps the natural uncertainty quantification
of GPs, while avoiding the issues of DKL and leveraging the
inductive biases provided by NNs in complex data domains.

Results show that AVDKL often outperforms DKL and con-
ventional neural networks for tasks on tabular, image, and
graph data. In particular, AVDKL usually results in better
accuracy, negative log-likelihood, and calibration error than
DKL or standard neural networks. Moreover, AVDKL often
converges faster than DKL. The full code for AVDKL and
the experiments is available at https://github.com/
alanlsmatias/amortized-variational-dkl.

In summary, our contributions are:

1. We propose AVDKL, a hybrid GP/NN model that
leverages NN-based representation learning without the
caveat of overfitting;

2. We show that AVDKL effectively avoids DKL’s typical
issue, in which all points in the input space become
correlated, causing overfitting;

3. We promote a varied experimental campaign showcas-
ing the performance of AVDKL for tabular, image, and
graph domains. In most cases, AVDKL outperforms
DKL and standard NNs in terms of log-likelihood, ac-
curacy, and calibration error.

2. Gaussian Process Background
We say a function f : X → R follows a GP if, for
every finite set {xn}Nn=1 ⊂ X , the sequence f =
[f(x1), . . . , f(xN )]T follows a multivariate normal distri-
bution p(f) = N (f |µ,K), with µi = µ(xi), µ : X → R,
and [K]ij = kθ(xi,xj), where k : X 2 → R is the co-
variance/kernel function and θ represents a set of kernel
hyperparameters. Following the standard procedure within
the GP literature, we assume µ is a constant function, as-
signing zero to any input. For Gaussian observations, the
predictive distribution p(f∗|y,X,x∗) = N (f∗|µ∗, σ

2
∗) is

an analytical Gaussian with mean and variance given by

µ∗ = kT
f∗(Kf + σ2

yI)
−1y

σ2
∗ = Kf∗ − kT

f∗(Kf + σ2
yI)

−1kf∗ .

Consequently, the predictive distribution for y∗ is given by
p(y∗|y,X,x∗) = N (y∗|µ∗, σ

2
∗+σ2

y). Traditionally, k also
has hyperparameters, which can be learned via maximiza-
tion of the analytical marginal log-likelihood — also known
as the evidence. We refer the interested reader to the clas-
sic reference by Rasmussen & Williams (2006) for a more
thorough introduction to GPs.

Stochastic Variational GP. Computation of GP predictions
and evidence scales roughly cubically with the number of
observations N . Sparse GPs (SGPs) (Titsias, 2009; Hens-
man et al., 2013) aim to reduce this cost by considering
M ≪ N inducing points u ∈ R from the same GP prior
of f , i.e., p(u) = N (u|0,Ku). The inducing points
are related to pseudo-inputs zm ∈ RD, m = 1, . . . ,M ,
which lie in the same space as xi|Ni=1 and are collected
in the matrix Z. Defining the variational distributions
q(f ,u) = q(u)p(f |u) and q(u) = N (u|m,S), the vari-
ational parameters m and S and the kernel hyperparame-
ters are learned by maximizing the evidence lower bound
(ELBO) (Hensman et al., 2013):

L =

N∑
i=1

Eq(u)p(fi|u)[log p(yi|fi)]−KL[q(u)||p(u)], (1)

where p(fi|u) is Gaussian, since fi and u are jointly Gaus-
sian, and KL[·||·] is the Kullback-Leibler divergence be-
tween two distributions. Since the ELBO factorizes over
the observations and M ≪ N , one can drastically reduce
computational cost to train the model using mini-batches,
resulting in the stochastic variational GP (SVGP) approach.
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Figure 2. Models schematic dependencies. g is the latent representation of X , Z are the inducing points and u is the random variable
related to the variational distribution q(u).

Stochastic Variational DKL. Both DKL (Wilson et al.,
2016a) and SVDKL (Wilson et al., 2016b) estimate complex
kernels by leveraging the property that for any valid kernel
function kθ(xi,xj) and any function g(·), the expression
kθ(g(xi), g(xj)) is also a valid kernel function (Rasmussen
& Williams, 2006). DKL considers an NN to learn a map-
ping function g(xi) whose outputs are fed to standard kernel
functions, such as the squared exponential. SVDKL follows
the ELBO in Equation (1) to enable stochastic training and
achieve better scaling with the number of observations.

Input Dependent Sparse GP. The IDSGP method
(Jafrasteh et al., 2022) follows the sparse GP variational
framework (Titsias, 2009; Hensman et al., 2013), but in-
stead of a fixed variational distribution q(u), IDSGP com-
putes inducing locations for each meta-point x̃ ∼ p(x̃),
where p(x̃) is a prior distribution with unknown analytical
form. This approach yields q(u|x̃), making the inducing
locations input dependent, resulting in an amortized varia-
tional inference (Kingma & Welling, 2014; Rezende et al.,
2014). The full variational distribution is approximated by
q(f ,u, x̃) = p(f |u)q(u|x̃)p(x̃), which yields the follow-
ing ELBO (Tran et al., 2021; Jafrasteh et al., 2022):

L = Eq(f ,u,x̃)

[
log

p(y|f)p(f |u)p(u|x̃)p(x̃)
p(f |u)q(u|x̃)p(x̃)

]
=

N∑
i=1

∫
p(x̃)

[
p(fi|u)q(u|x̃) log p(yi|fi)dfdu

− 1

N
KL[q(u|x̃)||p(u|x̃)]

]
dx̃,

(2)

where p(x̃) is assumed to be an implicit distribution. By
sampling x̃s from p(x̃) we can approximate Equation (2),
leading to the IDSGP’s ELBO:

LIDSGP =

N∑
i=1

Ep(fi|u)q(u|x̃s) [log p(yi|fi)]

− 1

N

N∑
i=1

KL [q(u|x̃s)||p(u|x̃s)] .

(3)

The above ELBO is valid for any implicit distribution
p(x̃) (Tran et al., 2021) and the IDSGP can be optimized
through stochastic optimization by evaluating its gradients.

In particular, the IDSGP assumes a mini-batch training
and sets x̃s = xi. Thus, the values of x̃ are still ran-
dom, since they are selected from randomized mini-batches.
In this sense, the variational parameters become input-
dependent (denoted by the subscript index): the pseudo-
inputs Zi ∈ RM×D, the mean mi ∈ RM , and the lower-
triangular matrix Li ∈ RM×M . In summary, the varia-
tional distribution for the input-dependent inducing points is
q(ui|xi) = N (ui|mi,LiL

T
i ). Additionally, the KL diver-

gence must be averaged across the inputs (see Equation (3)).

3. Amortized Variational DKL
As argued by Ober et al. (2021), the main issue with DKL is
that the NN parameters do not receive a Bayesian treatment.
In this sense, the NN is free to project xi and increase the
marginal log-likelihood without balancing fit and regulariza-
tion. As an example, consider the evidence of the standard
exact GP, with omitted constant term:

log p(y|X)∝− log|Kf + σ2
yI|︸ ︷︷ ︸

model capacity

−yT (Kf + σ2
yI)

−1y︸ ︷︷ ︸
model fit

.(4)

Ober et al. (2021) points out that after some epochs the
model fit term stabilizes and the DKL optimizer moves on
to minimize the model capacity term in Equation (4). This is
achieved by increasing the correlations between all the data
points, which turns the log determinant term smaller. This
effect is illustrated in Figure 1. Furthermore, the authors
empirically showed that when DKL is not able to correlate
the data points, the marginal likelihood becomes worse.

As previously stated, amortized variational inference (A-VI)
aims to approximate posterior distributions in probabilistic
models. With A-VI, one can learn a function that estimates
local latent variables given an input. As mentioned in Sec-
tion 2, this idea was applied to variational sparse GPs in the
IDSGP work (Jafrasteh et al., 2022). One important advan-
tage of IDSGP is that one can drastically reduce the number
of inducing points without losing performance, since they
become input dependent. On the other hand, the IDSGP
design has the limitation that the pseudo-inputs must lie
in the same space as the input vectors, since we need to
compute the kernel between those. This renders dealing
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with unstructured data domains challenging, as it implies
that the amortizing NNs must output complex objects.

Our work is inspired by both DKL and IDSGP and aims
to tackle the main DKL problem. In essence, while the
DKL provides means for dealing with unstructured data, the
IDSGP is scalable and capable of learning complex map-
pings for the variational parameters. The proposed AVDKL
changes the SVDKL framework by using the NN embed-
ding gi = g(xi) ∈ RE , where E is the embedding size, to
compute the inducing locations and the variational parame-
ters Zi,mi,Li, so that we have q(ui|gi) with ELBO

LAVDKL =

N∑
i=1

Eq(u|gi)p(fi|u) [log p(yi|fi)]

− 1

N

N∑
i=1

KL [q(u|gi)||p(u|gi)] .

(5)

Prediction for a new x∗ is given by integating out u:

q(f∗|x∗) =

∫
p(f∗|u)q(u|g∗)du

=

∫
N (f∗|Au,K∗ −Ak⊤

∗u)N (u|m∗,S∗)du

= N
(
f∗
∣∣Am∗,K∗ −A(Ku − S∗)A

T
)
,

where A = k∗uK
−1
u .

In Figure 2 we depict the graphical models of SVDKL,
IDSGP and AVDKL — the dashed lines specify amortiza-
tion. The difference between the AVDKL and the other
models can be identified by the connection from g to Z and
u. In practice, we generate Z and the parameters of q(u)
through an additional mapping from g. Such a mapping is
comprised of a nonlinear layer and a final linear transfor-
mation. Importantly, the nonlinear activation function has
a saturation, e.g., by applying a Sigmoid or Tanh function
directly over g or its projection. The relevance of the sat-
uration lies on the mapping of the variational parameters
for points that are far from the training data. If no satu-
ration function was applied, the amortization would try to
extrapolate the variational parameters and the corresponding
approximate posterior, which, as a consequence, would lead
to poor uncertainty estimates. Figure 3 exemplifies the latter
undesired behavior.

3.1. Attenuating the Overcorrelation Issue

In the AVDKL ELBO (Eq. (5)), the KL divergence between
the variational posterior q(u|gi) and the prior p(u|gi) can
be written as

KL [q(u|gi)||p(u|gi)] =
∫

q(u|gi) log
q(u|gi)
p(u|gi)

du

= Hq[p(u|gi)]−Hq[q(u|gi)],

(a) AVDKL with Tanh. (b) AVDKL with ReLU.

Figure 3. Example of the AVDKL applied to synthetic 1D data us-
ing different activation functions before the variational parameters
mapping. In Fig. 3(a) a satured function is used, which prevents
the variational parameters to perform undesired extrapolation.

where Hq[·] denotes the entropy operation with respect to
the distribution q(u|gi). In the above, the first term is the
cross-entropy between the variational posterior and the prior,
while the second is the entropy of the variational posterior.

The maximization of the ELBO corresponds to the mini-
mization of the above KL divergence, which in turn cor-
responds to the minimization of the cross-entropy and the
maximization of the variational entropy. The former in-
volves pulling the variational posterior closer to the prior,
which regularizes the approximation. The latter, consider-
ing q(u|gi) = N (u|mi,Si), where Si = LiL

T
i , is pro-

portional to log |Si|. Thus, if the covariance matrix Si

correlates too much the inducing points, its determinant
would decrease along with the entropy of q(u|gi), which
would penalize the ELBO. Importantly, these effects only
happen because Si is not a model parameter, but a varia-
tional parameter.

In the stochastic version of the DKL, the variational param-
eters m, S and Z (the latter which is used to compute Ku)
are not coupled with the input projection neural network (see
Figure 2(b)), so their optimization do not directly affects
the network optimization and vice-versa. In the AVDKL
formulation, they are generated from the same neural fea-
ture extractor used in the kernel learning component, which
yields gi (see Figure 2(a)). Thus, the neural feature extrac-
tor and the amortization network share parameters, which
become variational parameters that aid in guarding against
overfitting (Titsias, 2009; Dai et al., 2016). Such a coupling
is critical to allow the network to leverage the above bal-
ance effect of the KL term and avoid the issue of excessive
correlation by the embedding layers.

3.2. Initial investigation

We perform an initial investigation considering an 1D-
regression toy dataset, depicted in Figure 4(a). The data
points were generated by sampling from a zero mean GP
with a squared exponential kernel, hyperparameters σ2

f = 1,
l = 0.5, and noise variance σ2

y = 0.2. We also include in
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(a) 1D-regression dataset. (b) SVDKL: E = 3. (c) SVDKL: E = 6. (d) SVDKL: E = 12.

(e) SVGP with M = 20. (f) AVDKL: E = 3. (g) AVDKL: E = 6. (h) AVDKL: E = 12.

Figure 4. 1D-regression dataset posterior and correlation analysis. The dataset was generated from a GP with the squared exponential
kernel parameterized by σ2

f = 1, l = 0.5 and noise covariance σ2
y = 0.2. The SVGP model is depicted in Figure 4(e) to act as a baseline

for AVDKL and SVDKL. As one can see, the SVDKL is not suitable with the prior from where the data was generated. On the other hand,
the AVDKL with high embedding sizes, E = 6 and E = 12, have correlations consistent with the prior. Furthermore, compared to the
SVDKL, the AVDKL posterior is better calibrated in terms of uncertainty estimates.

(a) ELBO’s log-likelihood. (b) ELBO’s negative KL.

Figure 5. ELBO’s log-likelihood and KL terms for SVDKL and
AVDKL with E = 12 over 10 random weight initializations.

Figure 4(e) the SVGP posterior and the kernel function kθ
values between the test points and 3 fixed reference points.
We consider SVGP as as baseline to compare both AVDKL
and SVDKL with varying embedding sizes. The optimiza-
tion was carried out using AdamW (Loshchilov & Hutter,
2019) with learning rate 0.01 and a weight decay of 0.001
for the NN’s weights and biases. We also used a cosine an-
nealing learning rate scheduler (Loshchilov & Hutter, 2017).
Both SVGP and SVDKL were trained with 20 inducing
points, while the AVDKL used only 2. Concerning the fea-
ture extractor, we used a NN with two hidden layers of sizes
[32, E], batch normalization (Ioffe & Szegedy, 2015), and
SiLU (Swish) activation (Ramachandran et al., 2017) on the
hidden layer. Finally, we used a Tanh activation at the output
saturation layer of AVDKL’s amortization component.

From Figure 4(e), one can notice that the SVGP presents a
well calibrated posterior and the correlation computed using

the kernel function behaves as expected for the squared
exponential used in the original data generation step, with
high correlation between near points and low correlations
between distant points.

On the other hand, the correlations of the SVDKL are
not consistent with the prior the data was sampled from.
Moreover, for high dimensional embeddings, SVDKL
suffers from poor fitting (see Figure 4(b), Figure 4(c),
and Figure 4(d)). The irregular correlations presented by
the SVDKL was also pointed out by Ober et al. (2021): the
model tends to excessively correlate the projections gi.

Contrary to SVDKL, the AVDKL is able to better estimate
the posterior for high embedding sizes, with correlations
between the embeddings being more coherent with E = 12
(see Figure 4(f), Figure 4(g) and Figure 4(h)).

We also analyze the behavior of the KL divergence com-
ponent of the ELBO. Unlike the SVDKL, the variational
distribution of the AVDKL is coupled with feature extractor
that generates gi. In this sense, while the SVDKL feature
extractor is free for adjusting the fitting term of the ELBO
without much interference of the KL divergence term, in
the AVDKL, both terms are more closely related. Thus,
the latter is able to jointly learn complex embeddings and
variational parameters representations while still being
regularized by the prior p(u|gi). This behavior can be seen
in Figure 5, where the AVDKL has a KL divergence much
closer to the prior (i.e., a KL closer to zero) and a better
fitting (i.e., a higher ELBO).
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Table 1. MNLL for AVDKL, SVDKL and SVGP on tabular classification and regression datasets. The AVDKL achieved the best test
MNLL for 5 datasets out of 6. The most significant results can be seen in the regression tasks.

Model
Classification Regression

MagicGamma HTRU2 Letter Protein KeggD KeggU

AVDKL 0.286 ± 0.013 0.066 ± 0.004 0.084 ± 0.003 2.735 ± 0.015 -2.283 ± 0.024 -3.004 ± 0.311
GDKL 0.284 ± 0.014 0.067 ± 0.004 0.101 ± 0.002 2.825 ± 0.014 -1.979 ± 0.010 -
DLVKL 0.298 ± 0.012 0.069 ± 0.003 0.205 ± 0.007 2.875 ± 0.006 -1.911 ± 0.011 -2.772 ± 0.030
SVDKL 0.299 ± 0.018 0.067 ± 0.005 0.190 ± 0.014 2.844 ± 0.011 -1.916 ± 0.016 -2.705 ± 0.036
SVGP 0.303 ± 0.011 0.068 ± 0.002 0.171 ± 0.004 2.854 ± 0.008 -1.889 ± 0.011 -2.581 ± 0.019

4. Experiments
We evaluate the proposed AVDKL on a set of different tasks:
tabular data, semi-supervised node classification and image
classification. We access the model performance in terms of
accuracy (classification) and mean negative log-likelihood
(MNLL) (regression and classification). For image classifi-
cation we also report the Expected Calibration Error (ECE).

4.1. Tabular data

We start our experiments with popular classification and
regression datasets from the UCI repository (Kelly et al.,
2023). We summarize the datasets, including the mini-batch
size used for training, in Table 4. For evaluation, we split
the datasets into five different train/test sets, with each split
having 80% of the data for training and 20% for testing.

We compared AVDKL to GDKL (Achituve et al., 2023),
DLVKL (Liu et al., 2021), SVDKL, and SVGP. Importantly,
the SVDKL for classification was implemented with the
inducing grid interpolation strategy (Wilson et al., 2016b)
(i.e., each embedding feature is a GP task and the output
logits are computed by combining the GP tasks via a linear
mapping). The SVDKL for regression was implemented
as a regular SVGP model coupled with kernel learning (i.e.,
the kernel function is computed over the embedding g).

We train all models with zero mean and the squared ex-
ponential kernel, and a Gaussian (Softmax) likelihood for
regression (classification). For GDKL, DLVKL and SVGP,
we used 500 inducing points for all datasets. The SVDKL
was trained with 500 inducing points for regression and with
a inducing grid of size 50 for classification. The AVDKL
was trained with 3 inducing points on the binary classfi-
cation tasks and with 15 inducing points for the remain-
ing datasets. For all NN-based models, AVDKL, GDKL,
DLVKL and SVDKL, we used a NN with two layers of size
[64, D], where the first layer includes batch normalization
and a SiLU activation. Finally, we trained all models for 200
epochs using AdamW optimizer with learning rate 0.005
(0.01 for the SVGP) and weight decay 0.001 (applied to
AVDKL, GDKL, DLVKL, and SVDKL networks).

We report the test MNLL of all models for each dataset in
Table 1. In summary, the AVDKL was able to get the best
test MNLL in 5 datasets out of 6. The most significant im-
provements in terms of performance regarding the AVDKL
are related to the regression tasks. Importantly, we trained
the GDKL model with a pre-computed covariance matrix in
order to improve the training time. As a consequence, for
the KeggU dataset, we incurred in memory overflow and
could not report its performance metrics.

4.2. Semi-supervised node classification

For the graph node classification task, we used three popu-
lar citation-network datasets: Cora, CiteSeer and PubMed.
The datasets present countings as textual node features and
classes denoting topics of papers (Yang et al., 2016). We
consider the fixed splits defined by Yang et al. (2016), with
20 nodes per class for training, 500 nodes for validation
and 1000 nodes for testing. The datasets are summarized
in Table 5. We evaluate the AVDKL against SVDKL and a
DeepGCN model in terms of test Accuracy and MNLL.

The feature extractor for both AVDKL and SVDKL is a
DeepGCN with Simplified Graph Convolution (SGC) (Wu
et al., 2019) layers and initial connection α = 0.1 (Chen
et al., 2020; 2022). The layer size, convolutions depth,
dropout rate, learning rate and weight decay were chosen ac-
cording to the “sweet point” described by Chen et al. (2022)
(see Table 6). We trained the AVDKL with zero mean,
Matern5/2 kernel, Softmax likelihood, 2 inducing points
and a Tahn activation for saturation. The SVDKL follows
the same settings as the AVDKL, but with an inducing grid
of size 50. Initially, the SVDKL was not able to converge on
the CiteSeer dataset with the settings described in Table 6.
To overcome this, we progressively reduced the dropout rate
until the SVDKL was able to converge. In this sense, we
used a dropout rate of 0.3 specifically for the SVDKL on the
CiteSeer dataset. Furthermore, all models were trained from
scratch using the Adam optimizer (Kingma & Ba, 2015) for
1000 epochs with early-stopping window of 100.

The results were computed over 30 random initialization
and are reported in Table 2. Compared to the DeepGCN, the
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Table 2. Accuracy and ECE for AVDKL, SVDKL and DeepGCN on citation-network datasets. The AVDKL is slightly better in accuracy
in comparison to the DeepGCN. Concern the SVDKL, despite the lower test MNLL, the accuracy is much worse when compared to both
AVDKL and DeepGCN.

Model
Cora CiteSeer PubMed

Acc. (%) MNLL Acc. (%) MNLL Acc. (%) MNLL

AVDKL 85.48 ± 0.51 0.7814 ± 0.0174 72.54 ± 0.42 0.9438 ± 0.0089 80.22 ± 0.30 0.5317 ± 0.0041
SVDKL 79.83 ± 1.27 0.6590 ± 0.0488 69.96 ± 0.91 0.9384 ± 0.0203 78.05 ± 1.27 0.5996 ± 0.0196
DeepGCN 85.47 ± 0.44 0.8091 ± 0.0127 72.45 ± 0.50 0.9670 ± 0.0134 79.91 ± 0.30 0.5186 ± 0.0041

AVDKL is in general better in accuracy and better in MNLL
for the Cora and CiteSeer datasets. However, against the
SVDKL, the AVDKL obtained worse MNLL but a much bet-
ter accuracy. We found in our experiments that the number
of inducing points of the AVDKL, specifically for this task,
trades-off between accuracy and MNLL. In this sense, we
analysed the test accuracy and MNLL for different number
of inducing points. We show in Figure 6 that by increasing
the number of inducing points one can reach better MNLL at
the cost of loosing accuracy – the AVDKL with 20 inducing
points was able get an MNLL of 0.6420± 0.0091.

In Figure 7 we show the test MNLL over the training epochs
averaged over 30 random initializations. It is possible to
note how both AVDKL and DeepGCN curves are more
stable than the SVDKL. Also, compared to the DeepGCN,
the AVDKL convergence was in general faster and produced
better models in terms of uncertainty calibration.

(a) Cora. (b) CiteSeer.

Figure 6. AVDKL test accuracy/MNLL for the Cora dataset with
different number of inducing points. The red horizontal line rep-
resents the results reported in Table 2. While the test accuracy
deteriorates with more inducing points, the test MNLL improves.

4.3. Image classification

In this section, we evaluate AVDKL’s performance on image
classification, comparing it to SVDKL and a standalone
ResNet-18. For both AVDKL and SVDKL we use the same
ResNet-18 architecture as feature extractor. We train all
models from scratch on CIFAR10 and CIFAR100 datasets.
Each dataset comprises 50K images for training and 10K
images for testing. We compare all models in terms of test
accuracy, MNLL, and ECE averaged over 3 repetitions.

(a) Cora. (b) CiteSeer.

Figure 7. Test MNLL over the training epochs for Cora and Cite-
seer (notice that early stopping was used). The curves are averages
over 30 random initializations and the confidence intervals are
related to 1 standard deviation.

We use the same recipe for training all models (details can be
found in Table 7) : 300 epochs using SGD optimizer with ini-
tial learning rate 0.1, weight decay 0.0001, momentum 0.9,
and cosine annealing learning rate scheduler. We train both
AVDKL and SVDKL with zero mean, squared exponential
kernel, and Softmax likelihood. We use 15 inducing points
for AVDKL and a grid of size 64 for SVDKL. Concern-
ing the AVDKL saturation, we use a module consisting of a
linear layer with size E/8 followed by a Sigmoid activation.

We report the results in Table 3. AVDKL was superior
for both datasets in terms of MNLL, with a wider gap for
CIFAR100. Regarding accuracy, AVDKL was on par with
SVDKL on CIFAR10 and slightly better on CIFAR100.
Besides having better uncertainty estimates, AVDKL is also
better calibrated than its counterparts (smaller ECE).

In Figure 8 we report the test MNLL and error (Figure 8(a)
and Figure 8(b), respectively) through the training phase
along with the ELBO curve for both AVDKL and SVDKL
(Figure 8(c)). As one can see, the AVDKL’s test MNLL was
superior for the most part of the training process. Interesting,
the SVDKL ELBO was equivalent to the AVDKL ELBO
during all the training process, but the test MNLL is worse –
note SVDKL’s test MNLL is even worse than ResNet-18’s.

We have also carried out a experiment to measure the
efficacy of the AVDKL for different dataset sizes. We used
the CIFAR10 dataset and evaluated the test MNLL and error.
The results are depicted in Figure 9. From Figure 9(a), the
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Table 3. Accuracy, MNLL and ECE for AVDKL, SVDKL and ResNet-18 on CIFAR10 and CIFAR100. The AVDKL has better test
MNLL and ECE for both datasets. Its accuracy is also slightly better for the CIFAR100 dataset.

Model
CIFAR10 CIFAR100

MNLL Acc. (%) ECE (%) MNLL Acc. (%) ECE (%)

AVDKL 0.1068 ± 0.0037 96.81 ± 0.11 1.41 ± 0.11 0.7755 ± 0.0135 80.13 ± 0.16 7.18 ± 0.25
SVDKL 0.1107 ± 0.0021 96.82 ± 0.16 1.44 ± 0.11 0.8510 ± 0.0038 79.92 ± 0.10 9.22 ± 0.02
ResNet-18 0.1122 ± 0.0027 96.81 ± 0.07 1.50 ± 0.05 0.8121 ± 0.0082 79.50 ± 0.17 8.00 ± 0.45

(a) Test MNLL. (b) Test Error (%). (c) ELBO.

Figure 8. Test MNLL, test error and ELBO (AVDKL and SVDKL) training curves for CIFAR100 averaged on 3 weight initialization. As
one can see, the AVDKL has better generalization capabilities in terms of test MNLL and error along the training epochs. Interesting,
both AVDKL and SVDKL have equivalent ELBO but highly different test MNLL.

(a) Test MNLL (b) Test error (%)

Figure 9. Test MNLL and error on the CIFAR10 dataset for differ-
ent number of images per class. Note that the AVDKL has better
test MNLL for all training dataset sizes.

AVDKL achieved the best MNLL for all training dataset
sizes. Even with 2500 images per class, the AVDKL was
superior to the SVDKL. In Figure 9(b), one can see that the
AVDKL has smaller error for 250 images per classes, and
that the ResNet-18 test error becomes slightly lower than
the AVDKL error in the 500 and 1250 images per classes
settings. However, at the levels with 2500 and 5000 images
per class, all models become equivalent.

5. Related Work
The use of neural networks within GPs formulation has
been the subject of several previous efforts. As follows we
summarize some of them.

Deep kernel learning for GPs. The DKL model was
first introduced by Wilson et al. (2016a) working on ideas
of KISS-GP (Wilson & Nickisch, 2015), by combining
deep neural networks and standard covariance functions
with local kernel interpolation to derive complex kernel
functions. Despite DKL’s ability of estimating complex
kernels for GPs, it still had some important limitations: it
was not suitable for classification and stochastic gradient
training. In this sense, Wilson et al. (2016b) proposed
the stochastic variational DKL (SVDKL), enabling the
model for classification, multi-task learning, and stochastic
gradient training. In a more general formulation, Calandra
et al. (2016) proposed manifold GP by applying the kernel
function over a parameterized transformation performed
on the inputs; similar to DKL, such transformation can be
parameterized by a neural network. The learning of complex
kernels was also the topic of specific domains; Al-Shedivat
et al. (2017) used a recurrent NN to learn kernels with
recurrent structures, while Achituve et al. (2021) considered
a NN for learning a shared kernel function in a personalized
federated learning setting. Most recently, there was some
efforts towards the regularization of DKL-based models.
Liu et al. (2021) proposed a latent-variable framework
that incorporates a stochastic encoding of the inputs
for regularized representation learning. Achituve et al.
(2023) also proposed a novel approach for training DKL
models. The approach consists in leveraging the uncertainty
estimation of a GP with an infinite-width deep neural

8



Amortized Variational Deep Kernel Learning

network kernel to guide the DKL optimization process.

Amortized variational inference for GPs. Amortization
was initially investigated in the context of GPs as a back con-
straint approach (Lawrence & Quinonero-Candela, 2006;
Bui & Turner, 2015). The terms “back constraint” and
“amortization” are essentially interchangeable, as in both
cases a neural network is employed to impose constraints on
local smoothing. Lawrence & Quinonero-Candela (2006)
used amortization to locally preserve distances in GP Latent
Variable Models (GP-LVM). Bui & Turner (2015) revisited
VI for GP-LVM and applied amortization to estimate varia-
tional parameters. Dai et al. (2016) applied amortization to
reparameterize the variational posterior distribution. Mat-
tos & Barreto (2019) made use of A-VI to constrain the
model’s local variables of recurrent GPs. Villacampa-Calvo
et al. (2021) applied amortization on the variational poste-
rior in order to reduce the variational distribution complexity.
Jafrasteh et al. (2022) introduced the IDSGP by performing
A-VI on the inducing locations.

Comparison to SVDKL and IDSGP. While AVDKL mar-
ries ideas from SVDKL and IDSGP, there are crucial design
differences among these methods that are worth highlight-
ing. In the DKL framework, the network only interacts di-
rectly with the kernel function. On the other hand, AVDKL
is fully coupled with the GP on both terms of the ELBO
by interacting with both kernel and variational parameters.
Moreover, IDSGP performs the amortization using the input
points and thus is not suitable for unstructured data domains.
AVDKL takes advantage of SVDKL and IDSGP formula-
tions to achieve scalable and complex representations for
both kernel function and variational parameters.

6. Conclusion
In this work we proposed the use of amortized variational
inference for learning scalable and complex kernels repre-
sentations. With our formulation, the NN which projects
the embeddings of X shares its parameters with the amorti-
zation mapping of the inducing points and variational dis-
tribution, ensuring that the NN have impact on both fitting
and regularization terms of the evidence lower bound. We
show on a set of extensive analysis and experiments that
our model, AVDKL, is capable of attenuating the DKL ten-
dency of over correlating the NN output features, producing
well-regularized, calibrated and more accurate models.
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A. Understanding of the AVDKL Architecture
We can summarize the AVDKL architecture in three modules: the feature extractor, the variational module, composed by a
saturation module and a projection layer, and the sparse GP. The feature extractor is the deep neural network responsible for
encoding xi into gi. The variational module is responsible for saturating gi and projecting the inducing locations Zi, mi

and Li. Finally, the sparse GP accommodates the current inducing locations and computes the posterior distribution based
on gi. An schematic representation of the AVDKL is depicted in Figure 10.

x g Z,m,L y

DNN Saturation Linear

Sparse GP

Variational Module

Parametric Module

Figure 10. Schematic representation of the AVDKL architecture. The DNN is a deep neural network representing the feature extractor
module. In the above figure, the inputs x are projected into g through the feature extractor (DNN); in the variational module, g is saturated
and projected into the inducing locations, Z,m,L; the inducing locations are fed into the sparse GP module, which receives as input g,
the representation learning of x.

A.1. A Note About the Saturation Module

The saturation module is of great importance for the AVDKL model. As shown in Figure 3, without the saturation module
the AVDKL would make bad extrapolation with poor uncertainty estimates.

Such module compose the first operation of the variational module and, as shown in our experiments, one can just apply a
Sigmoid/Tanh activation or design more complex saturation modules. As an example, in the image classification scenario we
designed a saturation module composed by a linear layer followed by a Sigmoid activation. The linear layer was responsible
for compressing gi ∈ RE into E/8 dimensions. In our experiments, such design greatly improved the posterior estimation,
giving better uncertainty estimates and better calibration.

In practice, the saturation module comes as a straightforward solution for the absence of a well defined prior distribution
for the inputs. During the learning phase, with the right saturation module, the model is capable of learning to bound the
representation learning so that the estimations of the inducing locations, which depend on the representation learning, are
not freely extrapolated. In this sense, in a situation where the representation learning falls outside the prior knowledge,
it will saturate and, therefore, the estimation of the inducing locations will fall in a region where the model is capable of
generalizing well.

B. Extra Implementation Details
All models were implemented using PyTorch, PyTorch Geometric (Fey & Lenssen, 2019), GPyTorch (Gardner et al., 2018)
and Neural Tangents (Novak et al., 2020; 2022; Han et al., 2022; Hron et al., 2020; Sohl-Dickstein et al., 2020), depending
on the evaluation scenario. For instance, PyTorch Geometric was only used on the semi-supervised node classification
scenario, while the Neural Tangents was used to define the infinite-width network for the GDKL model. Furthermore, all
models were trained on a NVIDIA GeForce RTX 3060 with 12GB, and 16GB of RAM. A summary about the tabular and
graph datasets are presented in Tables 4 and 5.
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Classification N mini-batch D # Tasks

MagicGamma 15216 256 10 2
HTRU2 14318 256 8 2
Letter 16000 256 16 26

Regression

Protein 36584 256 12 1
KeggD 42730 512 12 1
KeggU 51686 512 12 1

Table 4. Tabular datasets summary.

Datasets # Nodes # Edges # Features # Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3

Table 5. Semi-supervised node classification datasets summary.

Dataset size/depth dropout lr weight decay

Cora 64/64 0.6 5e-3 5e-4
CiteSeer 256/32 0.6 5e-3 5e-4
PubMed 256/32 0.5 1e-2 5e-4

Table 6. DeepGCN architecture and training settings.

B.1. UCI Classification and Regression

We opted for keeping the NN architectures small. We used 2-hidden layer network with sizes [64, D], so that the latent
representation of the inputs gi is of same size as xi. We trained all NN-based models using AdamW (Loshchilov & Hutter,
2019) with learning rate of 0.005 and weight decay of 0.001 applied only on the network parameters, and the cosine
annealing learning rate scheduler (Loshchilov & Hutter, 2017). Concern the AVDKL’s inducing locations projection, we
used a saturated non-linear activation applied on gi – Sigmoid for MagicGamma and HTRU2 and Tahn for the remaining
datasets – followed by a linear layer. The SVGP model was trained using Adam with a learning rate of 0.01. For the GDKL,
an extra step is required during the training phase: train an infinite-width network GP-based model (NNGP) responsible
for guiding the DKL optimization process. For this, we defined the infinite-width network with the same architecture of
the DKL model. However, we used the GELU activation instead of SiLU, because the neural-tangents library, used for
implementing the infinite-width network, only provided the implementation for the GELU activation. The NNGP model
was trained in a full-GP regime on 10% inputs sampled from the training set for 300 epochs using the Adam optimizer with
a learning rate of 0.01. For classification tasks, the NNGP model was trained with the Dirichlet likelihood with αϵ = 0.01
(Milios et al., 2018).

B.2. Semi-Supervised Node Classification

For both AVDKL and SVDKL we used the architecture described by Chen et al. (2022) (see Table 6). For the AVDKL’s
inducing locations projection, we used the Tanh activation followed by a linear layer. The models were optimized using
Adam (Kingma & Ba, 2015) with learning rate and weight decay as in Table 6.

B.3. Image Classification

For both AVDKL and SVDKL we used the ResNet-18 architecture as the feature extractor in order to compute gi, so that the
dimension of gi is of size E = 512. For the AVDKL we built a saturation module that first compress gi into E/8 through
a linear layer and then applies a Sigmoid non-linear activation on the compressed latent representation. The saturated
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Optimization Values

Optimizer SGD
Initial lr. 0.1
Initial kernel output/length-scale lr. 0.001
Weight decay 0.0001
Warmup epochs 5
Scheduler cosine annealing
Epochs 300

Data Transforms -

RandomCrop size=32, padding=4
HorizontalFlip p=0.5
Augmentation trivial augment wide
RandomErasing p=0.2

Table 7. Details of the recipe used for training the models for image classification on CIFAR10 and CIFAR100.

Model
MagicGamma HTRU2 Letter

Acc. (%) ECE Acc. (%) ECE Acc. (%) ECE

AVDKL 88.12 ± 0.64 1.25 ± 0.35 97.97 ± 0.15 0.35 ± 0.07 97.42 ± 0.17 0.61 ± 0.12
GDKL 88.39 ± 0.61 1.09 ± 0.37 97.98 ± 0.25 0.55 ± 0.20 96.91 ± 0.10 1.40 ± 0.24
DLVKL 87.73 ± 068 1.27 ± 0.16 98.01 ± 0.13 0.64 ± 0.04 94.09 ± 0.38 4.92 ± 0.29
SVDKL 87.79 ± 0.60 1.59 ± 0.46 98.07 ± 0.14 0.49 ± 0.08 94.17 ± 0.27 0.92 ± 0.32
SVGP 87.43 ± 0.60 1.05 ± 0.46 98.04 ± 0.11 0.45 ± 0.10 95.63 ± 0.27 5.25 ± 0.24

Table 8. UCI experiments: accuracy and ECE for the classification datasets.

compressed latent representation is fed to a linear layer that computes the inducing locations. Both AVDKL and SVDKL are
compared against a standalone ResNet-18. The training recipe for all models is described in Table 7.

There is a crucial difference between the AVDKL and SVDKL architectures: in the AVDKL the latent representation gi is
fed to the GP as is, while the SVDKL normalizes gi by putting it in a grid, since the inducing locations are also in a grid –
note that the values that limit such grid are set manually. In the AVDKL, we have noticed in our first investigations that, due
to the high dimensionality of gi – recall that E = 512 –, initializing the kernel with small lengthscales was harmful to the
model’s convergence. As a solution for this issue, we smoothed the kernel computation by initializing the lengthscales with
l = 15.

C. Extra Experimental Results
C.1. UCI Classification and Regression

We show in Table 8 the accuracy and ECE for the classification datasets. In Table 9, we show the RMSE for the regression
datasets. Finally, in Table 10, we show the training time of one of the independent runs in terms of seconds per epoch.

In Table 8, the accuracy obtained for both MagicGamma and HTRU2 were very similar, except for the SVGP model, which
obtained a much lower accuracy when compared to the GDKL and the AVDKL. On the other hand, the AVDKL was superior
in the Letter dataset – note that the AVDKL’s mean accuracy is far from the GDKL mean accuracy, by more than 1 standard
deviation. Furthermore, the AVDKL achieved better calibration on HTRU2 and Letter. In Table 9, the AVDKL achieved
a much better RMSE compared to its counterparts. Finally, in Table 10, while the SVDKL was fast in the classification
datasets, the AVDKL was faster in the regression datasets – this is expected, since in the regression datasets the SVDKL is
not based on the grid approach, having much more inducing points when compared to the AVDKL.
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Model Protein KeggD KeggU

AVDKL 3.7212 ± 0.0530 0.0242 ± 0.0004 0.0108 ± 0.0017
GDKL 4.0799 ± 0.0584 0.0334 ± 0.0004 -
DLVKL 4.2869 ± 0.0266 0.0356 ± 0.0007 0.0151 ± 0.0004
SVDKL 4.1588 ± 0.0470 0.0357 ± 0.0006 0.0164 ± 0.0006
SVGP 4.2027 ± 0.0388 0.0364 ± 0.0005 0.0191 ± 0.0006

Table 9. UCI experiments: RMSE for the regression datsets.

Model MagicGamma HTRU2 Letter Protein KeggD KeggU

AVDKL 1.323 ± 0.059 1.391 ± 0.119 1.430 ± 0.120 3.110 ± 0.193 1.962 ± 0.109 2.386 ± 0.143
GDKL 4.135 ± 0.089 3.840 ± 0.073 4.631 ± 0.049 7.822 ± 0.221 5.024 ± 0.155 -
DLVKL 1.786 ± 0.116 1.901 ± 0.183 2.172 ± 0.075 4.118 ± 0.238 2.709 ± 0.044 3.313 ± 0.114
SVDKL 1.036 ± 0.031 0.970 ± 0.035 1.158 ± 0.055 3.412 ± 0.033 2.383 ± 0.045 2.873 ± 0.043
SVGP 1.551 ± 0.096 1.351 ± 0.028 1.956 ± 0.082 3.339 ± 0.032 2.315 ± 0.035 2.794 ± 0.043

Table 10. UCI experiments: training time in terms of seconds per epoch.

Model Cora CiteSeer PubMed

AVDKL 30.97 ± 1.20 19.09 ± 0.93 7.58 ± 0.76
SVDKL 6.99 ± 2.55 5.95 ± 1.18 5.29 ± 1.11
DeepGCN 32.92 ± 0.80 22.00 ± 1.44 4.52 ± 0.76

Table 11. Semi-supervised node classification: calibration results in terms of ECE (%) for each dataset.

Model
Cora CiteSeer PubMed

# Parameters sec./epoch # Parameters sec./epoch # Parameters sec./epoch

AVDKL 102K 0.086 ± 0.014 1.1M 0.106 ± 0.013 263K 0.226 ± 0.010
SVDKL 255K 0.089 ± 0.018 1.6M 0.068 ± 0.029 782K 0.229 ± 0.010
DeepGCN 92K 0.053 ± 0.017 949K 0.075 ± 0.039 129K 0.206 ± 0.033

Table 12. Semi-supervised node classification: number of trainable parameters and training time terms of seconds per epoch across all
independent runs for each model.

C.2. Semi-Supervised Node Classification

In Table 11 we report the ECE for each model on each graph dataset. In Table 12 we show the model size in terms of number
of parameters and the training time in seconds per epochs.

Looking at the Table 11, one can see that the SVDKL obtained a better ECE on the Cora and CiteSeer datasets, but with
poorer accuracy values (see Table 2). Also, excepting for PubMed, the AVDKL obtained a better calibration when compared
to the DeepGCN. Concern the size of the models an the training time, note in Table 12 that the AVDKL model was always
smaller in terms of number of parameters when compared to the SVDKL model, but with similar training time in the Cora
and PubMed datsets.

C.3. Image Classification

We provide an extra experiment for image classification with small datasets subsampled from CIFAR10. We considered
two scenarios: 10 images per class em 50 images per class. The results can be seen in Table 13. Additionally, we show in
Table 14 the number of trainable parameters for each model and the training time in seconds per epoch per scenario.

As one can see in Table 13, the AVDKL was much superior than the SVDKL in terms of accuracy and, compared to the
standalone ResNet-18, the AVDKL achieved better results in all metrics, showing the efficiency of the AVDKL model in
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samples/class Metric AVDKL SVDKL ResNet-18

10
Acc. (%) 29.89 ± 1.48 25.75 ± 1.74 29.37 ± 0.63
ECE (%) 18.44 ± 1.64 2.67 ± 1.33 24.99 ± 3.89
MNLL 2.0815 ± 0.0439 1.9936 ± 0.0342 2.3891 ± 0.0590

50
Acc. (%) 49.11 ± 0.81 43.80 ± 1.37 48.59 ± 4.04
ECE (%) 21.21 ± 0.93 14.62 ± 1.22 26.27 ± 2.70
MNLL 1.6682 ± 0.0210 1.7191 ± 0.0254 1.9922 ± 0.1755

Table 13. Accuracy, ECE and MNLL computed over 3 independent runs for small dataset scenarios based on the CIFAR10 dataset: 10
images per class and 50 images per class.

Model
CIFAR10 CIFAR100

# Parameters sec./epoch # Parameters sec./epoch

AVDKL 11.8M 34.306 ± 1.325 12.6M 46.449 ± 13.635
SVDKL 13.3M 58.869 ± 2.967 13.4M 60.141 ± 2.835
ResNet-18 11.2M 27.115 ± 1.328 11.2M 27.126 ± 1.307

Table 14. Image classification: number of trainable parameters and training time terms of seconds per epoch across all independent runs
for each model.

very small datasets scenarios.

In Table 14, one can see that the ResNet-18 was the smaller model in terms of number of parameter – which is expected,
since the AVDKL adds an extra variational amortization layer and the SVDKL adds a set of variational parameters. However,
compared to the SVDKL, the AVDKL was much more scalable in terms of both number of parameters and training time,
showing the benefits of the amortized variational inference approach.
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