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Abstract

No-Reference Point Cloud Quality Assessment (NR-PCQA) aims to objectively
assess the human perceptual quality of point clouds without relying on pristine-
quality point clouds for reference. It is becoming increasingly significant with
the rapid advancement of immersive media applications such as virtual reality
(VR) and augmented reality (AR). However, current NR-PCQA models attempt to
indiscriminately learn point cloud content and distortion representations within a
single network, overlooking their distinct contributions to quality information. To
address this issue, we propose DisPA, a novel disentangled representation learning
framework for NR-PCQA. The framework trains a dual-branch disentanglement
network to minimize mutual information (MI) between representations of point
cloud content and distortion. Specifically, to fully disentangle representations, the
two branches adopt different philosophies: the content-aware encoder is pretrained
by a masked auto-encoding strategy, which can allow the encoder to capture
semantic information from rendered images of distorted point clouds; the distortion-
aware encoder takes a mini-patch map as input, which forces the encoder to focus
on low-level distortion patterns. Furthermore, we utilize an MI estimator to estimate
the tight upper bound of the actual MI and further minimize it to achieve explicit
representation disentanglement. Extensive experimental results demonstrate that
DisPA outperforms state-of-the-art methods on multiple PCQA datasets.

1 Introduction

With recent advances in 3D capture devices, point clouds have become a prominent media format
to represent 3D visual content in various immersive applications, such as autonomous driving and
virtual reality [4, 43]. These extensive applications stem from the rich information provided by
point clouds (e.g., geometric coordinates, color). Nevertheless, before reaching the user-client, point
clouds inevitably undergo various distortions at multiple stages, including acquisition, compression,
transmission and rendering, leading to undesired perceptual quality degradation. Accordingly, it
is necessary to develop an effective metric that introduces human perception into the research of
point cloud quality assessment (PCQA), especially in the common no-reference (NR) situation where
pristine reference point clouds are unavailable.

In recent years, many deep learning-based NR-PCQA methods [21, 47, 51, 32, 3] have shown
remarkable performance on multiple benchmarks, which can be applied directly to 3D point cloud data
or 2D rendered images. Most of these methods [47, 22, 51, 3] tend to learn a unified representation
for quality prediction, ignoring the fact that perceptual quality is determined by both point cloud
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Figure 1: Statistics of SJTU-PCQA (part) [46] and predicted quality scores of NR-PCQA models
(PQA-Net [21] and GPA-Net [32]). Quality scores of different distortion types are in lines of different
colors. Red circles are to highlight the score span of different contents with the same distortion.

content information and distortion pattern. Although some other models [21, 33] alternately learn
content and distortion representations through different training objectives, they are still based on a
single-branch network and thus may lead to highly entangled features in the representation space.

From the perspective of visual rules, insufficient disentanglement between representations of point
cloud content and distortion disobeys the perception mechanisms of the human vision system (HVS),
further limiting performance improvement. In fact, many studies [35, 16] highlight the distinct visual
processing of high-level (e.g., semantics) and low-level information (e.g., distortions) in different
areas of the brain. Concretely, the left and right hemispheres of the brain are specialized in processing
high-level and low-level information, respectively. These findings suggest a relatively disentangled
processing mechanism in our brain, challenging existing methods that seek to learn these conflicting
representations using a single network indiscriminately.

The difficulty of disentangled feature learning is relatively great for NR-PCQA due to data imbalance.
Specifically, although a wide range of distortion types and intensities in current PCQA datasets
can enable the learning of robust low-level distortion representations, it is non-trivial to learn the
representations of point cloud content that lies in a considerable high dimensional space because
these PCQA datasets are extremely limited in terms of content (e.g., up to 104 contents in LS-PCQA
[23]). This data limitation can lead to overfitting of NR-PCQA models regarding point cloud content,
that is, when the content changes, the prediction score changes in the undesired manner, even with
the same distortion pattern. As illustrated in Figure 1 (b) and (c), the NR-PCQA models PQA-Net
[21] and GPA-Net [32] correctly predict the trend of quality degradation with increasing distortion
intensity, but their predicted score spans deviate a lot from the ground truth in Figure 1 (a), where the
content varies but the distortion pattern remains intact. Based on these observations, we expect a new
disentangled representation learning framework that can obey the separate information processing
mechanism of HVS, and alleviate the difficulty of content and distortion representation learning
introduced by data imbalance.

In this paper, we propose a new Disentangled representation learning framework tailored for NR-
PCQA, named DisPA. Motivated by the HVS perception mechanism, DisPA employs a dual-branch
structure to learn representations of point cloud content and distortion (called content-aware and
distortion-aware branches). DisPA has three steps to achieve disentanglement: 1) To address the
problem introduced by data imbalance, we pretrain a content-aware encoder based on masked
autoencoding strategy. Specifically, in this pretraining process, the distorted point cloud is rendered
into multi-view images whose patches will be partially masked. The partially masked images are
then fed into the content-aware encoder to reconstruct the rendered images of the corresponding
reference point cloud. 2) To facilitate learning of distortion-aware representations, we decompose the
distorted multi-view images into a mini-patch map through grid mini-patch sampling [40], which can
prominently present local distortions and forces the distortion-aware encoder to ignore the global
content. 3) Inspired by the utilization of mutual information (MI) in disentangled representation
learning [8], we propose an MI-based regularization to explicitly disentangle the latent representations.
Compared to simple linear correlation coefficients (e.g., cosine similarity), mutual information can
capture the nonlinear statistical dependence between representations [15]. To achieve this, we
utilize an MI estimator to estimate a tight upper bound of the MI and further minimize it to achieve
straightforward disentanglement. We summarize the main contributions as follows:
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• We propose a novel disentangled representation learning method for NR-PCQA called DisPA,
which obeys the particular HVS perception mechanism. To the best of our knowledge, DisPA
is the first framework to explore representation disentanglement in PCQA.

• We propose the key MI-based regularization that can explicitly disentangle the representa-
tions of point cloud content and distortion through MI minimization.

• We conduct comprehensive experiments on three datasets (SJTU-PCQA [46], WPC [20],
LS-PCQA [23]), and achieve superior performance over the state-of-the-art methods on all
of these datasets.

2 Related Work

No-Reference Point Cloud Quality Assessment. NR-PCQA aims to evaluate the perceptual quality
of distorted point clouds without available references. According to the modalities, the NR-PCQA
methods can be categorized into three types: projection-based, point-based and multi-modal methods.
For the projection-based methods, various learning-based networks [21, 47, 52, 33, 34] adopt multi-
view projection for feature extraction, while Zhang et al.[53] integrates the projected images into a
video to conveniently utilize video quality assessment methods to evaluate the perceptual quality. Xie
et al.[45] first computes four types of projected images (i.e., texture, normal, depth and roughness)
and fuses their latent features using a graph-based network. For the point-based methods, Zhang
et al.[50] extracts carefully designed hand-crafted features, while Liu et al.[23] transforms point
clouds into voxels and utilizes 3D sparse convolution to learn the quality representations. Some 3D
native methods [37, 32, 39] divide point clouds into local patches and utilize hierarchical networks
structurally like PointNet++ [29] to learn the representations. For the multi-modal methods, Zhang et
al.[51] utilizes individual 2D and 3D encoders to separately extract features, and fuse them using
a symmetric attention module. Other works [38, 3, 22] leverage various cross-modal interaction
mechanisms to enhance the fusion between 2D and 3D modalities. Compared to previous methods that
learn quality representations indiscriminately, our work solves quality representation disentanglement
from a more essential perspective of mutual information, which reveals the intrinsic correlations
between point cloud content and distortion pattern.

Representation Learning for Image/Video Quality Assessment. As for image quality assessment
(IQA), CONTRIQUE [25] learns distortion-related information on images with synthetic and realistic
distortions based on contrastive learning. Re-IQA [31] trains two separate encoders to learn high-
level content and low-level image quality features through an improved contrastive paradigm. QPT
[54] also learns quality-aware representations through contrastive learning, where the patches from
the same image are treated as positive samples, while the negative sample are categorized into
content-wise and distortion-wise samples to contribute distinctly to the contrastive loss. QPTv2 [44]
is based on masked image modeling (MIM), which learns both quality-aware and aesthetics-aware
representations through performing the MIM that considers degradation patterns.

As for VQA, CSPT [5] learns useful feature representation by using distorted video samples not only to
formulate content-aware distorted instance contrasting but also to constitute an extra self-supervision
signal for the distortion prediction task. DisCoVQA [41] models both temporal distortions and content-
related temporal quality attention via transformer-based architectures. Ada-DQA [19] considers video
distribution diversity and employ diverse pretrained models to benefit quality representation. DOVER
[42] divides and conquers aesthetic-related and technical-related (distortion-related) perspectives
in videos, introduces inductive biases for each perspective, including specific inputs, regularization
strategies, and pretraining. However, there is no current work to utilize mutual information (MI) to
achieve representation disentanglement, which has not been explored in IQA/VQA.

Mutual Information Estimation. Mutual information (MI) has been widely used as regularizers
or objectives to constrain independence between variables [2, 7, 13, 14]. Hjelm et al.[14] performs
unsupervised representation learning by maximizing MI between the input and output of a deep
neural network. Kim et al.[17] learns disentangled representations by encouraging the distribution
of representations to be factorial and hence independent across the dimensions. Moreover, MI
minimization has been drawing increasing attention in disentangled representation learning [6, 15, 55].
Chen et al.[8] introduces a contrastive log-ratio upper bound for mutual information estimation,
and extends the estimator to a variational version for general scenarios when only samples of the
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joint distribution are obtainable. Dunion et al.[11] minimizes the conditional mutual information
between representations to improve generalization abilities under correlation shifts and enhances
training performance in scenarios with correlated features. However, to our knowledge, there has
been no previous work focusing on learning disentangled representations or exploring MI estimation
for visual quality assessment.

3 Mutual Information Estimation and Minimization

Given the content-aware and distortion-aware representations (x,y), our goal is to estimate the MI
between x and y and further minimize it. In this section, we explain the mathematical background of
how to leverage a neural network to estimate the MI between x and y.

The MI between x and y can be defined as:

I(x;y) =
∫

p(x,y) log
p(x,y)

p(x)p(y)
dxdy

= Ep(x,y)

[
log

p(x,y)

p(x)p(y)

] (1)

where p(x,y) is the joint distribution, p(x) and p(y) are the marginal distributions.

Unfortunately, the exact computation of MI between high-dimensional representations is actually
intractable. Therefore, inspired by [6, 8, 15], we focus on estimating the MI upper bound and further
minimize it. The tight upper bound of mutual information (MI) means an upper boundary that is
always higher the actual value of MI. A tight upper bound means the bound is close to the actual
value of MI and equal to MI under certain conditions. An MI upper bound estimator Î(x;y) can be
formulated as (proof in Appendix A):

Î(x;y) := Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)] (2)

Since the conditional distribution p(y|x) is unavailable in our case, we approximate it using a
variational distribution qϕ(y|x) = Qϕ(x,y) , where the conditional distribution is inferred by
another light neural network Qϕ with parameters ϕ. Then the variational form Îv(x;y) can be
formulated as (in a discretized form):

Îv(x;y) =
1

N2

N∑
i=1

N∑
j=1

[log qϕ (yi|xi)− log qϕ (yj |xi)] (3)

where {(xi,yi)}Ni=1 is N samples pairs drawn from the joint distribution p(x,y). To make Îv(x;y)
a tight MI upper bound, Qϕ is trained to accurately approximate p(y|x) by minimizing the KL
divergence between p(y|x) and qϕ(y|x):

min
ϕ

KL (p(y|x)∥qϕ(y|x))

=min
ϕ

Ep(x,y)[log p(y|x)]︸ ︷︷ ︸
No relation with ϕ

−Ep(x,y) [log qϕ(y|x)]︸ ︷︷ ︸
to be minimized

(4)

Obviously, the first term in Equation 4 has no relation with ϕ, thus Equation 4 equals minimization of
the second term. Therefore, the can be a tight MI upper bound if we minimize the following negative
log-likelihood of the inferred conditional distribution:

LMI = −
1

N

N∑
i=1

log qϕ(yi|xi) = −
1

N

N∑
i=1

logQϕ(xi,yi) (5)

Now, given the representations x and y, we can train the MI estimator Îv(x;y) to predict the MI
between x and y by minimizing LMI. Afterwards, we minimize Îv(x;y) for explicit disentanglement,
detailed implementations will be explained in Section 4.4.
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Figure 2: Architecture of proposed DisPA (a). Our DisPA consists of two encoders F and G for
learning content-aware and distortion-aware representations, and an MI estimatorM. The content-
aware encoder F is pretrained using masked autoencoding (b). "

⊕
" denotes concatenation.

4 Proposed Framework

4.1 Overall Architecture

The aforementioned analysis in Section 1 reveals that HVS processes high-level and low-level features
in a relatively separate manner. To obey this mechanism, as illustrated in Figure 2 (a), the architecture
of DisPA is divided into two branches to learn content-aware and distortion-aware representations,
respectively. Given a distorted point cloud P , we first render it into multi-view images I . The
multi-view images are fed into a frozen pretrained vision transformer (ViT) [10] F with parameters
Θf to generate the content-aware representation x. Next, the multi-view images are decomposed
into a mini-patch map M through grid mini-patch sampling. The mini-patch map is encoded by the
distortion-aware encoder G (a Swin Transformer) [24]) with parameters Θg to obtain representation
y. After obtaining x and y, we also use them to train the MI estimatorM and obtain the estimated
MI Îv(x;y) following the process in Section 3. Finally, we concatenate x and y (denoted as [·, ·])
and regress it by fully-connected layersH with parameters Θh to predict quality score q̂. The whole
process can be described as follows:

q̂ = H([F(I; Θf ),G(M ; Θg)]; Θh) (6a)

Îv(x;y) =M(F(I; Θf ),G(M ; Θg)) (6b)

4.2 Content-Aware Pretraining via Masked Autoencoding

As analyzed in Section 1, the learning difficulty of content representation is more intractable than
distortion due to the limited dataset scale in terms of point cloud content. To address this problem, we
pretrain the content-aware encoder F via the proposed masked autoencoding strategy. As illustrated
in Figure 2 (b), given a distorted point cloud P and its corresponding reference point cloud Pref, our
goal is to render P and Pref into multi-view images {I(n) ∈ RH×W×3}Nv

n=1, {I(n)ref ∈ RH×W×3}Nv
n=1

and pretrain F by using partially masked I(n) to reconstruct I(n)ref , where Nv is the number of views.

Multi-View Rendering. Instead of directly performing masked autoencoding in 3D space, we
render point clouds into 2D images to achieve pixel-to-pixel correspondence between the rendered
images of P and Pref, which facilitates the computation of pixel-wise reconstruction loss between the
predicted patches and the ground truth patches. To perform the rendering, we translate P (or Pref)
to the origin and geometrically normalize it to the unit sphere to achieve a consistent spatial scale.
Then, to fully capture the quality information of 3D point clouds, we apply random rotations before
rendering P , Pref into {I(n)}Nv

n=1 and {I(n)ref }
Nv
n=1.

Patchifying and Masking. After obtaining the rendered image I(n), we partition it into non-
overlapping 16× 16 patches following [10]. Then we randomly sample a subset of patches and mask
the remaining ones, where the masking ratio is relaxed to 50% instead of the high ratio in [12] (e.g.,
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75% and even higher) because some point cloud samples in PCQA datasets exhibit severe distortions,
necessitating more patches to extract effective content-aware information. In addition, the relatively
low masking ratio can mitigate the influence of the background of I(n).

Figure 3: Illustration of mini-patch map generation.

Encoding and Reconstruction. The un-
masked patches of I(n) are fed into the ViT F
for initial embedding and subsequent encoding
to obtain the representation x. To compensate
for the scarcity of point cloud content in PCQA
datasets, we initialize the encoder using the pa-
rameters optimized on ImageNet-1K [9]. Next,
to reconstruct I(n)ref , we feed x into a decoder and
reshape it into 2D pixels to generate the recon-
structed Î

(n)
ref . By reconstructing masked refer-

ence patches from unmasked distorted patches,
the encoder F is forced to focus more on semantic information than distortion patterns. The content-
aware representation can be learned by the reconstruction loss Lrec:

Lrec =

Nv∑
n=1

∥∥Î(n)ref − I
(n)
ref

∥∥2
2

(7)

4.3 Distortion-Aware Mini-patch Map Generation

To learn an effective distortion-aware representation y, we decompose the multi-view images
{I(n)}Nv

n=1 to a mini-patch map through grid mini-patch sampling, following [40, 42, 52]. As
illustrated in Figure 3, the distortion pattern is well preserved and even more obvious on the mini-
patch map while the content information is blurred. More concretely, for each multi-view image I(n),
we first split it into uniform L× L grids, the set of grids G(n) can be described as:

G(n) = {g(n)0,0 , · · · , g
(n)
i,j , · · · , g

(n)
L,L}, g

(n)
i,j = I(n)[

i×H

L
:
(i+ 1)×H

L
,
j ×W

L
:
(j + 1)×W

L
]

(8)
where g

(n)
i,j ∈ RH

L ×W
L ×3 denotes the grid in the i-th row and j-th column of I(n). Then we sample

the mini-patches from each g
(n)
i,j and splice all the selected mini-patches to get the mini-patch map

M . Note that blank mini-patches (i.e., image background) are ignored, and the map is ensured to
M ∈ RH×W×3 by filling in the unemployed mini-patches. After the mini-patch map generation, we
feed it into the distortion-aware encoder G to generate the corresponding representation y.

4.4 Disentangled Representation Learning

MI-based Regularization. After obtaining content-aware and distortion-aware representations x
and y, we further disentangle them by minimizing the MI upper bound in Îv(x;y) in Equation 3.
As revealed in Equation 4 and 5, the key to accurately estimate a tight Îv(x;y) is to minimize the
negative log-likelihood of the variational network Qϕ(x,y). Here we implement theQϕ using MLPs,
and model the variational distribution as an isotropic Gaussian parameterized by a mean value µϕ =

[µϕ(x1), ..., µϕ(xD)] and a diagonal covariance matrix Σ = σ2
ϕI , where σϕ = [σϕ(x1), ..., σϕ(xD)],

D is the feature dimension of x and y. Then the variational distribution can be inferred as:

qϕ(y|x) = Qϕ(x,y) =

D∏
d=1

1√
(2π)Dσ2

ϕ (xd)
exp

{
− (yd − µϕ (xd))

2

2σ2
ϕ (xd)

}
(9)

where µϕ and σ2
ϕ are obtained via the last two MLP layers. ϕ is optimized by minimizing LMI in

Equation 5, the negative log-likelihood ofQϕ(x,y). It is noted that the parameters of ϕ are optimized
independently with the main networks Θf and Θg , seeing Algorithm 1.

Loss Function. After obtaining the Îv(x;y), we incorporate it into our total training objective as a
regularizer to disentangle the content-aware and distortion-aware representations, the total training
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Algorithm 1 Disentangled Representation Learning Pipeline

Input: A batch of rendered images {I(n)b |
Nv
n=1}Bb=1; mini-patch map {Mb}Bb=1; networks F ,G,H

with parameters Θ′
f ,Θg,Θh; MI estimatorM with variational network Qϕ; optimizer; λ1, λ2

Output: Updated parameters Θ′
g,Θ

′
h and ϕ′ // Parameters Θ′

f is frozen

1: Encode rendered images to generate content-aware representation x← F({I(n)b }); Θ′
f )

2: Encode mini-patch map to generate distortion-aware representation y← G({Mb}; Θg)
3: for m = 1→ NM do // Update the MI estimator by training Qϕ

4: Compute negative log-likelihood LMI ←
∑B

b=1Qϕ(x,y)
5: Update ϕ by minimizing LMI ϕ′ ←optimizer (ϕ,∇ϕLMI)
6: Compute the estimated MI Îv(x;y)← 1

B2

∑B
i=1

∑B
j=1[logQϕ′(xi,yi)− logQϕ′(xi,yj)]

7: Predict the quality scores q̂b ← H([xb,yb]; Θh)

8: Compute the total loss L ← 1
B

∑B
b=1(q̂b − qb)

2 + λ1Lrank + λ2Îv(x;y)
9: Update the parameters {Θ′

g,Θ
′
h} ← optimizer({Θg,Θh}, {∇Θg

L,∇Θh
L})

loss function L can be formulated as:

L =
1

B

B∑
b=1

(q̂b − qb)
2 + λ1Lrank + λ2Îv(x;y) (10)

where B is the batch size and Lrank is a differential ranking loss following [51, 33]. The λ1 and
λ2 are weighting factors to balance each loss term. To better recognize quality differences for the
point clouds with close MOSs, the differential ranking loss [51] Lrank is used to model the ranking
relationship between q̂ and q:

Lrank =
1

B2

B∑
i=1

B∑
j=1

max(0, |qi − qj |−e (qi, qj)·(q̂i − q̂j)) ,

e (qi, qj) =

{
1, qi ≥ qj
−1, qi < qj

(11)

Algorithm 1 summarizes the overall pipeline of the disentangled representation learning framework
(one iteration), where NM is the steps of updating for variational networks per epoch, and F is
initialized with the pretrained parameters Θf after masked autoencoding. The parameters of the main
network Θg,Θh and the variational networks ϕ are updated alternately.

5 Experiments

5.1 Datasets and Evaluation Metrics

Datasets. Our experiments are performed on three popular PCQA datasets, including LS-PCQA
[23], SJTU-PCQA [46], and WPC [20]. The content-aware pretraining is based on LS-PCQA,
which contains 24,024 distorted point clouds, and each reference point cloud is impaired with 33
types of distortions (e.g., V-PCC, G-PCC) under 7 levels. The disentangled representation learning
is conducted on all three datasets separately using labeled data, where SJTU-PCQA includes 9
reference point clouds and 378 distorted samples impaired with 7 types of distortions (e.g., color
noise, downsampling) under 6 levels, while WPC contains 20 reference point clouds and 740 distorted
samples disturbed by 5 types of distortions (e.g., compression, gaussian noise).

Evaluation Metrics. Three widely adopted evaluation metrics are employed to quantify the level
of agreement between predicted quality scores and ground truth (i.e., Mean Opinion Score, MOS):
Spearman rank order correlation coefficient (SROCC), Pearson linear correlation coefficient (PLCC),
and root mean square error (RMSE). To ensure consistency between the value ranges of the predicted
scores and subjective values, nonlinear Logistic-4 regression is used to align their ranges.
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Table 1: Quantitative comparison of the state-of-the-art methods and proposed DisPA on LS-PCQA
[23], SJTU-PCQA [46], WPC [20]. The best results are shown in bold, and second results are
underlined. "P" / "I" stands for the method is based on the point cloud/image modality, respectively.
"↑" / "↓" indicates that larger/smaller is better.

Ref Modal Method LS-PCQA SJTU-PCQA WPC
SROCC ↑ PLCC ↑ RMSE ↓ SROCC ↑ PLCC ↑ RMSE ↓ SROCC ↑ PLCC ↑ RMSE ↓

FR

P MSE-p2po [26] 0.325 0.528 0.158 0.783 0.845 0.122 0.564 0.557 0.188
P HD-p2po [26] 0.291 0.488 0.163 0.681 0.748 0.156 0.106 0.166 0.222
P MSE-p2pl [36] 0.311 0.498 0.160 0.703 0.779 0.149 0.445 0.491 0.199
P HD-p2pl [36] 0.291 0.478 0.163 0.617 0.661 0.177 0.344 0.380 0.211
P PSNR-yuv [36] 0.548 0.547 0.155 0.704 0.715 0.165 0.563 0.579 0.186
P PointSSIM [1] 0.180 0.178 0.183 0.735 0.747 0.157 0.453 0.481 0.200
P PCQM [27] 0.439 0.510 0.152 0.864 0.883 0.112 0.750 0.754 0.150
P GraphSIM [48] 0.320 0.281 0.178 0.856 0.874 0.114 0.679 0.693 0.165
P MS-GraphSIM [49] 0.389 0.348 0.174 0.888 0.914 0.096 0.704 0.718 0.159

NR

I PQA-Net [21] 0.588 0.592 0.202 0.659 0.687 0.172 0.547 0.579 0.189
I IT-PCQA [47] 0.326 0.347 0.224 0.539 0.629 0.218 0.422 0.468 0.221
P GPA-Net [32] 0.592 0.619 0.186 0.878 0.886 0.122 0.758 0.769 0.162
P ResSCNN [23] 0.594 0.624 0.172 0.834 0.863 0.153 0.735 0.752 0.177

P+I MM-PCQA [51] 0.581 0.597 0.189 0.876 0.898 0.109 0.761 0.774 0.149
I CoPA [33] 0.621 0.636 0.161 0.897 0.913 0.092 0.779 0.785 0.144
I DisPA (ours) 0.625 0.631 0.160 0.908 0.919 0.089 0.788 0.790 0.138

5.2 Implementation Details

Our experiments are performed using PyTorch [28] on NVIDIA 3090 GPUs. All point clouds are
rendered into 6-view projected images with a spatial resolution of 512 × 512 by PyTorch3D [30].
The encoders F and G are ViT-B [10] and Swin-T [24], respectively.

Content-Aware Pretraining. The pretraining is performed for 200 epochs, the initial learning rate
is 3e-4, and the batch size is 64 by default. Adam optimizer [18] is employed with weight decay of
0.0001. Each point cloud is randomly rotated 6 times before being rendered into 6-view images to
fully take advantage of quality information of point clouds.

Disentangle Representation Learning. The steps of updating NMof MI estimator is set to 10. We
use the Adam optimizer with weight decay of 0.0001 and batch size of 16. The hidden dimension of
fully-connected layers is set to 64. The learning rate is initialized with 0.003 and decayed by 0.95
exponentially per epoch. For LS-PCQA, the model is trained for 20 epochs, while 150 epochs for
SJTU-PCQA and WPC. The hyper-parameter λ1, λ2 is set to 1 and 0.01 according to the loss scales.

Data Split. Considering the limited dataset scale, in the training stage, 5-fold cross validation is
used for SJTU-PCQA and WPC to reduce content bias. Take SJTU-PCQA for example, in each fold,
the dataset is split into train-test with ratio 7:2 according to the reference point clouds, where the
performance on testing set with minimal training loss is recorded and then averaged across five folds
to get the final result. A similar procedure is repeated for WPC where the train-test ratio is 4:1. As for
the large-scale LS-PCQA, it is split into train-val-test with a ratio around 8:1:1 (no content overlap
exists). The result on the testing set with the best validation performance is recorded. Note that the
pretraining is only conducted on the training set of LS-PCQA.

5.3 Comparison with State-of-the-art Methods

15 state-of-the-art PCQA methods are selected for comparison, including 9 FR-PCQA and 6 NR-
PCQA methods. For a comprehensive comparison, we conduct the experiment in four aspects:
1) We compare a quantitative comparison of prediction accuracy, following the cross-validation
configuration in Section 5.2. 2) We perform the statistical analysis in Figure 1 for DisPA. 3) We
present qualitative examples to demonstrate the superiority of our model in terms of avoiding
overfitting when point content varies. 4) We report the results of cross-dataset evaluation for the
NR-PCQA methods to verify the generalizability of our model.

Quantitative Comparison. The prediction accuracy of all selected methods are presented in Table
1, which demonstrates the competitive performance of proposed DisPA across all three datasets, and
outperforms all the FR-PCQA methods on SJTU-PCQA and WPC. Compared with the NR-PCQA
methods, DisPA outperforms CoPA [33] by about 1.3% in terms of SROCC on LS-PCQA, and
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Figure 5: Qualitative Evaluation of NR-PCQA methods (PQA-Net [21], CoPA [33] and DisPA) on
SJTU-PCQA [46] and WPC [20]. Figure (b)-(d) share the same distortion pattern (i.e., color noise),
same for (f)-(h) (i.e., downsampling). "GT" denotes ground truth.

1.3% on SJTU-PCQA. Note that CoPA has also been pretrained on LS-PCQA. Furthermore, DisPA
significantly reduces RMSE by 4.2% compared to CoPA.

Figure 4: Statistical Analysis of SJTU-PCQA (part)
and predicted quality scores of DisPA.

Statistical Analysis. We perform the statis-
tical analysis on SJTU-PCQA in Figure 4 for
DisPA. Compared with the statistics of PQA-
Net and GPA-Net in Figure 1, our DisPA not
only predicts quality scores more accurately, but
also obviously predicts closer score spans when
point cloud content varies, even when the distor-
tion intensity is at the highest level. The statisti-
cal analysis demonstrates that the content-aware
pretraining strategy can effectively address the
problem of superior difficulty of learning rep-
resentations for point cloud content caused by

data imbalance.

Qualitative Evaluation. In Figure 5, we present examples of SJTU-PCQA and WPC with predicted
scores of PQA-Net [21] and CoPA [33], where Figure 5 (a)(b), (e)(f) share the same content, (b)-(d),
(f)-(h) share the the same distortion. Note that each score is predicted on the testing set of 5-fold
validation. We can see that the predicted score of our DisPA is obviously closer to the ground truth
(i.e., Mean Opinion Score, MOS) and dose not deviate from the MOS when content varies, which
further validates the effectiveness of content-aware pretraining and representation disentanglement.

Cross-Dataset Validation. To test the generalization capability of NR-PCQA methods when
encountering various data distribution, we perform cross-dataset on LS-PCQA [23], SJTU-PCQA
[46] and WPC [20]. In Table 2, we mainly train the compared models on the complete LS-PCQA
and test the trained model on the complete SJTU-PCQA and WPC, and the result with minimal
training loss is recorded. This procedure is repeated for mutual cross-dataset validation between
SJTU-PCQA and WPC. From Table 2, we can see that the performance of the cross-dataset validation
is relatively low due to the tremendous variation of data distribution. However, our method still
present competitive performances, demonstrating the superior generalizability of DisPA.
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Table 2: Cross-dataset validation on LS-PCQA
[23], SJTU-PCQA [46] and WPC [20] (com-
plete set). The best results (PLCC) are in bold,
and the second results are underlined.

Train Test PQA-Net GPA-Net MM-PCQA CoPA DisPA

LS SJTU 0.342 0.556 0.581 0.644 0.653
LS WPC 0.266 0.433 0.454 0.516 0.505

WPC SJTU 0.235 0.553 0.612 0.643 0.657
SJTU WPC 0.220 0.418 0.269 0.533 0.535

Table 3: Ablation study of DisPA on SJTU-PCQA
[46]. The best results are in bold.

Index Pretraining Disentanglement Loss SROCC PLCC

1⃝ ✓ ✓ ✓ 0.908 0.919
2⃝ ✗ ✓ ✓ 0.876 0.897
3⃝ ✓ ✗ ✓ 0.849 0.865
4⃝ ✓ Cos. Similarity ✓ 0.884 0.910
5⃝ ✓ Con. only ✓ 0.811 0.832
6⃝ ✓ Dis. only ✓ 0.763 0.778
7⃝ ✓ ✓ w/o Lrank 0.892 0.910

Figure 6: Visualization of t-SNE embeddings of representations of PQA-Net, GPA-Net, content-aware
and distortion-aware branches of our DisPA.

5.4 Ablation Study

We conduct ablation study of DisPA on SJTU-PCQA [46] in Table 3. From Table 3, we have following
observations: 1) Seeing 1⃝ and 2⃝, the pretraining strategy effectively improves the performance of
DisPA. 2) Seeing 1⃝, 3⃝ and 4⃝, the philosophy of representation disentanglement brings significant
improvements to our model, because using simple cosine similarity in 4⃝ for disentanglement can
achieve fair performance. However, using MI for disentanglement can better constrain the dependence
between representations. 3) Seeing 1⃝, 5⃝ and 6⃝, using single branch to infer quality scores causes
poor performance, since PCQA is a combination judgement based on the interaction of distortion
estimation and content recognition. 4) Seeing 1⃝ and 7⃝, the performance is close, demonstrating the
robustness of our model using different training loss functions.

Furthermore, as shown in Figure 6, we conduct a t-SNE visualization to compare the representation
embeddings of PQA-Net, GPA-Net, content-aware and distortion-aware branches of our DisPA
on the testing set of SJTU-PCQA. PQA-Net and GPA-Net are selected for comparison because
these two methods both use distortion type prediction to learn distortion-aware representations. The
scattered points are color and shape marked according to distortion type and content. The distortion-
aware features are visualized in 3rd sub-image, where we can see that the learned distortion-aware
representation shows clear and separate clustering for different distortion types, indicating a strong
correlation with degradations. The content-aware features present non-clustering for distortion types
but a clear boundary to split the content.

6 Conclusion

In this paper, we propose a disentangled representation learning framework (DisPA) for No-Reference
Point Cloud Quality Assessment (NR-PCQA) based on mutual information (MI) minimization. As
for the MI minimization, we use a variational network to infer the upper bound of the MI and further
minimize it to achieve explicit representation disentanglement. In addition, to tackle the nontrivial
learning difficulty of content-aware representations, we propose a novel content-aware pretraining
strategy to enable the encoder to capture effective semantic information from distorted point clouds.
Furthermore, to learn effective distortion-aware representations, we decompose the rendered images
into mini-patch maps, which can preserve original distortion pattern and make the encoder ignore the
global content. We demonstrate the high performance of DisPA on three popular PCQA benchmarks
and validate the generalizability compared with multiple NR-PCQA models.

Acknowledgments. This paper is supported in part by National Natural Science Foundation of
China (62371290, U20A20185), the Fundamental Research Funds for the Central Universities of
China, and 111 project (BP0719010).

10



References
[1] Evangelos Alexiou and Touradj Ebrahimi. Towards a point cloud structural similarity metric. In ICMEW,

pages 1–6, 2020.

[2] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference on
machine learning, pages 531–540. PMLR, 2018.

[3] Xiongli Chai, Feng Shao, Baoyang Mu, Hangwei Chen, Qiuping Jiang, and Yo-Sung Ho. Plain-pcqa:
No-reference point cloud quality assessment by analysis of plain visual and geometrical components. IEEE
Transactions on Circuits and Systems for Video Technology, 2024.

[4] Guangyan Chen, Meiling Wang, Yi Yang, Kai Yu, Li Yuan, and Yufeng Yue. Pointgpt: Auto-regressively
generative pre-training from point clouds. Advances in Neural Information Processing Systems, 36, 2024.

[5] Pengfei Chen, Leida Li, Jinjian Wu, Weisheng Dong, and Guangming Shi. Contrastive self-supervised
pre-training for video quality assessment. IEEE transactions on image processing, 31:458–471, 2021.

[6] Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. Advances in neural information processing systems, 31, 2018.

[7] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. Advances in
neural information processing systems, 29, 2016.

[8] Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A
contrastive log-ratio upper bound of mutual information. In International conference on machine learning,
pages 1779–1788. PMLR, 2020.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[11] Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah Hanna, and Stefano Albrecht. Conditional
mutual information for disentangled representations in reinforcement learning. Advances in neural
information processing Systems, 36, 2023.

[12] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000–16009, 2022.

[13] Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained
variational framework. International Conference on Learning Representations, 3, 2017.

[14] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler,
and Yoshua Bengio. Learning deep representations by mutual information estimation and maximization.
arXiv preprint arXiv:1808.06670, 2018.

[15] Xuege Hou, Yali Li, and Shengjin Wang. Disentangled representation for age-invariant face recognition: A
mutual information minimization perspective. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3692–3701, 2021.

[16] Ryosuke Kawakami, Yoshiaki Shinohara, Yuichiro Kato, Hiroyuki Sugiyama, Ryuichi Shigemoto, and
Isao Ito. Asymmetrical allocation of nmda receptor ε2 subunits in hippocampal circuitry. Science,
300(5621):990–994, 2003.

[17] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International conference on machine
learning, pages 2649–2658. PMLR, 2018.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11



[19] Hongbo Liu, Mingda Wu, Kun Yuan, Ming Sun, Yansong Tang, Chuanchuan Zheng, Xing Wen, and Xiu Li.
Ada-dqa: Adaptive diverse quality-aware feature acquisition for video quality assessment. In Proceedings
of the 31st ACM International Conference on Multimedia, pages 6695–6704, 2023.

[20] Qi Liu, Honglei Su, Zhengfang Duanmu, Wentao Liu, and Zhou Wang. Perceptual quality assessment of
colored 3d point clouds. IEEE Transactions on Visualization and Computer Graphics, 2022.

[21] Qi Liu, Hui Yuan, Honglei Su, Hao Liu, Yu Wang, Huan Yang, and Junhui Hou. Pqa-net: Deep no
reference point cloud quality assessment via multi-view projection. IEEE Transactions on Circuits and
Systems for Video Technology, 31(12):4645–4660, 2021.

[22] Yating Liu, Ziyu Shan, Yujie Zhang, and Yiling Xu. Mft-pcqa: Multi-modal fusion transformer for
no-reference point cloud quality assessment. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7965–7969. IEEE, 2024.

[23] Yipeng Liu, Qi Yang, Yiling Xu, and Le Yang. Point cloud quality assessment: Dataset construction and
learning-based no-reference metric. ACM Transactions on Multimedia Computing, Communications and
Applications, 19(2s):1–26, 2023.

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 10012–10022, 2021.

[25] Pavan C Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli, and Alan C Bovik. Image quality
assessment using contrastive learning. IEEE Transactions on Image Processing, 31:4149–4161, 2022.

[26] R Mekuria, Z Li, C Tulvan, and P Chou. Evaluation criteria for point cloud compression. ISO/IEC MPEG,
(16332), 2016.

[27] Gabriel Meynet, Yana Nehmé, Julie Digne, and Guillaume Lavoué. Pcqm: A full-reference quality metric
for colored 3d point clouds. In QoMEX, pages 1–6, 2020.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

[29] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[30] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and
Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501, 2020.

[31] Avinab Saha, Sandeep Mishra, and Alan C Bovik. Re-iqa: Unsupervised learning for image quality
assessment in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5846–5855, 2023.

[32] Ziyu Shan, Qi Yang, Rui Ye, Yujie Zhang, Yiling Xu, Xiaozhong Xu, and Shan Liu. Gpa-net: No-reference
point cloud quality assessment with multi-task graph convolutional network. IEEE Transactions on
Visualization and Computer Graphics, 2023.

[33] Ziyu Shan, Yujie Zhang, Qi Yang, Haichen Yang, Yiling Xu, Jenq-Neng Hwang, Xiaozhong Xu, and
Shan Liu. Contrastive pre-training with multi-view fusion for no-reference point cloud quality assessment.
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

[34] Ziyu Shan, Yujie Zhang, Qi Yang, Haichen Yang, Yiling Xu, and Shan Liu. Pame: Self-supervised masked
autoencoder for no-reference point cloud quality assessment. arXiv preprint arXiv:2403.10061, 2024.

[35] Yoshiaki Shinohara, Hajime Hirase, Masahiko Watanabe, Makoto Itakura, Masami Takahashi, and Ryuichi
Shigemoto. Left-right asymmetry of the hippocampal synapses with differential subunit allocation of
glutamate receptors. Proceedings of the National Academy of Sciences, 105(49):19498–19503, 2008.

[36] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony Vetro. Geometric distortion
metrics for point cloud compression. In IEEE ICIP, pages 3460–3464, 2017.

[37] Marouane Tliba, Aladine Chetouani, Giuseppe Valenzise, and Fréderic Dufaux. Pcqa-graphpoint: efficient
deep-based graph metric for point cloud quality assessment. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

12



[38] Jilong Wang, Wei Gao, and Ge Li. Applying collaborative adversarial learning to blind point cloud quality
measurement. IEEE Transactions on Instrumentation and Measurement, 2023.

[39] Songtao Wang, Xiaoqi Wang, Hao Gao, and Jian Xiong. Non-local geometry and color gradient aggregation
graph model for no-reference point cloud quality assessment. In Proceedings of the 31st ACM International
Conference on Multimedia, pages 6803–6810, 2023.

[40] Haoning Wu, Chaofeng Chen, Jingwen Hou, Liang Liao, Annan Wang, Wenxiu Sun, Qiong Yan, and
Weisi Lin. Fast-vqa: Efficient end-to-end video quality assessment with fragment sampling. In European
conference on computer vision, pages 538–554. Springer, 2022.

[41] Haoning Wu, Chaofeng Chen, Liang Liao, Jingwen Hou, Wenxiu Sun, Qiong Yan, and Weisi Lin. Discovqa:
Temporal distortion-content transformers for video quality assessment. IEEE Transactions on Circuits and
Systems for Video Technology, 33(9):4840–4854, 2023.

[42] Haoning Wu, Erli Zhang, Liang Liao, Chaofeng Chen, Jingwen Hou, Annan Wang, Wenxiu Sun, Qiong
Yan, and Weisi Lin. Exploring video quality assessment on user generated contents from aesthetic and
technical perspectives. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 20144–20154, 2023.

[43] Tianhe Wu, Shuwei Shi, Haoming Cai, Mingdeng Cao, Jing Xiao, Yinqiang Zheng, and Yujiu Yang.
Assessor360: Multi-sequence network for blind omnidirectional image quality assessment. Advances in
Neural Information Processing Systems, 36, 2024.

[44] Qizhi Xie, Kun Yuan, Yunpeng Qu, Mingda Wu, Ming Sun, Chao Zhou, and Jihong Zhu. Qpt v2: Masked
image modeling advances visual scoring. arXiv preprint arXiv:2407.16541, 2024.

[45] Wuyuan Xie, Kaimin Wang, Yakun Ju, and Miaohui Wang. pmbqa: Projection-based blind point cloud
quality assessment via multimodal learning. In Proceedings of the 31st ACM International Conference on
Multimedia, pages 3250–3258, 2023.

[46] Qi Yang, Hao Chen, Zhan Ma, Yiling Xu, Rongjun Tang, and Jun Sun. Predicting the perceptual quality of
point cloud: A 3d-to-2d projection-based exploration. IEEE Transactions on Multimedia, 23:3877–3891,
2020.

[47] Qi Yang, Yipeng Liu, Siheng Chen, Yiling Xu, and Jun Sun. No-reference point cloud quality assessment
via domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21179–21188, 2022.

[48] Qi Yang, Zhan Ma, Yiling Xu, Zhu Li, and Jun Sun. Inferring point cloud quality via graph similarity.
IEEE transactions on pattern analysis and machine intelligence, 44(6):3015–3029, 2020.

[49] Yujie Zhang, Qi Yang, and Yiling Xu. Ms-graphsim: Inferring point cloud quality via multiscale graph
similarity. In Proceedings of the 29th ACM International Conference on Multimedia, pages 1230–1238,
2021.

[50] Zicheng Zhang, Wei Sun, Xiongkuo Min, Tao Wang, Wei Lu, and Guangtao Zhai. No-reference quality
assessment for 3d colored point cloud and mesh models. IEEE Transactions on Circuits and Systems for
Video Technology, 32(11):7618–7631, 2022.

[51] Zicheng Zhang, Wei Sun, Xiongkuo Min, Quan Zhou, Jun He, Qiyuan Wang, and Guangtao Zhai. Mm-pcqa:
Multi-modal learning for no-reference point cloud quality assessment. arXiv preprint arXiv:2209.00244,
2022.

[52] Zicheng Zhang, Wei Sun, Haoning Wu, Yingjie Zhou, Chunyi Li, Zijian Chen, Xiongkuo Min, Guang-
tao Zhai, and Weisi Lin. Gms-3dqa: Projection-based grid mini-patch sampling for 3d model quality
assessment. ACM Transactions on Multimedia Computing, Communications and Applications, 20(6):1–19,
2024.

[53] Zicheng Zhang, Wei Sun, Yucheng Zhu, Xiongkuo Min, Wei Wu, Ying Chen, and Guangtao Zhai.
Evaluating point cloud from moving camera videos: A no-reference metric. IEEE Transactions on
Multimedia, 2023.

[54] Kai Zhao, Kun Yuan, Ming Sun, Mading Li, and Xing Wen. Quality-aware pre-trained models for blind
image quality assessment. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 22302–22313, 2023.

[55] Wei Zhu, Haitian Zheng, Haofu Liao, Weijian Li, and Jiebo Luo. Learning bias-invariant representation by
cross-sample mutual information minimization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15002–15012, 2021.

13



A Proof of Theorems

Proof of Equation 2. To show that Î(x;y) is an upper bound of I(x;y), we calculate their difference:

Î(x;y)− I(x;y) =Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)]︸ ︷︷ ︸
Definition of ˆI(x;y) in Equation 2

− Ep(x,y) [log p(y|x)− log p(y)]︸ ︷︷ ︸
Definition of I(x;y) in Equation 1

=Ep(x,y)[log p(y)]− Ep(x)Ep(y)[log p(y|x)] (12)

Since log p(y) has no relation with x, so Ep(x,y) [log p(y)] = Ep(y) [log p(y)]. Then the equation
can be formulated as:

Î(x;y)− I(x;y) = Ep(y)

[
log p(y)− Ep(x) [log p(y|x)]

]
. (13)

Recalling that the marginal distribution can obtained by integrating the joint distribution over the
values of the other random variables:

p(y) =

∫
p(x,y)dx =

∫
p(y|x)p(x)dx = Ep(x)[p(y|x)] (14)

Note that log(·) is a concave function, by Jensen’s Inequality, we have

log p(y) = log
(
Ep(x)[p(y|x)]

)︸ ︷︷ ︸
Definition of marginal distribution in Equation 14

≥ Ep(x)[log p(y|x)] (15)

Applying this inequality to Equation 13, we can conclude that Î(x;y) is always greater than I(x;y).
Therefore, Î(x;y) is an upper bound of I(x;y). Î(x;y) = I(x;y) occurs only when p(y|x) holds
the same for any x, which means x and y are two totally independent representations.

B Limitations and Future Work

We designed a no-reference point cloud quality assessment (NR-PCQA) framework, whose experi-
mental performances have been validated. However, our current design has two main limitations:

• Limitation of pretraining datasets. Ideally, the content-aware encoder F can be pretrained
on a much larger dataset, despite the already large scale of LS-PCQA [23]. In our future
work, we may pretrain it on distorted natural images or create a larger dataset of point clouds
with various distortions.

• Estimation of mutual information (MI). Although using the current MI minimization strategy
can achieve satisfactory results, we may make efforts in the future to work on a more efficient
MI estimation method for high-dimensional representations.
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Justification: Please see A, which proves that the utilized MI upper bound is always greater
than the actual MI, and when they are equal. The proof includes each detailed theoretical
support.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our implementation part has included all the necessary information to repro-
duce the main experimental results. And the model architecture has been clearly introduced
in the methodology part.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The used data is all public open. In addition, we have uploaded our code to the
in a .zip file as a supplementary document.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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Answer: [Yes]
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impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work obviously poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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Answer: [Yes]
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zip file.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and Research with Human Subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work dose not involve crowdsourcing nor research wirh huamn subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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