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Abstract
The Earth Mover’s Distance (EMD) is the mea-
sure of choice to assess similarity between point
clouds. However the computational cost of stan-
dard algorithms to compute it makes it prohibitive
as a training loss, and the standard approach is
to use a surrogate such as the Chamfer distance.
We propose instead to use a deep model dubbed
DeepEMD to directly get an estimate of the EMD.
We formulate casting the prediction of the bipar-
tite matching as that of an attention matrix, from
which we get an accurate estimate of both the
EMD, and its gradient. Experiments demonstrate
not only the accuracy of this model, in particu-
lar even when test and train data are from differ-
ent origins. Moreover, in our experiments, the
model performs accurately when processing point
clouds which are several times larger than those
seen during training. Computation-wise, while
the complexity of the exact Hungarian algorithm
is O(N3), DeepEMD scales as O(N2), where
N is the total number of points. This leads to
a 100× wall-clock speed-up with 1024 points.
DeepEMD also achieves better performance than
the standard Sinkhorn algorithm, with about 40×
speed-up. The availability of gradients allows
DeepEMD to be used for training a VAE, leading
to a model with lower reconstruction EMD than a
standard baseline trained with Chamfer distance.

1. Introduction
The earth mover’s distance (EMD), also known as Wasser-
stein distance is a distance between distributions that is
defined as the minimum total of mass-time-distance dis-
placement needed to transform one distribution to the other.
In the case of uniform distributions over a finite number of

1University of Geneva, Geneva, Switzerland. Correspondence
to: Atul Kumar Sinha <atul.sinha@unige.ch>, François Fleuret
<francois.fleuret@unige.ch>.

Presented at the 2nd Annual Workshop on Topology, Algebra, and
Geometry in Machine Learning (TAG-ML) at the 40 th Interna-
tional Conference on Machine Learning, Honolulu, Hawaii, USA.
2023. Copyright 2023 by the author(s).

3
2

1
0

1
2

3

0.0

0.5

1.0

1.5

EMD : 377.19

1.0
0.5

0.0
0.5

1.0

1
0

1
2

3
EMD : 247.33

1.0
0.5

0.0
0.5

1.0

0.5

0.0

0.5

1.0

EMD : 251.78

Trained with Chamfer distance

3
2

1
0

1
2

3

0.5

0.0

0.5

1.0

EMD : 157.79

1.5
1.0

0.5
0.0

0.5
1.0

1.5

1
0

1
2

3
EMD : 161.44

1.0
0.5

0.0
0.5

1.0

0.5

0.0

0.5

1.0

EMD : 189.60

Trained with DeepEMD (ours)

Figure 1. Example point clouds (blue) and their VAE
reconstructions (orange) when trained with different
reconstruction losses. Training with DeepEMD (bot-
tom) consistently achieves lower reconstruction error
(EMD, shown on top of each example) than with the
standard Chamfer distance (top).

points, it turns into a distance between point clouds that cor-
responds to finding the one-to-one matching that minimizes
the sum of the distances between pairs of matched points.
Since there is no inherent ordering in point cloud data, com-
puting the EMD between two point clouds involves finding
a matching based on the euclidean distance between points.
The matching is constrained to be bipartite so that one point
cloud is completely transformed to the other, without any
fractional assignment, and the transport cost is minimal.
EMD reflects the notion of nearness properly, does not have
quantization/binning and non-overlapping support problems
of most other metrics, e.g., f -divergences, total variation
distance, etc.

Consider two point clouds X = {xi}Ni=1 and Y = {yj}Nj=1,
where xi, yj ∈ Rd. The EMD between the two point clouds
can be computed as,

EMD(X,Y ) = min
ϕ∈M(X,Y )

∑
x∈X

∥x− ϕ(x)∥2, (1)

whereM(X,Y ) is the set of 1-to-1 (bipartite) mappings
from X to Y . In addition to the distance, the optimal match-
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ing ϕ∗ is also interesting for some applications. Since di-
rectly optimizing EMD is computationally expensive, most
methods in the literature rely on Chamfer Distance (CD) as
a proxy similarity measure or reconstruction loss. CD can
be computed as,

CD(X,Y ) =
∑
x∈X

min
y∈Y
∥x− y∥22 +

∑
y∈Y

min
x∈X
∥x− y∥22,

and in O(N2) time complexity. The CD solution leads to
a non-bipartite one-to-many matching between x→ y and
vice versa. We can also use the L2 measure with d = ∥x−
y∥2 instead d = ∥x− y∥22 to make it comparable to EMD.
of Note that the above EMD for point clouds is related to
the Wasserstein-2 metric (see appendix § B for details). The
utility of EMD is limited by the O(N3) computational cost
of evaluating it. There have been several research efforts to
circumvent this issue in various application settings.

This is the case for application to point clouds where N is
usually in the range of several thousands. Kim et al. (2021)
trains a variational auto-encoder with CD as the reconstruc-
tion loss. EMD is still the metric of choice for evaluating
point cloud generative models (Huang et al., 2022; Luo &
Hu, 2021; Kim et al., 2021; Yang et al., 2019; Shu et al.,
2019; Achlioptas et al., 2018). Another issue is disparity
between performance measures (minimum matching dis-
tance, coverage, etc.) computed with EMD and CD, the
comparisons are contradictory and often inconsistent across
measures. CD is usually insensitive to mismatched local
density while EMD is dominated by global distribution and
overlooks the fidelity of detailed structures (Wu et al., 2021).
Wu et al. (2021) proposes a new similarity metric called
Density-aware Chamfer distance (DCD) to tackle these is-
sues. DCD is derived from CD and can also be computed
in O(N2) time complexity. Urbach et al. (2020) proposed
Deep Point Cloud Distance (DPDist) which measures the
distance between the points in one cloud and the estimated
continuous surface from which the other point cloud is sam-
pled. The surface is estimated locally by a network using
the 3D modified Fisher vector representation.

In the optimal transport literature, several efforts have been
taken towards improving the statistical and computational
properties. Recently, Chuang et al. (2022) proposed In-
formation Maximizing Optimal Transport (InfoOT) which
is an information-theoretic extension of optimal transport
based on kernel density estimation of the mutual informa-
tion (MI) which introduces global structure into OT maps.
The resulting solution maximizes the MI between domains
while minimizing geometric distance and improves the ca-
pability for handling data clusters and outliers. Other ap-
proaches focus on regularizing the OT problem for making
it smooth and strictly convex (Cuturi, 2013; Flamary et al.,
2016; Genevay et al., 2018; Blondel et al., 2018). Sinkhorn
distances (Cuturi, 2013) smooth the classic OT problem

with an entropic regularization term and can be computed
through Sinkhorn’s matrix scaling algorithm at a speed that
is several orders of magnitude faster than that of transport
solvers. We provide more details in the appendix.

2. Method

α
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Figure 2. The transformer model we use for DeepEMD predicts
directly the bipartite graph as an attention matrix.

We are interested in building a model which operates on
a pair of point clouds (U, V ) as input, where U, V ∈ DN ,
U = {ui}Ni=1, V = {vj}Nj=1, ui, vj ∈ RD, and N is the
cardinality of the point clouds. We denote the earth mover’s
distance between them as d = EMD(U, V ) where d ∈ R.
The goal of the model is to predict d and ∇d. Also, let
M ∈ {0, 1}N×N denote the ground truth bipartite matching
from EMD, where Mi,j = 1 indicates that ui is matched to
vj and vice-versa. Bipartite-ness implies ∀j,

∑
i Mi,j = 1

and ∀i,
∑

j Mi,j = 1. Since point clouds are unordered and
invariant to elementwise permutation, we seek mappings
f : DN × DN → R which are permutation invariant for
any permutations π and π′, i.e.,

f(U, V ) = f(π(U), π′(V )),

We propose DeepEMD composed of a sequence of multi-
head full attention layers, followed by a prediction head
which is also a full attention layer, but with a single head.
We concatenate learned cloud-specific positional embedding
to indicate if a point originates from U or V , we concatenate
the points sequence and feed the resulting I = U ∪ V as
input to the model. The group-id embedding helps the
model in modulating attention locally within a point cloud
as well as globally across both point clouds. We tried other
variants with self-attention layers, cross attention layers, and
an alternating mixture of both, but found full attention over
both point clouds to be best performing.

For our problem, we get the input X for the transformer by
adding positional embeddings to I . Let 0⃗n and 1⃗n denote a
vector of n zeros and ones, respectively. X is obtained as,

P = 0⃗n ∪ 1⃗n, X = I +WP [P ] (indexing)
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The intermediate feature t(X) from the transformer encoder
(see appendix for details) has the same number of elements
as X with each element now being a contextualized repre-
sentation for the corresponding point in the input. Further,
these intermediate representation are fed into a single-head
attention layer which outputs the attention matrix as,

K = t(X)WK , Q = t(X)WQ, A =
QK⊤

dk

At = A:n,n: Ab = An:,:n

Here, A is a 2N × 2N matrix and we slice the top-right
block (first N rows and last N columns) as At and bottom-
left block (last N rows and first N columns) as Ab. At

i,j can
be interpreted as the relatedness of ui with vj . Similarly,
Ab

i,j can be interpreted as the relatedness of vi with uj . We
define the loss as the average of the cross-entropies as,

l(U, V ) =
1

N

N∑
i=1

CE(At
i,.,Mi,.) +

1

N

N∑
i=1

CE(Ab
i,.,M.,i)

The EMD is then estimated with the predicted matching as,

ϕb(i) = argmax
j

Ab
i,j , ϕt(i) = argmax

j
At

i,j

d̂ =
1

2

(∑
i

∥ui − vϕt(i)∥+
∑
i

∥vi − uϕb(i)∥

)

We also compare with a MLP baseline detailed in the Ap-
pendix § D.

3. Experiments
3.1. Datasets

We consider three different datasets for our experiments
- Syn2D, ShapeNet (Chang et al., 2015) and ModelNet40
(Wu et al., 2015). Syn2D consists of 2D point clouds gener-
ated by sampling points on squares and circles (see Fig. 7).
ShapeNet and ModelNet40 are datasets of 3D point clouds
derived from 3D CAD models for different real world ob-
jects like chair, car, airplane, etc. In order to improve and
assess generalization, we augment train and test splits with
synthetic perturbations. We provide more details about the
datasets and these augmentations in Appendix § C.

3.2. Performance Measures

We consider various measures to assess performance of
EMD approximation methods, for both distance and match-
ing estimation. We compare accuracy and computation time
to that of Sinkhorn and CD (see § 1). We summarize the
measures considered in Appendix § A.1.

3.3. Results

EMD Prediction. Fig. 3 shows the scatter plot of the true
EMD vs. approximate EMD predicted from our trained
models on the validation split for Syn2D and ShapeNet
datasets. Note that the validation split also contains augmen-
tations as discussed in Sec. 3.1. We also validate on specific
splits and the results are shown in the appendix. The plots
indicate that both DeepEMD (Fig. 3c) and MLP baseline
(Fig. 3b) approximate the EMD faithfully.

Matching/Gradient Prediction. Estimating the matching
and gradient of the distance is particularly important for
training models with DeepEMD as a surrogate. Note that
gradient of a point from true EMD is always along the
matched point in the other point cloud. Fig. 4a shows cdf
of cosine similarity between the true and estimated gradient
for all points across all point clouds collected together for
Syn2D, while Figs. 4b, 4c, and 4d for ShapeNet.

Out-of-distribution generalization. The generalisation
of the prediction to a novel distribution is particularly impor-
tant for a surrogate metric. We test the out-of-distribution
behaviour of our models in two different settings : Table 1
shows the generalization performance of the model trained
on a single category of ShapeNet and tested on validation
split of multi-category ModelNet40 dataset, while Tables 7,
8 and 9 in the appendix show the performance when tested
on different ShapeNet categories.

Table 1. Out-of-distribution (dataset) generalization for our models
and comparison with other metrics (CD and Sinkhorn), tested on
full validation split for ModelNet40 (with 40 categories). The
models are trained on a single ShapeNet category. The reported
numbers are averaged over these categories as well as four training
seeds. The first six rows show distance estimation metrics (see
§ 3.2), while the last six rows correspond to matching estimation
metrics. The arrows next to the metrics indicate whether higher
(↑) values are better or lower (↓). Chamfer and Sinkhorn are
deterministic, thus variances are not reported. Further, MLP does
not provide accuracy and bipartiteness metrics.

MODEL CHAMFER SINKHORN MLP DEEPEMD

r (↑) 0.951 0.971 0.959± 0.011 0.999± 0.0
ρ (↑) 0.935 0.988 0.945± 0.017 0.999± 0.0
τ (↑) 0.792 0.983 0.819± 0.024 0.974± 0.002
RE0.1 (↓) 0.03 0.057 0.009± 0.001 0.005± 0.002
RE0.5 (↓) 0.129 0.102 0.062± 0.005 0.019± 0.004
RE0.9 (↓) 0.321 0.2 0.257± 0.03 0.04± 0.004

CS0.1 (↑) −0.067 0.824 −0.293± 0.047 0.927± 0.003
CS0.5 (↑) 0.834 0.986 0.684± 0.023 1.0± 0.0
CS0.9 (↑) 0.997 0.999 0.96± 0.003 1.0± 0.0
ACCURACY (↑) 12.651 31.91 - 56.38± 0.604
B (↑) 17.045 33.458 - 70.401± 0.672
Bcorr (↑) 6.544 19.615 - 47.084± 0.741
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(a) Chamfer (b) MLP (ours) (c) DeepEMD (ours) (d) Sinkhorn

Figure 3. Scatter plot for true vs. approximate EMD from different models/metrics on validation splits for Syn2D and ShapeNet datasets.
DeepEMD (ours) consistently performs better across different categories as it has less dispersion. Sinkhorn algorithm becomes more
accurate with more iterations. Also note that it encounters numerical errors for some examples.
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Figure 4. CDF of cosine similarity between true and estimated gradients for all points across all point clouds collected together on
validation splits for Syn2D and ShapeNet datasets. The ideal cdf curve should have all the mass at cosine similarity 1. DeepEMD (ours)
consistently outperforms all the other methods across different datasets.

Scaling number of points. Remarkably, size of point
clouds during testing can differ greatly from those during
training without degrading performance. Table 2 shows
model performance for point cloud sizes ranging from 256
to 8196, while training was done with only 1024 points.

Computational Time and Complexity. Fig. 5 in the
appendix compares the evaluation time for different models
and metrics. DeepEMD achieves a significant speedup of
about 100× as compared to EMD and 40× as compared to
Sinkhorn with 100 iterations. This speedup becomes more
pronounced on bigger point clouds as Hungarian algorithm
takes O(N3) time vs. O(N2) for DeepEMD.

DeepEMD used as a loss. Training a SetVAE (Kim et al.,
2021), as for any auto-encoder, requires a reconstruction loss
to assess the quality of the learned representation. While
the eventual goal would be to minimize the EMD, standard
approach uses CD due to the prohibitive computation cost
of calculating the EMD. Instead of CD we propose to use
DeepEMD and demonstrate its utility as a reconstruction
loss as compared to CD. The parameters of DeepEMD mod-

ule are frozen during training of the SetVAE. Fig. 1 and
Fig. 9 (appendix) shows the reconstruction on validation
data achieved by SetVAE models trained with different re-
construction losses. DeepEMD consistently achieves lower
reconstruction EMD as compared to CD. This is further
verified from Fig. 6 (appendix) showing the distribution of
true EMD between a point cloud and its reconstruction.

4. Conclusion and Future Work
We propose DeepEMD, a method for fast approximation of
EMD, improving time complexity from O(N3) to O(N2).
We demonstrated the effectiveness of DeepEMD in approxi-
mating the true EMD for various datasets. Further, we show
that it estimates the gradients well, generalizes well for un-
seen point clouds (or distributions), and can be used for
end-to-end training of point cloud autoencoders achieving
faster convergence than CD surrogate. It would be interest-
ing to explore fast transformer variants to further improve
from the quadratic time complexity for future work. The
extension to Wasserstein−p metrics and other OT problems
could also be interesting for various applications.
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A. Results
A.1. Performance Measures

Distance Estimation. We visualize the true vs. predicted distance through scatter plots (Fig. 3), where we expect the data
points to be close to x = y line. We compare various correlation measures : linear correlation (r), Spearman correlation
(ρ) and Kendall-Tau correlation (τ), to assess the quality of distance estimation. The Spearman and Kendall-Tau are
rank-statistic based correlation measures, indicative of the correspondence between two rankings. Note that, correlation
measures are useful metrics as they indicate appropriateness of the predicted metric as a distance measure, irrespective of
their absolute values. Additionally we look at different quantiles (REn) of relative approximation error, which penalizes the
difference between absolute values of the predicted and true distance.

Matching Estimation. In order to assess quality of the matching, we consider the cosine similarity between the true and
predicted gradient. The true gradient of EMD is always along the matched point. We visualize the cumulative distribution
function (cdf) of cosine similarities (Fig. 4), where we expect all the mass to be close to 1. We also look at different
quantiles (CSn) of the cosine similarity. We also consider accuracy which is computed as the average accuracy of matching
source points to target points and vice-versa, bipartiteness (B) which is fraction of points with bipartite matching, and also
bipartiteness-correctness (Bcorr) which is fraction of points which are bipartite as well as matched correctly.

A.2. EMD Prediction

The MLP baseline seems to struggle a bit on ShapeNet Chair dataset. The higher dispersion in Chamfer (Fig. 3a) and
Sinkhorn with 10 iterations (Fig. 3d, top) indicates poor EMD estimation. The approximation with Sinkhorn algorithm
becomes more accurate with higher number of iterations (Fig. 3d, bottom), as expected. We summarize various metrics in
Tables 4, 5 and 6 below.

A.3. Matching Estimation

Fig. 4 shows the cdf for cosine similarity between true and estimated gradients. The cdf has most mass at cosine similarity
close to 1 with a very short tail and is never negative indicating that the estimated gradient is aligned with the true gradient
for DeepEMD. This is particularly important when the model is used as a surrogate reconstruction loss. Ideally, the model
should provide good estimate of the true gradient throughout training and more particularly in the very beginning when the
reconstructions are very noisy, and also towards the end when reconstructions likely become very similar to the training
distribution.

A.4. Out-of-distribution Generalization

The results in Tables 1, 7, 8 and 9 indicate that DeepEMD generalizes well when test and train data differ without any
adaptation or fine-tuning. Further, the validation performance on a category of a model trained on another category (see
Appendix for details) is very similar to the performance of the model trained on the same category. These quite remarkable
behaviors point towards the network “meta-learning” in some way the matching algorithm. This is further strengthened by
the results on scaling to different number of points during test time as shown in Table 2.

A.5. Scaling number of points

Table 2 shows performance of the model for test point cloud sizes ranging from 256 to 8196, while training was done with
only 1024 points. Prediction of the metric itself (top 6 rows) does not degrade for all practical purposes. Regarding the
matching estimation, directional measure of performance related to the cosine similarity (rows CSn) do not degrade neither.
We can notice degradation in accuracy based measures (last 3 rows) which is natural since the problem becomes difficult
with increasing number of points N because of its combinatorial nature. For training when memory requirement is much
higher due to backprop, we can use smaller number of points, and scale it up during inference without any fine-tuning.

A.6. Computational Time and Complexity

Fig. 5 compares the empirical evaluation time for different performance measures.
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Table 2. Scaling number of points and out-of-distribution (scale) generalization for DeepEMD. The models are trained on a single
ShapeNet category with 1024 points and tested on validation split of same category but with different number of points. Reported values
are averaged over 4 training seeds. DeepEMD generalizes well to unseen number of points at test time without fine-tuning.

←− Less # points than training −→ Trained ←−More # points than training −→
# points 256 512 768 1024 2048 4096 8192

r 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.999± 0.0 0.999± 0.001
ρ 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.999± 0.0 0.998± 0.0
τ 0.985± 0.0 0.987± 0.0 0.988± 0.0 0.988± 0.001 0.986± 0.001 0.981± 0.002 0.974± 0.004
RE0.1 0.002± 0.001 0.002± 0.001 0.004± 0.002 0.007± 0.003 0.012± 0.005 0.013± 0.007 0.014± 0.008
RE0.5 0.01± 0.002 0.011± 0.002 0.014± 0.003 0.017± 0.005 0.027± 0.009 0.034± 0.013 0.04± 0.016
RE0.9 0.026± 0.003 0.026± 0.003 0.029± 0.004 0.032± 0.005 0.042± 0.009 0.054± 0.013 0.066± 0.018

CS0.1 0.94± 0.002 0.955± 0.002 0.961± 0.001 0.964± 0.001 0.967± 0.001 0.967± 0.001 -
CS0.5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 -
CS0.9 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 -
Accuracy 72.348± 0.44 69.384± 0.383 66.901± 0.379 64.648± 0.404 57.588± 0.464 47.78± 0.51 35.274± 0.483
B 81.857± 0.755 80.101± 0.547 78.013± 0.507 75.896± 0.521 68.658± 0.584 58.109± 0.597 44.603± 0.734
Bcorr 64.838± 0.756 61.558± 0.587 58.545± 0.547 55.719± 0.568 46.831± 0.618 35.053± 0.6 21.606± 0.469
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Figure 5. Comparison of empirical evaluation time and different performance measures : Accuracy (left) and Kendall-Tau correlation τ
(right). We use Python Optimal Transport (POT) library for computing the Sinkhorn distances, and show metrics at different iterations (5,
10 and 100). DeepEMD is about 100× and 40× faster than Hungarian algorithm and Sinkhorn (100 iterations), respectively.

A.7. DeepEMD used as a loss

In our experiments, DeepEMD was trained separately on each category of ShapeNet dataset and the trained model was
then used as a surrogate reconstruction loss for training a variational auto-encoder. We use SetVAE (Kim et al., 2021), a
transformer based VAE adapted for point clouds and set-structured data. Fig. 6 below shows the distribution of true EMD
between a point cloud and its reconstruction.

B. Optimal Transport and Wasserstein Distances
The Wasserstein-p metric between two probability distributions µX and νY is defined as,

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)
E(x,y)∼γ∥x− y∥p

)1/p

, (2)

where Γ(µ, ν) are all possible joint distributions where X,Y ∈ D, (D, d) defines a metric space (here, d = ∥x − y∥p)
and marginals satisfy

∫
D γ(x, y)dy = µ(x) and

∫
D γ(x, y)dx = ν(y). Note that, while the distance is useful in itself, the

optimal transport plan γ∗ is also interesting for some applications.
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Figure 6. Comparison of EMD between input and reconstructed point clouds from SetVAE trained with different reconstruction losses.
The better model should have smaller reconstruction loss and thus mass close to zero in the histograms. DeepEMD (ours) is consistently
better as compared to Chamfer loss and very similar to EMD loss.

Given samples from µ and ν, Wp(µ, ν) can be computed by solving the optimal transport problem,

γ∗ = argmin
γ∈Rm×n

+

∑
i,j

γi,jMi,j (3)

s.t. γ1 = [µ̂]m; γT 1 = [ν̂]n; γ ≥ 0 (4)

where [µ̂]m and [ν̂]n represent binned histograms derived from samples from µ and ν with m and n bins respectively. M is
a m× n distance or cost matrix, Mi,j represents the cost d(x, y) to transport mass from bin [µ̂]im to bin [ν̂]jn.

It is also possible to avoid binning and compute the Wasserstein distance directly from samples. The problem can then be
formulated as,

γ∗ =argmin
γ∈Rn×n

+

∑
i,j

γi,jMi,j (5)

s.t. γ1 = 1; γT 1 = 1; γ ∈ {0, 1} (6)

where Mi,j now represents the cost of transporting point xi to yj . Each point is considered to be sampled i.i.d. from their
respective distributions. Unlike the previous case, we can no longer transport a quanta of a point or mass i.e. fractional
assignment is not meaningful, naturally leading to a bipartiteness constraint. This is exactly same as Eq (1) and the optimal
transport plan for the problem is a linear sum assignment problem and can be computed using the hungarian algorithm.

C. Datasets
We train and evaluate on Syn2D, ShapeNet and ModelNet40 datasets.

Syn2D. We generate 2D synthetic point clouds by uniformly sampling 200 points on simple 2D shapes of circles and
squares. The circles are generated by uniformly sampling the center and radius from (0, 1]. For the squares, we sample its
center, rotation and scale uniformly from [−0.5, 0.5], [0, π

2 ], and [0.5, 1], respectively. We refer to the synthetic dataset as
Syn2D (Fig. 7).

ShapeNet. ShapeNet (Chang et al., 2015) is a richly-annotated, large-scale dataset of 3D shapes. We train and evaluate
our models using point clouds from one of the three categories in the ShapeNet dataset : airplane, chair, and car. We sample
1024 points from the ShapeNet point clouds for training and evaluate on a range of point cloud sizes.

ModelNet40. (Chang et al., 2015) introduced the ModelNet project to provide a comprehensive and clean collection of
3D CAD models for objects, compiled using a list of the most common object categories. In our experiments, we evaluate
our models trained with a single ShapeNet category on the ModelNet40 dataset. ModelNet40 has 40 different categories.
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Figure 7. Example pairs of point clouds. The true earth mover’s distance (EMD, top) and Chamfer distance (CD, bottom) are shown above
each example. Arrows indicate the matching between the two point clouds under their respective metrics.

Table 3. Summary of datasets. The top five rows show statistics about the original point cloud datasets, while the bottom four rows show
statistics about the pair point cloud dataset that was used for our evaluation and/or training.

SYN2D MODELNET40 SHAPENET SHAPENET AIRPLANE SHAPENET CAR SHAPENET CHAIR

# CATEGORIES 2 40 55 1 1 1
FEATURE DIM 2 3 3 3 3 3
CARDINALITY 200 2048 15000 15000 15000 15000
# TRAIN SAMPLES 8000 9840 35708 2832 2458 4612
# VAL SAMPLES 2000 2468 5158 405 352 662

# TRAIN PAIR SAMPLES 20000 - - 10000 10000 10000
TRAIN CARDINALITY 200 - - 1024 1024 1024
# VAL PAIR SAMPLES 5000 2000 - 2000 2000 2000
VAL CARDINALITY 200 1024 - 256-8192 256-8192 256-8192

Table 3 provides a summary and statistics about of the datasets.

Further, we build pairs (U, V ) of point clouds by randomly sampling pairs from the train or validation splits of point clouds
datasets summarized in Table . We refer the first argument in the pair U as the source and the second argument V as target.

C.1. Augmentations

In order to improve generalization, we augment the datasets with point cloud pairs. We randomly sample a point cloud pair
(U, V ) from the dataset and another noisy point cloud N by randomly sampling points from N (0, 1) and scaling the whole
point cloud by σ ∼ U(0.1, 1.1). Further, we augment the point cloud pairs according to the following schemes:

• (U, V ) : the originally sampled pair.
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• (U,N) : target is replaced by the noisy point cloud.

• (U,U +N) : target is a corrupted version of U with additive noise N .

• (U, Ũ +N) : Ũ denotes a point cloud which is similar to U . For Syn2D, we perturb the surface parameters (radius,
scale, center, etc.) used for sampling U and sample points on the perturbed surface. For ShapeNet, we independently
sample different set of points from the original surface.

• (U, V +N) : target is a corrupted version of a randomly sampled point cloud from the dataset.

The resulting dataset constitutes 20% samples from each of the above splits. Validation splits are generated randomly and
independently for Syn2D, while for ShapeNet and ModelNet40, we use the validation split provided. We also augment the
validation split with the same scheme as discussed above. The specifics of the pair point-cloud dataset is summarized in
Table 3.

D. Models
Transformers. Let X = [x1, · · · , xm] ∈ Rm×dmodel be the input sequence (or set) of m vectors. A transformer layer
performs the following computation (Vaswani et al., 2017) :

X ′ = LN (X + Multihead(X))

tl(X) = LN (X ′ + FFN(X ′))

where LN and FFN stand for layer norm and feed-forward network, respectively. Multihead denotes a multi-head attention
layer which allows the model to jointly attend to information from different representation subspaces at different positions.
It consists of a stack of H scaled dot-product attention layers and computes key, query and value matrices, followed by a
softmax as follows :

Kh = XWK
h , Qh = XWQ

h , Vh = XWV
h

Ah = soft-max

(
QhKh

⊤

dk

)
Vh

MultiHead(X) = Ā = concat (A1, · · · , AH)WO

The final output of the encoder can be written as a composition:

t(X) = tN (tN−1 (. . . (t1(X))))

MLP. We propose a simple MLP baseline composed of a point-wise MLP backbone, followed by a prediction head which
is also a MLP (see figure 8). The backbone MLP takes a point cloud and returns an embedding e ∈ Rd as,

eu =

n∑
i=1

g(ui), ev =

n∑
j=1

g(vi) (7)

The prediction head then produces the final prediction as,

d̂ = h (eu ⊕ ev) + h (ev ⊕ eu) , (8)

where ⊕ denotes vector concatenation. Both g and h are composed of sequential linear layers with ReLU non-linearity
between layers. The embeddings are permutation equivariant because of the sum aggregation which does not depend on the
ordering of points. Further, we concatenate the embeddings both ways as in Eq. (8), which makes the mapping symmetric.
We train the model with mean-squared error loss, l = (d − d̂)2. Since the model does not predict the matching, we can
interpret it from the direction of the gradient of a point δvj =

[
∂d̂
∂V

]
j
, e.g., by taking cosine similarity between δvj and

ui − vj , where ui is the point matching to vj from EMD.
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The baseline MLP model predicts directly the distance and it does not use the matching information. It has about 110K
parameters in total. The point-wise MLP backbone g(.) is composed of three hidden layer of sizes 4, 8 and 16, with ReLU
non-linearity. It outputs a single embedding of dimension 128 for each point cloud after aggregating the point level features.
The embedding of the point clouds are then concatenated and passed to the prediction head which is also an MLP with four
hidden layers of sizes 256, 128, 64 and 16, and outputs a single scalar which is interpreted as the predicted distance.
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m
lp

. . .

m
lp

+
eu
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m
lp

. . .

m
lp

+

ev

m
lp
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Figure 8. The MLP model predicts directly an estimate d̂ of the EMD.

DeepEMD. We use a transformer encoder backbone which transforms the raw input point clouds into contextualized point
level features. The transformer encoder is followed by the output layer which computes the queries and keys and finally
the attention matrix which is interpreted as the matching as explained in § 2. The model constitutes about 803K learnable
paramters, with 8 transformer encoder layers, each with 6 heads. The latent dimensions (dmodel, dkeys, etc.) for each layer
were all set to 78.

We use the ADAM optimizer with a constant learning rate of 0.001 for DeepEMD and 0.0001 for the MLP.

E. Sinkhorn Distance
The Sinkhorn distance (Cuturi, 2013) considers a regularized OT optimization problem :

γ∗ = argmin
γ∈Rm×n

+

∑
i,j

γi,jMi,j + λΩ(γ)

s.t. γ1 = [µ̂]m; γT 1 = [ν̂]n; γ ≥ 0

where λ is the regularization coefficient and O(γ) =
∑

i,j γi,j log(γi,j) is a entropy regularization term which makes
the optimization problem smooth and strictly convex allowing for optimization procedures such as the Sinkhorn-Knopp
algorithm. In this paper, we use the Python Optimal Transport (POT) python library (Flamary et al., 2021) for computing
the Sinkhorn distances. It is an iterative algorithm and can be evaluated in O(N2) time complexity.

F. Extended Results
F.1. Distance and Matching Estimation

We compare performance of different models and metrics in Table 4. The models were trained on a single ShapeNet category
and evaluated on the validation split of the same category. The measures are averaged over all training categories as well as
four training seeds.

Tables 5 and 6 show the per-category performance comparison.

F.2. Out-of-distribution generalization

Table 7 shows the out-of-distribution generalization performance for our models. The trained model on a particular ShapeNet
category is evaluated on the validation split of other ShapeNet categories. The numbers are averaged over these other
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Table 4. Performance comparison of different metrics and models. The models are trained on a single ShapeNet category and evaluated
on the test split of the same category. The reported numbers are averaged over all categories and four training seeds. The first six rows
show distance estimation metrics (see § 3.2), while the last six rows correspond to matching estimation metrics. The arrows next to the
metrics indicate whether higher (↑) or lower (↓) values are better. Chamfer and Sinkhorn are deterministic, thus variances are not reported.
Further, our MLP model does not provide accuracy and bipartiteness metrics.

MODEL CHAMFER SINKHORN MLP (OURS) DEEPEMD (OURS)

r (↑) 0.963 0.995 0.998± 0.0 1.0± 0.0
ρ (↑) 0.953 0.997 0.998± 0.001 1.0± 0.0
τ (↑) 0.827 0.987 0.966± 0.003 0.988± 0.001

RE0.1 (↓) 0.023 0.051 0.002± 0.0 0.007± 0.003
RE0.5 (↓) 0.109 0.106 0.015± 0.001 0.017± 0.005
RE0.9 (↓) 0.31 0.271 0.076± 0.006 0.032± 0.005

CS0.1 (↑) −0.173 0.831 −0.034± 0.049 0.964± 0.001
CS0.5 (↑) 0.85 0.986 0.798± 0.018 1.0± 0.0
CS0.9 (↑) 0.998 0.999 0.974± 0.003 1.0± 0.0

ACCURACY (↑) 11.677 28.407 - 64.648± 0.404
B (↑) 17.784 31.889 - 75.896± 0.521

Bcorr (↑) 5.626 16.658 - 55.719± 0.568

Table 5. Per-category distance estimation performance measures of different models and metrics when train and test category are same.
The reported number are averaged over four training seeds.

r ρ τ RE0.1 RE0.5 RE0.9

TRAIN CATE MODEL/METRIC

AIRPLANE

CHAMFER 0.9797 0.9647 0.8519 0.0141 0.0962 0.3018
DEEPEMD 0.9998± 0.0 0.9997± 0.0 0.9879± 0.001 0.0039± 0.0014 0.0142± 0.0031 0.0306± 0.004
MLP 0.9992± 0.0001 0.9986± 0.0001 0.9722± 0.0018 0.002± 0.0003 0.0125± 0.0018 0.0772± 0.0038
SINKHORN 0.9998 0.9997 0.9881 0.0496 0.1104 0.2984

CAR

CHAMFER 0.9675 0.9564 0.8318 0.035 0.1167 0.324
DEEPEMD 0.9997± 0.0001 0.9998± 0.0 0.9891± 0.0006 0.006± 0.0047 0.0156± 0.0068 0.0302± 0.0097
MLP 0.9993± 0.0002 0.9988± 0.0004 0.9746± 0.0035 0.0018± 0.0002 0.0112± 0.001 0.0625± 0.012
SINKHORN 0.991 0.9941 0.9854 0.0531 0.1124 0.2986

CHAIR

CHAMFER 0.9431 0.9382 0.7976 0.0192 0.1133 0.3037
DEEPEMD 0.9997± 0.0 0.9997± 0.0001 0.9866± 0.0013 0.0103± 0.0088 0.0225± 0.0118 0.0356± 0.012
MLP 0.9965± 0.0013 0.9959± 0.0015 0.9504± 0.0079 0.0037± 0.0006 0.0214± 0.0023 0.0881± 0.0124
SINKHORN 0.9942 0.9969 0.9886 0.049 0.0955 0.2167

categories as well as four training seeds. Tables 8 and 9 show the performance in the same setting but for each test category
separately.

F.3. DeepEMD as a loss

Fig. 9 shows more samples with the input point cloud and the reconstructed output from SetVAE when trained with EMD,
Chamfer or DeepEMD as the reconstruction loss.
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Table 6. Per-category matching estimation performance measures of different models and metrics when train and test category are same.
The reported number are averaged over four training seeds.

CS0.1 CS0.5 CS0.9 ACCURACY B B CORR
TRAIN CATE MODEL/METRIC

AIRPLANE

CHAMFER −0.0813 0.8446 0.9973 10.1768 16.7437 4.7461
DEEPEMD 0.9643± 0.0027 1.0± 0.0 1.0± 0.0 61.9119± 0.9043 73.3128± 1.1746 52.2082± 1.246
MLP −0.0492± 0.0533 0.7766± 0.0263 0.9722± 0.003 - - -
SINKHORN 0.8314 0.9871 0.9994 25.2956 29.018 13.9732

CAR

CHAMFER −0.246 0.8615 1.0 13.7079 20.7186 6.8617
DEEPEMD 0.9585± 0.0025 1.0± 0.0 1.0± 0.0 67.7243± 0.6554 78.7286± 0.797 59.6723± 0.9245
MLP 0.017± 0.0652 0.8388± 0.0187 0.9804± 0.0029 - - -
SINKHORN 0.8043 0.9845 0.9993 31.1621 35.5971 19.3105

CHAIR

CHAMFER −0.1929 0.8442 0.9976 11.145 15.8883 5.2694
DEEPEMD 0.9703± 0.0007 1.0± 0.0 1.0± 0.0 64.3079± 0.4712 75.6459± 0.657 55.2757± 0.7011
MLP −0.0695± 0.1211 0.7793± 0.0438 0.97± 0.0072 - - -
SINKHORN 0.8558 0.9876 0.9992 28.7644 31.0521 16.69

Table 7. Out-of-distribution (category) generalization for our models and comparison with other metrics (Chamfer and Sinkhorn). The
models are trained on a single ShapeNet category and evaluated on other ShapeNet categories. The reported numbers are averaged over
these categories as well as four training seeds. The first five rows show distance estimation metrics (see § 3.2), while the last five rows
correspond to matching estimation metrics. The arrows next to the metrics indicate whether higher (↑) or lower (↓) values are better.

MODEL MLP (OOD) MLP DEEPEMD (OOD) DEEPEMD

r (↑) 0.98± 0.019 0.998± 0.001 0.999± 0.001 1.0± 0.0
ρ (↑) 0.976± 0.02 0.998± 0.001 0.999± 0.0 1.0± 0.0
τ (↑) 0.886± 0.04 0.966± 0.004 0.977± 0.003 0.988± 0.001
RE0.1 (↓) 0.014± 0.003 0.002± 0.0 0.009± 0.009 0.007± 0.005
RE0.5 (↓) 0.065± 0.018 0.015± 0.002 0.024± 0.012 0.017± 0.007
RE0.9 (↓) 0.319± 0.132 0.076± 0.009 0.05± 0.011 0.032± 0.008

CS0.1 (↑) −0.208± 0.089 −0.034± 0.074 0.933± 0.004 0.964± 0.002
CS0.5 (↑) 0.714± 0.047 0.798± 0.027 1.0± 0.0 1.0± 0.0
CS0.9 (↑) 0.963± 0.006 0.974± 0.004 1.0± 0.0 1.0± 0.0
ACCURACY (↑) - - 54.35± 1.16 64.648± 0.606
B (↑) - - 67.922± 1.343 75.896± 0.782
Bcorr (↑) - - 44.293± 1.445 55.719± 0.851

Table 8. Per-category distance estimation performance measures of different models and metrics when train and test category are different.
The reported number are averaged over four training seeds.

r ρ τ RE0.1 RE0.5 RE0.9

TRAIN CATE TEST CATE

AIRPLANE
AIRPLANE 0.9998± 0.0 0.9997± 0.0 0.9879± 0.001 0.0039± 0.0014 0.0142± 0.0031 0.0306± 0.004
CAR 0.9989± 0.0006 0.9997± 0.0001 0.9864± 0.001 0.0035± 0.0005 0.016± 0.0036 0.0308± 0.0039
CHAIR 0.9981± 0.0003 0.9983± 0.0003 0.9689± 0.0016 0.0044± 0.0011 0.0212± 0.0033 0.0491± 0.0048

CAR
AIRPLANE 0.9993± 0.0002 0.9989± 0.0003 0.9766± 0.0017 0.0092± 0.0065 0.0256± 0.011 0.0634± 0.0114
CAR 0.9997± 0.0001 0.9998± 0.0 0.9891± 0.0006 0.006± 0.0047 0.0156± 0.0068 0.0302± 0.0097
CHAIR 0.9978± 0.0001 0.9981± 0.0002 0.9671± 0.0017 0.0045± 0.0019 0.0206± 0.006 0.0525± 0.0022

CHAIR
AIRPLANE 0.999± 0.0004 0.9983± 0.0008 0.9751± 0.0047 0.0164± 0.0114 0.034± 0.0127 0.0631± 0.0092
CAR 0.9987± 0.0007 0.9996± 0.0001 0.9867± 0.0007 0.0141± 0.0116 0.0275± 0.014 0.0422± 0.0139
CHAIR 0.9997± 0.0 0.9997± 0.0001 0.9866± 0.0013 0.0103± 0.0088 0.0225± 0.0118 0.0356± 0.012
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Table 9. Per-category matching estimation performance measures of different models and metrics when train and test category are different.
The reported number are averaged over four training seeds.

CS0.1 CS0.5 CS0.9 ACCURACY B B CORR
TRAIN CATE TEST CATE

AIRPLANE
AIRPLANE 0.9643± 0.0027 1.0± 0.0 1.0± 0.0 61.9119± 0.9043 73.3128± 1.1746 52.2082± 1.246
CAR 0.9347± 0.004 1.0± 0.0 1.0± 0.0 61.4086± 0.9383 72.6142± 1.3357 51.6545± 1.3383
CHAIR 0.926± 0.0045 0.9994± 0.0001 1.0± 0.0 48.9237± 0.9275 63.1441± 1.0583 38.1275± 1.1302

CAR
AIRPLANE 0.9279± 0.0027 0.9997± 0.0 1.0± 0.0 50.7472± 1.1176 66.2± 1.0652 40.6049± 1.3128
CAR 0.9585± 0.0025 1.0± 0.0 1.0± 0.0 67.7243± 0.6554 78.7286± 0.797 59.6723± 0.9245
CHAIR 0.9218± 0.0035 0.9994± 0.0001 1.0± 0.0 47.7712± 1.1373 63.8324± 1.1691 37.6786± 1.2958

CHAIR
AIRPLANE 0.9401± 0.0031 0.9998± 0.0 1.0± 0.0 53.7969± 0.8777 67.1421± 1.0913 43.3759± 1.0926
CAR 0.945± 0.0006 1.0± 0.0 1.0± 0.0 63.4508± 0.5761 74.5965± 0.7858 54.3188± 0.8313
CHAIR 0.9703± 0.0007 1.0± 0.0 1.0± 0.0 64.3079± 0.4712 75.6459± 0.657 55.2757± 0.7011
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Figure 9. Reconstruction on validation data with SetVAE trained with differnt reconstruction losses : EMD (top), Chamfer (middle)
and DeepEMD surrogate (bottom). Training with DeepEMD as a loss consistently achieves lower reconstruction EMD as compared to
Chamfer loss.
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