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Abstract

Graph Convolutional Networks (GCNs), aiming to obtain the representation of a
node by aggregating its neighbors, have demonstrated great power in tackling vari-
ous analytics tasks on graph (network) data. The remarkable performance of GCNs
typically relies on the homophily assumption of networks, while such assumption
cannot always be satisfied, since the heterophily or randomness are also widespread
in real-world. This gives rise to one fundamental question: whether networks with
different structural properties should adopt different propagation mechanisms?
In this paper, we first conduct an experimental investigation. Surprisingly, we
discover that there are actually segmentation rules for the propagation mechanism,
i.e., 1-hop, 2-hop and k-nearest neighbor (kNN) neighbors are more suitable as
neighborhoods of network with complete homophily, complete heterophily and
randomness, respectively. However, the real-world networks are complex, and may
present diverse structural properties, e.g., the network dominated by homophily
may contain a small amount of randomness. So can we reasonably utilize these
segmentation rules to design a universal propagation mechanism independent of the
network structural assumption? To tackle this challenge, we develop a new univer-
sal GCN framework, namely U-GCN. It first introduces a multi-type convolution to
extract information from 1-hop, 2-hop and kNN networks simultaneously, and then
designs a discriminative aggregation to sufficiently fuse them aiming to given learn-
ing objectives. Extensive experiments demonstrate the superiority of U-GCN over
state-of-the-arts. The code and data are available at https://github.com/jindi-tju.

1 Introduction

Real-world complex systems can often be viewed as networks, such as social networks, biological
networks and citation networks. Recently, research of analyzing networks with deep learning has
received widespread attention both in academia and industry. In particular, Graph Convolutional
Networks (GCNs) [14], which obtain the meaningful representation of nodes in the network by
integrating the neighborhood information, have achieved great success and been widely applied
in tackling network analytics tasks, such as node classification [23, 28], link prediction [33] and
recommendation [30, 17].

While the success of GCNs and their variants [1, 6], a key weakness is the homophily assumption
of networks, which restricts their performance on general network data. To be specific, most GCNs
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seem to be tailor-made to work on homophily networks [18], where nodes within the same class tend
to connect with each other. In fact, heterophily [20] networks, where nodes of different classes tend
to link together, are also widespread in real-world. For example, different types of amino acids are
more likely to be connected in protein structure [35], and fraudsters tend to connect to accomplices
than to other fraudsters in transaction networks [21]. Furthermore, the random networks also often
exist in real-world, such as railway networks, where the edges between nodes are more likely to be
randomly generated.

Most popular GCNs typically obtain node embeddings of these networks using 1-hop network
neighbors as neighborhoods for information propagation [12, 29]. However, considering the different
structural properties of networks (e.g., homophily or heterophily), whether different networks should
adopt a unified or different propagation mechanisms? This is a very important question for GCNs
since they mainly gain better performance through the propagation of information. A well informed
answer can help us better understand the essence of GCNs, such as how different types of nodes affect
the propagation, and what type of nodes are really required to achieve a certain level of predictive
accuracy aiming to different networks.

Several recent works have studied the networks with different structural properties. For example,
Pei et al. [22] consider the heterophlily property of networks, and propose a geometric aggregation
scheme to overcome neighborhood structural information losing and long-range dependencies lacking.
Zhu et al. [35] design an effective model which improves the representation power of GCNs under
heterophily through theoretical and empirical analysis. Chien et al. [4] introduce a new generalized
pageRank (GPR) architecture to jointly optimize node feature and topological information extraction.
Bo et al. [2] assess the roles of low-frequency and high-frequency signals, and propose an efficient
method that can adaptively integrate different signals in the process of message passing. However,
there is still a lack of insightful understanding from the perspective of propagation mechanism.

As the first contribution of this study, we conduct experiments analysing the propagation mechanism
of GCNs in networks with different structural properties. Surprisingly, our experiments clearly
illustrate that for networks with complete homophily, complete heterophily and randomness, 1-hop,
2-hop and k-nearest neighbor (kNN) neighbors are more suitable as neighborhoods for information
propagation, respectively. This means that the depicting ability of the current propagation mechanism
of GCNs is limited, and networks with different structural properties may need to adopt different
propagation mechanisms.

In fact, while these segmentation rules seem to be able to select appropriate nodes as neighborhoods
in an ideal way, the real-world networks are complex, and may present diverse properties, e.g.,
the network dominated by homophily may contain a small amount of randomness or heterophily.
A natural question is, “Can we reasonably utilize these segmentation rules to design a universal
propagation mechanism independent of the network structural assumption?"

To tackle this challenge, we propose a novel and universal GCN model, i.e., U-GCN, for general
network data. The central idea is that we learn node embeddings by making full use of the information
from 1-hop, 2-hop and kNN neighbors, and fuse them adaptively to derive deeper correlation infor-
mation for the given learning objectives. To be specific, we first introduce a multi-type convolution
mechanism. It uses 1-hop network (i.e., original input network), 2-hop network and kNN network that
constructed by 1-hop, 2-hop and kNN neighbors for direct information propagation separately, and
utilizes a node-level attention mechanism for each network, to extract three specific embeddings. We
then make a discriminative aggregation to learn out the importance of these three embeddings, thereby
extracting the most correlated information aiming to the ground truth such as node classification.
Extensive experiments on a series of benchmark datasets demonstrate the superiority of U-GCN over
some state-of-the-arts.

2 Notations and Preliminaries

Let G = (A,X) be an undirected attributed network, where A ∈ Rn×n represents the symmetric
adjacency matrix with n nodes, and X ∈ Rn×p is the attribute (content) matrix of p attributes per
node. Concretely, aij = 1 denotes there is an edge between nodes vi and vj , or 0 otherwise; and xi
represents the attribute vectors of node vi.
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Given an attribute network G, and a labeled node set VL containing u� |V | nodes, where each node
vi ∈ VL contains a unique class label yi ∈ Y . The goal of semi-supervised node classification is to
infer the labels of nodes in V \VL by learning a classification function F .

Homophily. In this work, the level of homophily ratio of edges [35] is used to define networks with
strong homophily/heterophily. Specifically, the level of homophily ratio of edges is the fraction
of edges in a network which connect nodes that have the same class label (i.e., intra-class edges),
described by:

α =
|(vi, vj) : aij = 1 ∧ yi = yj |

|m|
, (1)

where m is the number of edges. Networks with α closer to 1 tend to have more edges connecting
nodes within the same class, or stronger homophily; whereas networks with α closer to 0 have more
edges connecting nodes in different classes, or stronger heterophily.

Graph Convolutional Network. Graph Convolutional Network (GCN) [14] is a variant of multi-
layer convolutional neural networks that operates directly on networks. It learns embedding of each
node by iteratively aggregating the information from its neighbors. Mathematically, let H(l) be the
feature representation of the l-th layer, and H(0) be the node attribute matrix, the forward propagation
can be defined as:

H(l) = σ(D̃−
1
2 ÃD̃−

1
2H(l−1)W (l)), (2)

where Ã = A + I stands for the adjacency matrix with self-loops, D̃ the node degree matrix of
Ã, i.e., D̃ii =

∑
j Ãij , W (l) a trainable weight matrix and σ the non-linear activation function.

While GCN works well on several network analysis tasks such as node classification [10, 15], it still
has a fundamental problem, that is, homophily assumption of networks, which leads to the main
contribution in this work, i.e., analyse what type of nodes are more suitable as neighborhoods for
direct information propagation independent of the network structural assumption.

3 Motivating Observations

Here, we present a simple yet intuitive case study to illustrate and analyze the performance
of GCN changes with different propagation mechanisms. The main idea is that we will ap-
ply GCN to networks with different structural properties utilizing three types of nodes: 1-hop,
2-hop and k-nearest neighbor (kNN) neighbors, which are often believed to be the effective
neighborhoods for node classification in networks [28, 35], to realize the information propaga-
tion, respectively. Then, we will check the performance of GCN on these cases. A univer-
sal propagation mechanism should provide a good result in general network data. However,

Figure 1: The performance of GCN of using dif-
ferent propagation mechanisms: 1-hop, 2-hop
and kNN neighbors as neighborhoods respec-
tively on Newman networks.

if the performance drops sharply in comparison
with the other two situations, this will demonstrate
that networks with different structural properties
may need to use different propagation mechanisms.

Setup. We conduct experiments on the Newman ar-
tificial networks [7] with different properties. The
network consists 128 nodes divided into 4 classes,
where each node has on average zin edges (i.e.,
intra-class edges) connecting to nodes of the same
class and zout edges (i.e., inter-class edges) to
nodes of other classes, and zin + zout = 16. Note
that here we utilize two indicators: ρin = zin/32
and ρout = zout/96, to determine the network
property, i.e., ρin > ρout, ρin = ρout and ρin <
ρout means the network with homophily, random-
ness and heterophily, respectively.

For node attributes, we generate a 4h-dimensional
binary attributes (i.e., xi) for each node to form 4
attribute clusters, corresponding to the 4 classes [9].
To be specific, for every node in the m-th class, we
use a binomial distribution with mean pin = hin/h
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to generate a h-dimensional binary vector as its ((m − 1) × h + 1)-th to (m × h)-th attributes,
and generated the rest attributes using a binomial distribution with mean pout = hout/(3h). In our
experiments, we set 4h = 200 and hout = 4 (hin+hout = 16), so that pin > pout, the h-dimensional
attributes are associated with the m-th class with a higher probability, whereas the rest 3h attributes
are irrelevant.

As shown in Figure 1, for networks with strong homophily (e.g., ρout = 0.075), it is easy to obtain
high accuracy using 1-hop network neighbors. However, as the inter-class edges increase, the accuracy
is rapidly reduced. This mainly due to the homophily assumption, preventing GCN from effectively
fusing information. On the other hand, for networks with strong heterophily (e.g., ρout = 0.165), it
is surprising that, the accuracy of GCN of using 2-hop neighbors as neighborhoods (i.e., 83.15%) is
much higher than that of using 1-hop network neighbors (i.e., 32.85%). Since the homophily ratio of
2-hop neighbors may rise with the increase of inter-class edges, GCN of using 2-hop neighbors is
more effective to some extent. Interestingly, we can find that GCN of utilizing kNN is easy to get the
staple accuracy, i.e., 71.46%. In particular, it is much higher than those of using 1-hop and 2-hop
neighbors on complete random network (i.e., ρout = 0.125).

Summary. This case study shows that the current propagation mechanism of GCN is not universal for
general network data, but we can find that there are rules in several special situations (i.e., complete
random network). This motivates us that networks with different structural properties may need adopt
different propagation mechanisms.

We conduct extra experiments on Newman networks [7] with complete homophily, randomness and
complete heterophily utilizing GCN, so as to discover more appropriate propagation mechanism to
select valuable nodes as neighborhoods, and thus improving the performance of GCNs for different
networks. One straightforward strategy is to learn network embeddings with different GCNs using
different types of nodes (i.e., 1-hop, 2-hop and kNN neighbors), and concatenate the embeddings
into a single vector, so as to use the discriminative aggregation mechanism (which will be introduced
in Section 4.2 below) to learn their importance for node classification. We show the attention values
as a function of the number of training iterations in Figure 2.

A B C

Figure 2: An example illustrating that the importance of three different types of neighbors (i.e.,
1-hop, 2-hop and kNN neighbors) changes with network properties. The upper part of A-C represents
networks with complete homophily, randomness and complete heterophily, respectively; while
the lower part denotes the attention values as a function of the number of training iterations in
corresponding networks.

Observation 1: Network with complete homophily tends to obtain better performance utilizing 1-hop
network neighbors for direct information propagation. For the network in Figure 2A, the edges exist
only in nodes within the same class, or complete homophily. As shown, 1-hop network neighbors
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show great importance as the increase of training iterations. This partly validates that under the
setting of complete homophily, 1-hop neighbors are more effective for direct information propagation
compared to 2-hop and kNN neighbors.

Observation 2: Network with randomness tends to get better performance utilizing kNN for direct
information propagation. The network in Figure 2B exhibits more randomness than Figure 2A, that
is, complete random network. Obviously, with the increase of training iterations, the attention value
of kNN is much higher than those of 1-hop and 2-hop neighbors. Since kNN typically constructed
according to the similarity of node attributes, it can still realize the information fusion effectively,
compared with the other two types of neighbors, in case that the network topology contains noise.

Observation 3: Network with complete heterophily tends to obtain better performance utilizing 2-hop
neighbors for direct information propagation. For the network in Figure 2C, the edges exist only in
nodes within different classes, or complete heterophily. While the learned attention values of these
three types of neighbors differ slightly, the importance of 2-hop neighbors is relatively higher. This is
mainly due to the fact that the homophily ratio of 2-hop neighbors becomes higher with the increase
of inter-class edges (which is often the real life in many network analysis tasks).

While networks with different structural properties provide better performance utilize different
propagation mechanisms, the real-world networks are complex, and may show diverse properties,
e.g., the network dominated by homophily may contain a small amount of heterophily. Therefore, it
is imperative to explore a universal propagation mechanism for GCNs independent of the network
structural assumption.

Theorem 1. The real-world networks can be approximately decomposed into a mixture of three
kinds of simple networks, namely complete homophily, complete random and complete heterophily,
in different proportions.

Proof. Given a network G, where n and m denote the number of nodes and edges, respectively.
Assuming that r edges (0 ≤ r ≤ m) are generated randomly, i.e., the probability of nodes connecting
nodes within the same class or different classes is the same, which form a complete random network
(with n nodes and r edges). The remaining edges connecting two nodes within the same class can
then be regarded as composing a complete homophily network, or a complete heterophily network.

Summary. Now, we can conclude that a universal GCN model may not only consider the 1-hop
(Observation 1), but also the 2-hop (Observation 2) and kNN neighbors (Observation 3) for direct
information propagation. More importantly, considering different network properties can be more
correlated with one of them or even their combinations, the model itself should adaptively learn their
corresponding importance, so as to achieve feature fusion more effectively. This case study, although
leveraging specific artificial networks, is representative because real-world networks can often be
considered as the combination of these three simple network cases.

4 Our Proposed Approach

To address the homophily assumption of GCNs, our basic idea is to design a universal GCN framework
which is suitable for general networks with any structural properties. It can not only make full use
of the information from 1-hop, 2-hop and kNN neighbors, but also fuse them sufficiently aiming to
given learning objectives. In this section, we start by proposing a new simple multi-type convolution
mechanism over three kinds of neighbors, and then introduce a discriminative aggregation to learn
the importance of each part: 1-hop, 2-hop and kNN neighbors, automatically.

4.1 Multi-type Convolution Mechanism

To capture the information from 2-hop and kNN neighbors, we construct a 2-hop network GR =
(AR, X) based on original input network GD = (AD, X), and a kNN network GF = (AF , X)
based on node feature matrix X .

2-hop Network. For adjacency matrix AR, considering that the number of neighbors at exactly 2
hops away may raise exponentially with the increase of network scale, we introduce a constraint, i.e.,
select node pairs connected by at least two different paths for each node to set edges. Simultaneously,
we adopt the classic two-layers GCN to perform message passing on this 2-hop network (AR, X),

5



and the l-th layer embedding matrix H(l)
R can be denoted as:

H
(l)
R = σ(D̃

− 1
2

R ÃRD̃
− 1

2

R H
(l−1)
R W

(l)
R ), (3)

where ÃR = AR+ I , I is the identity matrix, D̃R the diagonal degree matrix of ÃR, W (l)
R the weight

matrix and σ the non-linear activation function such as ReLU or Sigmoid. In this way, we can learn
the node embeddings that capture the specific information from 2-hop neighbors.

kNN Network. There are many ways to obtain kNN for each node, such as Jaccard similarity, Cosine
similarity and Gauss kernel. In what follows, we calculate the similarity matrix S ∈ Rn×n among n
nodes utilizing Cosine similarity, which adopts the cosine value of the angle between two vectors
to measure the similarity. Mathematically, let xi be the feature vectors of node vi, the similarity sij
between nodes vi and vj is defined as:

sij =
xi · xj
|xi||xj |

. (4)

Then, the adjacency matrix AF can be obtained by choosing top k similar node pairs for each node
to set edges. Accordingly, the l-th layer embedding matrix H(l)

F that gains the information from
kNN can be calculated in the same way as in 2-hop network. Also of note, we use a linear algorithm
Ball-tree [16] for the calculation of kNN network which will not increase the complexity of GCN.

As for 1-hop network neighbors, we acquire the l-th layer embedding matrix H
(l)
D performing

direct information propagation on original input network GD = (AD, X). Therefore, the specific
information encoded in 1-hop network neighbors can be extracted.

Node-level Attention. Before aggregating the information from original input network, 2-hop
network and kNN network, we should note that the network-based neighbors of each node contribute
to the embedding of the target node in different degrees. Here we adopt node-level attention [26] to
learn the importance of network-based neighbors for each node. To be specific, given a node pair (vi,
vj) and a specified network type t (where t ∈ {GD, GR, GF }), the importance coefficient between
nodes vi and vj can be formulated as:

etij = LeakyReLU(µT
t [Whi||Whj ]), α

t
ij = softmaxj(e

t
ij) =

exp(etij)∑
r∈Nt

i
exp(etir)

, (5)

where µt is the parameterized attention vector for network type t, and W the mapping matrix applied
to each node. Then, the embedding of node vi for network type t can be aggregated by the neighbor’s
embeddings with its corresponding weight coefficients as:

hti = σ(
∑
j∈Nt

i

αt
ijWhj). (6)

4.2 Discriminative Aggregation

After the multi-type convolution above, we then perform a discriminative aggregation utilizing
the attention mechanism, so as to learn the contributions of 1-hop, 2-hop and kNN neighbors
automatically based on the given learning objectives. To be specific, for each node vi, let hti denote
its embedding in Ht, the attention value βt

i can then be represented as:

βt
i = qT · tanh(Wt · (hti)T + bt), (7)

where q denotes the parameterized attention vector, Wt the weight matrix and bt the bias vector.

After obtaining the attention value of each network, i.e., βD
i , βR

i , βF
i , we normalize them via softmax

function to get the final weight:

γti = softmax(βt
i ) =

exp(βt
i )∑

t exp(β
t
i )
. (8)

Obviously, a larger γti value means that the corresponding embedding is more important. The ouput
embedding H can then be aggregated by these network-specific embeddings with its corresponding
weight coefficients as:

H =
∑

t
γti ·Ht. (9)
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Following GCN, we define the loss function by using cross entropy as:

L = −
∑
i∈YL

F∑
f=1

Yif lnHif , (10)

where YL is the set of node indices that have labels, Y the label indicator matrix, and F the dimension
of the output embedding, which is equal to the number of classes.

5 Experiments

We first give the experimental setup, and then compare our U-GCN with some state-of-the-arts on
node classification. We finally give an in-depth analysis of different components of our new approach.

5.1 Experimental Settings

Datasets. We adopt eight public network datasets with edge homophily ratio α ranging from strong
homophily to strong heterophily, as shown in Table 1, to evaluate the performance of different
methods. We use three citation networks Cora, CiteSeer and PubMed [19, 25], two Wikipedia
networks Chameleon and Squirrel [24], and three webpage networks1 Cornell, Wisconsin and Texas.

Baselines. We compare our U-GCN with eight baselines: (1) the methods utilizing both topological
and attribute information: GCN [14], GAT [26], GraphSAGE [8], JK-Net [29], SSP [11], Geom-GCN
[22] and GCN-LPA [27], and (2) the method using node attribute: MLP. Especially, GCN is the base
of our U-GCN.

Parameter Settings. For all methods, we set the dropout rate to 0.6 and use the same splits for
training, validation and testing sets. We run 5 times with the same partition and report the average
results. We employ the Adam optimizer with the learning rate setting to 0.005 and apply early
stopping with a patience of 20. In addition, we set the number of attention heads to 8, weight decay
∈ {5e− 3, 5e− 4}, and k ∈ {3...7} for k-nearest neighbor network.

Table 1: Dataset Statistics.

Datasets Cora Pubm. Cite. Corn. Cham. Squi. Wisc. Texa.

#Nodes 2708 19717 3327 183 2277 5201 251 183
#Edges 5429 44338 4732 298 36101 217073 515 325

#Features 1433 500 3703 1703 2325 2089 1703 1703
#Classes 7 3 6 5 5 5 5 5

α 0.83 0.79 0.71 0.30 0.25 0.22 0.16 0.06

5.2 Node Classfication

On the node classification task, we use accuracy as the evaluation metric, and the relevant results are
summarized in Table 2. As shown, we observe that the U-GCN has consistently strong performance
across the full spectrum of high-middle-low homophily. To be specific, on the dataset with strong
homophily, e.g., Cora and Citeseer, U-GCN is comparable with the best baseline GAT that based
on homophily assumption. On the dataset with middle homophily, e.g., Cornell and Chameleon,
U-GCN is 3.88% and 1.38% more accurate than the best baselines MLP and GCN-LPA, respectively.
Above all, on the dataset with strong heterophily, e.g., Wisconsin and Texas, our model U-GCN
outperforms the best baseline MLP by a very large margin, i.e., 5.69% and 5.83%, which has been
proved to be superior to a number of existing GNNs at the low level of homophily [35]. These results
not only demonstrate the superiority of the new multi-type convolution mechanism that makes full
use of the information from 1-hop, 2-hop and kNN neighbors, but also validate the effectiveness for
distinguishing importance of information from different propagation mechanisms. In addition, the
performance of U-GCN is much better than that of GCN, which further demonstrates the effectiveness
of designing a universal propagation mechanism independent of network structural assumption.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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Table 2: Comparisons on node classification (Percent).

Methods Cora Pubm. Cite. Corn. Cham. Squi. Wisc. Texa.

GCN 82.93 83.29 73.12 46.51 52.32 33.10 47.73 52.71
GAT 83.13 84.42 72.04 48.06 51.38 32.27 46.59 49.61
SSP 81.08 79.50 71.13 55.04 21.87 19.72 49.37 55.04

JK-Net 81.27 86.15 71.74 52.71 53.95 33.51 48.30 51.94
GraphSage 82.20 83.03 71.41 53.49 42.29 26.89 56.82 53.49
Geom-GCN 74.27 83.49 73.79 54.26 38.66 32.22 53.41 64.34
GCN-LPA 82.33 85.83 72.29 49.61 52.69 33.48 50.57 48.84

MLP 63.33 83.08 67.74 65.89 41.35 29.44 64.20 65.89

U-GCN 84.00 85.22 74.08 69.77 54.07 34.39 69.89 71.72

5.3 Ablation Study

Similar to most deep learning models, U-GCN also contains some important components that may
have significant impact on the performance. To gain deeper insight into the contributions of different
components involved in our approach, we conduct experiments on comparing U-GCN with four
variations. The variants are as follows: 1) GCN which serves as the base framework of U-GCN of
using 1-hop network neighbors for propagation, 2) GCN of employing 2-hop neighbors for direct
propagation, named as U-GCN-1, 3) GCN of utilizing kNN for direct propagation, named as U-GCN-
2, and 4) U-GCN of removing 2-hop neighbors, named as U-GCN-3. We take their comparison on
node classification as an example.

As shown in Table 3, compared to GCN, U-GCN-1 (and U-GCN-2) of utilizing 2-hop neighbors
(and kNN) is on average 3.37% (and 3.12%) more accurate on eight datasets. This validates that
2-hop neighbors (and kNN) play an important role during information propagation, especially on
the networks dominated by heterophily. Furthermore, by introducing kNN, the derived U-GCN-3
improves performance of GCN (and U-GCN-2), i.e., on average 6.64% (and 3.32%) more accurate on
eight datasets. This demonstrates that the performance of 1-hop and kNN neighbors can be mutually
enhanced to a certain extent. In addition, U-GCN is on average 2.49% more accurate than U-GCN-3,
which further validates the soundness of our new universal GCN framework that makes full use of
different propagation mechanisms aiming to the network with diverse properties.

Table 3: Comparisons of our U-GCN with four variants on node classification (Percent).

Methods Cora Pubm. Cite. Corn. Cham. Squi. Wisc. Texa. AVG

GCN 82.93 83.29 73.12 46.51 52.32 33.10 47.73 52.71 58.96
U-GCN-1 74.40 83.92 68.66 56.59 48.81 33.84 64.20 68.22 62.33
U-GCN-2 70.27 80.86 68.74 70.54 38.60 29.11 68.75 69.77 62.08
U-GCN-3 83.67 81.33 72.79 65.12 53.51 34.06 69.89 62.79 65.40
U-GCN 84.00 85.22 74.08 69.77 54.07 34.39 69.89 71.72 67.89

6 Related Work

In line with the focus of our work, we briefly review the most related work on graph neural networks
(GNNs) and homophily assumption.

GNNs. In recent years, GNNs have become popular for graph-based machine learning problems
increasingly [13, 31]. Defferrard et al. [5] propose the first version of GNN by generalizing
convolutional neural networks (CNNs) from regular grids (e.g., images) to irregular grids (e.g.,
graphs). After that comes GCN [14], a popular GNN model which obtains node embeddings by
integrating high-order neighborhood information through stacked graph convolutional layers. Further,
GraphSAGE [8] generalizes the aggregation beyond averaging, and models the ego-features distinctly
from the neighbor-features in its subsampled neighborhood. GAT [26] introduces a node-level
multi-head attention mechanisms to specify the weights from different neighborhoods.
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Homophily Assumption. Several efforts have been made to relieve the limitation of homophily
assumption, so as to improve GCNs. Geom-GCN [22] proposes a novel geometric aggregation
scheme to overcome neighborhood structural information losing and long-range dependencies lacking.
GPR-GNN [4] proposes a new architecture that adaptively learns the generalized pageRank (GPR)
weights, to jointly optimize node feature and topological information extraction. CPGNN [34]
designs a GNN framework that incorporates an interpretable compatibility matrix H for modeling
the homophily level. Moreover, H2GCN [35] incorporates three key designs: ego- and neighbor-
embedding separation, higher-order neighborhoods and combination of intermediate, to capture
information under the low level of homophily. More Recently, GGCN [32] proposes a robust and
generalized model that addresses the discrepancy in features and degrees between neighbors by
incorporating signed messages and learned degree corrections, so as to alleviate the homophily
assumption of GCNs.

These existing methods have achieved reasonable results on handling the homophily assumption of
GCNs. However, there is still a lack of insightful understanding of the key factors of a universal prop-
agation mechanism independent of the network structural assumption, which is of great significant
while often ignored by the existing GCN methods.

7 Discussion

In this section, we discuss what are the universal propagation mechanism in networks. Take the global
spread of epidemics as an example, it is a complex, network-driven dynamic process. The combined
multi-scale nature and intrinsic heterogeneity of the epidemic network make it difficult to develop an
intuitive understanding of this process, to predict its time course and to locate its origin. However,
Brockmann et al. [3] show that if we use a probabilistically motivated effective distance, rather
than conventional geographic distance, to analyse propagation process, the complex spatiotemporal
patterns can be simplified into simple, homogeneous wave propagation patterns. Motivated by this
idea, it is of great necessary to find a universal propagation mechanism for GCNs, where universality
refers to independence on homophily, heterophily or randomness network structural assumptions, so
as to select the valuable nodes as neighborhoods, and meanwhile relieve the limitation of homophily
assumption of GCNs. More importantly, even if there are assumptions (e.g., homophily), a universal
propagation mechanism may still be able to find better and more valuable nodes as neighborhoods,
rather than directly using the 1-hop network neighbors the same as the existing methods.

8 Conclusion

We rethink the propagation mechanism of networks with different structural properties, and sur-
prisingly discover the segmentation rules that 1-hop, kNN and 2-hop neighbors are more suitable
as neighborhoods in network with complete homophily, randomness and complete heterophily, re-
spectively. However, real-world networks are complex, and may present diverse properties. We
accordingly design a universal model U-GCN, which is able to select more valuable nodes as neighbor-
hoods automatically for information propagation without relying on network structural assumptions.
Empirical results on networks with different edge homophily ratio demonstrate the superiority of our
new approach over some state-of-the-art methods.

Last but not least, the methods that satisfy the basic idea, that is, consider the information from nodes
of 1-hop, 2-hop and kNN neighbors simultaneously, and at the same time, make reasonable use of
these information, and fuse them effectively for the learning objectives, can be considered as general
models, where our U-GCN is one of the most simple and effective methods.

Broader Impact

In this work, we propose to analyse whether networks with different structural properties should
adopt different propagation mechanisms. One interesting finding is that there are segmentation rules
for the universal propagation phenomenon. Considering real-world networks are complex and may
present diverse properties, a universal propagation mechanism independent of the network structural
assumption have been presented. Obviously, the results of the work will have an immediate impact
on improving the performance of most GCN models based on homophily assumption. Not only that,
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this work will also significantly benefit applications involving network-structured data, including
bioinformatics, computer vision and recommendation system.

While our research focuses on performance by designing a universal propagation mechanism on
general networks with any structural properties, like many other GCNs, it provides limited explanation
to its prediction. We advocate peer researchers to look into this to enhance the interpretability of
modern GCNs, and make GCNs applicable in more risk-sensitive applications.
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