
Optimization for Neural Operators can Benefit from Width

Pedro Cisneros-Velarde†

VMware Research

pacisne@gmail.com

Bhavesh Shrimali†

Corporate Research, Kimberly-Clark

bhavesh.shrimali@gmail.com

Arindam Banerjee
University of Illinois Urbana-Champaign

arindamb@illinois.edu

Abstract

Neural Operators that directly learn mappings between function spaces, such as Deep Operator
Networks (DONs) and Fourier Neural Operators (FNOs), have received considerable attention. Despite
the universal approximation guarantees for DONs and FNOs, there is currently no optimization convergence
guarantee for learning such networks using gradient descent (GD). In this paper, we address this open
problem by presenting a unified framework for optimization based on GD and applying it to establish
convergence guarantees for both DONs and FNOs. In particular, we show that the losses associated with
both of these neural operators satisfy two conditions—restricted strong convexity (RSC) and smoothness—
that guarantee a decrease on their loss values due to GD. Remarkably, these two conditions are satisfied
for each neural operator due to different reasons associated with the architectural differences of the
respective models. One takeaway that emerges from the theory is that wider networks should lead to
better optimization convergence for both DONs and FNOs. We present empirical results on canonical
operator learning problems to support our theoretical results.

1 Introduction

Replicating the success of deep learning in scientific computing such as developing neural PDE solvers,
constructing surrogate models, and developing hybrid numerical solvers, has recently captured the interest of
the broader scientific community (Kutz and Brunton, 2024; Kovachki et al., 2023). In relevant applications
to scientific computing, we often need to learn mappings between input and output function spaces. Neural
operators have emerged as the prominent class of deep learning models used to learn such mappings (Lu
et al., 2021). They have become a natural choice for learning solution operators of parametric PDEs and of
inverse problems where multiple evaluations are needed under different parameters of the problem. Two of
the arguably most widely adopted neural operators are Deep Operator Networks (DONs) (Lu et al., 2021;
Wang et al., 2021b) and Fourier Neural Operators (FNOs) (Li et al., 2021a,b).

The fundamental idea of a neural operator is to parameterize mappings between function spaces with
deep neural networks and proceed with its learning, i.e., optimization, as in a standard supervised learning
setup. However, contrary to a classical supervised learning setting where we learn mappings between two
finite-dimensional vector spaces, here we learn mappings between infinite-dimensional function spaces. While
there exist results on the universal approximation properties of DONs and FNOs (Deng et al., 2022; Kovachki
et al., 2021), to the best of our knowledge, there are no formal optimization convergence results for the
training of these two popular neural operator models.

To address this open problem, in this paper, we establish such optimization convergence guarantees
for learning DONs and FNOs with gradient descent (GD). To achieve this, we first propose a
general framework that ensures the optimization of any loss using GD as long as two conditions
are satisfied across iterations. The conditions do not include convexity of the loss as that is not satisfied
by models based on neural networks, including neural operators. The first condition is based on restricted

†These authors contributed equally to this work.

1

ar
X

iv
:2

50
2.

00
70

5v
1

 [
cs

.L
G

]
 2

 F
eb

 2
02

5

strong convexity (RSC), a recently introduced alternative (Banerjee et al., 2023b) to the widely used neural
tangent kernel (NTK) analysis (Liu et al., 2021a, 2022b; Allen-Zhu et al., 2019). The second condition is
based on a smoothness property of the loss function. For feedforward neural networks, the RSC condition
relies on the second-order Taylor expansion of the loss (Banerjee et al., 2023b; Cisneros-Velarde et al., 2025),
using the Hessian of the neural network (i.e., second order structure), whereas the NTK approach relies on a
kernel approximation of the training dynamics (Jacot et al., 2018), using the gradient of the network (i.e.,
first order structure). For a specific model such as neural operators, the technical challenge in using
our optimization framework is to establish suitable properties of the loss, its gradient, and its Hessian
in order to show that the RSC and smoothness conditions are indeed satisfied. Convexity is not one of the
required conditions, so we are not attempting to show that the Hessian is positive semi-definite, as that will
not be true for most neural models, including neural operators.

Having defined a general optimization framework based on RSC and smoothness conditions, the key
novelty of our current work is showing that the losses for DONs and FNOs provably satisfy
these two conditions when the neural operators are wide, despite the substantial differences
in their architectures and mathematical analyses. For both DONs and FNOs, we need to bound
the Hessian of their respective empirical losses and of the neural operator models themselves in order to
determine whether the RSC and smoothness properties are satisfied.

The challenge in the analysis of DONs stems from the fact that the output of this neural operator is
the inner product of two neural networks. This greatly complicates the Hessian structure of the loss compared
to standard neural networks. Indeed, the Hessian now contains cross-interaction terms between two neural
networks which have to be carefully analyzed and which require a more complex definition of the restricted
set over which the RSC property is defined compared to standard neural networks.

The challenge in the analysis of FNOs stems from the fact that it contains, inside their neural
network structure, learnable weights that define transformations in the Fourier domain—something absent in
standard neural networks. This complicates the Hessian structure of the FNO since it contains parameters
both in the data domain and transformed Fourier domain leading to cross-derivatives between parameters in
data and Fourier domains. Thus, a more involved analysis than of standard neural networks is required.

Remarkably, we find that the widths of both neural operator models benefit our optimization
guarantees in similar ways. First, the widths appear in the RSC condition such that larger widths make
this condition less restrictive. Second, larger widths enlarge the neighborhood around the initialization point
where our optimization guarantees hold. Similar benefits from larger widths were found for standard neural
networks by Banerjee et al. (2023b), despite the substantial differences between our analyses and theirs (as
mentioned in the challenges above).

Finally, to complement our theoretical results, we present empirical evaluations of DONs and FNOs and
show the benefits of width on learning three popular operators in the literature (Li et al., 2021a; Lu et al.,
2021): antiderivative, diffusion-reaction, and Burger’s equation. Our experiments show that increasing the
width leads to lower training losses and generally leads to faster convergence.

Paper Organization. Section 2 presents related literature. Section 3 outlines the architectures and
learning problems for DONs and FNOs. Section 4 establishes our general optimization framework, and
Section 5 and Section 6 establish convergence guarantees using this framework for DONs and FNOs respectively,
highlighting the benefits of width. Section 7 compares our results and known ones for standard neural
networks. Section 8 presents empirical evaluations on the benefits of width. Section 9 is the conclusion.

Notation. ∥ · ∥2 denotes the L2-norm or the induced matrix L2-norm when the argument is a vector or a
matrix, respectively. Given an operator/function f , ran(f) and dom(f) denote the range and domain of f ,
respectively.

2 Related Work

We only provide a brief overview of the literature related to our work and provide a more extensive treatment
in Appendix A. In the case of DONs, approximation (Lu et al., 2021) and generalization (Kontolati et al.,
2022) properties have been formally studied, as well as several applications of DONs (Goswami et al., 2022;
Wang and Perdikaris, 2021; Diab and Al Kobaisi, 2024; Centofanti et al., 2024; Sun et al., 2023). Nevertheless,
optimization guarantees for DONs is an open problem. Approximation properties for FNOs have been

2

formally studied (Kovachki et al., 2021), and diverse applications of FNOs and various Fourier-based operators
have been formulated (Li et al., 2020a; Liu et al., 2022a; Wen et al., 2022; Pathak et al., 2022; Centofanti
et al., 2024; Li et al., 2023; Yang et al., 2023; Harder et al., 2023). Nevertheless, optimization guarantees
for DONs is also an open problem. Though formal optimization guarantees for neural operators are largely
absent, there is a more established literature on such guarantees for neural networks. We highlight two
particular approaches for optimization analysis: based on the NTK approach (Jacot et al., 2018; Liu et al.,
2021a; Banerjee et al., 2023a; Du et al., 2019; Allen-Zhu et al., 2019) and on the RSC approach (Banerjee
et al., 2023b; Cisneros-Velarde et al., 2025)—our work is related to the latter.

3 Learning Neural Operators

A neural operator (Li et al., 2021a, 2020b; Lu et al., 2021) is a parametric model based on neural networks
that aims to best approximate a mapping between two function spaces, which can be linear, such as the
antiderivative or integral operator, or nonlinear such as the solution operator of a nonlinear PDE. Thus,
letting G† denote the ground-truth operator we are trying to approximate and Gθ denote the neural operator
parameterized by the parameter vector θ, the objective is to learn θ such that, given an input function u, we
have Gθ(u) ≈ G†(u). Such learning is done by solving an optimization problem using data samples consisting
of tuples of input and output function values of G†. This optimization problem is analogous to the notion of
learning in finite dimensions, which is precisely the setup for which classical deep learning is used.

We now introduce DONs and FNOs. More information about neural operators and the schematics of
both DONs and FNOs are found in Appendix B.

3.1 Learning Deep Operator Networks (DONs)

The DON model (Lu et al., 2021) is defined as the inner product of two deep feedforward neural networks,
each one with K output neurons. Given the the branch net f = {fk}Kk=1 and the trunk net g = {gk}Kk=1, the
DON is

Gθ(u)(y) :=

K∑

k=1

fk(θf ;u)gk(θg;y), (1)

where the input function u has ran(u) ⊆ Rdu and y ∈ dom(Gθ(u)) ⊆ Rdy is the output location on which the
operator is evaluated. The training data is composed of n input functions {u(i)}ni=1 and qi output locations

for each G†(u(i)), i.e., {{y(i)
j }qij=1}ni=1 with y

(i)
j ∈ Rdy denoting the j-th output location for G†

θ(u
(i)). Each

u(i) is represented in R locations {xr}Rr=1 so that u(i)(xr) ∈ Rdu , r ∈ [R]. The entire set of parameters is
θ = [θ⊤

f θ⊤
g]

⊤ ∈ Rpf+pg , where θf ∈ Rpf and θg ∈ Rpg are the parameter vectors of f and g respectively.

We only consider scalar input functions, i.e., du = 1. For each i ∈ [n], we stack {u(i)(xr)}Rr=1 as an
input vector to f , thus, f : RR → RK . Note that g : Rdy → RK . Then, the DON learning problem is the
minimization:

θ†
(don) ∈ argmin

θ∈Rpf+pg

L
(
Gθ, G

†)
(2)

where

L
(
Gθ, G

†) = 1

n

n∑

i=1

1

qi

qi∑

j=1

(
Gθ(u

(i))(y
(i)
j)−G†(u(i))(y

(i)
j)
)2

(3)

is the empirical loss function that measures the approximation between Gθ and G†, and where Gθ(u
(i))(y

(i)
j) =

∑K
k=1 fk

(
θf ; {u(i)(xr)}Rr=1

)
gk

(
θg;y

(i)
j

)
.

Note that the ground truth operator G† can either be explicit, e.g. integral of a function, or implicit, e.g.
the solution to a nonlinear partial differential equation (PDE).

3

3.2 Learning Fourier Neural Operators (FNOs)

The FNO model (Li et al., 2021a) is defined as follows: Gθ(u)(x) := f(θ;x) with

α(0)(x) = P (u;θp)(x)

α(l)(x) = F (l)(α(l−1)(x);θF (l)), l ∈ [L+ 1]

f(θ;x) = Q(α(L+1);θq)(x),

(4)

where the input function u has ran(u) ⊆ Rdu , Gθ(u)(x) ∈ R is the output of the FNO evaluated at output loca-
tion x ∈ Rdx , {F (l)}L+1

l=1 are nonlinear transformations with learnable parameters θF = [θ⊤
F (1) , . . . ,θ

⊤
F (L+1)]

⊤ ∈
RF and which may contain operations in the Fourier domain, P is an encoder that maps u and x to an
ambient space of dimension d and has parameter vector θp ∈ Rp, and Q is a decoder that maps the output
from the block α(L+1)(x) to a scalar output with parameter vector θq ∈ Rq. The entire set of parameters for

the FNO can be written as θ =
[
θ⊤
p θ⊤

F θ⊤
q

]⊤
. With a slight abuse of notation, the FNO is simply written as

Gθ(u)(x) = f(θ;x) in (4) when the input function u is known by the context.
The training data is composed of n input-output pairs {(u(i), G†(u(i))}ni=1 and a computational grid of

evaluations {xr}Rr=1. We let f (i)(θ;xr) denote the FNO model (4) with input function u(i) and evaluated at
xr. Then, the FNO learning problem is the minimization:

θ†
(fno) ∈ argmin

θ∈Rp+F+q

L(Gθ, G
†) (5)

with empirical loss function

L(Gθ, G
†) =

1

n

n∑

i=1

1

R

R∑

r=1

(
Gθ(u

(i))(xr)−G†(u(i))(xr)
)2

(6)

and where Gθ(u
(i))(xr) = f (i)(θ;xr).

4 Optimization Convergence Framework

We now establish two conditions—Conditions 1 and 2 below—for the convergence of gradient descent (GD)
when minimizing a loss function L. We show that as long as these two conditions are satisfied, the loss
will decrease in value. In the following sections we show how the empirical losses used for training DONs
(Section 5) and FNOs (Section 6), as in (3) and (6) respectively, satisfy these two conditions.

We consider θ 7→ L(θ) to be continuously differentiable. Let θ0 ∈ Rp be a suitable initialization point
and {θt}t≥1 be the sequence of iterates obtained from GD on loss L for some step-size ηt > 0, i.e.,

θt+1 = θt − ηt∇θL(θt) . (7)

We consider a non-empty set B(θ0) ⊆ Rp around and including θ0.

Assumption 1 (Iterates inside B(θ0)). All iterates {θt}t≥1 follow GD as in (7) and are inside the set
B(θ0).

The first condition is based on the concept of Restricted Strong Convexity (RSC) being satisfied for L.

Definition 1 (Restricted strong convexity (RSC)). A function L is said to satisfy α-restricted strong
convexity (α-RSC) w.r.t. the tuple (S,θ) if for any θ′ ∈ S ⊆ Rp and some fixed θ ∈ Rp, we have

L (θ′) ≥ L(θ) + ⟨θ′ − θ,∇θL(θ)⟩+
α

2
∥θ′ − θ∥22 , (8)

with α > 0.

Condition 1 (RSC). Consider Assumption 1. At step t, there exists a non-empty set Nt such that:

4

(a) Nt ⊆ B(θ0);

(b) one of these two conditions hold:

(b.1) θt+1 ∈ Nt with either θt /∈ Nt or L(θt) ̸= infθ∈Nt
L(θ),

(b.2) there exists some θ′ ∈ Nt such that L(θ′) < L(θt);

(c) L satisfies αt-RSC w.r.t. (Nt,θt) for some αt > 0.

Note that L need not be convex for it to satisfy αt-RSC.
The second condition is based on the smoothness of L.

Condition 2 (Smoothness). The function L is β-smooth, i.e., for θ′,θ ∈ B(θ0) and some β > 0,
L(θ′) ≤ L(θ) + ⟨θ′ − θ,∇θL(θ)⟩+ β

2 ∥θ′ − θ∥22.

As long as Conditions 1 and 2 are satisfied at step t of the GD update in (7), the loss is guaranteed to
decrease with a suitable step-size choice.

Theorem 1 (Global loss reduction). Consider Assumption 1 and Conditions 1 and 2 with αt ≤ β at
step t of the GD update (7) with step-size ηt =

ωt

β for some ωt ∈ (0, 2). If L(θt) ̸= inf
θ∈B(θ0)

L(θ), then we have

0 ≤ γt :=
inf

θ∈Nt
L(θ)− inf

θ∈B(θ0)
L(θ)

L(θt)− inf
θ∈B(θ0)

L(θ) < 1 and

L(θt+1)− inf
θ∈B(θ0)

L(θ) ≤
(
1− αtωt(1− γt)

β
(2− ωt)

)
(L(θt)− inf

θ∈B(θ0)
L(θ)). (9)

Theorem 1’s proof is found in Appendix C. We note that if the infimum loss inside B(θ0) is attained at
time t, i.e., L(θt) = inf

θ∈B(θ0)
L(θ), then there is nothing to prove—hence the conditional in the second sentence

of Theorem 1.

Remark 1 (The RSC to smoothness ratio). Theorem 1 requires αt/β ≤ 1, which needs to be proved for
the particular function L being considered. If (1) were to hold for any θ,θ′ ∈ B(θ0), then L would be a
locally strongly convex function in the set B(θ0) (Boyd and Vandenberghe, 2004). This is a stronger condition
on L which makes α in (1) independent from the choice of θ (in the context of Theorem 1, αt would be
independent from t), which immediately implies α/β < 1.

Our analysis is inspired by the recent works (Banerjee et al., 2023b) and (Cisneros-Velarde et al., 2025),
where optimization guarantees were done for feedforward networks and normalization. We abstract out
from those special cases, and demonstrate that our analysis works for any losses satisfying Conditions 1
and 2—indeed, (Cisneros-Velarde et al., 2025) particularly satisfies Condition 1(b.1) and (Banerjee et al.,
2023b) satisfies Condition 1(b.2). Thus, in the context of our paper, the largest effort in establishing
optimization guarantees for DONs and FNOs is to show these two models satisfy Conditions 1
and 2 with αt/β ≤ 1.

5 Optimization Analysis for DON

We consider, analogous to (Liu et al., 2021b), the branch net as a fully connected feedforward neural network:

α
(0)
f = u(x)

α
(l)
f = ϕ

(
1√
mf

W
(l)
f α

(l−1)
f

)
, l ∈ [L− 1]

f = α
(L)
f =

1
√
mf

W
(L)
f α

(L−1)
f

(10)

5

where with some abuse of notation u(x) := [u(x1), . . . , u(xR)]
⊤ is the vector of all scalar evaluations of u at

each of the R locations, ϕ is a pointwise smooth activation function, α
(l)
f is the output at layer l ∈ [L], and

the weight matrices are W
(1)
f ∈ Rmf×R and W

(l)
f ∈ Rmf×mf at layer l ∈ {2, . . . , L− 1}. The branch net has

width mf (all hidden layers have the same width). Similarly, the trunk net is a fully connected feedforward
network:

α(0)
g = y

α(l)
g = ϕ

(
1

√
mg

W (l)
g α(l−1)

g

)
, l ∈ [L− 1]

g = α(L)
g =

1
√
mg

W (L)
g α(L−1)

g

(11)

where y ∈ Rdy is the output location, and the weight matrices are W
(1)
g ∈ Rmg×dy and W

(l)
g ∈ Rmg×mg at

layer l ∈ {2, . . . , L− 1}. The trunk net has width mg (all hidden layers have the same width). Finally, we

recall that we have K outputs on each network, i.e., W
(L)
f ∈ RK×mf and W

(L)
g ∈ RK×mg . Given l ∈ [L],

we denote by (w
(l)
f,k)

⊤ and (w
(l)
g,k)

⊤ the k-th row of the matrices W
(l)
f and W

(l)
g respectively, and by w

(l)
f,ij

and w
(l)
g,ij their respective ij-entry. Using the notation in Section 3.1, the set of trainable parameters is

θ = [θ⊤
f θ⊤

g]⊤ ∈ Rpf+pg , with θf = [vec(W
(1)
f)⊤, . . . , vec(W

(L)
f)⊤]⊤ and θg = [vec(W

(2)
g)⊤, . . . , vec(W

(L)
g)⊤]⊤.

Let θ0 be the parameter vector at initialization and θt be it at time step t.
We make the following assumptions for our analysis:

Assumption 2 (Activation functions). The activation function ϕ of the DON is 1-Lipschitz and βϕ-smooth
(i.e. ϕ′′ ≤ βϕ) for some βϕ > 0.

Assumption 3 (Initialization of weights). All weights of the branch and trunk nets are initialized

independently as follows: (i) w
(l)
f0, ij

∼ N (0, σ2
f,0) and w

(l)
g0, ij ∼ N (0, σ2

g,0) for l ∈ [L − 1] where σf,0 =
σ0

2(1+

√
log mf√
2mf

)
and σg,0 = σ0

2(1+

√
log mg√
2mg

)
, σ0 > 0; (ii) w

(L)
f0,k

and w
(L)
g0,k

, k ∈ [K], are random vectors with unit

norms, i.e., ∥w(L)
f0,k

∥2 = 1 and ∥w(L)
g0,k

∥2 = 1. Further, we assume the input to the branches are normalized as

∥u(x)∥2 =
√
R and ∥y∥2 =

√
dy.

For a given parameter vector θ̄ = [θ̄⊤
f , θ̄

⊤
g] ∈ Rpf+pg , we introduce the neighborhood set BEuc

ρ,ρ1
(θ̄) =

{θ ∈ Rpf+pg : ∥W (l)
f − W̄

(l)
f ∥2 ≤ ρ, ∥W (l)

g − W̄
(l)
g ∥2 ≤ ρ, l ∈ [L− 1], ∥w(L)

f,k − w̄
(L)
f,k ∥2 ≤ ρ1, ∥w(L)

g,k − w̄
(L)
g,k ∥2 ≤

ρ1, k ∈ [K]} for ρ, ρ1 > 0. We say that an element of BEuc
ρ,ρ1

(θ̄) is strictly inside BEuc
ρ,ρ1

(θ̄) when it satisfies

every inequality in the set’s definition without equality. We also define BEuc
ρ (θ̄) as an Euclidean ball around

θ̄ with radius ρ > 0.
The following is an assumption analogous to the general Assumption 1.

Assumption 4 (Iterates inside BEuc
ρ,ρ1

(θ0)). All iterates {θt}t≥1 follow GD as in (7) and are strictly inside

the set BEuc
ρ,ρ1

(θ0) for fixed ρ, ρ1 > 0.

We now focus on showing that the two conditions needed for optimization using GD as discussed in
Section 4 are indeed satisfied by DONs. We start with the definition of a set Qt

κ parameterized by κ ∈ (0, 1
2],

which will help construct the set Nt in Condition 1 for RSC. Due to the interaction of two neural networks
(branch and trunk), the definition of Qt

κ looks seemingly involved. However, note that Qt
κ is only needed for

establishing the RSC condition for the analysis and does not change the computation of the optimization
algorithm, which is simply GD run over all the branch and trunk network parameters.

6

Definition 2 (Qt
κ sets for DONs). For an iterate θt = [θ⊤

f,t θ
⊤
g,t]

⊤ and κ ∈ (0, 1√
2
], we define the set:

Qt
κ :=

{
θ′ = [θ′

f
⊤
θ′
g
⊤
]
⊤
∈ Rpf+pg :

| cos(θ′ − θt,∇θḠθt)| ≥ κ ,

(θ′
f − θf,t)

⊤

(
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′i,j

K∑
k=1

∇θf f
(i)
k ∇θgg

(i) ⊤
k,j

)
(θ′

g − θg,t) ≥ 0 ,

(θ′
f − θf,t)

⊤

(
K∑

k=1

∇θf f
(i)
k ∇θgg

(i) ⊤
k,j

)
(θ′

g − θg,t) ≤ 0, ∀i ∈ [n],∀j ∈ [qi]

}
,

(12)

where ∇θḠθt
= 1

n

∑n
i=1

1
qi

∑qi
j=1 ∇θGθt

(u(i))(y
(i)
j), ℓi,j = (Gθt

(u(i))(y
(i)
j)−G†(u(i))(y

(i)
j))2, and both ∇θf

f
(i)
k

and ∇θgg
(i)
k,j are evaluated on θt.

We now prove the RSC and smoothness conditions (corresponding to Conditions 1 and 2, respectively).
Using the nomenclature of Section 4, the set BEuc

ρ,ρ1
(θ0) corresponds to B(θ0), and Bt

κ := Qt
κ ∩ BEuc

ρ,ρ1
(θ0) ∩

BEuc
ρ2

(θt) corresponds to Nt.

Theorem 2 (RSC for DONs). Consider Assumptions 2, 3, and 4, and Qt
κ as in Definition 2. Then, the

set Bt
κ := Qt

κ ∩ BEuc
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt) is a non-empty set that satisfies Condition 1(a) and (b) for suitable

ρ2. Moreover, with probability at least 1 − 2KL(1
mf

+ 1
mg

), at step t of GD, the DON loss L (3) satisfies

equation (8) with

αt = 2κ2∥∇θḠt∥22 − c1K
2

(
1

√
mf

+
1

√
mg

)
(13)

where ∇θḠt =
1
n

∑n
i=1

1
qi

∑qi
j=1 ∇θGθt(u

(i))(y
(i)
j), and for some constant c1 > 0 which depends polynomially

on the depth L, and the radii ρ, ρ1, and ρ2 whenever σ0 ≤ 1− ρmax{ 1√
mf

, 1√
mg

}. Thus, the loss L satisfies

RSC w.r.t (Bt
κ,θt), i.e., Condition 1(c), whenever ∥∇θḠt∥22 = Ω(1√

mf
+ 1√

mg
).

Theorem 3 (Smoothness for DONs). Under Assumptions 2 and 3, with probability at least 1− 2KL(1
mf

+
1

mg
), the DON loss L (3) is β-smooth in BEuc

ρ,ρ1
(θ0) with β = c2K

2, where c2 > 0 is a constant which depends

polynomially on the depth L, and the radii ρ, ρ1, and ρ2 whenever σ0 ≤ 1− ρmax{ 1√
mf

, 1√
mg

}.

Remark 2 (Ensuring that αt/β < 1). As mentioned in Remark 1, in order to use the optimization framework
from Section 4, the statement of Theorem 1 requires αt/β ≤ 1. We prove that this condition is satisfied with
a strict inequality for DONs in Proposition 1 in Appendix D.

Optimization Under Gradient Descent for DONs. We have that Theorem 2 satisfies Condition 1 and
Theorem 3 satisfies Condition 2. We also proved that αt/β < 1. Thus, when ∥∇θḠt∥22 = Ω(1√

mf
+ 1√

mg
),

i.e., αt > 0, a decrease on the loss function by GD is ensured with probability at least 1− 2KL(1
mf

+ 1
mg

)

towards its minimum value taken within the set BEuc
ρ,ρ1

(θ0) due to Theorem 1.

Remark 3 (The benefit of over-parameterization for the RSC property). According to (13), ∥∇θḠt∥22 =
Ω(1√

mf
+ 1√

mg
) is needed to ensure that αt > 0, i.e., to ensure that the empirical loss L satisfies the RSC

property at time t. Thus, as both widths mf and mg increase, L attains the RSC property at a lower value
of ∥∇θḠt∥22.

Remark 4 (Over-parameterization allows for a larger neighborhood around initialization). The condition
σ0 ≤ 1 − ρmax{ 1√

mf
, 1√

mg
} (required for obtaining a polynomial dependence on L for both RSC and

smoothness parameters) implies ρ ≤ min{mf ,mg} since σ0 must be positive. Thus, it is possible to increase
the radius ρ as we increase both mf and mg. Thus, we can enlarge the neighborhood around the initialization
point where our guarantees hold as the widths increase.

7

6 Optimization Analysis for FNO

As in the case of DONs, we also focus on scalar input functions u. To pass the input function u, we
discretize it by sampling it on R̄ locations, forming a vector of dimension R̄. Thus, the encoder P (u;θp)(x)
in equation (4) takes a vector of dimension R̄+ dx (R̄ from the sampled u and dx from the output location
where we evaluate the operator on). For our purposes, we consider a fixed (not trainable) encoder with output
dimension d: P (u;θp)(x) ≡ P (u)(x) ∈ Rd; and a linear decoder Q(α(L+1);θq)(x) =

1√
m
v⊤α(L+1)(x) ∈ R

with θq ≡ v ∈ Rm assuming α(L+1)(x) ∈ Rm. Thus, following (Li et al., 2021a), the FNO model is:

α(0) = P (u)(x)

α(1) = ϕ

(
1√
m
W (1)α(0)

)

α(l) = ϕ

(
1√
m
W (l)α(l−1) +

1√
m
F ∗R(l)Fα(l−1)

)
, l ∈ {2, . . . , L+ 1}

f(θ;x) =
1√
m
v⊤α(L+1) ,

where ϕ is a pointwise smooth activation function, F is the discrete Fourier transform kernel (as a matrix) with
F ∗ being its conjugate transpose, the weight matrices are W (1) ∈ Rm×d, W (l) ∈ Rm×m and R(l) ∈ Rm×m

for layer l ∈ {2, . . . , L + 1} (all hidden layers have the same width m). The ij-entries of W (l) and R(l)

are w
(l)
ij and r

(l)
ij , respectively, for an appropriate l. With some abuse of notation, we denote the entire

set of trainable parameters by θ = [θ⊤
w θ⊤

r]
⊤, with θw = [vec(W (1))⊤, . . . , vec(W (L+1))⊤ v⊤]⊤ and θr =

[vec(R(2))⊤, . . . , vec(R(L+1))⊤]⊤. We denote the number of parameters by pw + pr, where θw ∈ Rpw and
θr ∈ Rpr . Let θ0 be the parameter vector at initialization and θt be it at time step t.

We remark that our model uses an m × m Discrete Fourier Transform kernel F , whose kj-entry is
Fkj = e−

2πι
m (k−1)(j−1), with ι representing the imaginary unit.

Assumption 5 (Activation functions). The activation function ϕ is 1-Lipschitz and βϕ-smooth (i.e.
ϕ′′
l ≤ βϕ) for some βϕ > 0.

Assumption 6 (Initialization of weights). All weights of the FNO are initialized independently as follows:

(i) w
(l)
0, ij ∼ N (0, σ2

0w) and r
(l)
0, ij ∼ N (0, σ2

0r) for l ∈ [L+ 1] where σ0,w =
σ1,w

2(1+
√

log m√
2m

)
and σ0,r =

σ1,r

2(1+
√

log m√
2m

)
,

where σ1,w, σ1,r > 0; (ii) the decoder parameter v is a random vector with unit norm ∥v∥2 = 1. Further, we

assume the encoder output satisfies ∥α(0)∥2 =
√
d.

For a given parameter vector θ̄ ∈ Rpw+pr , we introduce the neighborhood set BEuc
ρw,ρr,ρ1

(θ̄) = {θ ∈ Rpw+pr :

∥W (l) − W̄ (l)∥2 ≤ ρw, l ∈ [L+ 1], ∥R(l) − R̄(l)∥2 ≤ ρr, l ∈ {2, . . . , L+ 1}, ∥v − v̄∥2 ≤ ρ1} for ρw, ρr, ρ1 > 0.
We say that an element of BEuc

ρw,ρr,ρ1
(θ̄) is strictly inside BEuc

ρw,ρr,ρ1
(θ̄) when it satisfies every inequality in the

set’s definition without equality.
The following assumption is analogous to Assumption 1.

Assumption 7 (Iterates inside BEuc
ρw,ρr,ρ1

(θ0)). All iterates {θt}t≥1 follow GD as in (7) and are strictly

inside the set BEuc
ρw,ρr,ρ1

(θ0) for fixed ρw, ρr, ρ1 > 0.

We also introduce the following auxiliary set.

Definition 3 (Qt
κ sets for FNOs). For an iterate θt, let ∇θḠt =

1
n

∑n
i=1

1
R

∑R
j=1 ∇θGθt

(u(i))(xj). For

κ ∈ (0, 1), define Qt
κ := {θ ∈ Rpw+pr | | cos(θ − θt,∇θḠt)| ≥ κ}.

Note that unlike DONs, the Qt
κ sets for FNOs are relatively simpler due to a single network architecture.

Next, we prove the RSC and smoothness conditions (corresponding to Conditions 1 and 2, respectively).
Using the nomenclature of Section 4, the set BEuc

ρw,ρr,ρ1
(θ0) corresponds to B(θ0), and Bt

κ := Qt
κ∩BEuc

ρw,ρrρ1
(θ0)∩

BEuc
ρ2

(θt) corresponds to Nt.

8

Deep Operator Network Fourier Neural Operator

Qt
κ set More Complex Similar

Hessian and gradient bounds of the neural operator model Similar* More Complex
RSC and Smoothness characterization; computing the Hessian of L More Complex Similar

Table 1: We indicate whether a specific neural operator (DON or FNO) has a similar or a more complex
derivation of specific mathematical objects or properties compared to a feedforward neural network (as
in (Banerjee et al., 2023b)). *The similarity is with respect to each individual network of the DON.

Theorem 4 (RSC for FNOs). Consider Assumptions 5, 6, and 7, and Qt
κ as in Definition 3. Then, the set

Bt
κ := Qt

κ ∩BEuc
ρw,ρrρ1

(θ0) ∩BEuc
ρ2

(θt) is a non-empty set that satisfies Condition 1(a) and (b) for suitable ρ2.

Moreover, with probability at least 1− 2(L+2)
m , at step t of GD, the FNO loss L (6) satisfies equation (8) with

αt = 2κ2∥∇θḠt∥22 −
c1√
m

, (14)

where ∇θḠt =
1
n

∑n
i=1

1
R

∑R
j=1 ∇θGθt

(u(i))(xj), and for some constant c1 > 0 which depends polynomially

on the depth L, and the radii ρw, ρr, ρ1, and ρ2 whenever σ1,w + σ1,r ≤ 1 − ρw+ρr√
m

. Thus, the loss L(θ)
satisfies RSC w.r.t (Bt

κ,θt), i.e., Condition 1(c), whenever ∥∇θḠt∥22 = Ω(1√
m
).

Theorem 5 (Smoothness for FNOs). Under Assumptions 5 and 6, with probability at least 1− 2(L+2)
m ,

the FNO loss L (6) is β-smooth in BEuc
ρw,ρrρ1

(θ0) with β being a positive constant which depends polynomially

on the depth L, and the radii ρw, ρr, and ρ1 whenever σ1,w + σ1,r ≤ 1− ρw+ρr√
m

.

Remark 5 (Ensuring that αt/β < 1). Similar to our discussion in Remark 2, we prove that αt/β < 1 in
Proposition 3 from Appendix E, satisfying the condition required in the statement of Theorem 1.

Optimization Under Gradient Descent for FNOs. We have that Theorem 4 satisfies Condition 1 and
Theorem 5 satisfies Condition 2. We also proved that αt/β < 1. Thus, when ∥∇θḠt∥22 = Ω(1√

m
), i.e., αt > 0,

a decrease on the loss function by GD is ensured with probability at least 1− 2(L+2)
m towards its minimum

value taken within the set BEuc
ρw,ρrρ1

(θ0) due to Theorem 1.

Remark 6 (The effects of over-parameterization for FNOs). Similar observations to Remarks 3 and 4 hold
for FNOs, i.e., that over-parameterization ensures (i) a better condition for ensuring the RSC property, and
(ii) a larger neighborhood around the initialization point over which our guarantees hold. Item (ii) follows
from the relationship ρw+ρr ≤ √

m obtained when choosing σ1,w and σ1,r to ensure a polynomial dependence
as in Theorems 4 and 5.

7 Comparison between Neural Operators and Feedforward Neural
Networks

Our presented analysis provides sufficient conditions that guarantee the optimization of DONs and FNOs
under gradient descent (GD). It is non-trivial that GD should converge for neural operators in a similar
way to how it converges for feedforward neural networks (FFNs), i.e., by being particular instances of the
general optimization framework from Section 4. Indeed, as indicated in Table 1, there exist similarities and
differences between our derivations for neural operators and the ones for FFNs.

The challenge in the analysis of DONs. The fact that the output of a DON is an inner product of two
FFNs (1)—the branch and trunk networks—makes the mathematical analysis of the RSC and smoothness
properties more involved than the analysis associated to a single FFN. Indeed, the appearance of cross-
interaction terms between the two FFNs complicates the Hessian structure of the empirical loss L and requires
a more complex definition of the RSC Qt

κ set compared to the one used for FFNs or FNOs. On the other
hand, since the branch and trunk networks are individually FFNs, their individual Hessian and gradient
bounds are known.

9

0 200 400 600 800
Epochs % 100

10−8

10−6

10−4

10−2

100

lo
ss

m = 10

m = 50

m = 100

m = 200

m = 500

(a) Antiderivative

0 200 400 600 800
Epochs % 100

10−5

10−4

10−3

10−2

10−1

100

101

102

103

lo
ss

m = 10

m = 50

m = 100

m = 200

m = 500

(b) Diffusion-Reaction

0 200 400 600 800
Epochs % 100

10−7

10−6

10−5

10−4

10−3

10−2

10−1

lo
ss

m = 10

m = 50

m = 100

m = 200

m = 500

(c) Burger’s Equation

Figure 1: Training progress of DONs as measured by the empirical loss (2) over 80,000 epochs. The y-axis is
plotted on a log-scale and the x-axis denotes the training epochs % 100 (i.e., the loss is stored at every 100th

epoch). Wider networks typically lead to lower loss for all three problems.

The challenge in the analysis of FNOs. The fact that FNOs—unlike FFNs—include a series of learnable
transformations in the Fourier domain makes the mathematical analyses of their Hessian and gradient bounds
more involved than the ones for FFNs. Indeed, these Fourier transformations introduce cross-derivatives
between weights in data and Fourier domains in the Hessian that need to be carefully taken into account. On
the other hand, since FNOs are composed of a single network, their Qt

κ set is similar to FFNs, as well as
their RSC and smoothness analyses.

8 Experiments

We present experiments on the effect of over-parameterization on the training performance of DONs and
FNOs, as measured by the empirical risk over a mini-batch of the training dataset using the Adam optimizer.
We consider three prototypical operator learning problems in the literature (Li et al., 2021a; Lu et al.,
2021): (a) the antiderivative (or integral) operator, (b) the diffusion-reaction operator, and (c) Burgers’
equation. We do not consider vector-valued problems (e.g., Navier-Stokes) because they are not covered
by our theoretical framework. For definiteness, we consider the branch and trunk nets to have the same
width m (i.e., mf = mg = m) for the DON, and the same width m for the FNO. In all experiments, we
increase the width from m = 10 to m = 500. For all networks, we use the Scaled Exponential Linear Unit
(SELU) (Klambauer et al., 2017) as their smooth activation function. We monitor the training process over
80, 000 training epochs and report the resulting average loss. Note that the objective of this section is to show
the effect of over-parameterization on the neural operator training and not to present any kind of comparison
between the two neural operators.

The results for DONs (Figure 1) and FNOs (Figure 2) clearly show that both neural operators benefit
from an increasing width m since it leads to overall lower training losses for all three learning problems and
it generally leads to faster optimization convergence. The Antiderivative operator is a linear operator and
therefore is learned very accurately, especially for wider DONs and FNOs where the loss is around 10−12

and 10−5 respectively. The diffusion-reaction equation demonstrates lower loss with increasing width less
markedly than the antiderivative operator for DONs and more markedly for FNOs. This can be attributed in
part to the fact that the operator is inherently nonlinear. Finally, regarding Burger’s equation, lower training
losses and faster convergence is more markedly for FNOs than for DONs as the width increases.

Additional information on the experimental settings and additional experiments are found in Appendix F.

9 Conclusion

We present novel optimization guarantees for gradient descent for neural operators with smooth activations:
Deep Operator Networks and Fourier Neural Operators. Our guarantees are based on the restricted

10

0 200 400 600 800
Epochs % 100

10−6

10−5

10−4

10−3

10−2

10−1

lo
ss

m = 10

m = 50

m = 100

m = 200

m = 500

(a) Antiderivative

0 200 400 600 800
Epochs % 100

10−8

10−7

10−6

10−5

10−4

10−3

lo
ss

m = 10

m = 50

m = 100

m = 200

m = 500

(b) Diffusion-Reaction

0 200 400 600 800
Epochs % 100

10−6

10−5

10−4

10−3

10−2

lo
ss

m = 10

m = 50

m = 100

m = 200

m = 500

(c) Burger’s Equation

Figure 2: Training progress of FNOs as measured by the empirical loss (5) over 80,000 epochs. The setting of
the plots is similar to Figure 1. Wider networks typically lead to lower loss for all three problems.

strong convexity and smoothness of the loss, thus providing an encompassing framework to neural operator
optimization. We argue that increasing the width of the neural operators benefits our theoretical guarantees.
We also present empirical evaluations on prototypical operator learning problems to complement our theory.

Acknowledgements. Part of the work was done when Pedro Cisneros-Velarde and Bhavesh Shrimali were
affiliated with the University of Illinois Urbana-Champaign and was concluded during their current affiliations.
The work was supported by the National Science Foundation (NSF) through awards IIS 21-31335, OAC
21-30835, DBI 20-21898, as well as a C3.ai research award.

References

Z. Allen-Zhu, Y. Li, and Z. Song. A Convergence Theory for Deep Learning via Over-Parameterization.
Technical Report arXiv:1811.03962, arXiv, 2019. arXiv:1811.03962 [cs, math, stat] type: article.

S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generalization for
overparameterized two-layer neural networks. In International Conference on Machine Learning. 2019a.

S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang. On exact computation with an infinitely
wide neural net. In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2019b.

A. Banerjee, P. Cisneros-Velarde, L. Zhu, and M. Belkin. Neural tangent kernel at initialization: linear width
suffices. In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence. PMLR,
2023a.

A. Banerjee, P. Cisneros-Velarde, L. Zhu, and M. Belkin. Restricted strong convexity of deep learning models
with smooth activations. In The Eleventh International Conference on Learning Representations (ICLR),
2023b.

K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model Reduction And Neural Networks
For Parametric PDEs. The SMAI journal of computational mathematics, 7:121–157, 2021a.

K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model Reduction and Neural Networks for
Parametric PDEs. arXiv:2005.03180 [cs, math, stat], 2021b. arXiv: 2005.03180.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

E. Centofanti, M. Ghiotto, and L. F. Pavarino. Learning the hodgkin-huxley model with operator learning
techniques. arXiv preprint arXiv:2406.02173, 2024.

11

T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks with arbitrary
activation functions and its application to dynamical systems. IEEE Transactions on Neural Networks, 6
(4):911–917, 1995.

P. Cisneros-Velarde, Z. Chen, S. Koyejo, and A. Banerjee. Optimization and generalization guarantees for
weight normalization. Transactions on Machine Learning Research, 2025.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

B. Deng, Y. Shin, L. Lu, Z. Zhang, and G. E. Karniadakis. Approximation rates of deeponets for learning
operators arising from advection–diffusion equations. Neural Networks, 153:411–426, 2022.

W. Diab and M. Al Kobaisi. U-deeponet: U-net enhanced deep operator network for geologic carbon
sequestration. Scientific Reports, 14(1):21298, 2024.

S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural networks.
In International conference on machine learning. 2019.

S. Goswami, M. Yin, Y. Yu, and G. Karniadakis. A physics-informed variational DeepONet for predicting
the crack path in brittle materials. Computer Methods in Applied Mechanics and Engineering, 391:114587,
2022. arXiv: 2108.06905.

P. Harder, A. Hernandez-Garcia, V. Ramesh, Q. Yang, P. Sattegeri, D. Szwarcman, C. Watson, and D. Rolnick.
Hard-constrained deep learning for climate downscaling. Journal of Machine Learning Research, 24(365):
1–40, 2023.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,
1991.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators.
Neural Networks, 2(5):359–366, 1989.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. Advances in neural information processing systems, 31, 2018.

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods under
the polyak-lojasiewicz condition. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. 2016.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural networks. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY,
USA, 2017. Curran Associates Inc.

K. Kontolati, S. Goswami, M. D. Shields, and G. E. Karniadakis. On the influence of over-parameterization
in manifold based surrogates and deep neural operators. arXiv preprint arXiv:2203.05071, 2022.

N. Kovachki, S. Lanthaler, and S. Mishra. On universal approximation and error bounds for fourier neural
operators. The Journal of Machine Learning Research, 22(1):13237–13312, 2021.

N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar. Neural
operator: Learning maps between function spaces with applications to pdes. Journal of Machine Learning
Research, 24(89):1–97, 2023.

J. N. Kutz and S. L. Brunton. Promising directions of machine learning for partial differential equations.
Nature Computational Science, 4(7):483–494, 2024.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Multipole
Graph Neural Operator for Parametric Partial Differential Equations. arXiv:2006.09535 [cs, math, stat],
2020a. arXiv: 2006.09535.

12

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Neural
Operator: Graph Kernel Network for Partial Differential Equations. arXiv:2003.03485 [cs, math, stat],
2020b. arXiv: 2003.03485.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier
Neural Operator for Parametric Partial Differential Equations. arXiv:2010.08895 [cs, math], 2021a. arXiv:
2010.08895.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Markov
Neural Operators for Learning Chaotic Systems. arXiv:2106.06898 [cs, math], 2021b. arXiv: 2106.06898.

Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar. Fourier neural operator with learned deformations for pdes
on general geometries. Journal of Machine Learning Research, 24(388):1–26, 2023.

B. Liu, N. Kovachki, Z. Li, K. Azizzadenesheli, A. Anandkumar, A. Stuart, and K. Bhattacharya. A learning-
based multiscale method and its application to inelastic impact problems. Journal of the Mechanics and
Physics of Solids, 158:104668, 2022a. arXiv: 2102.07256.

C. Liu, L. Zhu, and M. Belkin. On the linearity of large non-linear models: when and why the tangent kernel
is constant. arXiv preprint arXiv:2010.01092, 2021a.

C. Liu, L. Zhu, and M. Belkin. Loss landscapes and optimization in over-parameterized non-linear systems
and neural networks. arXiv preprint arXiv:2003.00307, 2021b.

C. Liu, L. Zhu, and M. Belkin. Loss landscapes and optimization in over-parameterized non-linear systems
and neural networks. Applied and Computational Harmonic Analysis, 2022b.

L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via deeponet based
on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3):218–229, 2021.

Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The Expressive Power of Neural Networks: A View from the
Width. In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2017.

J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall,
Z. Li, K. Azizzadenesheli, P. Hassanzadeh, K. Kashinath, and A. Anandkumar. FourCastNet: A Global
Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators. arXiv:2202.11214
[physics], 2022. arXiv: 2202.11214.

S. Qin, F. Lyu, W. Peng, D. Geng, J. Wang, N. Gao, X. Liu, and L. L. Wang. Toward a better understanding
of fourier neural operators: Analysis and improvement from a spectral perspective. arXiv preprint
arXiv:2404.07200, 2024.

Y. Qiu, N. Bridges, and P. Chen. Derivative-enhanced deep operator network. arXiv preprint arXiv:2402.19242,
2024.

Y. Sun, C. Moya, G. Lin, and M. Yue. Deepgraphonet: A deep graph operator network to learn and zero-shot
transfer the dynamic response of networked systems. IEEE Systems Journal, 2023.

A. Tran, A. Mathews, L. Xie, and C. S. Ong. Factorized fourier neural operators. arXiv preprint
arXiv:2111.13802, 2021.

S. Wang and P. Perdikaris. Long-time integration of parametric evolution equations with physics-informed
DeepONets. arXiv:2106.05384 [physics], 2021. arXiv: 2106.05384.

S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial differential
equations with physics-informed deeponets, 2021a.

S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial differential
equations with physics-informed DeepOnets. arXiv:2103.10974 [cs, math, stat], 2021b. arXiv: 2103.10974.

13

G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, and S. M. Benson. U-FNO—An enhanced Fourier neural
operator-based deep-learning model for multiphase flow. Advances in Water Resources, 163:104180, 2022.

Q. Yang, A. Hernandez-Garcia, P. Harder, V. Ramesh, P. Sattegeri, D. Szwarcman, C. D. Watson, and
D. Rolnick. Fourier neural operators for arbitrary resolution climate data downscaling. arXiv preprint
arXiv:2305.14452, 2023.

14

A Related Work

Learning Operators. Constructing operator networks for ordinary differential equations using learning-
based approaches was first studied in (Chen and Chen, 1995), where a neural network with a single hidden
layer was shown to approximate a nonlinear continuous functional. This was, in essence, akin to the Universal
Approximation Theorem for classical neural networks (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991; Lu
et al., 2017). While this theorem only guaranteed the existence of a neural architecture, it was not practically
realized until Lu et al. (2021) provided an extension of the theorem to DONs. Since then, several works
have pursued applications of DONs to different problems, e.g., (Goswami et al., 2022; Wang and Perdikaris,
2021; Diab and Al Kobaisi, 2024; Centofanti et al., 2024; Sun et al., 2023), as well as improved the DON
model itself, e.g., Wang et al. (2021b); Qiu et al. (2024). From a standpoint of generalization, Kontolati et al.
(2022) studied the effects of over-parameterization on the generalization properties of DONs in the context of
dynamical systems. Nonetheless, an optimization analysis of DONs is an open problem.

The operator learning paradigm has also been explored in parallel by other works seeking to directly
parameterize the integral kernel in the Fourier domain using a deep network (Bhattacharya et al., 2021b,a; Li
et al., 2021a, 2020b, 2021b). Several subsequent extensions explored different architectures for Fourier-based
operators tailored to specific problems (Li et al., 2020a; Liu et al., 2022a; Wen et al., 2022; Pathak et al.,
2022; Centofanti et al., 2024). Other notable techniques include the use of a factorized spectral representation
Tran et al. (2021), using larger Fourier kernels to capture a broader set of frequencies Qin et al. (2024),
employing FNOs in latent space in an encoder-decoder framework Li et al. (2023). Recently, FNOs were
used to accelerate simulations in climate science (Yang et al., 2023; Harder et al., 2023). Nevertheless, while
significant progress has been made for FNOs from an applied perspective, their formal optimization analysis
is an open problem.

Optimization Analysis of Neural Networks. Optimization of over-parameterized deep neural
networks has been studied extensively, e.g., (Du et al., 2019; Arora et al., 2019b,a; Allen-Zhu et al., 2019; Liu
et al., 2021a). In particular, Jacot et al. (2018) showed that the NTK of a deep network converges to an
explicit kernel in the limit of infinite network width and stays constant during training. Liu et al. (2021a)
showed that this constancy arises due to the scaling properties of the Hessian of the predictor as a function
of network width. Banerjee et al. (2023a) showed that a deep network whose width is effectively linear on
the sample size can ensure convergence under appropriate initialization. Du et al. (2019) and Allen-Zhu
et al. (2019) showed that GD converges to zero training error in polynomial time for deep over-parameterized
models such as ResNets and CNNs. Karimi et al. (2016) showed that the Polyak-Lojasiewicz (PL) condition,
a weaker condition than strong convexity, can be used to explain the linear convergence of gradient-based
methods. Banerjee et al. (2023b) showed convergence of GD for feedforward networks using RSC, which
leads to a variant of the PL condition. Cisneros-Velarde et al. (2025) used RSC to prove the optimization of
networks with weight normalization using GD.

B Additional Information on Neural Operators

B.1 Learning Operators

We briefly outline the notion of learning for neural operators (Li et al., 2021a, 2020b; Lu et al., 2021). Consider
two separable Banach spaces, the input space U and the output space V, and a possibly nonlinear operator
G† : U → V.

The standard operator learning problem seeks to approximate G† by a parametric operator Gθ : U → V
that depends on the parameter vector θ ∈ Θ defined over some parameter space Θ.

This is done by proposing an optimization framework where we learn a vector θ† ∈ Θ that “best”
approximates G† in some sense. Given observations {u(j)}nj=1 ∈ U and {G†(u(j))}nj=1 ∈ V where u(j) ∼ µ,

j = 1, . . . , n, is an i.i.d sequence from the probability measure µ supported on U , we take θ† as the solution
of the minimization problem

θ† = argminθ∈Θ Eu∼µ

[
C
(
Gθ(u), G

†(u)
)]

, (15)

where C is a suitable cost functional that measures the discrepancy on the approximation between the

15

operators Gθ(u) and G†(u) for a given u ∈ U . This optimization problem is analogous to the notion of
learning in finite dimensions, which is precisely the setup for which classical deep learning is used.

B.2 DON Architecture

The schematic for the Deep Operator Network’s architecture is presented in Figure 3.

r
r

R n

nqi

Trunk Net:

Branch Net:

Output Locations

Input Functions

“inner product”
1

1

g

f

mf

mg

mf

mg

width of the branch net

width of the trunk net

K

K

Figure 3: A schematic of the DON architecture by Lu et al. (2021) used in our study. We refer to the notation
used in our paper. Note that the input functions need not be sampled on a structured grid of points.

B.3 FNO Architecture

A schematic for the Fourier Neural Operator’s architecture is presented in Figure 4.

Input Functions

Encoder
() Fourier Blocks

Block 1 Block 2 Block n

Spec. conv
()

Bypass conv
()

� � �

Decoder

Bypass convolution

Bypass conv
()

Bypass conv
()

Spec. conv
()

Spec. conv
()

Spec. conv (Spectral Convolution)

Output

Figure 4: A schematic of the FNO architecture by Li et al. (2021a) used in our study. We refer to the notation
used in our paper. “Spectral convolution” and “bypass convolution” are terms used in the FNO literature to
denote the effect of the linear mappings in the spectral and spatial domain, respectively.

16

C Optimization Convergence Analysis for Section 4

We establish relevant results for Section 4. Our analysis follows very closely the recent work by Banerjee
et al. (2023b) and generalizes it. We now provide all the relevant proofs.

We start with the following lemma which shows that Condition 1 implies a form of restricted PL condition.

Lemma C.1 (Restricted PL). Assume Condition 1 is satisfied. Then, L satisfies a restricted form of the
Polyak- Lojasiewicz (PL) condition w.r.t. (Nt,θt):

L(θt)− inf
θ∈Nt

L(θ) ≤ 1

2αt
∥∇θL(θt)∥22 . (16)

Proof. Define

L̂θt
(θ) := L(θt) + ⟨θ − θt,∇θL(θt)⟩+

αt

2
∥θ − θt∥22 .

By the αt-RSC property of Condition 1(c), ∀θ′ ∈ Nt, we have

L(θ′) ≥ L̂θt
(θ′) . (17)

Further, note that L̂θt
(·) is minimized at θ̂t+1 := θt −∇θL(θt)/αt and the minimum value is:

inf
θ∈Rp

L̂θt
(θ) = L̂θt

(θ̂t+1) = L(θt)−
1

2αt
∥∇θL(θt)∥22 .

Then, we have that

inf
θ∈Nt

L̂θt
(θ) ≥ inf

θ∈Rp
L̂θt

(θ) = L(θt)−
1

2αt
∥∇θL(θt)∥22 . (18)

This means that that L̂θt
(·) is lower bounded by the expression on the right-hand side of (18) and so we can

take the infimum over Nt on both sides of (17) and obtain

inf
θ∈Nt

L(θ) ≥ inf
θ∈Nt

L̂θt
(θ) . (19)

Finally, we obtain the expression in (16) by using both inequalities in (18) and (19) and rearranging terms.

Next, we show that the restricted PL condition on Nt in Lemma C.1 along with smoothness (Condition 2)
can be used to show a loss reduction on Nt.

Lemma C.2 (Local loss reduction). Assume Conditions 1 and 2 with αt ≤ β at step t of the GD update
as in (7) with step-size ηt =

ωt

β for some ωt ∈ (0, 2). Then, we have

L(θt+1)− inf
θ∈Nt

L(θ) ≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− inf

θ∈Nt

L(θ)) . (20)

Proof. Since L is β-smooth by Condition 2, we have

L(θt+1) ≤ L(θt) + ⟨θt+1 − θt,∇θL(θt)⟩+
β

2
∥θt+1 − θt∥22

= L(θt)− ηt∥∇θL(θt)∥22 +
βη2t
2

∥∇θL(θt)∥22

= L(θt)− ηt

(
1− βηt

2

)
∥∇θL(θt)∥22 .

(21)

17

Since αt > 0 by assumption, from Lemma C.1 we obtain

−∥∇θL(θt)∥22 ≤ −2αt(L(θt)− inf
θ∈Nt

L(θ)) .

Hence

L(θt+1)− inf
θ∈Nt

L(θ) ≤ L(θt)− inf
θ∈Nt

L(θ)− ηt

(
1− βηt

2

)
∥∇θL(θt)∥22

(a)

≤ L(θt)− inf
θ∈Nt

L(θ)− ηt

(
1− βηt

2

)
2αt(L(θt)− inf

θ∈Nt

L(θ))

=

(
1− 2αtηt

(
1− βηt

2

))
(L(θt)− inf

θ∈Nt

L(θ))

where (a) follows for any ηt ≤ 2
β because this implies 1− βηt

2 ≥ 0. Choosing ηt =
ωt

β , ωt ∈ (0, 2),

L(θt+1)− inf
θ∈Nt

L(θ) ≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− inf

θ∈Nt

L(θ)) .

This completes the proof.
Finally, we show that the local loss reduction result in Nt from Lemma C.2 can be extended to show loss

reduction in B(θ0), which is the main optimization result.

Theorem 1 (Global loss reduction). Consider Assumption 1 and Conditions 1 and 2 with αt ≤ β at
step t of the GD update (7) with step-size ηt =

ωt

β for some ωt ∈ (0, 2). If L(θt) ̸= inf
θ∈B(θ0)

L(θ), then we have

0 ≤ γt :=
inf

θ∈Nt
L(θ)− inf

θ∈B(θ0)
L(θ)

L(θt)− inf
θ∈B(θ0)

L(θ) < 1 and

L(θt+1)− inf
θ∈B(θ0)

L(θ) ≤
(
1− αtωt(1− γt)

β
(2− ωt)

)
(L(θt)− inf

θ∈B(θ0)
L(θ)). (9)

Proof. We start by showing γt =
infθ∈Nt L(θ)− inf

θ∈B(θ0)
L(θ)

L(θt)− inf
θ∈B(θ0)

L(θ) satisfies 0 ≤ γt < 1. First of all, we note that this

quantity is well-defined because we are assuming that L(θt) ̸= inf
θ∈B(θ0)

L(θ), i.e., that the current iterate

does not attain the minimum loss. The fact that γt ≥ 0 follows immediately from inf
θ∈B(θ0)

L(θ) < L(θt) and
inf

θ∈B(θ0)
L(θ) ≤ inf

θ∈Nt

L(θ) since Nt ⊆ B(θ0) by Condition 1(a). Now, there are two ways to prove that γt < 1

depending on whether we consider Condition 1(b.1) or Condition 1(b.2).
We start by considering Condition 1(b.1) and prove by contradiction that γt < 1. Assume that γt ≥ 1,

i.e., inf
θ∈Nt

L(θ) ≥ L(θt). Then, we note that

inf
θ∈Nt

L(θ)
(a)

≤ L(θt+1)
(b)

≤ L(θt)− ηt

(
1− βηt

2

)
∥∇θL(θt)∥22

(c)

≤ inf
θ∈Nt

L(θ)− ηt

(
1− βηt

2

)
∥∇θL(θt)∥22 ,

(22)

where (a) follows from θt+1 ∈ Nt, (b) from (21), and (c) from γt ≥ 1. Then, comparing the leftmost and

rightmost inequalities in (22), we must have ∥∇θL(θt)∥2 = 0 since ηt

(
1− βηt

2

)
> 0 because of ηt =

ωt

β with

ωt ∈ (0, 2). Now, when considering Condition 1(b.1), we either assumed that θ /∈ Nt or that L(θt) ̸= inf
θ∈Nt

L(θ);
thus, we analyze both cases.

(i) Assuming θ /∈ Nt: Note that ∥∇θL(θt)∥2 = 0 implies ∇θL(θt) = 0p (i.e., the gradient evaluated at θt
is the zero vector), which then, due to GD in (7), implies θt = θt+1. Since we had θt+1 ∈ Nt, this then
means that θt ∈ Nt—a contradiction to our assumption.

18

(ii) Assuming L(θt) ̸= inf
θ∈Nt

L(θ): Note that ∥∇θL(θt)∥2 = 0 implies that all the inequalities in (22) are

also equalities. This then implies that L(θt) = inf
θ∈Nt

L(θ)—a contradiction to our assumption.

In either case (i) or (ii), our proof by contradiction shows that γt < 1.
We now consider Condition 1(b.2) with the element θ′ ∈ Nt as described in the condition’s statement.

We immediately obtain that θ′ satisfies inf
θ∈Nt

L(θ) ≤ L(θ′) < L(θt), which then implies γt < 1.

Having shown that γt < 1 according to Condition 1(b), we now proceed to prove equation (9). We consider
two cases: (A) γt > 0 and (B) γt = 0.

We start by considering Case (A), which holds if and only if inf
θ∈Nt

L(θ) > inf
θ∈B(θ0)

L(θ). We now define

δt :=
L(θt)−infθ∈Nt L(θ)

L(θt)− inf
θ∈B(θ0)

L(θ) and note that δt ∈ (0, 1) since δt = 1− γt. Now, with ωt ∈ (0, 2), we have

L(θt+1)− inf
θ∈B(θ0)

L(θ) = L(θt+1)− inf
θ∈Nt

L(θ) + inf
θ∈Nt

L(θ)− inf
θ∈B(θ0)

L(θ)

(a)

≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− inf

θ∈Nt

L(θ)) + (inf
θ∈Nt

L(θ)− inf
θ∈B(θ0)

L(θ))

=

(
1− αtωt

β
(2− ωt)

)
δt(L(θt)− inf

θ∈B(θ0)
L(θ)) + (1− δt)(L(θt)− inf

θ∈B(θ0)
L(θ))

(b)
=

(
1− αtωt

β
(2− ωt)(1− γt)

)
(L(θt)− inf

θ∈B(θ0)
L(θ)) ,

which is (9), and where (a) follows from Lemma C.2 and (b) follows from

(
1− αtωt

β
(2− ωt)

)
δt + (1− δt) = 1− αtωt

β
(2− ωt)δt = 1− αtωt

β
(2− ωt)(1− γt) .

We now consider Case (B), i.e., γt = 0, which holds if and only if inf
θ∈Nt

L(θ) = inf
θ∈B(θ0)

L(θ). Then, we have

L(θt+1)− inf
θ∈B(θ0)

L(θ) = L(θt+1)− inf
θ∈Nt

L(θ)

(a)

≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− inf

θ∈Nt

L(θ))

=

(
1− αtωt

β
(2− ωt)

)
(L(θt)− inf

θ∈B(θ0)
L(θ)) ,

which is (9) when γt = 0, and where (a) follows from Lemma C.2. This completes the proof.

D Analysis for Deep Operator Networks

D.1 Bounds on the Hessian, Gradients and the Predictor

The convergence analysis makes use of the gradients and Hessians of the empirical loss with respect to the
parameters θ, namely,

∇θL(θ) =
[
∇θf

L⊤ ∇θg
L⊤]⊤ , and ∇2

θL(θ) = H (θ) =

[
Hff Hfg

Hgf Hgg

]
, (23)

where ∇θf
L(θ) = ∂L(θ)/∂θf ∈ Rpf and ∇θgL(θ) = ∂L(θ)/∂θg ∈ Rpg . Note that we make use of the

notation ∇θf
(·) to denote the derivative with respect to the parameters θf and this is not a functional

gradient. Similarly, the individual blocks in the 2× 2 block Hessian H(θ) are given by

Hff = ∇2
θf
L =

∂2L
∂θf

2 , Hfg =
∂2L

∂θf∂θg
, Hgf = H⊤

fg =
∂2L

∂θg∂θf
, Hgg = ∇2

θg
L =

∂2L
∂θg

2 , (24)

19

where Hff ∈ Rpf×pf , Hgg ∈ Rpg×pg , Hfg ∈ Rpf×pg , Hgf ∈ Rpg×pf and the argument θ is ignored for clarity

of exposition. Using (3) and rewriting the derivatives in (23) and (24), recalling that ℓi,j = (Gθ(u
(i))(y

(i)
j)−

G†(u(i))(y
(i)
j))2, we get

∂L
∂θf

=
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j

K∑

k=1

g
(i)
k,j∇θf

f
(i)
k and

∂L
∂θg

=
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

f
(i)
k ∇θg

g
(i)
k,j , (25)

∂2L
∂θf

2 =
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j

K∑

k=1

g
(i)
k,j∇2

θf
f
(i)
k +

1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j




K∑

k,k′=1

g
(i)
k,jg

(i)
k′,j∇θf

f
(i)
k ∇θf

f
(i)⊤
k′


 ,

∂2L
∂θg

2 =
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j

k∑

k=1

f
(i)
k ∇2

θg
g
(i)
k,j +

1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j




K∑

k,k′=1

f
(i)
k f

(i)
k′ ∇θg

g
(i)
k,j∇θg

gk′,j
(i)⊤


 ,

∂2L
∂θf∂θg

=
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j

K∑

k=1

∇θf
f
(i)
k ∇θg

g
(i)⊤
k,j +

1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j




K∑

k,k′=1

g
(i)
k,jf

(i)
k′ ∇θf

f
(i)
k ∇θg

gk′,j
(i)⊤


 ,

(26)

for the individual blocks of the Hessian (23) where we make use of the notation f
(i)
k = fk(θf ;u

(i)) and

g
(i)
k,j = gk(θg;y

(i)
j). In the rest of the paper, with some abuse of notation, we also make use of the implicit

notation f
(i)
k (θf) = fk(θf ;u

(i)) and g
(i)
k,j(θg) = gk(θg;y

(i)
j).

In order to prove the RSC and smoothness properties of the empirical loss L, we need to upper bound
the spectral norm of its Hessian. As can be seen above, the gradient and Hessian of the predictors (i.e., the

branch f
(i)
k and trunk g

(i)
k,j networks, k ∈ [K], j ∈ [qi], i ∈ [n]) appear in the Hessian of L, and thus, we will

eventually need the upper bound of their norms. For this, we will make use of the next lemma.

Lemma D.2 (Bounds on the predictors). Under Assumptions 2 and 3, and for θ ∈ BEuc
ρ,ρ1

(θ0), with

probability at least 1− 2KL
(

1
mf

+ 1
mg

)
, we have for every k ∈ [K], i ∈ [n], j ∈ [qi],

∥∥∥∇2
θf
f
(i)
k

∥∥∥ ≤ c(f)
√
mf

and
∥∥∥∇2

θg
g
(i)
k,j

∥∥∥ ≤ c(g)
√
mg

,

∥∥∥∇θf
f
(i)
k

∥∥∥
2
≤ ϱ(f) and

∥∥∥∇θg
g
(i)
k,j

∥∥∥
2
≤ ϱ(g) ,

|f (i)
k | ≤ λ1, and |g(i)k,j | ≤ λ2 ,

(27)

where c(f), c(g), ϱ(f), ϱ(g), λ1, and λ2 are suitable constants that depend on σ0, the depth L and the radii ρ,
ρ1. The dependence of the constants reduces to the depth and the radii and becomes polynomial whenever
σ0 ≤ 1− ρmax{ 1√

mf
, 1√

mg
}.

Proof. The proof follows from a direct adaptation of Theorem 4.1 and of both the statement and proof of
Lemma 4.1 in (Banerjee et al., 2023b) to our setting. Indeed, these results show that c(f), ϱ(f), and λ1

depend on σ0, the depth L and the radii ρ, ρ1; and that such dependence reduces to the depth and the radii
and becomes polynomial whenever σ0 ≤ 1− ρ√

mf
. A similar dependence is obtained for the constants c(g),

ϱ(g), and λ2 whenever σ0 ≤ 1− ρ√
mg

. The last statement in Lemma 27 follows immediately. Finally, since

the bound for a single branch network output holds with probability at least 1− 2L
mf

and for a single trunk

network output holds with probability at least 1 − 2L
mg

, then in order for these bounds to hold for the K

outputs of all predictors, we obtain the overall probability using De Morgan’s law and a union bound.

20

D.3 RSC and Smoothness Results

Using the results from the previous section, we derive the RSC and smoothness results.

Theorem 2 (RSC for DONs). Consider Assumptions 2, 3, and 4, and Qt
κ as in Definition 2. Then, the

set Bt
κ := Qt

κ ∩ BEuc
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt) is a non-empty set that satisfies Condition 1(a) and (b) for suitable

ρ2. Moreover, with probability at least 1 − 2KL(1
mf

+ 1
mg

), at step t of GD, the DON loss L (3) satisfies

equation (8) with

αt = 2κ2∥∇θḠt∥22 − c1K
2

(
1

√
mf

+
1

√
mg

)
(13)

where ∇θḠt =
1
n

∑n
i=1

1
qi

∑qi
j=1 ∇θGθt

(u(i))(y
(i)
j), and for some constant c1 > 0 which depends polynomially

on the depth L, and the radii ρ, ρ1, and ρ2 whenever σ0 ≤ 1− ρmax{ 1√
mf

, 1√
mg

}. Thus, the loss L satisfies

RSC w.r.t (Bt
κ,θt), i.e., Condition 1(c), whenever ∥∇θḠt∥22 = Ω(1√

mf
+ 1√

mg
).

Proof. We start by proving the first part of the theorem’s statement. Since Bt
κ ⊂ BEuc

ρ,ρ1
(θ0), we satisfy

Condition 1(a). We now need to satisfy Condition 1(b). For this, we first show the existence of an element
θ′ ∈ Bt

κ. For such θ′, it must be true that θ′ ∈ Qt
κ. From Definition 2, θ′ needs to satisfy three conditions:

| cos(θ′ − θt,∇θḠθt)| ≥ κ (cosine similarity condition) ,

(θ′
f − θf,t)

⊤


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j

K∑

k=1

∇θf
f
(i)
k ∇θg

g
(i) ⊤
k,j


 (θ′

g − θg,t) ≥ 0 (average condition) ,

(θ′
f − θf,t)

⊤

(
K∑

k=1

∇θf
f
(i)
k ∇θg

g
(i) ⊤
k,j

)
(θ′

g − θg,t) ≤ 0,∀i ∈ [n],∀j ∈ [qi] (output condition).

Let us consider θ′ = [θ′
f
⊤
θ′
g
⊤
]⊤, where θ′

f ∈ Rpf will be specified later and θ′
g = θg,t. Then, belonging to

the Qt
κ set conveniently reduces to the feasibility of the cosine similarity condition as follows:

| cos(θ′
f − θf,t , ḡf ⟩)| ≥ κ , (28)

where ḡf is the first pf components of the gradient ∇θḠθt (recall that the cosine computation is invariant to
the vector norms).

With all of this in mind, we proceed to show the existence of an element θ′ ∈ Bt
κ of the form θ′ =

[θ′
f
⊤
θg,t

⊤]⊤ satisfying condition (28) and the following two conditions:

Condition (A): ∥θ′
f − θf,t∥2 = ϵ for some ϵ <

2∥∇θf
L(θt)∥2

√
1−κ2

β ; and

Condition (B): the angle ν′ between (θ′
f − θf,t) and −∇θf

L(θt) is acute, so that cos(ν′) > 0.

To show the existence of such element θ′ ∈ Bt, we propose two possible constructions:

Choice (A): If the points θf,t+1, ḡf + θf,t, and θf,t are not collinear, then they define a hyperplane P that
contains the vectors ḡf and −∇θf

L(θt) (recall that θf,t+1 − θf,t = −∇θf
L(θt) by gradient

descent). We choose θ′
f such that the vector θ′

f − θf,t lies in P with cos(θ′
f − θf,t, ḡf) = κ (i.e.,

it satisfies condition (28) with equality) while simultaneously satisfying Condition (B). If the
points θf,t+1, ḡf + θf,t, and θf,t are collinear, we choose θ′

f such that it is not collinear with
these points, thus defining a hyperplane P with these other three points, and such that θ′

f is
also taken so that cos(θ′

f − θf,t, ḡf) = κ while simultaneously satisfying Condition (B).

Thus far we have only defined angle (or direction) conditions on the vector θ′
f − θf,t, and so

there could be an infinite number of values for θ′
f satisfying such angle conditions without θ′

belonging to the set BEuc
ρ,ρ1

(θ0) nor θ
′
f satisfying Condition (A). To determine the feasible values

for θ′
f , we observe that θt is strictly inside the set BEuc

ρ,ρ1
(θ0) by Assumption 4, and so θ′

f can be

taken arbitrarily close to θf,t so that θ′ ∈ BEuc
ρ,ρ1

(θ0) and Condition (A) is satisfied.

21

We remark that, regardless of the collinearity of the points θf,t+1, ḡf +θf,t, and θf,t, hyperplane
P contains the vectors θ′

f − θf,t, ḡf , and −∇θf
L(θt), all sharing its origin at θf,t ∈ P.

Choice (B): We choose θ′ as in Choice (A) but with ḡf replaced by −ḡf .

We immediately notice that θ′ defined by either Choice (A) or Choice (B) satisfies θ′ ∈ Qt
κ ∩BEuc

ρ,ρ1
(θ0). To

make θ′ belong to the set Bt
κ, we need to find a radius ρ2 such that θ′ ∈ BEuc

ρ2
(θt), or, equivalently, such that

θ′
f ∈ BEuc

ρ2
(θf,t) due to our construction of θ′. Such ρ2 is found by taking ρ2 > ϵ with ϵ as in Condition (A).

Finally, it is straightforward to verify that such θ′ ∈ Bt
κ defined by either Choice (A) or Choice (B) will

always exist, by considering the following cases for the angle ν between ḡf and −∇θf
L(θt):

(i) If ν ∈ [0, π/2] or ν ∈ [3π/2, 2π], then Choice (A) will be true, since −∇θf
L(θt) is in the positive half

space1 of ḡf ; and

(ii) if ν ∈ [π/2, π] or ν ∈ [π, 3π/2], then Choice (B) will be true, since −∇θf
L(θt) is in the positive half

space of −ḡf .

Now, let us assume we are in the case of item (i) above, so that θ′ is constructed according to Choice (A)
(the rest of the proof can be adapted to the case of item (ii) by using a symmetrical argument and so it is
omitted). Let ν1 be the angle between θ′

f − θf,t and ḡf , so that cos(ν1) = κ according to Choice (A). Then,
we have that

| cos(ν′)| = | cos(ν − ν1)| ≥ | cos(π/2− ν1)| = | sin(ν1)| =
√

1− cos2(ν1) =
√

1− κ2 .

Further, by the construction in Condition (B), cos(ν′) > 0, which implies cos(ν′) ≥
√
1− κ2 > 0. Now, by

the smoothness property of the empirical loss L we have

L(θ′) ≤ L(θt)− ⟨θ′ − θt,−∇θL(θt)⟩+
β

2
∥θ′ − θt∥22

= L(θt)− ∥θ′
f − θf,t∥2∥∇θf

L(θt)∥2 cos(ν) +
β

2
∥θ′

f − θf,t∥22

= L(θt)− ϵ∥∇θf
L(θt)∥2 cos(ν) +

β

2
ϵ2

= L(θt)−
βϵ

2

(
2∥∇θf

L(θt)∥2 cos(ν)
β

− ϵ

)

< L(θt) .

where the last inequality follows by the construction of ϵ in Condition (A). Note that this implies that the
constructed θ′ is as described in Condition 1(b.2). This finishes the proof for Condition 1(b).

We now proceed to prove the second part of the proof. For any θ′ ∈ Bt
κ, by the second order Taylor

expansion of the DON loss with respect to iterate θt, we have

L(θ′) = L(θt) + ⟨θ′ − θt,∇θL(θt)⟩+
1

2
(θ′ − θt)

⊤ ∂2L(θ̃)
∂θ2

(θ′ − θt) ,

where θ̃ = ξθ′ + (1− ξ)θt for some ξ ∈ [0, 1]. To establish αt-RSC of the loss with αt as in (13), it suffices to
focus on the quadratic form of the Hessian and show

(θ′ − θt)
⊤ ∂2L(θ̃)

∂θ2
(θ − θt) ≥ αt∥θ′ − θt∥22 . (29)

Note that the Hessian, by chain rule, is given by

H(θ̃) :=
∂2L(θ̃)
∂θ2

=
1

n

n∑

i=1

1

qi

qi∑

j=1

(
ℓ′′i,j∇θGθ̃(u

(i))(y
(i)
j)∇θGθ̃(u

(i))(y
(i)
j)⊤ + ℓ′i,j∇2Gθ̃(u

(i))(y
(i)
j)
)

.

1We say a is in the positive half-space of b if ⟨a,b⟩ ≥ 0.

22

where ℓi,j = (Gθ̃(u
(i))(y

(i)
j) − G†(u(i))(y

(i)
j))2. Given the 2 × 2 block structure of the Hessian as in (23),

denoting δθ := θ′ − θt for compactness, the quadratic form on the Hessian is given by

δθ⊤H(θ̃)δθ = δθ⊤
f Hff (θ̃)δθf︸ ︷︷ ︸

T1

+2δθ⊤
f Hfg(θ̃)δθg︸ ︷︷ ︸

T2

+ δθ⊤
g Hgg(θ̃)δθg︸ ︷︷ ︸

T3

. (30)

Focusing on T1 and using the exact form of Hff (θ̃) as in (26), we have

T1 =
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j

〈
δθf ,

K∑

k=1

g
(i)
k,j(θ̃g)∇θf

f
(i)
k (θ̃f)

〉2

+
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

g
(i)
k,j(θ̃g)δθ

⊤
f ∇2

θf
f
(i)
k (θ̃f)δθf

(a)

≥ 2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θf

Gθ̃(u
(i))(y

(i)
j)
〉2

− (2Kλ1λ2 + c̃)λ2c
(f)

√
mf

∥δθf∥22 ,

where (a) follows from ℓ′′ij = 2 and the different bounds in Lemma D.2 since θ̃ ∈ BEuc
ρ,ρ1

(θ0), so that

|ℓ′ij | ≤ 2Kλ1λ2 + c̃ with c̃ = maxi∈[n],j∈[qi] |G†(u(i))(y
(i)
j)|. Similarly, for T3 we get

T3 ≥ 2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθg,∇θg

Gθ̃(u
(i))(y

(i)
j)
〉2

− (2Kλ1λ2 + c̃)λ1c
(g)

√
mg

∥δθg∥22 .

Then,

T1 + T3

(a)

≥ 2

n

n∑

i=1

1

qi

qi∑

j=1

(〈
δθg,∇θgGθ̃(u

(i))(y
(i)
j)
〉2

+
〈
δθf ,∇θf

Gθ̃(u
(i))(y

(i)
j)
〉2)

− (2Kλ1λ2 + c̃)

(
λ1c

(g)

√
mg

+
λ2c

(f)

√
mf

)
∥δθ∥22

=
2

n

n∑

i=1

1

qi

qi∑

j=1

(〈
δθg,∇θg

Gθ̃(u
(i))(y

(i)
j)
〉
+
〈
δθf ,∇θf

Gθ̃(u
(i))(y

(i)
j)
〉)2

− 4

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθg,∇θg

Gθ̃(u
(i))(y

(i)
j)
〉〈

δθf ,∇θf
Gθ̃(u

(i))(y
(i)
j)
〉

− (2Kλ1λ2 + c̃)

(
λ1c

(g)

√
mg

+
λ2c

(f)

√
mf

)
∥δθ∥22 ,

where (a) follows from ∥θf∥2, ∥θg∥2 ≤ ∥θ∥2.
Focusing on T2 and using the exact form as in (26), we have

T2 = 2δθ⊤
f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

∇θf
f
(i)
k (θ̃f)∇θgg

(i)
k,j(θ̃g)

⊤


 δθg

+ 2δθ⊤
f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j

(
K∑

k=1

g
(i)
k,j∇θf

f
(i)
k (θ̃f)

)(
K∑

k′=1

f
(i)
k′ ∇θg

g
(i)
k′,j(θ̃g)

⊤

)
 δθg

(a)
= 2δθ⊤

f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

∇θf
f
(i)
k (θ̃f)∇θg

g
(i)
k,j(θ̃g)

⊤


 δθg

︸ ︷︷ ︸
I1

+


 4

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθg,∇θgGθt(u

(i))(y
(i)
j)
〉〈

δθf ,∇θf
Gθt(u

(i))(y
(i)
j)
〉

 ,

23

where (a) follows from ℓ′′i,j = 2.

For I1 our goal is to first transfer the dependence of the gradient terms on θ̃ to θt, so that we can use
properties of the restricted set Qt

κ which is based on θt to simplify the analysis. Towards that end, note that

1

2
I1 = δθ⊤

f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

∇θf
f
(i)
k (θt,f)∇θg

g
(i)
k,j(θt,g)

⊤


 δθg

+ δθ⊤
f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

(
∇θf

f
(i)
k (θ̃f)−∇θf

f
(i)
k (θt,f)

)
∇θg

g
(i)
k,j(θ̃g)

⊤


 δθg

+ δθ⊤
f


 1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′ij

K∑

k=1

∇θf
f
(i)
k (θt,f)

(
∇θg

g
(i)
k,j(θ̃g)−∇θg

g
(i)
k,j(θt,g)

)⊤

 δθg

(a)

≥ − (2Kλ1λ2 + c̃)

n

n∑

i=1

1

qi

qi∑

j=1

∥∥∥∇θf
f
(i)
k (θ̃f)−∇θf

f
(i)
k (θt,f)

∥∥∥
2

∥∥∥∇θg
g
(i)
k,j(θ̃g)

∥∥∥
2
∥δθf∥2∥δθg∥2

− (2Kλ1λ2 + c̃)

n

n∑

i=1

1

qi

qi∑

j=1

K∑

k=1

∥∥∥∇θf
f
(i)
k (θt,f)

∥∥∥
2

∥∥∥∇θg
g
(i)
k,j(θ̃g)−∇θg

g
(i)
k,j(θt,g)

∥∥∥
2
∥δθf∥2∥δθg∥2

(b)
= − (2Kλ1λ2 + c̃)

n

n∑

i=1

1

qi

qi∑

j=1

∥∥∥∇2
θf
f
(i)
k (θ̄f)

∥∥∥
2
∥θ̃f − θt,f∥2

∥∥∥∇θgg
(i)
k,j(θ̃g)

∥∥∥
2
∥δθf∥2∥δθg∥2

− (2Kλ1λ2 + c̃)

n

n∑

i=1

1

qi

qi∑

j=1

K∑

k=1

∥∥∥∇θf
f
(i)
k (θt,f)

∥∥∥
2

∥∥∥∇2
θg
g
(i)
k,j(θ̄g)

∥∥∥
2
∥θ̃g − θt,g∥2∥δθf∥2∥δθg∥2

(c)

≥ −(2Kλ1λ2 + c̃)

(
c(f)ϱ(g)
√
mf

)
∥δθf∥22∥δθg∥2 − (2Kλ1λ2 + c̃)

(
c(g)ϱ(f)
√
mg

)
∥δθf∥2∥δθg∥22

(d)

≥ −(2Kλ1λ2 + c̃)

(
c(g)ϱ(f)
√
mf

+
c(g)ϱ(f)
√
mf

)
∥δθ∥32

≥ −(2Kλ1λ2 + c̃)ρ2

(
c(g)ϱ(f)
√
mf

+
c(g)ϱ(f)
√
mf

)
∥δθ∥22 ,

where (a) follows from the definition of Qt
κ set (Definition 12) since θ′ ∈ Bt

κ ⊂ Qt
κ; (b) follows from the

generalized mean value theorem with θ̄f = ξ1θ̃f +(1− ξ1)θt,f for some ξ1 ∈ [0, 1] and θ̄g = ξ2θ̃g +(1− ξ2)θt,g
for some ξ2 ∈ [0, 1]; (c) follows from the results in Lemma D.2 since [θ̄⊤

f θ̄⊤
g]⊤ ∈ BEuc

ρ,ρ1
(θ0), and the fact that

∥θ̃f − θf,t∥2 ≤ ∥δθf∥2 and ∥θ̃g − θg,t∥2 ≤ ∥δθg∥2; and (d) follows from ∥δθf∥2, ∥δθg∥2 ≤ ∥δθ∥2.

24

Replacing I1 back in T2 and then combining the bounds on T1 + T3 and T2, we have

δθ⊤H(θ̃)δθ ≥ 2

n

n∑

i=1

1

qi

qi∑

j=1

(〈
δθg,∇θgGθ̃(u

(i))(y
(i)
j)
〉
+
〈
δθf ,∇θf

Gθ̃(u
(i))(y

(i)
j)
〉)2

− (2Kλ1λ2 + c̃)

(
λ1c

(g)

√
mg

+
λ2c

(f)

√
mf

)
∥δθ∥22

− 2(2Kλ1λ2 + c̃)ρ2

(
c(g)ϱ(f)
√
mf

+
c(g)ϱ(f)
√
mf

)
∥δθ∥22

=
2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθ̃(u

(i))(y
(i)
j)
〉2

− (2Kλ1λ2 + c̃)

(
λ1c

(g)

√
mg

+
λ2c

(f)

√
mf

)
∥δθ∥22

− 2(2Kλ1λ2 + c̃)ρ2

(
c(g)ϱ(f)
√
mf

+
c(g)ϱ(f)
√
mf

)
∥δθ∥22

=
2

n

n∑

i=1

1

qi

qi∑

j=1

(〈
δθ,∇θGθt

(u(i))(y
(i)
j)
〉
+
(〈

δθ,∇θGθ̃(u
(i))(y

(i)
j)
〉
−
〈
δθ,∇θGθt

(u(i))(y
(i)
j)
〉))2

︸ ︷︷ ︸
I2

− (2Kλ1λ2 + c̃)

(
λ1c

(g)

√
mg

+
λ2c

(f)

√
mf

)
∥δθ∥22

− 2(2Kλ1λ2 + c̃)ρ2

(
c(g)ϱ(f)
√
mf

+
c(g)ϱ(f)
√
mf

)
∥δθ∥22 .

(31)
Then,

I2 =
2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθt(u

(i))(y
(i)
j)
〉2

+

n∑

i=1

2

qi

qi∑

j=1

〈
δθ,∇θGθ̃(u

(i))(y
(i)
j)−∇θGθt(u

(i))(y
(i)
j)
〉2

+
4

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθf ,∇θGθt

(u(i))(y
(i)
j)
〉〈

δθ,∇θGθ̃(u
(i))(y

(i)
j)−∇θGθt

(u(i))(y
(i)
j)
〉

(a)
=

2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθt

(u(i))(y
(i)
j)
〉2

+

n∑

i=1

2

qi

qi∑

j=1

〈
δθ,∇θGθ̃(u

(i))(y
(i)
j)−∇θGθt

(u(i))(y
(i)
j)
〉2

+
4

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθt(u

(i))(y
(i)
j)
〉(

(δθ)⊤∇2
θG˜̃

θ
(u(i))(y

(i)
j)(θ̃ − θt)

)

≥ 2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθt

(u(i))(y
(i)
j)
〉2

+
4

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθt(u

(i))(y
(i)
j)
〉(

(δθ)⊤∇2
θG˜̃

θ
(u(i))(y

(i)
j)(θ̃ − θt)

)

(b)

≥ 2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθt

(u(i))(y
(i)
j)
〉2

− 4ξ3K(λ2ϱ
(f) + λ1ϱ

(g)) ∥δθ∥2
1

n

n∑

i=1

1

qi

qi∑

j=1

∣∣∣(δθ)⊤∇2
θG˜̃

θ
(u(i))(y

(i)
j)(δθ)

∣∣∣

(32)

where (a) follows from the generalized mean value theorem and has
˜̃
θ ∈ ξ3θ̃ + (1− ξ3)θt for some ξ3 ∈ [0, 1];

25

and (b) follows from the fact that θ̃ − θt = ξ3(θ
′ − θ′) and

∥∥∥∇θGθt
(u(i))(y

(i)
j)
∥∥∥
2
≤
∥∥∥∇θf

Gθt
(u(i))(y

(i)
j)
∥∥∥
2
+
∥∥∥∇θg

Gθt
(u(i))(y

(i)
j)
∥∥∥
2

≤
∥∥∥∥∥

K∑

k=1

g
(i)
k,j(θt)∇θf

f
(i)
k (θt)

∥∥∥∥∥
2

+

∥∥∥∥∥
K∑

k=1

∇θg
g
(i)
k,j(θt)(f

(i)
k (θt))

∥∥∥∥∥
2

≤
K∑

k=1

|g(i)k,j(θt)|∥∇θf
f
(i)
k (θt)∥2 +

K∑

k=1

|f (i)
k (θt)|∥∇θgg

(i)
k,j(θt)∥2

≤ Kλ2ϱ
(f) +Kλ1ϱ

(g) ,

where the last inequality follows from Lemma D.2.
Now, we have that

(δθ)⊤∇2
θG˜̃

θ
(u(i))(y

(i)
j)(δθ) =

K∑

k=1

(δθf)
⊤(g

(i)
k,j(

˜̃
θg)∇2

θf
f
(i)
k (

˜̃
θf)(δθf) +

K∑

k=1

(δθg)
⊤(f

(i)
k (

˜̃
θf)∇2

θg
g
(i)
k,j(

˜̃
θg)(δθg)

+ 2

K∑

k=1

(δθg)
⊤(∇θg

g
(i)
k,j(

˜̃
θg)(∇θf

f
(i)
k (

˜̃
θf))

⊤(δθf)

(a)

≤ K

(
λ2c

(f)

√
mf

+
λ1c

(g)

√
mg

)
∥δθ∥22 + 2

K∑

k=1

(δθg)
⊤(∇θgg

(i)
k,j(

˜̃
θg)(∇θf

f
(i)
k (

˜̃
θf))

⊤(δθf)

︸ ︷︷ ︸
I3

(33)

where (a) follows from Lemma D.2 since
˜̃
θ ∈ BEuc

ρ,ρ1
(θ0).

26

Now, for I3,

1

2
I3 = δθ⊤

f

(
K∑

k=1

∇θf
f
(i)
k (θt,f)∇θgg

(i)
k,j(θt,g)

⊤

)
δθg

+ δθ⊤
f

(
K∑

k=1

(
∇θf

f
(i)
k (

˜̃
θf)−∇θf

f
(i)
k (θt,f)

)
∇θg

g
(i)
k,j(

˜̃
θg)

⊤

)
δθg

+ δθ⊤
f

(
K∑

k=1

∇θf
f
(i)
k (θt,f)

(
∇θg

g
(i)
k,j(

˜̃
θg)−∇θg

g
(i)
k,j(θt,g)

)⊤
)
δθg

≤ δθ⊤
f

(
K∑

k=1

∇θf
f
(i)
k (θt,f)∇θgg

(i)
k,j(θt,g)

⊤

)
δθg

+

K∑

k=1

∥∥∥∇θf
f
(i)
k (

˜̃
θf)−∇θf

f
(i)
k (θt,f)

∥∥∥
2

∥∥∥∇θg
g
(i)
k,j(

˜̃
θg)
∥∥∥
2
∥δθf∥2∥δθg∥2

+

K∑

k=1

∥∥∥∇θf
f
(i)
k (θt,f)

∥∥∥
2

∥∥∥∇θg
g
(i)
k,j(

˜̃
θg)−∇θg

g
(i)
k,j(θt,g)

∥∥∥
2
∥δθf∥2∥δθg∥2

(a)

≤ δθ⊤
f

(
K∑

k=1

∇θf
f
(i)
k (θt,f)∇θg

g
(i)
k,j(θt,g)

⊤

)
δθg

+ ξ3ξK

(
c(f)ϱ(g)
√
mf

)
∥δθf∥22∥δθg∥2 + ξ3ξK

(
c(g)ϱ(f)
√
mg

)
∥δθf∥2∥δθg∥22

(b)

≤ δθ⊤
f

(
K∑

k=1

∇θf
f
(i)
k (θt,f)∇θgg

(i)
k,j(θt,g)

⊤

)
δθg

+K

(
c(g)ϱ(f)
√
mf

+
c(f)ϱ(g)
√
mg

)
∥δθ∥32

≤ δθ⊤
f

(
K∑

k=1

∇θf
f
(i)
k (θt,f)∇θg

g
(i)
k,j(θt,g)

⊤

)
δθg

+Kρ2

(
c(g)ϱ(f)
√
mg

+
c(f)ϱ(g)
√
mf

)
∥δθ∥22 ,

where (a) follows from the generalized mean value theorem, from ∥˜̃θf −θt,f∥2 = ∥ξ3θ̃f +(1−ξ3)θt,f −θt,f∥2 =

ξ3ξ∥θ′ − θt,f∥2 = ξ3ξ∥δθf∥2, and from the results in Lemma D.2 since
˜̃
θ ∈ BEuc

ρ,ρ1
(θ0); and (b) follows from

∥θf∥2, ∥θg∥2 ≤ ∥θ∥2 and ξ3ξ ≤ 1.
Replacing the bound on I3 back to (33), we obtain

(δθ)⊤∇2
θG˜̃

θ
(u(i))(y

(i)
j)(δθ) ≤ δθ⊤

f

(
K∑

k=1

∇θf
f
(i)
k (θt,f)∇θg

g
(i)
k,j(θt,g)

⊤

)
δθg

+K(1 + ρ2)

(
c(g)(λ1 + 2ϱ(f))

√
mg

+
c(f)(λ2 + 2ϱ(g))

√
mf

)
∥δθ∥22

≤ K(1 + ρ2)

(
c(g)(λ1 + 2ϱ(f))

√
mg

+
c(f)(λ2 + 2ϱ(g))

√
mf

)
∥δθ∥22 ,

(34)

where the last inequality follows from the fact that θ′ ∈ Qt
κ, using the properties of the restricted set Qt

κ in
Definition 12.

27

Replacing (34) back to I2 in (32), we obtain

I2 ≥ 2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθt

(u(i))(y
(i)
j)
〉2

− 4ξ3K(λ2ϱ
(f) + λ1ϱ

(g)) ∥δθ∥2 ×K(1 + ρ2)

(
c(g)(λ1 + 2ϱ(f))

√
mg

+
c(f)(λ2 + 2ϱ(g))

√
mf

)
∥δθ∥22

=
2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθt(u

(i))(y
(i)
j)
〉2

− 4ξ3K
2(1 + ρ2)ρ2(λ2ϱ

(f) + λ1ϱ
(g))

(
c(g)(λ1 + 2ϱ(f))

√
mg

+
c(f)(λ2 + 2ϱ(g))

√
mf

)
∥δθ∥22 .

(35)

Replacing this lower bound (35) back to the Hessian expression in (36),

δθ⊤H(θ̃)δθ ≥ 2

n

n∑

i=1

1

qi

qi∑

j=1

〈
δθ,∇θGθt

(u(i))(y
(i)
j)
〉2

− 4ξ3K
2(1 + ρ2)ρ2(λ2ϱ

(f) + λ1ϱ
(g))

(
c(g)(λ1 + 2ϱ(f))

√
mg

+
c(f)(λ2 + 2ϱ(g))

√
mf

)
∥δθ∥22

− (2Kλ1λ2 + c̃)

(
λ1c

(g)

√
mg

+
λ2c

(f)

√
mf

)
∥δθ∥22

− 2(2Kλ1λ2 + c̃)ρ2

(
c(g)ϱ(f)
√
mf

+
c(g)ϱ(f)
√
mf

)
∥δθ∥22

(a)

≥ 2
〈
δθ,∇θḠθt

〉2 − c1K
2

(
1

√
mf

+
1

√
mg

)
∥δθ∥22

(b)

≥ 2κ2∥∇θḠθt∥22∥δθ∥22 − c1K
2

(
1

√
mf

+
1

√
mg

)
∥δθ∥22

= αt∥δθ∥22 ,

(36)

where (a) follows from Jensen’s inequality with Ḡθ = 1
n

∑n
i=1

1
qi

∑qi
j=1 Gθ(u

(i))(y
(i)
j); where (b) follows

from the fact that θ′ ∈ Qt
κ and using the properties of the restricted set Qt

κ in Definition 12; and where

αt = 2κ2∥∇θḠθ∥22 − c1K
2
(

1
mf

+ 1
mg

)
. Note that adding all the constants from the second to the fourth

line in (36) define the constant c1, and so c1 depends on σ1, the depth L, and the radii ρ, ρ1, and ρ2 due to
Lemma D.2. As in the statement of Lemma D.2, this dependence reduces to the depth and the radii and
becomes polynomial whenever σ0 ≤ 1− ρmax{ 1√

mf
, 1√

mg
}. This completes the proof.

Theorem 3 (Smoothness for DONs). Under Assumptions 2 and 3, with probability at least 1− 2KL(1
mf

+
1

mg
), the DON loss L (3) is β-smooth in BEuc

ρ,ρ1
(θ0) with β = c2K

2, where c2 > 0 is a constant which depends

polynomially on the depth L, and the radii ρ, ρ1, and ρ2 whenever σ0 ≤ 1− ρmax{ 1√
mf

, 1√
mg

}.

Proof. By the second order Taylor expansion of L(θ′) about the point θ̄ with θ′, θ̄ ∈ BEuc
ρ,ρ1

(θ0), we have

L(θ′) = L(θ̄) + ⟨θ′ − θ̄,∇θL(θ̄)⟩+ 1
2 (θ

′ − θ̄)⊤ ∂2L(θ̃)
∂θ2 (θ′ − θ̄), where θ̃ = ξθ′ + (1− ξ)θ̄ for some ξ ∈ [0, 1].

28

Then,

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄) = (θ′ − θ̄)⊤
(
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j∇θGθ̃(u
(i))(y

(i)
j)∇θGθ̃(u

(i))(y
(i)
j)⊤

+ ℓ′i,j∇2
θGθ̃(u

(i))(y
(i)
j)

)
(θ′ − θ̄)

=
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j

〈
θ′ − θ̄,∇θGθ̃(u

(i))(y
(i)
j)
〉2

︸ ︷︷ ︸
I1

+
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′i,j(θ
′ − θ̄)⊤∇2

θGθ̃(u
(i))(y

(i)
j)(θ′ − θ̄)

︸ ︷︷ ︸
I2

,

where ℓi,j = (Gθ̃(u
(i))(y

(i)
j)−G†(u(i))(y

(i)
j))2.

Now, note that

I1 =
1

n

n∑

i=1

1

qi

qi∑

j=1

ℓ′′i,j

〈
θ′ − θ̄,∇θGθ̃(u

(i))(y
(i)
j)
〉2

(a)

≤ 2

n

n∑

i=1

1

qi

qi∑

j=1

∥∥∥∇θGθ̃(u
(i))(y

(i)
j)
∥∥∥
2

2
∥θ′ − θ̄∥22

(b)

≤ 4K2(λ2ϱ
(f) + λ1ϱ

(g))2∥θ′ − θ̄∥22 ,

where (a) follows by the Cauchy-Schwartz inequality and (b) from Lemma D.2 as follows

∥∇θGθ̃(u
(i))(y

(i)
j)∥2 ≤

K∑

k=1

(∥g(i)k,j(θ̃g)∇θf
f
(i)
k (θ̃f)∥2 + ∥f (i)

k (θ̃f)∇θg
g
(i)
k,j(θ̃g)∥2) ≤ K(λ2ϱ

(f) + λ1ϱ
(g)),

since θ̃ ∈ BEuc
ρ,ρ1

(θ0).
Now, for I2,

I2 ≤ 1

n

n∑

i=1

1

qi

qi∑

j=1

|ℓ′i,j ||(θ′ − θ̄)⊤∇2Gθ̃(u
(i))(y

(i)
j)(θ′ − θ̄)|

(a)

≤ (2Kλ1λ2 + c̃)

(
Kϱ(f)ϱ(g) +K(1 + ρ2)

(
c(g)(λ1 + ϱ(f))

√
mg

+
c(f)(λ2 + ϱ(g))

√
mf

))
∥θ′ − θ̄∥22 ,

with c̃ = maxi∈[n],j∈[qi] |G†(u(i))(y
(i)
j)|, and where (a) follows from modifying the result in equation (34) from

Theorem 2 according to our setting.
Putting the upper bounds on I1 and I2 back, we have

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄) ≤
[
4K2(λ2ϱ

(f) + λ1ϱ
(g))2

+(2Kλ1λ2 + c̃)

(
Kϱ(f)ϱ(g) +K(1 + ρ2)

(
c(g)(λ1 + ϱ(f))

√
mg

+
c(f)(λ2 + ϱ(g))

√
mf

))]

× ∥θ′ − θ̄∥22 .

Note that all the constants on the right-hand side of the inequality above form an expression that depends on
K and on σ1, the depth L, and the radii ρ, ρ1, and ρ2 due to Lemma D.2. As in the statement of Lemma D.2,
the dependence of such expression reduces to the depth and the radii and becomes polynomial whenever
σ0 ≤ 1− ρmax{ 1√

mf
, 1√

mg
}. This completes the proof.

29

Proposition 1 (RSC to smoothness ratio). Under the same conditions as in Theorems 2 and 3, we have
that αt/β < 1 with probability at least 1− 2LK(1

mf
+ 1

mg
).

Proof. From the proofs of both Theorems 2 and 3, αt < 2κ2∥∇θt
Ḡt∥22 ≤ 2κ2K2(λ2ϱ

(f) + λ1ϱ
(g))2 ≤

4K2(λ2ϱ
(f) + λ1ϱ

(g))2 < β, and so αt

β < 1.

E Analysis for Fourier Neural Operators

We recall the FNO model

α(0) = P (u)(x)

α(1) = ϕ

(
1√
m
W (1)α(0)

)

α(l) = ϕ

(
1√
m
W (l)α(l−1) +

1√
m
F ∗R(l)Fα(l−1)

)
, l ∈ {2, . . . , L+ 1}

f(θ;x) = α(L+2) :=
1√
m
v⊤α(L+1) ,

(37)

where W (l), R(l) ∈ Rm×m for l ∈ {2, . . . , L+ 1}, W (1) ∈ Rm×d.

E.1 Bounds on the Hessian, Gradients and the Predictor

Lemma E.2 (Bounds on the Predictor). Under Assumptions 5 and 6 and for θ ∈ BEuc
ρw,ρrρ1

(θ0) we have

with probability at least 1− 2(L+2)
m , that for any input function u and evaluation point x as in Section 6,

∥∥∇2
θf
∥∥ ≤ c√

m
, (38)

∥∇θf∥2 ≤ ϱ , (39)

|f | ≤ λ , (40)

where c, ϱ, λ are suitable constants that depend on σ1,w, σ1,r, the depth L, and the radii ρw, ρr, and
ρ1. The dependence of the constants reduces to depth and the radii and becomes polynomial whenever
σ1,w + σ1,r ≤ 1− ρw+ρr√

m
.

In this section we will prove all the bounds in Lemma E.2.

Lemma E.3 (Initialization of the Parameters). Under Assumption 6,with probability at least 1− 2
m we

have
∥W (l)

0 ∥2 ≤ σ1,w

√
m, and ∥R(l)

0 ∥2 ≤ σ1,r

√
m. (41)

Proof. The proof follows directly from Lemma A.1 in (Banerjee et al., 2023b).

Proposition 2 (Layer-wise matrices). Under Assumption 6, for θ ∈ BEuc
ρw,ρrρ1

(θ0), with probability at

least 1− 2
m we have

∥∥∥W (l)
∥∥∥
2
≤
(
σ1,w +

ρw√
m

)√
m, l ∈ [L+ 1] and

∥∥∥R(l)
∥∥∥
2
≤
(
σ1,r +

ρr√
m

)√
m, l ∈ {2, . . . , L+ 1} (42)

Proof. By the triangle inequality and Lemma E.3,

∥W (l)∥2 ≤ ∥W (l)
0 ∥2 + ∥W (l) −W

(l)
0 ∥2 ≤ σ1,w

√
m+ ρw,

∥R(l)∥2 ≤ ∥R(l)
0 ∥2 + ∥R(l) −R

(l)
0 ∥2 ≤ σ1,r

√
m+ ρr .

30

We now bound the norm of the output α(l) at the layer l ∈ [L+ 1].

Lemma E.4 (Norm of the l-th layer output). For l ∈ [L + 1], under Assumptions 5 and 6 for
θ ∈ BEuc

ρw,ρrρ1
(θ0), with probability at least 1− 2l

m , we have

∥∥∥α(l)
∥∥∥
2
≤ √

m

(
σ1 +

ρ√
m

)l

+
√
m

l∑

i=1

(
σ1 +

ρ√
m

)i−1

|ϕ(0)| =
(
γl + |ϕ(0)|

l∑

i=1

γi−1

)
√
m, (43)

where,

σ1 = σ1,w + σ1,r, ρ = ρw + ρr, and γ = σ1 +
ρ√
m
.

Proof. We prove the result using induction (e.g., see Lemma A.2 in (Banerjee et al., 2023b)). First, note that
for the first hidden layer, using the fact that ϕ is 1-Lipschitz,

∥∥∥∥ϕ
(

1√
d
W (1)α(0)

)∥∥∥∥
2

− ∥ϕ(0)∥2 ≤
∥∥∥∥ϕ
(

1√
d
W (1)α(0)

)
− ϕ(0)

∥∥∥∥
2

≤
∥∥∥∥

1√
d
W (1)α(0)

∥∥∥∥
2

, (44)

where 0 denotes the zero vector of appropriate size. This in turn gives, using ∥α(0)∥2 =
√
d,

∥∥∥α(1)
∥∥∥
2
=

∥∥∥∥ϕ
(

1√
d
W (1)α(0)

)∥∥∥∥
2

≤
∥∥∥∥

1√
d
W (1)α(0)

∥∥∥∥
2

+ ∥ϕ(0)∥2

≤ 1√
d

∥∥∥W (1)
∥∥∥
2

∥∥∥α(0)
∥∥∥
2
+ |ϕ(0)|√m

≤
(
σ1,w +

ρw√
m

)√
m+ |ϕ(0)|√m

≤
(
σ1,w + σ1,r +

ρw + ρr√
m

)√
m+ |ϕ(0)|√m .

Now, consider also the output at layer 2, namely,

∥α(2)∥2 =

∥∥∥∥ϕ
(

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

)∥∥∥∥
2

,

which gives,

∥∥∥∥ϕ
(

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

)∥∥∥∥
2

− ∥ϕ(0)∥2

≤
∥∥∥∥ϕ
(

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

)
− ϕ(0)

∥∥∥∥
2

≤
∥∥∥∥

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

∥∥∥∥
2

,

and, in turn,

∥α(2)∥2 ≤
∥∥∥∥

1√
m
W (2)α(1) +

1√
m
F ∗R(2)Fα(1)

∥∥∥∥
2

+ ∥ϕ(0)∥2

≤
∥∥∥∥

1√
m
W (2)α(1)

∥∥∥∥
2

+

∥∥∥∥
1√
m
F ∗R(2)Fα(1)

∥∥∥∥
2

+ |ϕ(0)|√m

(a)

≤ 1√
m
∥W (2)∥2∥α(1)∥2 +

1√
m
∥R(2)∥2∥α(1)∥2 +

√
m|ϕ(0)|

≤
(
σ1,w +

ρw√
m

+ σ1,r +
ρr√
m

)
∥α(1)∥2 +

√
m|ϕ(0)|

≤ √
m

(
σ1 +

ρ√
m

)2

+

(
1 +

(
σ1 +

ρ√
m

))√
m|ϕ(0)|,

31

where (a) follows from the fact that the operator F is a unitary matrix. Now, for the inductive step, consider
that the output at layer l − 1 satisfies

∥∥∥α(l−1)
∥∥∥
2
≤ √

m

(
σ1 +

ρ√
m

)l−1

+
√
m

l−1∑

i=1

(
σ1 +

ρ√
m

)i−1

|ϕ(0)|.

Finally, at layer l, we have

∥∥∥α(l)
∥∥∥
2
≤ 1√

m



∥∥∥W (l)

∥∥∥
2
+
∥∥∥F ∗R(l)F

∥∥∥
2︸ ︷︷ ︸


 ∥α(l−1)∥2 +

√
m|ϕ(0)| (45)

≤
(
σ1,w + σ1,r +

ρw + ρr√
m

)
∥α(l−1)∥2 +

√
m|ϕ(0)| (46)

≤ √
m

(
σ1 +

ρ√
m

)l

+
√
m

l∑

i=1

(
σ1 +

ρ√
m

)i−1

|ϕ(0)|. (47)

Introducing γ = σ1 +
ρ√
m
, we can write

∥α(l)∥2 ≤ √
m

(
γl + |ϕ(0)|

l∑

i=1

γi−1

)
. (48)

This completes the proof.

From now on, we will use the notation ρ, σ1, and γ as defined in Lemma E.4.

Lemma E.5. For l ∈ {2, . . . , L+ 1}, under Assumptions 5 and 6 for θ ∈ BEuc
ρw,ρrρ1

(θ0), with probability at

least 1− 2
m , we have ∥∥∥∥

∂α(l)

∂α(l−1)

∥∥∥∥
2

≤ γ. (49)

Proof. We first note that

[
∂α(l)

∂α(l−1)

]

ij

=
1√
m
ϕ′(α̃(l−1))

[
W

(l)
ij + [F ∗R(l)F]ij

]
.

Now, from the definition ∥A∥2 = sup∥v∥2=1 ∥Av∥2 we have,

∥∥∥∥
∂α(l)

∂α(l−1)

∥∥∥∥
2

= sup
∥v∥2=1

1√
m

(
ϕ′
∥∥∥
(
W (l) + F ∗R(l)F

)
v
∥∥∥
2

)

(a)

≤ sup
∥v∥2=1

1√
m

(
∥W (l)v∥2 + ∥F ∗R(l)Fv∥2

)

(b)
= sup

∥v∥2=1

1√
m

(
∥W (l)v∥2 + ∥R(l)Fv∥2

)

(c)

≤ sup
∥v∥2=1

1√
m

(
∥W (l)∥2∥v∥2 + ∥R(l)∥2∥v∥2

)

=
1√
m

(
∥W (l)∥2 + ∥R(l)∥2

)
,

(50)

where (a) follows from the fact that ϕ is 1-Lipchitz and by using the triangle inequality, and (b) and (c)
follow from the fact that F ∗ and F are isometries with respect to the L2-norm, i.e. ∥Fv∥2 = ∥v∥2 and

32

∥F ∗v∥2 = ∥v∥2 for v ∈ Rm. This finally gives

∥∥∥∥
∂α(l)

∂α(l−1)

∥∥∥∥
2

≤ 1√
m

(
∥W (l)∥2 + ∥R(l)∥2

)
≤
(
σ1,w +

ρw√
m

)
+

(
σ1,r +

ρr√
m

)

= γ ,

where we used Proposition 2. This completes the proof.

We make use of the Einstein summation convention, i.e. repeated indices imply summation, unless
explicitly stated. We also use the notation vec(·) to denote the vectorization of the matrix argument according
to some fixed manner (e.g., row-wise vectorization).

Lemma E.6. Under Assumptions 5 and 6 and for θ ∈ BEuc
ρw,ρrρ1

(θ0), with probability at least 1− 2l
m ,

∥∥∥∥
∂α(l)

∂w(l)

∥∥∥∥
2

,

∥∥∥∥
∂α(l)

∂r(l)

∥∥∥∥
2

≤
(
γl−1 + |ϕ(0)|

l−1∑

i=1

γi−1

)

where, w(l) = vec(W (l)) for l ∈ [L+ 1], and r(l) = vec(R(l)) for l ∈ {2, . . . , L+ 1}.

Proof. We can index the vectors w(l) and r(l) according to their matrix form W
(l)
jj′ and R

(l)
jj′ , respectively,

with the indices j ∈ [m], and j′ ∈ [d] when l = 1 or j′ ∈ [m] when l ∈ {2, . . . , L+ 1}. Therefore,
[
∂α(l)

∂w(l)

]

i,jj′
=

1√
m
ϕ′(α̃

(l)
i)δijα

(l−1)
j′ , δij =

{
1 i = j

0 otherwise
.

Now, for l ∈ {2, . . . , L+ 1}, we can write the L2-norm of the matrices as follows

∥∥∥∥
∂α(l)

∂w(l)

∥∥∥∥
2

2

= sup
∥V ∥F=1

1

m

m∑

i=1


ϕ′

(
α̃

(l)
i

) m∑

j,j′=1

α
(l−1)
j′ δijVjj′




2

≤ sup
∥V ∥F=1

1

m
∥Vα(l−1)∥22

≤ sup
∥V ∥F=1

1

m
∥V ∥22∥α(l−1)∥22

(a)

≤ sup
∥V ∥F=1

1

m
∥V ∥2F ∥α(l−1)∥22

=
1

m
∥α(l−1)∥22

(b)

≤ 1

m

[
√
m

(
γl−1 + |ϕ(0)|

l−1∑

i=1

γi−1

)]2
=

(
γl−1 + |ϕ(0)|

l−1∑

i=1

γi−1

)2

,

where (a) follows from the fact that ∥V ∥2 ≤ ∥V ∥F and (b) from Lemma E.4. The l = 1 case follows in a
similar fashion: ∥∥∥∥

∂α(1)

∂w(1)

∥∥∥∥
2

2

≤ 1

d
∥α(0)∥22 = 1.

33

Similarly, for l ∈ {2, . . . , L+ 1},
∥∥∥∥
∂α(l)

∂r(l)

∥∥∥∥
2

2

= sup
∥V ∥F=1

1

m

m∑

i=1

(
ϕ′
(
α̃

(l)
i

)
F ∗
ijFj′pα

(l−1)
p Vjj′

)2

≤ sup
∥V ∥F=1

1

m
∥(F ∗V F)α(l−1)∥22

≤ sup
∥V ∥F=1

1

m
∥F ∗V F∥22∥α(l−1)∥22

≤ sup
∥V ∥F=1

1

m
∥F ∗∥22∥V ∥22∥F∥22∥α(l−1)∥22

(a)

≤ sup
∥V ∥F=1

1

m
∥V ∥2F ∥α(l−1)∥22

=
1

m
∥α(l−1)∥22

(b)

≤ 1

m

[
√
m

(
γl−1 + |ϕ(0)|

l−1∑

i=1

γi−1

)]2
=

(
γl−1 + |ϕ(0)|

l−1∑

i=1

γi−1

)2

,

where (a) follows again by ∥V ∥2 ≤ ∥V ∥F and the fact that F ∗ and F are unitary matrices, and (b) from
Lemma E.4. This completes the proof.

Hessians. We now focus on bounding the Hessian of the predictor f in equation (37). Note that the
FNO model can be considered as having L+ 1 layers, with Layer 1 being a feedforward single layer encoder
on top of the encoder P , the L layers from Layer 2 to Layer L+ 1 being FNO hidden layers, and Layer L+ 2
being the output of the linear decoder. Likewise, we decompose the Hessian matrix H of the FNO in three
different blocks corresponding to the aforementioned encoder, FNO hidden layers, and decoder, respectively.

Firstly, the Hessian blocks associated to the hidden FNO layers are:

• the L× L sub-blocks corresponding to H
(l1,l2)
w := ∂2f

∂w(l1)∂w(l2) for l1, l2 ∈ {2, . . . , L+ 1},

• the L× L sub-blocks corresponding to H
(l1,l2)
r := ∂2f

∂r(l1)∂r(l2) for l1, l2 ∈ {2, . . . , L+ 1}, and

• the cross blocks have terms of the form H
(l1,l2)
w,r := ∂2f

∂w(l1)∂r(l2) for l1, l2 ∈ {2, . . . , L+ 1}.

Secondly, the Hessian blocks corresponding to the single layer encoder, i.e., with respect to weight W (1):

• diagonal block H
(1,1)
w := ∂2f

∂w(1)2
,

• off-diagonal blocks H
(1,l1)
w := ∂2f

∂w(1)∂w(l1) and H
(l1,1)
w for l1 ∈ {2, . . . , L+ 1}, and

• off-diagonal blocks H
(1,l2)
w,r := ∂2f

∂w(1)∂r(l2) ans H
(l2,1)
r,w for l2 ∈ {2, . . . , L+ 1}.

Finally, the Hessian blocks corresponding to the decoder, i.e., with respect to weight v:

• diagonal block Hv := ∂2f
∂v2 , which is the zero matrix 0m×m,

• off-diagonal block H
(l1)
w,v := ∂2f

∂w(l1)∂v
and H

(l1)
v,w for l1 ∈ {1, . . . , L+ 1}, and

• off-diagonal block H
(l2)
r,v := ∂2f

∂r(l2)∂v
and H

(l2)
v,r for l2 ∈ {2, . . . , L+ 1}.

First, we note that due to the symmetry of the Hessian matrix of the FNO model H:

∥H∥2 ≤
L+1∑

l1,l2=1

∥H(l1,l2)
w ∥2 +

L+1∑

l1,l2=2

∥H(l1,l2)
r ∥2 + 2

L+1∑

l1=1

L+1∑

l2=2

∥H(l1,l2)
w,r ∥2 + 2

L+1∑

l1=1

∥H(l1)
w,v ∥2 + 2

L+1∑

l2=2

∥H(l2)
r,v ∥2 .

(51)

34

We define

Q∞(f) := max
l∈[L+1]

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

,

Q(w,r)
2 (f) := max

l∈[L+1]

{∥∥∥∥
∂α(l)

∂w(l)

∥∥∥∥
2

,

∥∥∥∥
∂α(l)

∂r(l)

∥∥∥∥
2

}
,

Q(w,r)
2,2,1 (f) := max

1≤l1≤L+1
2≤l2≤L+1
3≤l3≤L+1

{∥∥∥∥
∂2α(l2)

∂w(l2)∂r(l2)

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂r(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂w(l2)

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

∥∥∥∥
∂2α(l3)

(∂α(l3−1))2

∥∥∥∥
2,2,1

}
,

Q(w)
2,2,1(f) := max

1≤l1≤L+1
2≤l2≤L+1
3≤l3≤L+1

{∥∥∥∥
∂2α(l1)

(∂w(l1))2

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂w(l2)

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂α(l2)

∂w(l2)

∥∥∥∥
2

∥∥∥∥
∂2α(l3)

(∂α(l3−1))2

∥∥∥∥
2,2,1

}
,

Q(r)
2,2,1(f) := max

2≤l1≤L+1
3≤l2≤L+1
4≤l3≤L+1

{∥∥∥∥
∂2α(l1)

(∂r(l1))2

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂r(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2,2,1

,

∥∥∥∥
∂α(l1)

∂r(l1)

∥∥∥∥
2

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

∥∥∥∥
∂2α(l3)

(∂α(l3−1))2

∥∥∥∥
2,2,1

}
,

(52)

where, for an order-3 tensor T ∈ Rd1×d2×d3 we define the operator ∥·∥2,2,1 as follows,

∥T∥2,2,1 := sup
∥a∥2=∥b∥2=1

d3∑

k=1

∣∣∣∣∣∣

d1∑

i=1

d2∑

j=1

Tijkaibj

∣∣∣∣∣∣
, a ∈ Rd1 ,b ∈ Rd2 . (53)

Note that it seems from (52) that we need the depth L of the FNO to be L ≥ 3. However, the bounds
presented in Lemma E.2 also hold for FNOS with depth L < 3: indeed, the upper bounds we derive in this
section for an FNO with depth L will trivially hold for FNOS with depths L− 1, . . . , 1.

Lemma E.7. Under Assumptions 5 and 6 for θ ∈ BEuc
ρw,ρrρ1

(θ0), the following inequalities hold with probability

at least 1− 2(L+2)
m , for l1 ∈ [L+ 1],

∥∥∥∥
∂2α(l1)

(∂w(l1))2

∥∥∥∥
2,2,1

≤ βϕ(1 + γL)2(1 + L|ϕ(0)|)2 , (54)

and for l2 ∈ {2, . . . , L+ 1},
∥∥∥∥

∂2α(l2)

∂w(l2)∂r(l2)

∥∥∥∥
2,2,1

≤ βϕ(1 + γL)2(1 + L|ϕ(0)|)2 , (55)

∥∥∥∥
∂2α(l2)

(∂α(l2−1))2

∥∥∥∥
2,2,1

≤ 2βϕγ
2 , (56)

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂w(l2)

∥∥∥∥
2,2,1

≤ βϕ(1 + γL)2(1 + (1 + L|ϕ(0)|)2) + 1 , (57)

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2,2,1

≤ βϕ(1 + γL)2(1 + (1 + L|ϕ(0)|)2) + 1 , and (58)

35

∥∥∥∥
∂2α(l2)

(∂r(l2))2

∥∥∥∥
2,2,1

≤ βϕ(1 + γL)2(1 + L|ϕ(0)|)2 . (59)

Proof. We first begin by proving (55). Note that from (37) we have

∂2α
(l2)
i

∂w
(l2)
jj′ ∂r

(l2)
kk′

=
1

m
ϕ′′
(
α̃(l2)

)
·α(l2−1)

j′ δijF
∗
ikFk′qα

(l2−1)
q ,

where we make use of the Einstein notation. Now,
∥∥∥∥∥

∂2α
(l2)
i

∂w(l2)∂r(l2)

∥∥∥∥∥
2,2,1

= sup
∥V1∥F=1,∥V2∥F=1

m∑

i=1

∣∣∣∣
1

m
ϕ′′(α̃

(l2)
i)α

(l2−1)
j′ δijF

∗
ikFk′qα

(l2−1)
q V1jj′V2kk′

∣∣∣∣

= sup
∥V1∥F=1,∥V2∥F=1

m∑

i=1

∣∣∣∣∣
ϕ′′(α̃

(l2)
i)

m

(
V1ij′α

(l2−1)

j′

)(
F ∗
ikV2kk′Fk′qα

(l2−1)
q

)∣∣∣∣∣

≤ sup
∥V1∥F=1,∥V2∥F=1

βϕ

m

m∑

i=1

∣∣∣(V1α
(l2−1))i((F

∗V2F)α(l2−1))i

∣∣∣

(a)

≤ sup
∥V1∥F=1,∥V2∥F=1

βϕ

2m

(∥∥∥V1α
(l2−1)

∥∥∥
2

2
+
∥∥∥F ∗V2Fα(l2−1)

∥∥∥
2

2

)

(b)

≤ βϕ

2m

(∥∥∥α(l2−1)
∥∥∥
2

2
+
∥∥∥α(l2−1)

∥∥∥
2

2

)
≤ βϕ

(
γl2−1 + |ϕ(0)|

l2−1∑

i=1

γi−1

)2

,

(60)

where (a) follows from the quadratic expression; where (b) follows from ∥V1α
(l2−1)∥2 ≤ ∥V1∥2∥α(l2−1)∥2,

∥V1∥2 ≤ ∥V1∥F , ∥V2∥2 ≤ ∥V2∥F , ∥F ∗V2Fα(l2−1)∥2 = ∥V2Fα(l2−1)∥2 ≤ ∥V2∥2∥Fα(l2−1)∥2 = ∥V2∥2∥α(l2−1)∥2
due to F being a unitary operator; and where the last inequality follows from (48). Finally, we can upper
bound the last quantity above as in (55) and complete the proof.

For proving (56), again note from (37) that
[

∂2α(l2)

∂α(l2−1)2

]

i,j,k

=
1

m
ϕ′′(α̃(l2))

(
W

(l2)
ij + F ∗

ipR
(l2)
pq Fqj

)
·
(
W

(l2)
ik + F ∗

iuR
(l2)
uv Fvk

)

=
ϕ′′

m


W (l2)

ij W
(l2)
ik︸ ︷︷ ︸

T1

+W
(l2)
ij F ∗

iuR
(l2)
uv Fvk︸ ︷︷ ︸

T2

+F ∗
ipR

(l2)
pq FqjW

(l2)
ik︸ ︷︷ ︸

T3

+F ∗
ipR

(l2)
pq FqjF

∗
iuR

(l2)
uv Fvk︸ ︷︷ ︸

T4


 .

(61)

Then, we can write
∥∥∥∥

∂2α(l2)

∂α(l2−1)2

∥∥∥∥
2,2,1

= sup
∥v1∥2=1,∥v2∥2=1

m∑

i=1

∣∣∣∣∣

[
∂2α(l1)

∂α(l1−1)2

]

i,j,k

v1jv2k

∣∣∣∣∣ .

Let us consider the notation γw = σ1,w + ρw√
m

and γr = σ1,r +
ρr√
m
. Now, we handle each of the terms

separately:

sup
∥v1∥2=1,∥v2∥2=1

m∑

i=1

∣∣∣∣
ϕ′′

m
T1i,j,kv1jv2k

∣∣∣∣ =
|ϕ′′|
m

sup
∥v1∥2=1,∥v2∥2=1

m∑

i=1

∣∣∣
(
W

(l2)
ij v1j

)
·
(
W

(l2)
ik v2k

)∣∣∣

≤ βϕ

2m
sup

∥v1∥2=1,∥v2∥2=1

(
∥W (l2)∥22∥v1∥22 + ∥W (l2)∥22∥v2∥22

)

= βϕ

(
σ1,w +

ρw√
m

)2

= βϕγ
2
w.

(62)

36

sup
∥v1∥2=1,∥v2∥2=1

m∑

i=1

∣∣∣∣
ϕ′′

m
T4i,j,kv1jv2k

∣∣∣∣ =
|ϕ′′|
m

sup
∥v1∥2=1,∥v2∥2=1

m∑

i=1

∣∣∣
(
(F ∗R(l2)F)ijv1j

)
·
(
(F ∗R(l2)F)ikv2k

)∣∣∣

≤ βϕ

2m
sup

∥v1∥2=1,∥v2∥2=1

(
∥F ∗R(l2)F∥22∥v1∥22 + ∥F ∗R(l2)F∥22∥v2∥22

)

=
βϕ

m
∥F ∗R(l2)F∥22

≤ βϕ

m
∥R(l2)∥22 ≤ βϕγ

2
r .

(63)

sup
∥v1∥2=1,∥v2∥2=1

m∑

i=1

∣∣∣∣
ϕ′′

m
T2i,j,kv1jv2k

∣∣∣∣ =
|ϕ′′|
m

sup
∥v1∥2=1,∥v2∥2=1

m∑

i=1

∣∣∣(W (l2)
ij v1j) · (F ∗R(l2)F)ikv2k

∣∣∣

≤ βϕ

2m
sup

∥v1∥2=1,∥v2∥2=1

(
∥W (l2)∥22∥v1∥22 + ∥F ∗R(l2)F∥22∥v2∥22

)

≤ βϕ

2m

(
∥W (l2)∥22 + ∥R(l2)∥22

)
≤ βϕ

2

(
γ2
w + γ2

r

)
.

(64)

Similarly, for the term corresponding to T3 we obtain

sup
∥v1∥2=1,∥v2∥2=1

m∑

i=1

∣∣∣∣
ϕ′′

m
T3i,j,kv1jv2k

∣∣∣∣ ≤
βϕ

2

(
γ2
w + γ2

r

)
. (65)

Putting together (62), (63), (64) and (65), we get

∥∥∥∥
∂2α(l2)

∂α(l2−1)2

∥∥∥∥
2

2,2,1

≤ 2βϕ(γ
2
w + γ2

r) ≤ 2βϕ(γ
2
w + γ2

r + 2γwγr) = 2βϕγ
2. (66)

This completes the proof for (56).
We now look at the proof for (58). First note that

∂2α
(l2)
i

∂α
(l2−1)
k ∂r

(l2)
jj′

=
1

m
ϕ′′(α̃i)

(
W

(l2)
ik + F ∗

ipR
(l2)
pq Fqk

)
F ∗
ijFj′qα

(l2−1)
q +

1√
m
ϕ′(α̃

(l2)
i)F ∗

ijFj′k

=
ϕ′′

m

(
W

(l2)
ik F ∗

ijFj′qα
(l2−1)
q

)

︸ ︷︷ ︸
T1

+
ϕ′′

m

(
F ∗
ipR

(l2)
pq FqkF

∗
ijFj′qα

(l2−1)
q

)

︸ ︷︷ ︸
T2

+
1√
m
ϕ′(α̃

(l2)
i)F ∗

ijFj′k

︸ ︷︷ ︸
T3

.

Again, we analyze each of the terms separately

∥∥∥T1i,jj′,k

∥∥∥
2,2,1

= sup
∥v1∥2=1,∥V2∥F=1

m∑

i=1

∣∣∣∣
ϕ′′

m

(
Wikv

(l2)
1k

F ∗
ijV2jj′Fj′qα

(l2−1)
q

)∣∣∣∣

≤ βϕ

2m

(
∥W (l2)v1∥22 + ∥F ∗V2Fα(l2−1)∥22

)

≤ βϕ

2


γ2

w +

(
γl2−1 + |ϕ(0)|

l2−1∑

i=1

γi−1

)2



(67)

37

∥∥∥T2i,jj′,k

∥∥∥
2,2,1

= sup
∥v1∥2=1,∥V2∥F=1

m∑

i=1

∣∣∣∣
ϕ′′

m

(
F ∗
ipR

(l2)
pq Fqkv1kF

∗
ijV2jj′Fj′qα

(l2−1)
q

)∣∣∣∣

≤ sup
∥v1∥2=1,∥V2∥F=1

βϕ

2m

(
∥F ∗R(l2)Fv1∥22 + ∥F ∗V2Fα(l2−1)∥22

)

≤ sup
∥v1∥2=1,∥V2∥F=1

βϕ

2m

(
∥F ∗R(l2)F∥22∥v1∥22 + ∥F ∗V2F∥22∥α(l2−1)∥22

)

(a)

≤ βϕ

2m

(
∥R(l2)∥22 + ∥α(l2−1)∥22

)
≤ βϕ

2


γ2

r +

(
γl2−1 + |ϕ(0)|

l2−1∑

i=1

γi−1

)2



(68)

where (a) follows, again, by exploiting the isometry of F ∗ and F with respect to the L2 norm, and using
∥V2∥2 ≤ ∥V2∥F . Finally,

∥∥∥T3i,jj′,k

∥∥∥
2,2,1

= sup
∥v1∥2=1,∥V2∥F=1

m∑

i=1

∣∣∣∣
ϕ′
√
m
F ∗
ijV2jj′Fj′kv1k

∣∣∣∣

≤ 1√
m

sup
∥v1∥2=1,∥V2∥F=1

m∑

i=1

|(F ∗V2Fv1)i|

≤ sup
∥v1∥2=1,∥V2∥F=1

∥F ∗V2Fv1∥2

≤ sup
∥v1∥2=1,∥V2∥F=1

∥V2∥2∥v1∥2 = 1 .

(69)

Combining (67), (68) and (69), we get

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2,2,1

≤ βϕ

2

(
γ2
w + γ2

r

)
+ βϕ

(
γl2−1 + |ϕ(0)|

l2−1∑

i=1

γi−1

)2

+ 1

≤ βϕ


γ2 +

(
γl2−1 + |ϕ(0)|

l2−1∑

i=1

γi−1

)2

+ 1 ,

(70)

and finally we can upper bound the last quantity above as in (58) and complete the proof.
For proving (57) consider the following

[
∂2α(l2)

∂α(l2−1)∂w(l2)

]

i,jj′,k

=



ϕ′′(α̃

(l2)
i)

m
W

(l2)
ik α

(l2−1)
j′ δij

︸ ︷︷ ︸
T1

+
ϕ′′(α̃

(l2)
i)

m
F ∗
ipR

(l2)
pq Fqkα

(l2−1)
j′ δij

︸ ︷︷ ︸
T2


+

1√
m
ϕ′(α̃(l2))δijδkj′

︸ ︷︷ ︸
T3

Then analyzing each term separately, we get

∥∥∥T1i,jj′,k

∥∥∥
2,2,1

= sup
∥v1∥2=1,∥V2∥F=1

m∑

i=1

∣∣∣∣
ϕ′′

m
W

(l2)
ik v1kV2ij′α

(l2−1)
j′

∣∣∣∣

≤ sup
∥v1∥2=1,∥V2∥F=1

βϕ

2m

(
∥W (l2)∥22∥v1∥22 + ∥V2∥22∥α(l2−1)∥22

)

=
βϕ

2m

(
∥W (l2)∥22 + ∥α(l2−1)∥22

)
≤ βϕ

2


γ2

w +

(
γl1−1 + |ϕ(0)|

l1−1∑

i=1

γi−1

)2

 ,

(71)

38

∥∥∥T2i,jj′,k

∥∥∥
2,2,1

= sup
∥v1∥2=1,∥V2∥F=1

m∑

i=1

∣∣∣∣
ϕ′′

m
F ∗
ipR

(l2)
pq Fqkv1kV2ij′α

(l2−1)
j′

∣∣∣∣

≤ sup
∥v1∥2=1,∥V2∥F=1

βϕ

2m

(
∥F ∗R(l2)Fv1∥22 + ∥V2α

(l2−1)∥22
)

≤ sup
∥v1∥2=1,∥V2∥F=1

βϕ

2m

(
∥F ∗R(l2)F∥22∥v1∥22 + ∥V2∥22∥α(l2−1)∥22

)

=
βϕ

2m

(
∥F ∗R(l2)F∥22 + ∥α(l2−1)∥22

)

≤ βϕ

2


γ2

r +

(
γl1−1 + |ϕ(0)|

l1−1∑

i=1

γi−1

)2

 ,

(72)

and, finally,

∥∥∥T3i,jj′k

∥∥∥
2,2,1

= sup
∥v1∥2=1,∥V2∥F=1

m∑

i=1

∣∣∣∣
ϕ′
√
m
V2ikv1k

∣∣∣∣

≤ sup
∥v1∥2=1,∥V2∥F=1

m∑

i=1

1√
m
∥v1∥2∥V2,i,:∥2

≤ sup
∥V2∥F=1

√√√√
m∑

i=1

∥V2,i,:∥22

= 1 .

(73)

Hence, we have

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂w(l2)

∥∥∥∥
2

2,2,1

≤ βϕ

2

(
γ2
w + γ2

r

)
+ βϕ

(
γl1−1 + |ϕ(0)|

l1−1∑

i=1

γi−1

)2

+ 1

≤ βϕ


γ2 +

(
γl1−1 + |ϕ(0)|

l1−1∑

i=1

γi−1

)2

+ 1 ,

(74)

and finally we can upper bound the last quantity above as in (57).
We now focus on proving (54). Note that from (37) we have

[
∂2α(l1)

(∂w(l1))2

]

i,jj′,kk′
=

1

m
ϕ′′
(
α̃(l1)

)
·α(l1−1)

j′ α
(l1−1)
k′ δijδik.

Now,
∥∥∥∥

∂2α(l1)

(∂w(l1))2

∥∥∥∥
2,2,1

= sup
∥V1∥F=1,∥V2∥F=1

m∑

i=1

∣∣∣∣
1

m
ϕ′′(α̃

(l1)
i)V1ij′α

(l1−1)
j′ V2ik′α

(l1−1)
k′

∣∣∣∣

≤ sup
∥V1∥F=1,∥V2∥F=1

βϕ

m

m∑

i=1

∣∣∣(V1α
(l1−1))i(V2α

(l1−1))i

∣∣∣

≤ sup
∥V1∥F=1,∥V2∥F=1

βϕ

2m

(∥∥∥V1α
(l1−1)

∥∥∥
2

2
+
∥∥∥V2α

(l1−1)
∥∥∥
2

2

)

≤ βϕ

m

∥∥∥α(l1−1)
∥∥∥
2

2
≤ βϕ

(
γl1−1 + |ϕ(0)|

l1−1∑

i=1

γi−1

)2

.

(75)

39

Finally, we can upper bound the last quantity above as in (54) and complete the proof.
Now, the last result to prove is (59). Note that from (37) we have

[
∂2α(l2)

(∂r(l2))2

]

i,jj′,kk′
=

1

m
ϕ′′
(
α̃(l2)

)
· F ∗

ijFj′pα
(l2−1)
p F ∗

ikFk′qα
(l2−1)
q ,

where we make use of the Einstein notation. Now,

∥∥∥∥
∂2α(l2)

(∂r(l2))2

∥∥∥∥
2,2,1

= sup
∥V1∥F=1,∥V2∥F=1

m∑

i=1

∣∣∣∣
1

m
ϕ′′(α̃

(l2)
i)F ∗

ijV1jj′Fj′pα
(l2−1)
p F ∗

ikV2kk′Fk′qα
(l2−1)
q

∣∣∣∣

≤ sup
∥V1∥F=1,∥V2∥F=1

βϕ

m

m∑

i=1

∣∣∣((F ∗V1F)α(l2−1))i((F
∗V2F)α(l2−1))i

∣∣∣

≤ sup
∥V1∥F=1,∥V2∥F=1

βϕ

2m

(∥∥∥F ∗V1Fα(l2−1)
∥∥∥
2

2
+
∥∥∥F ∗V2Fα(l2−1)

∥∥∥
2

2

)

≤ βϕ

m

∥∥∥α(l2−1)
∥∥∥
2

2
≤ βϕ

(
γl2−1 + |ϕ(0)|

l2−1∑

i=1

γi−1

)2

.

(76)

Finally, we can upper bound the last quantity above as in (59) and complete the proof.

Now we upper bound the terms in equation (52). Thus, we obtain that, with probability at least 1− 2(L+2)
m ,

Q∞(f) = max
l∈[L+1]

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

(a)

≤ max
l∈[L+1]

1√
m
γL+1−l(1 + ρ1) ≤

1√
m
(1 + γL)(1 + ρ1) , (77)

Q(w,r)
2 (f)

(b)

≤ max
l∈[L+1]

(γl−1 + |ϕ(0)|
l−1∑

i=1

γi−1) ≤ (1 + γL)(1 + L|ϕ(0)|) , (78)

and

Q(w,r)
2,2,1 (f),Q

(w)
2,2,1(f),Q

(r)
2,2,1(f)

(c)

≤ 2βϕ(1 + γL)2(1 + γ)2(1 + (1 + L|ϕ(0)|)2) + 1 , (79)

where (a) follows from a direct adaptation of the results from Section A.6 in Banerjee et al. (2023b), (b)
follows from Lemma E.6, and (c) follows from Lemma E.7.

We now proceed to analyze the Hessian. We also recall that maxl∈{2,...,L+1}

∥∥∥ ∂α(l)

∂α(l−1)

∥∥∥
2
≤ γ from

Lemma E.5.
We introduce some notation. Given an order-3 tensor T ∈ Rd1×d2×d3 , we have that its first dimension

has d1 entries, the second has d2 entries, and the third has d3 entries. Consider the matrices X ∈ Rk1×d1 ,
Y ∈ Rk2×d2 , and Z ∈ Rk3×d3 . We use the notation (X)(Y)T (Z) ∈ Rk1×k2×k3 to denote X multiplying A
long its first dimension, Y along its second dimension, and Z along its third dimension. We use the notation
(X)T (Z) ∈ Rk1×d2×k3 to denote X multiplying A long its first dimension and Z along its third dimension.

Off-Diagonal Blocks. For the off-diagonal blocks, we focus on bounding ∥H(l1,l2)
w,r ∥2 for (Case 1.A) l1 ≤ l2,

(Case 1.B) l2 ≤ l1. Further, we bound (Case 2.A) ∥H(l1)
v,w ∥2 and (Case 2.B) ∥H(l2)

v,r ∥2.
Case 1.A: 2 ≤ l1 ≤ l2 ≤ L+ 1. By building on the form of the gradient, we have

H(l1,l2)
w,r =

∂2α(l1)

∂w(l1)∂r(l1)
∂f

∂α(l1)
1[l1=l2] + 1[l1<l2]

(
∂α(l1)

∂w(l1)

l2−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)
∂2α(l2)

∂α(l2−1)∂r(l2)

(
∂f

∂α(l2)

)

+ 1[l1<l2]

L+1∑

l=l2+1

(
∂α(l1)

∂w(l1)

l−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)(
∂α(l2)

∂r(l2)

l−1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)
∂2α(l)

(∂α(l−1))2

(
∂f

∂α(l)

)
.

40

Then,

∥H(l1,l2)
w,r ∥2 ≤

∥∥∥∥
∂2α(l1)

∂w(l1)∂r(l1)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

1[l1=l2]

+ 1[l1<l2]

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

l2−1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

+ 1[l1<l2]

L+1∑

l=l2+1

(∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

l−1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)(∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

l−1∏

l′=l2+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)

×
∥∥∥∥

∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

≤
∥∥∥∥

∂2α(l1)

∂w(l1)∂r(l1)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

1[l1=l2]

+ 1[l1<l2]γ
l2−l1−1

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂r(l2)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

+ 1[l1<l2]

L+1∑

l=l2+1

γ2l−l2−l1−2

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

∥∥∥∥
∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

.

Then, based on the definitions in (52), we have

∥H(l1,l2)
w,r ∥2 ≤ (L+ 1)(1 + γ2L)Q(w,r)

2,2,1 (f)Q∞(f)

(a)

≤ (L+ 1)(1 + ρ1)√
m

(1 + γ2L)2(2βϕ(1 + γL)2(1 + γ)2(1 + (1 + L|ϕ(0)|)2) + 1) ,

where for (a) we used equations (77) and (79).
Case 1.B: 2 ≤ l2 ≤ l1 ≤ L+ 1. By building on the form of the gradient, we have

H(l1,l2)
w,r =

∂2α(l2)

∂w(l2)∂r(l2)
∂f

∂α(l2)
1[l1=l2] + 1[l2<l1]

(
∂α(l2)

∂r(l2)

l1−1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)
∂2α(l1)

∂α(l1−1)∂w(l1)

(
∂f

∂α(l1)

)

+ 1[l2<l1]

L+1∑

l=l1+1

(
∂α(l2)

∂r(l2)

l−1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)(
∂α(l1)

∂w(l1)

l−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)
∂2α(l)

(∂α(l−1))2

(
∂f

∂α(l)

)
.

41

Then,

∥H(l1,l2)
w,r ∥2 ≤

∥∥∥∥
∂2α(l2)

∂w(l2)∂r(l2)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

1[l1=l2]

+ 1[l2<l1]

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

l1−1∏

l′=l2+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

∥∥∥∥
∂2α(l1)

∂α(l1−1)∂w(l1)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

+ 1[l2<l1]

L+1∑

l=l1+1

(∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

l−1∏

l′=l2+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)(∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

l−1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)

×
∥∥∥∥

∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

≤
∥∥∥∥

∂2α(l2)

∂w(l2)∂r(l2)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

1[l1=l2]

+ 1[l2<l1]γ
l1−l2−1

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

∥∥∥∥
∂2α(l1)

∂α(l1−1)∂w(l1)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

+ 1[l2<l1]

L+1∑

l=l1+1

γ2l−l1−l2−2

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

.

Then, the upper bound is similar to the case Case 1.A,

∥H(l1,l2)
w,r ∥2 ≤ (L+ 1)(1 + γ2L)Q(w,r)

2,2,1 (f)Q∞(f)

(a)

≤ (L+ 1)(1 + ρ1)√
m

(1 + γ2L)2(2βϕ(1 + γL)2(1 + γ)2(1 + (1 + L|ϕ(0)|)2) + 1) .

Case 2.A: 1 ≤ l1 ≤ L+ 1. For Hessian terms involving (w, v), since ∂f
∂v = 1√

m
α(L+1), we have

H(l1)
w,v =

1√
m

∂α(L+1)

∂w(l1)
=

1√
m

(
∂α(l1)

∂w(l1)

L+1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)
.

Then,

∥H(l1,L+1)
w,v ∥2 ≤ 1√

m

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

L+1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

≤ 1√
m
γLQ(w,r)

2 (f)
(a)

≤ 1√
m
γL(1 + γL)(1 + L|ϕ(0)|) ,

where (a) follows from equation (78).
Case 2.B: 2 ≤ l2 ≤ L+ 1. For Hessian terms involving (r, v), since ∂f

∂v = 1√
m
α(L+1), we have

H(l2)
r,v =

1√
m

∂α(L+1)

∂r(l2)
=

1√
m

(
∂α(l2)

∂r(l2)

L+1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)
.

Then,

∥H(l2)
r,v ∥2 ≤ 1√

m

∥∥∥∥
∂α(l2)

∂r(l2)

∥∥∥∥
2

L+1∏

l′=l2+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

(a)

≤ 1√
m
γL(1 + γL)(1 + L|ϕ(0)|) ,

where (a) follows from equation (78).

42

Diagonal Blocks. For the diagonal blocks, we focus only on bounding (Case 3.A) ∥H(l1,l2)
w ∥2 and (Case

3.B) ∥H(l1,l2)
r ∥2 for l1 ≤ l2, since the case l2 ≤ l1 is just symmetrical and will have the same bounds.

Case 3.A: 1 ≤ l1 ≤ l2 ≤ L+ 1. By building on the form of the gradient, we have

H(l1,l2)
w =

∂2α(l1)

(∂w(l1))2
∂f

∂α(l1)
1[l1=l2] + 1[l1<l2]

(
∂α(l1)

∂w(l1)

l2−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)
∂2α(l2)

∂α(l2−1)∂w(l2)

(
∂f

∂α(l2)

)

+ 1[l1<l2]

L+1∑

l=l2+1

(
∂α(l1)

∂w(l1)

l−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)(
∂α(l2)

∂w(l2)

l−1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)
∂2α(l)

(∂α(l−1))2

(
∂f

∂α(l)

)
.

Then,

∥H(l1,l2)
w ∥2 ≤

∥∥∥∥
∂2α(l1)

(∂w(l1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

1[l1=l2]

+ 1[l1<l2]

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

l2−1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂w(l2)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

+ 1[l1<l2]

L+1∑

l=l2+1

(∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

l−1∏

l′=l1+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)(∥∥∥∥
∂α(l2)

∂w(l2)

∥∥∥∥
2

l−1∏

l′=l2+1

∥∥∥∥∥
∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)

×
∥∥∥∥

∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

≤
∥∥∥∥

∂2α(l1)

(∂w(l1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l1)

∥∥∥∥
∞

1[l1=l2]

+ 1[l1<l2]γ
l2−l1−1

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂2α(l2)

∂α(l2−1)∂w(l2)

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l2)

∥∥∥∥
∞

+ 1[l1<l2]

L+1∑

l=l2+1

γ2l−l2−l1−2

∥∥∥∥
∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥
∂α(l2)

∂w(l2)

∥∥∥∥
2

∥∥∥∥
∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥
∂f

∂α(l)

∥∥∥∥
∞

.

Then, based on the definitions in (52), we have

∥H(l1,l2)
(w) ∥2 ≤ (L+ 1)(1 + γ2L)Q(w)

2,2,1(f)Q∞(f)

(a)

≤ (L+ 1)(1 + ρ1)√
m

(1 + γ2L)2(2βϕ(1 + γL)2(1 + γ)2(1 + (1 + L|ϕ(0)|)2) + 1) ,

where for (a) we used equations (77) and (79).
Case 3.B: 2 ≤ l1 ≤ l2 ≤ L+ 1. By building on the form of the gradient, we have

H(l1,l2)
r =

∂2α(l1)

(∂r(l1))2
∂f

∂α(l1)
1[l1=l2] + 1[l1<l2]

(
∂α(l1)

∂r(l1)

l2−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)
∂2α(l2)

∂α(l2−1)∂r(l2)

(
∂f

∂α(l2)

)

+ 1[l1<l2]

L+1∑

l=l2+1

(
∂α(l1)

∂r(l1)

l−1∏

l′=l1+1

∂α(l′)

∂α(l′−1)

)(
∂α(l2)

∂r(l2)

l−1∏

l′=l2+1

∂α(l′)

∂α(l′−1)

)
∂2α(l)

(∂α(l−1))2

(
∂f

∂α(l)

)
.

Then, we can obtain prove the following upper bound in a similar way to Case 3.A based on the definitions
in (52),

∥H(l1,l2)
(r) ∥2 ≤ (L+ 1)(1 + γ2L)Q(r)

2,2,1(f)Q∞(f)

(a)

≤ (L+ 1)(1 + ρ1)√
m

(1 + γ2L)2(2βϕ(1 + γL)2(1 + γ)2(1 + (1 + L|ϕ(0)|)2) + 1) ,

43

where for (a) we used equations (77) and (79).
Putting all the shown results back in (51), we prove equation (38). We also note that all the constants in

the Hessian bound depend on σ1,w, σ1,r, the depth L, and the radii ρw, ρr, ρ1, and ρ2. This dependence of
this bound reduces to the depth and the radii and becomes polynomial whenever γ ≤ 1, which is equivalent
to σ1,w + σ1,r ≤ 1− ρw+ρr√

m
.

Now, we focus on proving the rest of equations in Lemma E.2, namely, equations (39) and (40).

Gradient and predictor bounds. We observe that for l ∈ [L], ∂f
∂w(l) = ∂α(l)

∂w(l)

(∏L
l′=l

∂α(l′+1)

∂α(l′)

)
∂f

∂α(L+1) ,

and so

∥∥∥∥
∂f

∂w(l)

∥∥∥∥
2

≤
∥∥∥∥
∂α(l)

∂w(l)

∥∥∥∥
2

γL−l+1

∥∥∥∥
∂f

∂α(L+1)

∥∥∥∥
2

≤
∥∥∥∥
∂α(l)

∂w(l)

∥∥∥∥
2

γL−l+1 1√
m
(1 + ρ1)

≤ (1 + γL)(1 + L|ϕ(0)|)γL 1√
m
(1 + ρ1) ,

where the last inequality follows from Lemma E.6.
We also have that

∥∥∥∥
∂f

∂w(L+1)

∥∥∥∥
2

=

∥∥∥∥
∂α(L+1)

∂w(L+1)

∂f

∂α(L+1)

∥∥∥∥
2

=

∥∥∥∥
∂α(L+1)

∂w(L+1)

∥∥∥∥
2

∥∥∥∥
∂f

∂α(L+1)

∥∥∥∥
2

≤ (1 + γL)(1 + L|ϕ(0)|) 1√
m
(1 + ρ1) .

Similarly, we can obtain for l2 ∈ {2, . . . , L},
∥∥∥∥

∂f

∂r(l2)

∥∥∥∥
2

≤ (1 + γL)(1 + L|ϕ(0)|)γL 1√
m
(1 + ρ1) ,

and
∥∥∥∥

∂f

∂r(L+1)

∥∥∥∥
2

≤ (1 + γL)(1 + L|ϕ(0)|) 1√
m
(1 + ρ1) .

Using all these derivations,

∥∇θf∥22 =

L+1∑

l=1

∥∥∥∥
∂f

∂w(l)

∥∥∥∥
2

2

+

L+1∑

l=2

∥∥∥∥
∂f

∂r(l)

∥∥∥∥
2

2

≤ 2

m
(L+ 1)(1 + γL)2(1 + L|ϕ(0)|)2(1 + ρ1)

2 ,

which finishes the proof for equation (39).
Now,

|f | =
∣∣∣∣

1√
m
v⊤α(L+1)

∣∣∣∣

≤ 1√
m
∥v∥2∥α(L+1)∥2

≤ (1 + ρ1)(1 + γL)(1 + L|ϕ(0)|) ,

which finishes the proof for equation (40). Again, we notice that all these bounds have a polynomial dependence
on the depth L, and the radii ρw, ρr, ρ1, and ρ2 whenever γ ≤ 1, i.e., whenever σ1,w + σ1,r ≤ 1− ρw+ρr√

m
.

Thus, we finish the proof for Lemma E.2.

44

E.8 RSC and Smoothness Results

Using the results from the previous section, we immediately obtain the RSC and smoothness results.

Theorem 4 (RSC for FNOs). Consider Assumptions 5, 6, and 7, and Qt
κ as in Definition 3. Then, the set

Bt
κ := Qt

κ ∩BEuc
ρw,ρrρ1

(θ0) ∩BEuc
ρ2

(θt) is a non-empty set that satisfies Condition 1(a) and (b) for suitable ρ2.

Moreover, with probability at least 1− 2(L+2)
m , at step t of GD, the FNO loss L (6) satisfies equation (8) with

αt = 2κ2∥∇θḠt∥22 −
c1√
m

, (14)

where ∇θḠt =
1
n

∑n
i=1

1
R

∑R
j=1 ∇θGθt(u

(i))(xj), and for some constant c1 > 0 which depends polynomially

on the depth L, and the radii ρw, ρr, ρ1, and ρ2 whenever σ1,w + σ1,r ≤ 1 − ρw+ρr√
m

. Thus, the loss L(θ)
satisfies RSC w.r.t (Bt

κ,θt), i.e., Condition 1(c), whenever ∥∇θḠt∥22 = Ω(1√
m
).

Proof. We start by proving the first part of the theorem’s statement. We immediately see that, since
Bt

κ ⊂ BEuc
ρw,ρrρ1

(θ0), we satisfy Condition 1(a). We now need to satisfy Condition 1(b). For this, we proceed
to show the existence of an element θ′ ∈ Bt

κ that is an element of the set Qt
κ as in Definition 3, i.e., satisfies

| cos(θ′ − θt,∇θḠt)| ≥ κ , (80)

and that also satisfies the following two conditions:

Condition (A): ∥θ′ − θt∥2 = ϵ for some ϵ < 2∥∇θL(θt)∥2

√
1−κ2

β ; and

Condition (B): the angle ν′ between (θ′ − θt) and −∇θL(θt) is acute, so that cos(ν′) > 0.

To show the existence of such element θ′ ∈ Bt, we propose two possible constructions:

Choice (A): If the points θt+1, ∇θḠt + θt, and θt are not collinear, then they define a hyperplane P that
contains the vectors ∇θḠt and −∇θL(θt) (recall that θt+1−θt = −∇θL(θt) by gradient descent).
We choose θ′ such that the vector θ′ − θt lies in P with cos(θ′ − θt,∇θḠt) = κ (i.e., it satisfies
condition (80) with equality) while simultaneously satisfying Condition (B). If the points θt+1,
∇θḠt + θt, and θt are collinear, we choose θ′ such that it is not collinear with these points, thus
defining a hyperplane P with these other three points, and such that θ′ is also taken so that
cos(θ′ − θt,∇θḠt) = κ while simultaneously satisfying Condition (B).

Thus far we have only defined angle (or direction) conditions on the vector θ′ − θt, and so there
could be an infinite number of values for θ′

f satisfying such angle conditions without θ′ belonging

to the set BEuc
ρw,ρr,ρ1

(θ0) nor θ
′ satisfying Condition (A). To determine the feasible values for θ′,

we observe that θt is strictly inside the set BEuc
ρw,ρr,ρ1

(θ0) by Assumption 7, and so θ′ can be

taken arbitrarily close to θt so that θ′ ∈ BEuc
ρw,ρr,ρ1

(θ0) and Condition (A) is satisfied.

We remark that, regardless of the collinearity of the points θt+1, ∇θḠt + θt, and θt, hyperplane
P contains the vectors θ′ − θt, ∇θḠt, and −∇θL(θt), all sharing its origin at θf ∈ P.

Choice (B): We choose θ′ as in Choice (A) but with ∇θḠt replaced by −∇θḠt.

We immediately notice that θ′ defined by either Choice (A) or Choice (B) satisfies θ′ ∈ Qt
κ ∩BEuc

ρw,ρr,ρ1
(θ0).

To make θ′ belong to the set Bt
κ, we need to find a radius ρ2 such that θ′ ∈ BEuc

ρw,ρr,ρ1
(θ0), which is done by

taking ρ2 > ϵ with ϵ as in Condition (A). Finally, it is straightforward to verify that such θ′ ∈ Bt
κ defined by

either Choice (A) or Choice (B) will always exist, by considering the following cases for the angle ν between
∇θḠt and −∇θL(θt):

(i) If ν ∈ [0, π/2] or ν ∈ [3π/2, 2π], then Choice (A) will be true, since −∇θf
L(θt) is in the positive half

space2 of ∇θḠt; and

2We say a is in the positive half-space of b if ⟨a,b⟩ ≥ 0.

45

(ii) if ν ∈ [π/2, π] or ν ∈ [π, 3π/2], then Choice (B) will be true, since −∇θf
L(θt) is in the positive half

space of −∇θḠt.

Now, let us assume we are in the case of item (i) above, so that θ′ is constructed according to Choice (A)
(the rest of the proof can be adapted to the case of item (ii) by using a symmetrical argument and so it is
omitted). Let ν1 be the angle between θ′ − θt and ∇θḠt, so that cos(ν1) = κ according to Choice (A). Then,
we have that

| cos(ν′)| = | cos(ν − ν1)| ≥ | cos(π/2− ν1)| = | sin(ν1)| =
√

1− cos2(ν1) =
√

1− κ2 .

Further, by the construction in Condition (B), cos(ν′) > 0, which implies cos(ν′) ≥
√
1− κ2 > 0. Now, by

the smoothness property of the empirical loss L we have

L(θ′) ≤ L(θt)− ⟨θ′ − θt,−∇θL(θt)⟩+
β

2
∥θ′ − θt∥22

= L(θt)− ∥θ′ − θt∥2∥∇θL(θt)∥2 cos(ν) +
β

2
∥θ′ − θt∥22

= L(θt)− ϵ∥∇θL(θt)∥2 cos(ν) +
β

2
ϵ2

= L(θt)−
βϵ

2

(
2∥∇θL(θt)∥2 cos(ν)

β
− ϵ

)

< L(θt) .

where the last inequality follows by the construction of ϵ in Condition (A). Note that this implies that the
constructed θ′ is as described in Condition 1(b.2). This finishes the proof for Condition 1(b).

The second part of the proof, i.e., the RSC condition over the non-empty set Bt
κ, follows from a direct

adaptation of Theorem 5.1 in (Banerjee et al., 2023b) using Lemma E.2. Since we are using Lemma E.2, the
condition for polynomial dependence on the bounds carries on.

Theorem 5 (Smoothness for FNOs). Under Assumptions 5 and 6, with probability at least 1− 2(L+2)
m ,

the FNO loss L (6) is β-smooth in BEuc
ρw,ρrρ1

(θ0) with β being a positive constant which depends polynomially

on the depth L, and the radii ρw, ρr, and ρ1 whenever σ1,w + σ1,r ≤ 1− ρw+ρr√
m

.

Proof. The proof follows from a direct adaptation of the proof of Theorem 5.2 in (Banerjee et al., 2023b)
using Lemma E.2, where it can be shown that β = 2ϱ2 + c̄√

m
for some positive constant c̄ which inherits the

dependence on the constants σ1,w, σ1,r, the depth L and the radii ρw, ρr, and ρ1 from Lemma E.2.

Proposition 3 (RSC to smoothness ratio). Under the same conditions as in Theorems 4 and 5, we have

that αt/β < 1 with probability at least 1− 2(L+2)
m .

Proof. From the direct adaptation of the proof of Theorem 5.2 in (Banerjee et al., 2023b) using Lemma E.2,

we can obtain ∥∇θḠt∥22 ≤ ϱ2. Then, αt

(a)
< 2κ2∥∇θḠt∥22 ≤ 2κ2ϱ2 ≤ 2ϱ2

(b)
< β, where (a) follows from (14) and

(b) from Theorem 5. This result shows that αt

β < 1.

F Supplementary Information for the Experiments

In this section we expand on the mathematical description of each operator learning problem studied in
Section 8. We also present further results on how the accuracy of each neural operator model improves as the
width m increases. Finally, we provide details about the hyperparameters and datasets used in the training
of the corresponding models.

We remark that all experiments with widths m ∈ {10, 50} were run on a personal computer with one
NVIDIA Quadro GPU, while the rest of widths were on Google Colab with single NVIDIA L4 and A100
GPUs.

46

0.0 0.5 1.0
x

−0.2

0.0

0.2

0.4

0.6

0.8
s(
x

)
=
∫ x 0
u

(ξ
)d
ξ

m = 10

pred

data

0.0 0.5 1.0
x

−0.2

0.0

0.2

0.4

0.6

0.8

s(
x

)
=
∫ x 0
u

(ξ
)d
ξ

m = 50

pred

data

0.0 0.5 1.0
x

−0.2

0.0

0.2

0.4

0.6

0.8

s(
x

)
=
∫ x 0
u

(ξ
)d
ξ

m = 500

pred

data

Figure 5: Sample solutions obtained for the Antiderivative operator for DONs for m ∈ {10, 50, 500} at the
end of the training process (80,000 epochs) for a randomly chosen input function. The “data” refers to the
ground truth (obtained by a standard numerical solver) and “pred” corresponds to the learned operator.

F.1 Antiderivative Operator

We consider a simple one-dimensional Antiderivative or Integral operator given by

s(x) := G(u)(x) =

∫ x

0

u(ξ) dξ, x ∈ [0, 1] . (81)

Note that G(u) is a linear operator and therefore learnable up to high accuracy. This is evident from the
training loss in Figure 1 as well as from the sample solutions presented in Figure 5 for DONs and in Figure 6
for FNOs. We observe that overall an increase in the width m leads to higher training accuracy and lower
training loss.

The sample size of the training data is n = 2000, with every input function u(i), i ∈ [n], being a
one-dimensional Gaussian Random Fields (GRF). For DON training, we choose R = 100 input locations and
we choose 100 output locations for each input function, i.e., qi = 100, i ∈ [n] (according to the notation in
Section 3.1).3 For the FNO, the input function is also sampled across 100 locations (i.e., R̄ = 100 using the
notation in Section 6); however, since we are interested in the model to provide an output of 100 output
locations, we modify the FNO architecture to provide this vector-valued output. 4 For all the experiments we
fix the learning rate for the Adam optimizer at 10−3 and with full-batch training, i.e., the batch size of 2000 for
both DONs and FNOs. For testing the trained neural operators, we generate another one-dimensional GRF.

F.2 Diffusion-Reaction Operator

We are interested in learning an operator G : u(x) → s(x, t) for the solution operator of the one-dimensional
Diffusion-Reaction equation implicitly given by

∂s

∂t
= D

∂2s

∂x2
+ ks2 + u(x), (x, t) ∈ (0, 1]× (0, 1] , (82)

with D > 0 and zero initial and boundary conditions, namely,

s(0, t) = s(1, t) = 0 and s(x, 0) = 0 ,

3During training; however, for each i ∈ [n], instead of averaging the loss over all the qi points, we simply randomly choose
one of the qi points and evaluate the loss on it. This is strictly done in the interest of computational efficiency, since it is known
to not reduce the accuracy of the results for the Antiderivative operator; e.g., see (Lu et al., 2021).

4This means that we have R = 1 (according to the notation in Section 3.2) with the understanding that for each input
function, we output a vector of size 100. This is done as an alternative to an FNO with a scalar output which is averaged across
the 100 locations (for which we would have R = 100), which is what we described in Section 3. We remark that we considered
this modification on the output of the FNO just for the sake of computational efficiency, and this only empirically works for the
case of the Antiderivative operator. Again, as in the case of DONs, we randomly sample one of the output locations to compute
the loss during training.

47

0.0 0.5 1.0
x

−0.4

−0.3

−0.2

−0.1

0.0
s(
x

)
=
∫ x 0
u

(ξ
)d
ξ

m = 10

pred

data

0.0 0.5 1.0
x

−0.4

−0.3

−0.2

−0.1

0.0

s(
x

)
=
∫ x 0
u

(ξ
)d
ξ

m = 50

pred

data

0.0 0.5 1.0
x

−0.4

−0.3

−0.2

−0.1

s(
x

)
=
∫ x 0
u

(ξ
)d
ξ

m = 500

pred

data

Figure 6: Sample solutions obtained for the Antiderivative operator for FNOs for m ∈ {10, 50, 500}. The
setting is the same as in Figure 5.

along with a forcing function u(x) defined by a GRF. This is the same setup as in (Wang et al., 2021a; Lu
et al., 2021). The corresponding solutions for DONs and FNOs are presented in Figures 7 and 8 respectively.
Again, a larger width m leads to a more accurate solution.

The neural operator aims to learn a mapping from the forcing function to the solution at different times
in the interval (0, 1], in other words, the forcing function would be the input function as defined in Section 3.
We make use of a slightly modified solver provided at https://github.com/PredictiveIntelligenceLab/
Physics-informed-DeepONets to generate the training data for the equation. We generate solutions for
n = 5000 input functions which are sampled on 100 points in the space dimension (i.e., the interval (0, 1] for x
in (82) is divided in 100 points) so that R = 100 for DON and R̄ = 100 for FNO (according to the notations
in Section 3.1 and Section 6 respectively). For computing the solutions, we are interested in computing them
at 100 different times t within the time interval (0, 1] in (82) (in order to be able to plot the two-dimensional
map on x and t in Figures 7 and 8). This division of both spatial and time dimensions results in a grid of
10, 000 points that can be chosen as output locations. For the training of DONs, for each i ∈ [n], we only
select 100 scattered points from the grid of output locations (out of their 10, 000 points), so that q(i) = 100,
which will become the input to the trunk net. However, for the training of FNOs, we do choose the full grid
as output locations and thus we modify the FNO to provide 10, 000 outputs instead of the scalar output
provided in our theoretical analysis.5 We fix the diffusivity as D = 0.01. For all the experiments we use a
constant learning rate of 3 × 10−4 and Adam optimizer with a batch size of 4000. For testing the trained
neural operators, we generate another one-dimensional GRF.

F.3 Burger’s Equation

The Burger’s equation operator learns an operator G : u(x) → s(x, 1), where

∂s

∂t
+ s

∂s

∂x
− ν

∂2s

∂x2
= 0, (x, t) ∈ (0, 2π]× (0, 1]

s(x, 0) = u(x), x ∈ (0, 2π]

(83)

with ν > 0 and periodic boundary conditions

s(0, t) = s(2π, t)

∂s

∂x
(0, t) =

∂s

∂x
(2π, t) .

5A scalar output is needed if we were interested in evaluating the operator at only one specific spatial location x and one
specific value of time t; however, as can be seen in Figures 7 and 8, we are interested in plotting solutions at multiple locations
and times.

48

https://github.com/PredictiveIntelligenceLab/Physics-informed-DeepONets
https://github.com/PredictiveIntelligenceLab/Physics-informed-DeepONets

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00
t

Data

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Pred

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Error

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Data

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Pred

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Error

−0.45

−0.36

−0.27

−0.18

−0.09

0.00

0.09

0.18

0.27

0.36

−0.32

−0.24

−0.16

−0.08

0.00

0.08

0.16

0.24

0.32

−0.36

−0.27

−0.18

−0.09

0.00

0.09

0.18

0.27

0.36

0.45

−0.45

−0.36

−0.27

−0.18

−0.09

0.00

0.09

0.18

0.27

0.36

−0.45

−0.36

−0.27

−0.18

−0.09

0.00

0.09

0.18

0.27

0.36

−0.024

−0.018

−0.012

−0.006

0.000

0.006

0.012

0.018

0.024

Figure 7: Sample solutions s(x, t) obtained for the Diffusion-Reaction operator for DONs for m ∈ {10, 500}
given an input u(x). The top row corresponds to m = 10 and the bottom row to m = 500. The third column
represents the pointwise difference of the ground truth or “Data” (first column) minus the obtained results
from the learned DON or “Pred” (second column).

The corresponding solutions for DONs and FNOs are presented in Figures 9 and 10 respectively. Again, a
larger width m leads to a more accurate solution.

The neural operator aims to learn a mapping from the initial condition to the solution at time t = 1,
i.e. the mapping from u(x) to the final solution s(x, 1). This is the operator learning problem originally
studied in (Li et al., 2021a). We note that the initial condition would then be the input function as defined
in Section 3. We make use of the datasets publicly available at https://github.com/neuraloperator/

neuraloperator, specifically the Burgers R10.mat dataset available at https://drive.google.com/drive/
folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-, which comprises of 2048 input functions and corresponding
final solution (i.e., u(i) with associated solution s(i)(·, 1), i ∈ [2048]). All solutions are calculated for a single
viscosity ν = 0.01. For all the experiments we use a constant learning rate of 10−3 and Adam optimizer with a
batch size of 800. We test the trained neural operators on a simple GRF sampled from the training dataset.

49

https://github.com/neuraloperator/neuraloperator
https://github.com/neuraloperator/neuraloperator
https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-
https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Data

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Pred

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Error

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Data

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t
Pred

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

t

Error

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

−0.225

0.000

0.225

0.450

0.675

0.900

1.125

1.350

1.575

1.800

−0.60

−0.48

−0.36

−0.24

−0.12

0.00

0.12

0.24

0.36

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

−0.0352

−0.0264

−0.0176

−0.0088

0.0000

0.0088

0.0176

0.0264

0.0352

Figure 8: Sample solutions obtained for the Diffusion-Reaction operator s(x, t) for FNOs for m ∈ {10, 500}.
The setting of the plots is the same as in Figure 7 where the top row corresponds to m = 10 and the bottom
row to m = 500.

0 2 4 6
x

−1.0

−0.5

0.0

0.5

1.0

s(
x
,1

)
=
G

(u
)(
x

)

m = 10

pred

data

0 2 4 6
x

−1.0

−0.5

0.0

0.5

1.0

s(
x
,1

)
=
G

(u
)(
x

)

m = 50

pred

data

0 2 4 6
x

−1.0

−0.5

0.0

0.5

1.0

s(
x
,1

)
=
G

(u
)(
x

)

m = 500

pred

data

Figure 9: Sample solutions obtained for the Burger’s equation for DONs for m ∈ {10, 50, 500}. The setting is
similar to the one in Figure 5 where we plot the obtained solution from the learned operator (denoted by
“pred”) along with the ground truth (denoted by “data”) for different widths.

50

0 2 4 6
x

−0.5

0.0

0.5

s(
x
,1

)
=
G

(u
)(
x

)

m = 10

pred

data

0 2 4 6
x

−0.5

0.0

0.5

s(
x
,1

)
=
G

(u
)(
x

)

m = 50

pred

data

0 2 4 6
x

−0.5

0.0

0.5

s(
x
,1

)
=
G

(u
)(
x

)

m = 500

pred

data

Figure 10: Sample solutions obtained for the Burgers equation for FNOs for m ∈ {10, 50, 500}. The setting is
the same as in Figure 9.

51

	Introduction
	Related Work
	Learning Neural Operators
	Learning Deep Operator Networks (DONs)
	Learning Fourier Neural Operators (FNOs)

	Optimization Convergence Framework
	Optimization Analysis for DON
	Optimization Analysis for FNO
	Comparison between Neural Operators and Feedforward Neural Networks
	Experiments
	Conclusion
	Related Work
	Additional Information on Neural Operators
	Learning Operators
	DON Architecture
	FNO Architecture

	Optimization Convergence Analysis for Section 4
	Analysis for Deep Operator Networks
	Bounds on the Hessian, Gradients and the Predictor
	RSC and Smoothness Results

	Analysis for Fourier Neural Operators
	Bounds on the Hessian, Gradients and the Predictor
	RSC and Smoothness Results

	Supplementary Information for the Experiments
	Antiderivative Operator
	Diffusion-Reaction Operator
	Burger's Equation

