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Abstract

The remarkable performance of long reasoning
models can be attributed to their ability to emulate
human-like long-time thinking during inference.
These models employ extended chain-of-thought
(CoT) processes, exploring multiple strategies to
enhance problem-solving capabilities. However, a
critical question remains: How to intelligently and
efficiently scale computational resources during
testing. This paper presents the first comprehen-
sive study on the prevalent issue of overthinking
in these models, where long reasoning models
generate redundant solutions that contribute min-
imally to accuracy and diversity, thereby wast-
ing computational resources on simple problems
with minimal benefit. We introduce novel effi-
ciency metrics from both outcome and process
perspectives to evaluate the rational use of com-
putational resources by long reasoning models.
Using a self-training paradigm, we propose strate-
gies to mitigate overthinking, simplifying reason-
ing processes without compromising accuracy.
Experimental results show that our approach suc-
cessfully reduces computational overhead while
preserving model performance across a range of
testsets with varying difficulty levels, such as
GSMB8K, MATH500, GPQA, and AIME. Our
code is available at https://github.com/
galaxyChen/overthinking.

1. Introduction

The OpenAl ol model (OpenAl, 2024) and its repli-
cas (Qwen, 2024; Guo et al., 2025; Kimi et al., 2025;
DeepSeek, 2025) exemplify the state-of-the-art in Al rea-
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Figure 1. Illustration of overthinking issue: long reasoning mod-
els (in red color) spend much more tokens than conventional LLMs
(in blue color) on a simple question “What is the answer of 2 plus
37,

soning. Their success is largely attributed to mimicking
human-like long-term thinking before responding to a ques-
tion. Specifically, long reasoning models cultivate a long
chain of thoughts (CoT), explore multiple strategies, break
down complex steps, and perform double-checking, which
ultimately enhance their ability to tackle intricate reasoning
tasks. This approach, known as “scaling test-time compute”,
involves allocating more computational resources during the
model’s inference phase to generally yield more accurate
responses.

While effective, a critical yet underexplored question re-
mains: Are we scaling test-time compute efficiently and
intelligently? This study provides an initial exploration of
this problem. We first observe that long reasoning models
exhibit significant overthinking issues. Specifically, they
tend to expend excessive compute (in terms of tokens or
thinking rounds) on questions that are exceptionally simple
or for which the answer is already evident. For example,
Figure 1 compares the token usage of long reasoning mod-
els with conventional models when answering the question,
“what is the answer of 2 plus 37 On average, long reasoning
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Figure 2. An example of overthinking issue for QwQ-32B-Preview model’s output response that consists of 13 solutions. Each colored
box contains a solution with the same explicit answer 5. The model repeatedly produces solutions with identical answers, demonstrating
redundancy and a lack of diversity. We also list the outputs of other conventional LLMs for reference.

models consumed about 20x more tokens than conventional
models to reach the same answer. Figure 2 illustrates a
concrete example where excessive long thinking results in
generating 13 solutions for this trivially simple question.
Across extensive analyses of mathematical benchmarks, we
found these overthinking patterns: (1) contribute minimally
to improving accuracy, (2) lack diversity in reasoning strate-
gies, and (3) occur more frequently with simple problems.

The overthinking observed in long reasoning models reveals
inefficiency in inference and highlights fundamental limi-
tations in their reasoning and decision-making processes.
We assert that reasoning involves not only accuracy but also
the application of the appropriate level of complexity based
on the problem’s requirements. This insight motivates our
exploration of studying and mitigating overthinking. To
address this, we propose two metrics from both outcome
and process perspectives to evaluate long reasoning models’
efficiency. These metrics help provide a comprehensive
assessment of the efficiency of long reasoning models, aug-
menting the commonly-used effectiveness metrics.

To mitigate overthinking without introducing external in-
formation, we adopt a self-training paradigm that teaches
the model to produce more concise responses using its own
generated outputs. We simplify the generated responses
by removing redundant solutions while maintaining basic
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Figure 3. Token-accuracy plot on MATH500. Our method reduces
the overthinking issue when applied to QwQ-32B-Preview.

reflexivity. Experimental results across testsets of varying
difficulty levels (e.g., ASDIV, GSM8K, MATH500, GPQA,
and AIME) demonstrate our approach’s effectiveness and
robustness in mitigating overthinking issues. For instance,
as shown in Figure 3, our approach can reduce token output
by 44.5% while maintaining accuracy on the widely-used
MATHS00 testset as applied to QwQ-32B-Preview.
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Figure 4. Distribution of solution counts in generated responses for different test sets and models (QwQ-32B-Preview (“QwQ”) and

DeepSeek-R1 (“R17)).

In summary, our contributions are three-fold:

1. We present the first study offering both a definitive expla-
nation and comprehensive analysis of the overthinking
issue, showing that long reasoning models often expend
unnecessary computational resources on redundant solu-
tions that contribute minimally to final outcomes.

2. We introduce metrics considering both outcome and pro-
cess aspects to assess the efficiency of long reasoning
models.

3. We explore several strategies to mitigate overthinking,
significantly reducing generated tokens while maintaining
model performance across testsets of varying difficulty.

2. Observing Overthinking Issues

In this section, we present a comprehensive analysis of out-
puts generated by long reasoning models. First, we provide
a basic illustration of the solution distribution in responses
from these models (§ 2.1). We then identify two inefficien-
cies in long reasoning responses: their limited contribution
to accuracy (§ 2.2) and diversity (§ 2.3). To evaluate these
inefficiencies empirically, we propose two efficiency metrics
based on our observations. Finally, we present empirical
results in § 2.4 and conclude that long reasoning models
often overthink, particularly with easier math problems.

2.1. Solution Distribution of long reasoning Models

Experimental Setup We use two test sets, including AS-
DIV (Miao et al., 2020) and MATH500 (Hendrycks et al.,
2021). ASDIV is an elementary-level math test set, while
MATHS500 is a high school-level math test set. We mainly
investigate two widely recognized long reasoning mod-
els featuring a visible thinking process: Qwen-QwQ-32B-
Preview (Qwen, 2024) and DeepSeek-R1 (DeepSeek, 2025).
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Figure 5. Average solution density (the number of solutions per
1000 tokens) and the number of tokens in generated responses
across different difficulty levels of the MATHS00 test set.

Solution Distribution In this paper, we define solution
as part of the full model generation that contains an answer
explicitly. For example, in Figure 2, each solution in the
QwQ-32B-Preview generation contains the answer 5. We
use the Llama-3.3-70B model to separate solutions from
generated responses. Figure 4 shows the distribution of so-
lutions in generated responses. Generally, long reasoning
models produce 2 to 4 solution rounds for most instances,
covering 56% to 65% of cases for QwQ-32B-Preview across
the test sets and 57% to 62% for DeepSeek-R1. Regarding
different test sets, long reasoning models tend to generate
more solutions on average for easier test sets. Since these
models naturally produce more tokens for harder problems,
we define Solution Density as the number of solutions per
1,000 tokens to compare the extent of overthinking across
different difficulty levels. The solution density of QwQ-
32B-Preview is 5.5 on ASDIV and 2.7 on the most difficult
MATHS00 test set. Similarly, DeepSeek-R1 achieves solu-
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Figure 6. Distribution of occurrences for the first correct answer.
Later solutions marginally contribute to improvements in accuracy

tion densities of 4.2 and 2.4, respectively. As shown, both
QwQ-32B-Preview and DeepSeek-R1 exhibit more severe
overthinking in simpler problems.

To further empirically validate this finding, we conducted an
analysis across various difficulty levels in the MATHS00 test
set, as illustrated in Figure 5. Both QwQ-32B-Preview and
R1 generate more tokens for difficult problems, and their
solution density decreases as question difficulty increases.
For example, QwQ-32B-Preview achieves a solution density
of 3.8 for the simplest (level 1) questions, indicating that,
on average, every 1,000 tokens contain more than three
solutions, whereas the solution density for level 5 problems
drops to 1.7. Although R1 performs slightly better, it still
produces multiple solutions for simple questions. These
results support our claim that long-reasoning models tend
to overthink simpler problems.

2.2, Efficiency on Accuracy Improvements

Intuition In the example in Figure 2, we observe that the
initial round of solutions already yields the correct answer.
Subsequent solutions, which account for the majority of
generated tokens, do not enhance accuracy. Based on this
observation, we empirically investigate whether later so-
lutions contribute to accuracy improvements. Specifically,
for all cases where long reasoning models produce the cor-
rect answer in the response, we calculate the distribution
of occurrences for the first correct answer, termed the “first
correctness distribution”. If more correct answers appear in
earlier solutions, then the subsequent solutions contribute
minimally to accuracy improvement, indicating reduced
efficiency.

Observation Figure 6 illustrates the first correctness dis-
tribution across the test sets and models. In more than 80%
of cases, the initial round of solutions produces the correct
answer. Notably, the first round generally comprises less
than 60% of the total tokens generated, suggesting that the

extended CoT might not significantly enhance accuracy. For
instance, the average length of the first round of solutions
for QwQ-32B-Preview on the ASDIV test set is 287 tokens,
constituting only 38.7% of the entire response. These re-
sults suggest that later solutions marginally contribute to
improvements in accuracy.

Outcome Efficiency Metric Based on the above observa-
tion, we propose an outcome efficiency metric to empirically
evaluate how effectively later solutions contribute to accu-
racy improvements. The outcome efficiency metric, denoted
&0, 1s defined by the following formula:

N ~
1 T;
0=y, (M

where N is the number of instances in a given test set. o;
denotes whether the evaluated model can produce a correct
answer in the response:

if at least one solution in response is correct

otherwise

T; is the total number of tokens produced for the i-th in-
stance, and T; denotes the efficient tokens that contribute to
reaching the correct answer:

P =

. ] #tokens to first arrive at correct answer, o; =1
Ti g; = 0

Intuitively, if a model correctly answers at an early stage, the

tokens generated thereafter do not contribute to improving

accuracy and are considered inefficient. Consider Figure 2

as an example: The first solution correctly addresses the
39

problem with 7' = 39. Consequently, £o = 501 = 4.3%,

which can be considered extremely inefficient.

2.3. Efficiency on Diverse Thinking

Intuition Some researchers might argue that while solv-
ing an easy math problem may appear straightforward, ap-
proaching it from different perspectives can deepen un-
derstanding and build flexibility in mathematical thinking,
which is also valuable. Consider the example output of
QwQ-32B-Preview in Figure 2: Solution 1 states the basic
fact that 2 plus 3 equals 5; Solution 2 breaks the addition into
smaller steps; Solution 3 uses a counting objects analogy.
These three solutions provide different reasoning strategies.
However, Solution 4 repeats Solution 3, and Solution 5
repeats Solution 2 using similar reasoning strategies. In
this section, we empirically examine the diversity among
solutions within a response.

Observation To empirically evaluate whether later solu-
tions provide new reasoning strategies, we introduce the
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Figure 7. The ratio of diverse solutions at each solution index.
Later solutions tend to repeat earlier ones.

“distinctness ratio” as the measure for the ratio of distinct
solutions for each data index. Suppose the response to
the ¢-th problem from a given test set can be divided into
M; solutions. We denote the set of solutions as R; =
{s},...,s?,...,sf\/f"'}. Let S™ = {s7",...,s}", ..., s%}
be the set of m-th solutions in the responses of all instances
in the test subset.! The distinctness ratio is defined as:

K _m
Dism — Zk}:l Tk‘
K

where

—_

o [ ARG (RG], B )
0, otherwise

In this context, ®(s}") is the reasoning strategy of s}". In-
tuitively, 7;7* = 1 if the m-th solution introduces a new
reasoning strategy, and Dis™ is the average number of new
reasoning strategies at solution position m. We use GPT-40
to cluster the solutions for each instance into groups via a
prompt like (Ye et al., 2024).

Figure 7 displays the distinctness ratio for each solution
index. Intuitively, the ratio for Solution#1 is always 100%,
as it has no preceding solutions, thus 7 = 1 for all instances.
Generally, the ratio decreases with higher indices, indicating
that later solutions often repeat earlier ones. For example,
the average distinctness ratio for Solution#>4 across test
sets decreases by 7.5% compared to Solution#3. The ratio of
Solution#2 significantly decreases compared to Solution#1.
By reviewing outputs, we find that Solution#2 often double-
checks answers from Solution#1 using the same reasoning
strategy. Subsequently, Solution#3 attempts to solve the
problem using a new reasoning strategy.

Ifa response does not contain the m-th solution (i.e. M;<m),
that response is excluded from the set, hence K does not necessar-
ily equal the number of test set instances V.

Refer to Appendix A.1 for clustering prompt and results.
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Figure 8. Efficiency results across different levels of MATHS00.

Process Efficiency Metric Based on the above observa-
tion, we propose a process efficiency metric to empirically
evaluate the contribution of later solutions to solution diver-
sity. The process efficiency metric is calculated as:

N
1 D;
5P:N;f )

where D, represents the number of efficient tokens that con-
tribute to the solutions’ diversity. Here, we intentionally
exclude the factor o; to concentrate on diversity, indepen-
dent of correctness. Let 7" denote the number of tokens
in solution s}*. We define:

M
D; ="
m=1

Intuitively, the tokens in a distinct solution are regarded
as process efficient tokens, and £p is the average ratio of
tokens associated with diverse reasoning strategies. In the
example shown in Figure 2, the 13 solutions are categorized
into 7 distinct reasoning strategies. Consequently, tokens in

Solutions 1, 2, 3, 7, 8, 9, and 12 are efficient, resulting in

§P — (39+109+39—g§$1)+29+19+59) = 35.8%.

2.4. Empirical Efficiency Results

Table 1 presents the results on model efficiency. For com-

parison, we include two representative conventional LLMs:

Llama-3.3-70B-Instruct and Qwen2.5-Math-72B-Instruct.

These conventional LLMs produce only a single solution,
D; T;

meaning that o= = 1. Therefore, in these cases,

the outcome efficiency metric {p = % vazl o; equals ac-
curacy, and the process efficiency metric £p = 1.0. In
comparison, long reasoning models generate significantly
longer responses, which are less efficient in improving ac-
curacy and solution diversity. We refer to the inefficient
use of generated tokens as the “overthinking issue”. The
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Table 1. Model efficiency results of strong LLMs.

Models Accuracy Response Efficiency
#Solution #Token Outcome Process
ASDIV
Llama-3.3-70B-Instruct 95.6 1.0 166.4 95.6% 100.0%
Qwen?2.5-Math-72B-Instruct 96.3 1.0 213.0 96.3% 100.0%

- Qwen/QwQ-32B-Preview 965 35 7137 537%  69.0%
Qwen/QwQ-32B 97.1 34 11711 57.6% 69.1%
Qwen/Qwen3-235B-A22B 97.2 3.8  1399.2 56.3% 67.9%
DeepSeek/R1 97.1 33 840.0 57.5% 70.2%

GSMSK
Llama-3.3-70B-Instruct 92.6 1.0 220.3 92.6% 100.0%
Qwen2.5-Math-72B-Instruct 95.8 1.0 3174 95.8% 100.0%

- Qwen/QwQ-32B-Preview 947 29 7561  118%  152%
Qwen/QwQ-32B 96.1 42  1835.8 53.3% 61.8%
Qwen/Qwen3-235B-A22B 95.7 53 24194 47.9% 58.6%
DeepSeek/R1 96.4 2.9 1053.1 67.2% 73.2%

MATH500
Llama-3.3-70B-Instruct 75.4 1.0 553.4 75.4%  100.0%
Qwen2.5-Math-72B-Instruct 86.8 1.0 593.1 86.8% 100.0%

"~ Qwen/QwQ-32B-Preview 912 43 23985  514%  703%
Qwen/QwQ-32B 96.2 6.2 43654 44.4% 61.1%
Qwen/Qwen3-235B-A22B 92.6 6.2 5810.2 43.5% 60.9%
DeepSeek/R1 95.4 42  2696.4 53.0% 70.7%

experimental results demonstrate that while long reasoning
models have the capacity to generate multiple solutions,
their efficiency is hindered by the overthinking issue.

Figure 8 presents the detailed efficiency results of DeepSeek-
R1 across various difficulty levels of the MATH500 test set.
Notably, DeepSeek-R1 performs poorly on the simplest
Level 1 problems, achieving about 50% outcome efficiency.
These findings underscore that the overthinking issues
faced by long reasoning models are pronounced with
simpler math problems.

3. Mitigating Overthinking Issues

In this section, we explore strategies to improve the effi-
ciency of long reasoning models. Our approach involves
three key steps: (1) generating long reasoning traces on
a mathematical dataset, (2) constructing shorter reasoning
traces by pruning unnecessary solutions from the long traces,
and (3) applying preference optimization to train the model
on (short, long) reasoning pairs. Following prior work, we
use the PRM12K dataset (Lightman et al., 2024) as our
training set. Our experiments are conducted on the QwQ-
32B-Preview model, leveraging a self-training strategy (Ze-
likman et al., 2022; Ho et al., 2023) in which the model
generates its own training data.

Table 2. Statistics on different types of generated responses based
on the training data. “Greedy” denotes responses generated via
greedy search; “Shortest” and “Longest” indicate the shortest and
longest responses among 10 samples, respectively.

Response #Solution #Token Efficiency

Outcome Process

_ Greedy 3.1 14348 55.6%  72.6%
Shortest 2.5 10513~ 69.8%  80.3%
Longest 41 22587  46.0%  66.4%

3.1. Generating Long Reasoning Traces

We begin by generating long reasoning traces for the
PRM12K dataset through sampling. Using the QwQ-32B-
Preview model with a temperature of 1.0, we produce 10
reasoning traces per question and retain only those yielding
correct answers. Table 2 presents the statistics of different
types of generated responses. Our analysis of these sampled
responses reveals that the shortest response performs better
in terms of both outcome and process efficiency, using fewer
rounds and tokens. These findings support our initiative to
enhance model efficiency through simplifying responses.
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Table 3. Statistics on different types of positive examples. “#S”
denotes the number of solutions.

Positive Example #S #Token Efficiency
Outcome Process
Shortest Response 2.5 1051.3 69.8% 80.3%
FCS L1 6810  995% 99.1%
FCS + Ref. 1.9 878.7 78.4%  82.4%
GDS 1.6  856.8 86.8%  94.2%

3.2. Simplifying Responses to Enhance Efficiency

Building on the observations in Section 2, where earlier
solutions demonstrate greater efficiency, we propose three
strategies for simplifying response generation by construct-
ing concise reasoning traces:

¢ First-Correct Solutions (FCS): We retain the portion of
the response from the beginning until the first occurrence
of a correct answer.

* FCS+Reflection: Since most responses yield the correct
answer in the first solution (see Figure 6), retaining only
the First-Correct Solutions might cause long-reasoning
models to revert to conventional LLM behavior. To miti-
gate this, we extend the approach by including the second
correct solution, thereby preserving the model’s reflective
capability while maintaining efficiency.

* Greedily Diverse Solutions (GDS): Figure 7 shows that
the distinctiveness of the second solution diminishes
significantly, as it often double-checks the first solu-
tion using the same reasoning strategy. Consequently,
FCS+Reflection may compromise process efficiency. To
address this, we introduce a simple heuristic that greed-
ily selects solutions with new reasoning strategies. This
approach would include additional solutions when the
second solution introduces novel reasoning, thereby en-
hancing diversity.

We also use the Shortest Response among the sampling
results as the baseline of simplifying responses.

Table 3 presents the statistics for these simplified responses.
Notably, all simplified responses enhance efficiency com-
pared to the shortest response. “FCS” is the most efficient,
both in terms of outcome and process, using the fewest num-
ber of solution rounds and tokens. “FCS+Reflection” incor-
porates reflection, requiring approximately one additional
solution round, which reduces both outcome and process
efficiencies. “Greedily Diverse Solutions” serves as a com-
promise, balancing the number of solutions and tokens, and
achieving moderate to high efficiency.

3.3. Length Preference Optimization

For each question, we construct a paired training dataset
where:

* The positive example is the short reasoning trace

» The negative example is the longest response from the
sampled outputs

We then apply preference optimization to these pairs, train-
ing the model to favor concise, efficient reasoning paths.
Our experiments focus on the following approaches:

* Direct Preference Optimization (DPO; Rafailov et al.
2024): This method trains a model directly on human-
preferred responses to increase the likelihood of preferred
responses over unpreferred ones.

* Reasoning Preference Optimization (RPO; Pang et al.
2024; Liu et al. 2024): This approach modifies the DPO
loss by adding a negative log-likelihood term on the pre-
ferred response. RPO enhances DPO training stability by
preventing a decreased probability of selected responses.

* Simple Preference Optimization (SimPO; Meng et al.
2024): This method addresses the discrepancy between
the reward function and the generation metric during
inference found in other preference optimization methods.
SimPO incorporates techniques like adaptive margin and
length regularization into DPO training.

We also explore Supervised Fine-Tuning (SFT; Wei et al.
2022a) on the positive examples, which enables the model
to directly learn how to generate shorter responses.

4. Experiments
4.1. Datasets

We use the following test sets for our experiments:

¢ ASDIV (Miao et al., 2020): an English math word prob-
lem corpus with 2,305 instances, typically found in ele-
mentary schools.

* GSMBSK (Cobbe et al., 2021): a dataset of high-quality,
linguistically diverse grade school math word problems
created by human problem writers. The test set includes
1,319 problems, with solutions often involving a sequence
of elementary calculations using basic arithmetic.

* MATHS00 (Hendrycks et al., 2021): a challenging
dataset consisting of problems from high school math
competitions across seven subjects (e.g., Prealgebra, Al-
gebra, Number Theory) and difficulty levels based on
AoPS (ranging from 1 to 5).
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Table 4. Experimental results of the proposed efficiency enhancing methods.

Methods Accuracy Response Efficiency
#Solution #Token Outcome Process
ASDIV
QwQ-32B-Preview 96.5 3.5 713.7 53.7% 69.0%
+SimPOECs+Reflection 96.6 1.9 381.5 82.5% 87.9%
GSMS8K
QwQ-32B-Preview 94.7 2.9 756.1 11.8% 75.2%
+SimPOECs Reflection 95.9 1.8 416.5 86.0% 91.0%
MATHS500
QwQ-32B-Preview 91.2 43  2398.5 51.4% 70.3%
+SFTshortest Response 92.6 44  2359.0 59.7% 72.8%
+DPOshortest Response 93.2 34 19288 64.3% 77.8%
+RPOshortest Response 90.2 3.5 20152 64.7% 76.6%
+SimPOshortest Response 91.0 35 18715 64.7% 78.1%
© +SimPOrgirgiComrect Solution ! 904 13 10156  855%  96.3%
+SimPOECsReflection (OUrS) 914 2.4 1330.3 79.1% 88.9%
+SimPOgreedily Diverse Solutions 91.2 1.7 1285.8 80.1% 90.2%
GPQA
Qwen2.5-Math-72B-Instruct 46.5 1.0 811.7 46.5% 100%
- QwQ-32B-Preview 501 6.0 32264  386% 66.4%
+SimPOECs; Reflection 59.6 3.0 2084.5 57.9% 80.2%
AIME24
Qwen?2.5-Math-72B-Instruct 23.3 1.0 1204.5 23.3% 100.0%
- QwQ-32B-Preview 467 37 94806  375% 79.5%
+SimPOECs ; Reflection 433 2.0 51544 39.3% 91.6%

The overall difficulty levels of the test sets are ASDIV <
GSMS8K < MATHS500.

We also validate our method using more challenging test
sets, specifically GPQA and AIME:

* GPQA (Rein et al., 2023): a graduate-level dataset con-
sisting of multiple-choice questions in subdomains of
physics, chemistry, and biology. For our experiment, we
select the highest quality subset, known as GPQA Dia-
mond (composed of 198 questions).

« AIME24 (MAA Committees): a dataset from the Ameri-
can Invitational Mathematics Examination, which tests
mathematical problem solving across multiple areas (e.g.
algebra, counting, geometry, number theory, and proba-
bility).

4.2. Experimental Results

Table 4 presents the main results of the proposed methods.
We first conduct a detailed comparison on MATH500 to
identify the most effective approach, and then validate the
proposed method on additional benchmarks.

Performance of Length Preference Optimization Meth-
ods We first evaluate all methods described in Section 3.3
under the Shortest Response setting. While supervised fine-
tuning (SFT) yields modest reductions in the number of solu-
tions and tokens compared to the vanilla QwQ-32B-Preview
model, preference optimization methods demonstrate signif-
icantly greater effectiveness. Among these, SimPO achieves
the best performance, reducing generated tokens by 22%
on MATHS500 while maintaining comparable solution qual-
ity. Based on these results, we select SimPO as our default
method for subsequent experiments.

Performance of Response Simplification Methods As
anticipated, the First-Correction Solutions (FCS) strategy
achieves the greatest length reduction. However, this ap-
proach degrades performance on the challenging MATHS500
test set, likely due to its need for more extensive reflec-
tion. The FCS+Reflection variant addresses this limitation,
outperforming standard FCS through an additional reflec-
tion round. While the Greedily Diverse Solutions strat-
egy maintains a balance between performance and token
efficiency, it underperforms FCS+Reflection - supporting
our hypothesis that the difficult MATHS500 problems ben-
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efit from the deep inference capabilities of long reasoning
models. We consequently establish FCS+Reflection as our
default response simplification method. The performance
of the FCS+Reflection method across different test sets
demonstrates its effectiveness. Accuracy improves slightly
on ASDIV, GSMS8K, and MATHS500, with nearly half the
tokens and solutions compared to the QwQ-32B-Preview
baseline. Additionally, FCS+Reflection enhances efficiency,
as reflected in the efficiency metrics.

Results on Challenging Test Sets Our approach signifi-
cantly improves efficiency on simpler benchmarks (ASDIV
and GSM8K)) while maintaining comparable performance.
However, a critical concern remains: could this length pref-
erence optimization method compromise the models’ capac-
ity for complex, long-term reasoning? To directly address
this, we conduct evaluations on challenging datasets requir-
ing extended reasoning chains (GPQA and AIME24). The
results demonstrate that our approach preserves the mod-
els” complex reasoning capabilities while reducing token
usage - performance on GPQA and AIME24 only drops
slightly with improved efficiency. This confirms that our
method achieves robust generalizability without sacrificing
the fundamental strengths of long reasoning models.

5. Related Work

5.1. Scaling Test-Time Compute

Enhancing model performance on complex tasks can be
achieved by scaling test-time compute, which involves:

Expanding Search Space LLMs have strong reasoning
abilities, but their auto-regressive decoding often misses
optimal solutions. Self-consistency generates multiple
responses and use majority voting to select the best an-
swer (Wang et al., 2023b). Other approaches include best-
of-n decoding, minimum Bayes risk decoding (Lightman
et al., 2024; Li et al., 2023; Khanov et al., 2024; Heineman
et al., 2024; Wu et al., 2024), and structured search methods
such as Tree-of-Thought, Graph-of-Thought, and Monte
Carlo Tree Search (Yao et al., 2024; Besta et al., 2024; Luo
et al., 2024; Tian et al., 2024; Wan et al., 2024).

Human-Like Thinking Patterns LLMs often use natu-
ral language reasoning. Techniques like chain-of-thought
encourage step-by-step reasoning instead of direct an-
swers (Wei et al., 2022b; Kojima et al., 2022). This has been
expanded with methods like debating, self-correction, self-
critique, and plan-and-solve (Liang et al., 2024; Du et al.,
2024; Xiong et al., 2023; Kumar et al., 2024; Kamoi et al.,
2024; Ke et al., 2023; Lin et al., 2024; Yu et al., 2024; Wang
et al., 2023a). Recent studies also explore latent space rea-
soning to mimic human cognition (Hao et al., 2024; Goyal

et al., 2024). Advanced models combine these patterns into
extensive chains-of-thought, improving accuracy with more
reasoning time (OpenAl, 2024).

5.2. Efficient Thinking

Scaling the search space and scaling human-like thinking in-
volves two distinct aspects of efficiency: efficient search and
efficient thinking. However, few works specifically focus
on efficient thinking in LLMs. Kimi et al. (2025) leveraged
the long to short strategy to compress generation context.
Zhao et al. (2024) encourages the model to terminate rea-
soning by saying “I don’t know” when the problem is hard
to solve. Han et al. (2024) introduces token-budget-aware
reasoning, where the model is prompted with a specified
token budget to guide its reasoning process. There are
also several contributions (Damani et al., 2024; Wang et al.,
2024; Xu et al., 2024) made to predict the distribution of
the computation budget and allocate the computation power
based on the prompt’s difficulty. Another line of work em-
phasizes the early stopping strategy to save computation
budget while reasoning (Manvi et al., 2024; Li et al., 2024).
Moreover, multi-agent framework utilizes large LLMs for
difficult tasks while small LLM:s for simple tasks (Kirchner
et al., 2024; Damani et al., 2024)

In summary, all the aforementioned works consider conven-
tional models rather than long reasoning models with longer
chains-of-thought. In contrast, our work first identifies the
overthinking problem in long reasoning model. Addition-
ally, instead of limiting the reasoning space or leaving the
token budget to be specified by the user, we aim to train the
model to learn how to think efficiently.

6. Conclusion

This study identifies a key challenge in long reasoning mod-
els —- efficient and intelligent scaling of test-time com-
putational resources. We have presented a comprehensive
analysis of the overthinking issue in long reasoning models.
By highlighting the overthinking phenomenon and propos-
ing efficiency metrics, we enhance our understanding of
resource utilization in ol-like models. Our self-training
based approach effectively mitigates overthinking, reducing
unnecessary computation while maintaining performance
across reasoning benchmarks of varying difficulty levels.

This work not only boosts efficiency in long-reasoning mod-
els, but also lays critical groundwork for future research
aimed at optimal allocation of computational resources in
Al reasoning tasks, which is crucial for the development of
sustainable and cost-effective Al systems. Future directions
include exploring adaptive compute strategies that dynami-
cally adjust to problem complexity and refining efficiency
metrics for broader model generalization.
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Impact Statement

The paper reveals the overthinking issue in long reasoning
models. Our findings call for the community to research on
models’ efficient thinking capabilities, which could signifi-
cantly influence future developments in this field. We see
no harmful impacts of this work.
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A. Appendix
A.1. Prompts for Clustering Solutions

Inspired by (Ye et al., 2024), we leverage GPT-40 to cluster
the solutions for each instance into groups with the follow-
ing prompt:

Criteria for clustering the mathematical solutions:

1. If the solutions used to arrive at the solutions are
fundamentally different from each other, such as algebraic
manipulation versus geometric reasoning, they can be
considered novel;

2. Even if the results are the same, if the intermediate steps
or processes involved in reaching those solutions vary
significantly, the solutions can be considered different;

3. If the solutions relies on different assumptions or
conditions, they should be considered different from each
other;

4. A solution might generalize to a broader class of
problems, while another solution might be specific to
certain conditions. In such cases, they are considered
distinct;

5. If one solution is significantly simpler or more complex
than the others, it can be regarded as essentially novel,
even if they lead to the same result.

Given the following mathematical problem:
***problem™***

Solutions:
Solution 1: ...
Solution 2: ...

Please output the clusters strictly following the following
format, each row containing a cluster, names, and reasons.
Do not include any additional text or explanations outside
of this format:

cluster] [solution names] reason for cluster

cluster2 [solution names] reason for cluster

cluster3 [solution names] reason for cluster

For example:

cluster1 [Solution 1, Solution 3, Solution 5] similar alge-
braic approach using the volume formula and canceling
terms or directly solving for the height.

cluster2 [Solution 2, Solution 4] verifying the correctness
and consistency of the formula and solution and consider-
ing unit checks or logical reasoning on how volume relates
to base area and height.

The clustering results for the QwQ-32B-Preview response
in Figure 2 are:
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clusterl [Solution 1, Solution 6, Solution 11] stating or
affirming the basic arithmetic fact that 2 plus 3 equals 5.
cluster2 [Solution 2, Solution5] breaking down the addi-
tion into smaller, simpler steps to reach the result.
cluster3 [Solution 3, Solution 4] using a practical analogy
of counting objects to explain the addition.

cluster4 [Solution 7] using subtraction as a reverse check
to verify the addition result.

cluster5 [Solution 8] using algebraic manipulation and
solving simple equations to confirm the result.

cluster6 [Solution 9, Solution 10] converting numbers into
different systems (binary and Roman numerals) to verify
the result.

cluster7 [Solution 12, Solution 13] considering specific
contexts or frameworks like modular arithmetic or pro-
gramming which could change traditional addition results.




