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ABSTRACT

Visual reinforcement learning (RL) has shown promise in continuous control tasks.
Despite its progress, current algorithms are still unsatisfactory in virtually every
aspect of the performance such as sample efficiency, asymptotic performance, and
their robustness to the choice of random seeds. In this paper, we identify a major
shortcoming in existing visual RL methods that is the agents often exhibit sustained
inactivity during early training, thereby limiting their ability to explore effectively.
Expanding upon this crucial observation, we additionally unveil a significant corre-
lation between the agents’ inclination towards motorically inactive exploration and
the absence of neuronal activity within their policy networks. To quantify this inac-
tivity, we adopt dormant ratio (Sokar et al., 2023) as a metric to measure inactivity
in the RL agent’s network. Empirically, we also recognize that the dormant ratio
can act as a standalone indicator of an agent’s activity level, regardless of the re-
ceived reward signals. Leveraging the aforementioned insights, we introduce DrM ,
a method that uses three core mechanisms to guide agents’ exploration-exploitation
trade-offs by actively minimizing the dormant ratio. Experiments demonstrate that
DrM achieves significant improvements in sample efficiency and asymptotic per-
formance with no broken seeds (76 seeds in total) across three continuous control
benchmark environments, including DeepMind Control Suite, MetaWorld, and
Adroit. Most importantly, DrM is the first model-free algorithm that consistently
solves tasks in both the Dog and Manipulator domains from the DeepMind Control
Suite as well as three dexterous hand manipulation tasks without demonstrations in
Adroit, all based on pixel observations. 1
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Figure 1: Success rate and episode reward as a function of training progress for each
of the three domains that we consider (Deepmind Control Suite, MetaWorld, Adroit).
All results are averaged over 4 random seeds, and the shaded region stands for standard
deviation across different random seeds.

1 INTRODUCTION

Visual deep reinforcement learning (RL) agents that tackle complex continuous control tasks using
high-dimensional pixels are crucial. Recent progress has been made through the incorporation of
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data augmentation (Yarats et al., 2022; 2021; Laskin et al., 2020a), self-supervised representation
learning (Zheng et al., 2023; Laskin et al., 2020b; Stooke et al., 2021; Schwarzer et al., 2021; D’Oro
et al., 2023), regularization of the temporal difference update (Cetin et al., 2022), and high update-
to-data (UTD) ratio (Hiraoka et al., 2022). Nonetheless, the sample efficiency exhibited by these
RL agents remains unsatisfactory. To be more specific, visual RL’s inability first appears in the
face of complex kinematics and a high number of degrees of freedom (DoFs), such as the Dog and
Humanoid tasks in the DeepMind Control Suite (Tassa et al., 2018) or dexterous hand manipulation
tasks in Adroit (Rajeswaran et al., 2018) without demonstrations. Second, the current leading visual
RL agents might get stuck in the local optimum during the learning process under different initial
random seeds. The inability to deal with complex systems and the presence of broken random seeds
combined pose significant challenges to deploying visual RL agents in real-world applications.

In this paper, we examine the behaviors of visual RL agents at different stages of training. Intriguingly,
a recurrent issue we identify by observing the learning agents’ behavior is that the agents frequently
become motorically inactive during the initial phases of training, hindering the effective exploration
of useful behaviors. When the agent is experiencing motor inactivity, we find that the policy neural
network also possesses a high rate of inactive neurons, which is defined as dormant neurons (Sokar
et al., 2023) in the literature. As the training progresses, the agents’ acquisition of new skills is
usually accompanied by a decline in the portion of dormant neurons i.e., dormant ratio. Hence, we
hypothesize and empirically verify that the dormant ratio acts as an inherent gauge of an agent’s
activity level, irrespective of the external rewards it receives. Such a connection opens up a new
path for balancing between exploration and exploitation in RL agents. Remarkably, this pattern of
inactivity in motor skills and neurons mirrors the arousal theory (Harrison & W, 2015; Güzel et al.,
2020) in neuroscience, which states that an optimal neural network activity level is essential for
enhancing attention, memory, and learning efficiency.

Based on this observation and insight, we propose to train visual RL agents with Dormant ratio
Minimization (DrM). DrM introduces three simple mechanisms to effectively balance between
exploration and exploitation while lowering the dormant ratio: a periodical neural network weight
perturbation mechanism, a dormant-ratio-based exploration scheduler, and a dormant-ratio-based
exploitation mechanism extended from Chen et al. (2021a). Consequently, the agent could emphasize
exploration when the dormant ratio is high and shift its focus to exploitation when the dormant ratio
is low. DrM is easy to implement, computationally efficient, and empirically sample efficient.

DrM is evaluated across three different domains, Deepmind Control Suite (Tassa et al., 2018),
MetaWorld (Yu et al., 2019), and Adroit (Rajeswaran et al., 2018), including 19 tasks within
the realm of locomotion control, tabletop manipulation, and dexterous hand manipulation. Most
notably, DrM is the first documented model-free algorithm that reliably solves complex dog and
manipulator tasks, as well as demonstration-free Adroit dexterous hand manipulation tasks from pixels.
Furthermore, compared with previous state-of-the-art model-free algorithms, DrM is significantly
more sample efficient, especially on tasks with sparse rewards. To be precise, our technique requires
70%, 45%, and 60% fewer samples to match the peak asymptotic performance seen in the three
baseline methods on the Deepmind Control suite, MetaWorld, and Adroit, respectively. Moreover, in
terms of asymptotic performance, our method exhibits improvements of 65%, 35%, and 75% over
the best-performing baseline on the Deepmind Control suite, MetaWorld, and Adroit, respectively.

Below, we summarize our key contributions:

1. Through systematic examinations of the dormant ratio within agents performing continuous
control tasks, we establish a crucial insight that a decline in the dormant ratio is an early
indicator of successful skill acquisition, even before the increase of reward.

2. We introduce a mechanism that periodically perturbs the model weights of the agent,
effectively reducing the dormant ratio and hence accelerating skill acquisition.

3. We additionally design a dormant-ratio-based self-adaptive exploration-exploitation sched-
uler that ensures the agent explores when the dormant ratio is high and exploits its past
success when the dormant ratio is low.

4. Extensive experiments on Deepmind Control Suite, MetaWorld, and Adroit show that DrM is
particularly adept at handling tasks with sparse rewards or complex dynamics, achieving
state-of-the-art performance against current leading visual RL baselines. DrM is the first
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model-free RL algorithm that can reliably solve complex tasks such as Dog, and Manipulator,
as well as demonstration-free Adroit dexterous hand manipulation tasks directly from pixels.

2 PRELIMINARY

Visual reinforcement learning. In visual RL (Kaelbling et al., 1998), the landscape is characterized
by the inherent challenge of partial observability when dealing with image inputs, which prompts us to
approach the problem as a Partially Observable Markov Decision Process (POMDP) (Bellman, 1957),
encapsulated within the tuple ⟨S,O,A,P,R, γ⟩. Here, S is the state space, O is the observation
space and A stands for the action space. P : S × A → ∆(S) defines the state transition kernel,
where ∆(S) is a distribution over the state space. R : S × A → R denotes the reward function
and γ ∈ [0, 1) represents the discount factor. Starting from an initial state s0 ∈ S, the overarching
objective within this framework is to discover an optimal policy π∗ : S → ∆(A) that maximizes the
expected cumulative return, formulated as Eπ[

∑∞
t=0 γ

trt].

Dormant Ratio of Neural Network The notion of dormant neurons, as originally introduced in
Sokar et al. (2023), identifies neurons that have become nearly inactive, displaying minimal activation
levels. This concept plays an important role in analyzing neural network behavior since networks
used in online RL tend to lose their expressive ability.
Definition 2.1. (Sokar et al., 2023) Consider a fully connected layer l with N l neurons in total.
Given an input distribution D, let hl

i(x) denote the output of neuron i in layer l under input x ∈ D.
The score of a neuron i is:

sli =
Ex∈D|hl

i(x)|
1
N l

∑
k∈l Ex∈D|hl

k(x)|
(1)

Then we define a neuron i in layer l to be τ -dormant if sli ≤ τ .

Definition 2.2. For a fully connected layer l, we denote the number of τ -dormant neurons as H l
τ .

The τ -dormant ratio of a neural network ϕ can be formally defined as follows:

βτ =
∑
l∈ϕ

H l
τ/
∑
l∈ϕ

N l (2)

3 METHOD

In this section, we begin by discussing a key empirical observation: there is a connection between
the sharp reduction of an agent’s dormant ratio and the agent’s skill acquisition in visual continuous
control tasks. This is detailed in Section 3.1. Building on top of this crucial insight, in Section 3.2,
we introduce our proposed algorithm DrM . In particular, we come up with three simple yet effective
mechanisms in DrM such that they aim to not only reduce the agent’s dormant ratio but also utilize
the calculated dormant ratio to strike a balance between exploration and exploitation.

3.1 KEY INSIGHT: DORMANT RATIO AND BEHAVIORAL VARIETY

While previous works Lyle et al. (2022); Sokar et al. (2023) have highlighted that the actor/critic
network of RL agents tends to lose expressivity during training, our empirical study offers a unique
perspective on visual reinforcement learning for continuous control tasks: the dormant ratio and the
agent’s behavioral variety are correlated.

To illustrate this, we choose DrQ-v2, a leading model-free RL algorithm that learns directly from
pixel observations. In Figure 2, we display the dormant ratio of an agent’s policy network, alongside
the behaviors learned by the agent during its training on the Hopper Hop task from DeepMind Control
Suite as an example. Interestingly, as depicted in this figure, we notice that a sharp decline in
the dormant ratio of an agent’s policy network serves as an intrinsic indicator of the agent
executing meaningful actions for exploration. Namely, when the dormant ratio is high, the agent
becomes immobilized and struggles to make meaningful movements. However, as this ratio decreases,
we observe a clear progression in the agent’s mobility, as demonstrated in the figure: starting with
crawling, advancing to standing, and ultimately, hopping. We refer the readers to Appendix A and
project webpage for more visualizations of the dormant ratio.

Based on these empirical observations, we conclude that the decline in the dormant ratio is closely
linked to the agent’s initiation of meaningful actions, marking a departure from its prior monotonous
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(High dormant ratio) stuck and immobile 

(Medium dormant ratio) crawling slowly

(Low dormant ratio) Standing and moving

Figure 2: (Dormant ratio of a DrQ-v2 agent trained on Hopper Hop task during the first 1M frames): Interestingly,
we find that with a declining dormant ratio, the agent incrementally acquires action capabilities. Even though the
reward stays minimal during this phase, the dormant ratio provides a more insightful gauge of the agent’s initial
learning progress than the reward does.

or random behaviors. Interestingly, this shift can happen without a corresponding rise in the agent’s
rewards. This suggests that the dormant ratio acts as an intrinsic metric, influenced more by the
diversity and relevance of the agent’s behaviors than by its received rewards, which underscores the
value of the dormant ratio as a meaningful metric for understanding the behaviors of visual RL agents.

Motivated by this insight, we aim to utilize dormant ratio as a pivotol tool for balancing exploration
and exploitation. Many existing strategies adjust exploration noise based on static factors such as task
complexity and training stage. Nonetheless, an agent’s performance can fluctuate across tasks and
with different initializations, making adjustments based solely on these static factors less efficient and
often mandating exntensive, task-specific fine-tuning of hyperparameters. In contrast, customizing
exploration noise according to the agent’s current performance offers a more flexible and effective
approach. While an intuitive approach would be to rely on reward signals, this strategy brings up the
following challenges: 1) Reward values definitions vary across different tasks and domains, necessitat-
ing domain-specific knowledge for interpretation and hyperparameter tuning. 2) Even within a specific
task, rewards might not indicate the agent’s underlying learning phase. As depicted in Figure 2, an
agent can attain similar rewards regardless of whether it has mastered motion or remains stagnant.

In light of this, the dormant ratio emerges as a more effective metric for adjusting the exploration
and exploitation tradeoff, as it faithfully reflects the dynamic changes in the agent’s behavior. Our
design of DrM follows this simple intuition: a higher dormant ratio suggests the need for increased
exploration, whereas a lower ratio calls for exploitation. As the dormant ratio captures the intrinsic
characteristics of an agent’s policy and behaviors, DrM is demonstrated to be effective across diverse
tasks and domains with minimal hyperparameter tuning required.

3.2 DRM : VISUAL REINFORCEMENT LEARNING THROUGH DORMANT RATIO MINIMIZATION

As shown in the previous subsection, given a fixed network capacity, it is essential for a visual RL
agent to actively reduce its dormant ratio, thereby enabling it to explore the environment through
purposeful actions. Driven by this insight, we introduce the three mechanisms of our proposed
DrM algorithm in detail.

Dormant-ratio-guided perturbation. The goal of this mechanism is to perturb the model weights
when the RL agent’s network displays a high dormant ratio, losing its expressivity. Here, we utilize
the perturbation reset method (D’Oro et al., 2023; Ash & Adams, 2020) that employs soft resets, a
process that interpolates all the agent’s parameters between their prior values and randomly initialized
values. This can be expressed with the following equation:

θt = αθt−1 + (1− α)ϕ, ϕ ∼ initializer (3)

Here, α is referred to as the perturb factor, θt−1 indicates the network weights before the reset,
θt is the network weight after the reset, and ϕ is randomly initialized weights. Note that this is
fundamentally different from the approach of NoisyNet (Fortunato et al., 2018b), which is designed to
encourage exploration by injecting noise into the model weights at every timestep. Our goal here is to
refresh the dormant weights only after a relatively long time interval (every 2e+5 frames). The value
of α is controlled by the dormant ratio β: α = clip(1− kβ, αmin, αmax), where k is the perturb rate.
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Awaken exploration scheduler. We aim to emphasize exploration with a large exploration
noise when the dormant ratio is high, and reduce the exploration noise when the dormant ratio
is low. Thus, rather than utilizing the linear decay of exploration noise variance in the original
DrQ-v2, we introduce a dormant-ratio-based awaken exploration scheduler. Specifically, let β̂
denote a low dormant ratio threshold. We define the agent as ”awakened” when its dormant ra-
tio is below β̂. Let t0 be the number of timesteps until the agent becomes ”awakened” from
the start of training. The standard deviation of the exploration noise, σ(t), is then defined as:

Awaken Exploration Scheduler
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Figure 3: Visualization
of the awaken exploration
scheduler as a function of
the dormant ratio β

σ(t) =


max

{
1

1+exp (−(β−β̂)/T )
, σlinear(t− t0)

}
if awakened

1
1+exp (−(β−β̂)/T )

otherwise
(4)

Here, T is the exploration temperature hyperparameter. σlinear(·)
is the linear schedule of exploration noise defined in DrQ-v2.
We visualize the awaken exploration scheduler in Figure 3 as
a function of the dormant ratio. Initially, when the dormant
ratio is high, we would like to give the agent a big explo-
ration noise to encourage effective exploration of the environment.
As training progresses and the dormant ratio decreases to a relatively
low level (below the threshold β̂), this indicates that the agent should
transition from exploration to exploitation.
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Figure 4: Visualization of
exploitation hyperparameter
as a function of the dormant
ratio β

Dormant-ratio-guided exploitation. Furthermore, we introduce an an-
other mechanism that skillfully prioritizes exploitation when the dormant
ratio is low. For continuous control tasks using actor-critic algorithms,
the critic aims to approximate r(s, a) + γQ(s′, π(s′)). In Ji et al. (2023),
it demonstrates that value underestimation often occurs in the early stages
of training, when the replay buffer could contain scarce high-quality
episodes that the agent has encountered through exploration. In this train-
ing stage, π is suboptimal, and the Q-value is often underestimated due
to insufficient exploitation of high-quality samples in the replay buffer.
To address this, it proposes to approximate a high expectile of Q values
with V function using expectile regression, making the new target value

r(s, a) + γ[λV (s′) + (1− λ)Q(s′, π(s′))], λ ∈ [0, 1] (5)

As V converges more rapidly than Q-values, this mechanism allows the RL agent to quickly exploit its
historically successful trajectories without introducing additional overestimation. Here, λ serves as the
exploitation hyperparameter. Higher values of λ focus more on exploiting past successes through the
fitted V function, the value of the best actions in that state. This emphasis on exploitation in our context
refers to utilizing the V function to extract more value from historical experiences, aligning with
its traditional usage of maximizing rewards based on known information. We introduce a dormant-
ratio-guided exploitation technique λ, which is now defined as a function of the dormant ratio β:

λ(β) =
λ

1 + exp((β − β̂)/T ′)
(6)

Here, λ is the maximum exploitation hyperparameter, and T ′ is the exploitation temperature
hyperparameter. β and β̂ represent the dormant ratio and its threshold, as previously defined. In
Figure 4, we plot the exploitation hyperparameter λ as a function of the dormant ratio β. When
the agent’s dormant ratio exceeds the threshold β̂, a lower λ is selected to emphasize exploration.
Conversely, when the dormant ratio is low, indicating the agent can perform meaningful actions,
a higher λ is chosen to prioritize exploitation.

4 EXPERIMENT

In this section, we evaluate DrM on three visual continuous control benchmarks for both locomotion
and robotic manipulation: DeepMind Control Suite (Tassa et al., 2018), MetaWorld (Yu et al.,
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(a) DeepMind Control Suite (b) MetaWorld (c) Adroit

Figure 5: Three visual continuous control benchmarks to evaluate our proposed algorithm: DeepMind Control
Suite, MetaWorld, and Adroit.

2019), and Adroit (Rajeswaran et al., 2018). These environments feature rich visual elements such
as textures and shading, necessitate fine-grained control due to complex geometry, and introduce
additional challenges such as sparse rewards and high-dimensional action spaces that previous visual
RL algorithms such as DrQv2 (Yarats et al., 2022) have been unable to solve.

Baselines. We compare our algorithm with the three strongest existing model-free visual RL
algorithms: DrQ-v2 (Yarats et al., 2022), ALIX (Cetin et al., 2022), and TACO (Zheng et al.,
2023). ALIX and TACO build upon DrQ-v2. ALIX adds an adaptive regularization to the encoder’s
gradients to stabilize temporal difference learning from encoders. TACO incorporates an auxiliary
temporal action-driven contrastive learning objective to learn state and action representations.

DeepMind control suite. For Deepmind Control Suite, we evaluate DrM on eight hardest tasks
from the Humanoid, Dog, and Manipulator domain, as well as Acrobot Swingup Sparse. The
Manipulator domain is particularly challenging due to its sparse reward structure and the long horizon
required for skill acquisition, while Humanoid and Dog tasks feature intricate kinematics, skinning
weights, collision geometry, as well as muscle and tendon attachment points. This complexity
makes these domains extremely difficult for algorithms to learn to control effectively. Following
the experimental procedure described by Yarats et al. (2022), we evaluate DrM and all baseline
algorithms over 30 million frames of online interaction, while Acrobot Swingup Sparse was run for 6
million frames. Intriguingly, in four dog tasks, we observe that existing baselines encounter a sudden
performance decline for some random seeds. We have confirmed this is not due to the checkpoint
loading mechanisms, and in contrast, DrM does not exhibit this issue in any of the four tasks. As
shown in Figure 6, we note that DrM is the first documented model-free visual RL algorithm that
is capable of solving both Dog and Manipulator domains in the DeepMind Control Suite using pixel
observations. Additionally, we notice that the variation across different random seeds, as indicated
by the shaded areas in our results, is considerably smaller for DrM compared to baseline algorithms.
This reduced variation implies that DrM is more robust to different random initializations. In contrast,
baseline algorithms frequently experience issues with broken seeds, where the agent fails to acquire
any meaningful behaviors and receives consistently low rewards throughout the training process.
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Figure 6: Performance of DrM against baseline algorithms DrQ-v2, ALIX, and TACO on Deepmind Control
suite. All results are averaged over 4 random seeds, and the shaded region stands for standard deviation across
different random seeds.

MetaWorld. As shown in Figure 7, we evaluate DrM and baselines on eight challenging tasks
including 4 very hard tasks with dense rewards following prior works and 4 medium tasks with sparse
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success signals. Consistently across the spectrum of tasks within MetaWorld, our method outperforms
other visual RL baselines, which demonstrates the significantly improved sample efficiency of DrM .
Especially in more challenging scenarios featuring only sparse task completion rewards, existing
visual RL baselines struggle to find a good policy, while DrM shines by achieving success rates on
par with those using dense reward signals. This underscores the remarkable advantages brought by
dormant-ratio-based exploration when dealing with tasks with sparse rewards.
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Figure 7: Success rate for DrM and baselines on MetaWorld including 4 very hard tasks with dense rewards
and 4 medium tasks with spare rewards. All results are aggregated over 4 random seeds, with shaded areas
representing the standard deviation across seeds. Notably, our method demonstrates significantly higher sample
efficiency, especially in tasks with sparse rewards.
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Figure 8: Performance of DrM against baseline algorithms DrQ-v2, ALIX, and TACO on Adroit. All results are
averaged over 4 random seeds, and the shaded region stands for standard deviation across different random seeds.

Adroit. In Figure 8, we also evaluate DrM on the Adroit domain, focusing on three dexterous
hand manipulation tasks: Hammer, Door, and Pen, which requires controlling a robotic hand with
24 degrees of freedom. For additional task details, we refer readers to Rajeswaran et al. (2018).
Given the task’s high-dimensional action space and intricate physics, previous reinforcement learning
algorithms have faced significant challenges, especially when learning from pixel observations.
Notably, DrM is the first documented model-free visual RL algorithm that is capable of reliably
solving tasks in the Adroit domain without expert demonstrations.
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Figure 9: Dormant ratio of our method DrM and other baseline algorithms on three DMC tasks.
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Dormant Ratio Analysis In this section, we conduct a detailed analysis and comparison of the
dormant ratio changes during the training process of DrM and three baseline algorithms. We carry out
experiments in three visual DMC tasks, and the experimental results are shown in Figure 9. From this
figure, we observe that as training progresses, the dormant ratio of DrM rapidly decreases, indicating
that our method effectively minimizes the dormant ratio. In comparison, other exisiting baselines all
fail to effectively reduce the dormant ratio. This also explains why our approach exhibits high sample
efficiency and performance.

Ablation Study We conduct ablation studies on the Adroit environment to evaluate the contribution
of each component to our method, i.e., dormant-ratio-guided perturbation, awaken exploration, and
dormant-ratio-guided exploitation. Additionally, to show that the dormant ratio plays a crucial role in
integrating these three components, we also compare with a baseline where we use fixed parameters
for the three mechanisms without being guided by the dormant ratio. (i.e., Drg perturbation with
perturb factor α fixed, fixed linear exploration schedule, and Drg exploitation with exploitation
parameter λ fixed.)

The experiment results are shown in Figure 10. From the results, we find that all three components
are necessary to achieve the best results.
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Figure 10: (Ablation) Aggregated re-
sults over Adroit domain. Drg repre-
sents Dormant-ratio-guided.

We observe that after removing the dormant-ratio-guided ex-
ploitation (DrM w/o Drg Exploitation), the final success rate
decreased by nearly 20%, while eliminating either the dormant-
ratio-guided perturbation (DrM w/o Drg Perturbation) or the
awaken exploration (DrM w/o Awaken Exploration) lead to
a decline of close to 40%, highlighting the importance of
each component. In our ablated version without dormant-ratio-
guided perturbation, the agent only converges to a suboptimal
policy, reaching a success rate of just about 40%. This is likely
due to the fact that without the awaken exploration, the agent
lacks sufficient exploration, making it easy to get stuck in a
sub-optimal policy. Additionally, when removing the dormant-
ratio-guided exploitation component, the agent lacks the ability
to exploit its past success, and there fore exhibits a significantly
slower learning curve.

5 RELATED WORK

Visual reinforcement learning. Visual reinforcement learning (RL) faces substantial challenges
when training agents to make decisions based on pixel observations. Within this domain, two
primary categories of approaches have emerged: model-based and model-free methods. Model-based
methods (Hansen et al., 2022; Hafner et al., 2020; 2021; 2019; Lee et al., 2020; Hafner et al., 2023)
accelerate visual RL by learning world models of the environment. On the other hand, model-free
methods have made significant strides in improving data efficiency. These advancements include
auxiliary losses, such as the contrastive objective in CURL (Laskin et al., 2020b), ATC (Stooke et al.,
2021) for state representations, TACO (Zheng et al., 2023) for learning state and action representations
through mutual information, and self-prediction representations in SPR (Schwarzer et al., 2021)
and SR-SPR (D’Oro et al., 2023). Data augmentation techniques, exemplified by RAD (Laskin
et al., 2020a), DrQ (Yarats et al., 2021), and its enhanced version DrQv2 (Yarats et al., 2022),
have been instrumental in enabling robust learning directly from pixel data, effectively bridging
the gap between state-based and image-based RL. Additionally, regularization methods such as
A-LIX (Cetin et al., 2022) have been introduced to mitigate catastrophic self-overfitting by providing
adaptive regularization to convolutional features. Furthermore, strategies such as scaling network
sizes (Schwarzer et al., 2023), high update-to-data (UTD) ratios (D’Oro et al., 2023) and ensemble
Q (Chen et al., 2021b; Hiraoka et al., 2022) have been explored to enhance sample efficiency in
visual RL. TD-MPC (Hansen et al., 2022) merges the advantages of model-based and model-free
methods through temporal difference learning. V-MPO (Song et al., 2020b), an on-policy adaptation
of MPO (Song et al., 2020a), exhibits high asymptotic performance on challenging pixel-control
tasks (Tassa et al., 2018). These various techniques collectively represent the state-of-the-art in visual
RL, addressing the multifaceted challenges associated with decision-making from raw visual input.
However, our proposed framework differs in that we address the sample efficiency challenge from
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the perspective of dormant ratio. We propose more effective DrM that achieves superior performance
than prior model-free baselines.

Loss of expressivity of deep RL. In deep RL, there is a growing body of evidence suggesting that
neural networks tend to lose their capacity and expressiveness for fitting new targets over time and
ultimately harm their final performance. To alleviate this issue, Lyle et al. (2022) and Kumar et al.
(2021) primarily focus on adjusting the learned feature values. Nikishin et al. (2022) shed light on
the primacy bias when training on early data, which can impede further learning progress. Their
proposal involves periodic parameter reinitialization for the last few layers while keeping the replay
buffer unchanged. Lyle et al. (2023) aims to identify that the loss of plasticity is fundamentally
influenced by the curvature of the loss landscape. Additionally, the dormant neuron phenomenon,
as demonstrated by Sokar et al. (2023) prompts the development of ReDo, a method aimed at
reducing dormant neurons and preserving network expressivity during training. Nikishin et al. (2023)
introduces plasticity injection, a minimalistic intervention that temporarily freezes the current network
and leverages newly initialized weights to facilitate continuous learning. These diverse approaches
collectively address the issue of expressivity loss in deep RL, offering insights and methods to
enhance computational efficiency and continual learning capabilities in deep RL algorithms. In our
paper, we leverage the dormant ratio to gain valuable insights and interpretability into agent behavior
in visual RL. We introduce a novel perturbation technique and exploration strategy based on the
dormant ratio for addressing visual continuous control tasks.

Exploration in RL. Efficient exploration remains a substantial challenge in online RL, particularly
in high-dimensional environments with sparse rewards. Based on different key ideas and principles,
exploration strategies can be classified into two major categories. The first category is uncertainty-
oriented exploration (Jin et al., 2020; Ménard et al., 2021a;b; Kaufmann et al., 2021; Wang et al.,
2023), which often employs techniques such as the upper confidence bound (UCB) (Auer, 2002) to
capture value estimate uncertainty to guide exploration. Another category is intrinsic motivation-
oriented exploration, which encourages agents to explore by maximizing intrinsic rewards. These
rewards are often based on prediction errors (Houthooft et al., 2016; Pathak et al., 2017; Burda et al.,
2019; Sekar et al., 2020; Badia et al., 2020) or count-based state novelty (Bellemare et al., 2016;
Tang et al., 2017; Ostrovski et al., 2017), motivating the agent to visit states with high prediction
errors or the unexplored states. A close idea is exploration by maximizing state entropy as an
intrinsic reward (Lee et al., 2019; Hazan et al., 2019; Mutti et al., 2022; Yang & Spaan, 2023).
Exploration methods have proven effective in enhancing sample efficiency in vision-based RL.
RE3(Seo et al., 2021) utilizes a fixed random encoder to obtain a stable state entropy estimate,
along with a value-conditional extension proposed in Kim et al. (2023). MADE (Zhang et al.,
2021) introduces an adaptive regularization that maximizes deviation from explored regions, while
BEE (Chen et al., 2021a) leverages past successes to capitalize on fortuitous circumstances. Closely
relevant techniques involve injecting noise into action (Wawrzynski, 2015; Lillicrap et al., 2016)
or parameter spaces (Rückstieß et al., 2010; Sehnke et al., 2010; Fortunato et al., 2018a; Plappert
et al., 2018). Furthermore, strategies that dynamically adjust exploration noise based on factors like
agent performance, environmental complexity, and training stage have shown promise in Amos et al.
(2021); Yarats et al. (2022). Our method distinguishes itself by directly perturbing the model weights
of the agent to reduce the dormant ratio and design a dormant-ratio-guide exploration technique to
improve exploration efficiency.

6 CONCLUSION

In this paper, we introduce a highly efficient online RL algorithm, DrM , which resolves the most
complex visual control tasks that previous models failed to tackle, setting a new benchmark in
both sample and time efficiency. Looking ahead, we perceive two main avenues for future RL
exploration research. Firstly, the dormant ratio’s interpretability is a captivating aspect, and subsequent
research could delve into why it has a significant correlation with the diversity and significance of an
agent’s action, from a theoretical standpoint. Secondly, as the dormant ratio delivers a more precise
depiction of an agent’s early learning outcomes compared to rewards, it could be used in unsupervised
RL. Additionally, although this work primarily concentrates on continuous control, the three key
mechanisms we propose for DrM could well be adapted for discrete action tasks on DQN/Efficient
Rainbow algorithms with some minor adjustments. We are confident that the dormant ratio’s value
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extends beyond our current understanding, and that its strategic application could greatly enhance the
performance of future visual reinforcement algorithms.
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Barreto. Deep reinforcement learning with plasticity injection. arXiv preprint arXiv:2305.15555,
2023. 9

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. In ICML, volume 70 of Proceedings of Machine Learning Research,
pp. 2721–2730. PMLR, 2017. 9

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, volume 70 of Proceedings of Machine Learning Research,
pp. 2778–2787. PMLR, 2017. 9

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in reinforce-
ment learning, 2023. 23

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In ICLR (Poster). OpenReview.net, 2018. 9

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Robotics: Science and Systems, 2018. 2, 6, 7

Thomas Rückstieß, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and Jürgen Schmidhuber.
Exploring parameter space in reinforcement learning. Paladyn J. Behav. Robotics, 1(1):14–24,
2010. 9

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. In ICLR.
OpenReview.net, 2021. 2, 8

Max Schwarzer, Johan Samir Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh
Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level
efficiency. In ICML, volume 202 of Proceedings of Machine Learning Research, pp. 30365–30380.
PMLR, 2023. 8

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen Schmid-
huber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–559, 2010. 9

12



Published as a conference paper at ICLR 2024

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In ICML, volume 119 of Proceedings of
Machine Learning Research, pp. 8583–8592. PMLR, 2020. 9

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy
maximization with random encoders for efficient exploration. In ICML, volume 139 of Proceedings
of Machine Learning Research, pp. 9443–9454. PMLR, 2021. 9

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In ICML, volume 202 of Proceedings of Machine
Learning Research, pp. 32145–32168. PMLR, 2023. 1, 2, 3, 9, 21

H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W.
Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov, Martin A.
Riedmiller, and Matthew M. Botvinick. V-MPO: on-policy maximum a posteriori policy optimiza-
tion for discrete and continuous control. In ICLR. OpenReview.net, 2020a. 8

H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W.
Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov, Martin A.
Riedmiller, and Matthew M. Botvinick. V-MPO: on-policy maximum a posteriori policy optimiza-
tion for discrete and continuous control. In ICLR. OpenReview.net, 2020b. 8

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In ICML, volume 139 of Proceedings of Machine Learning Research,
pp. 9870–9879. PMLR, 2021. 2, 8

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
reinforcement learning. In NIPS, pp. 2753–2762, 2017. 9

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018. 2, 5, 8

Xiyao Wang, Ruijie Zheng, Yanchao Sun, Ruonan Jia, Wichayaporn Wongkamjan, Huazhe Xu,
and Furong Huang. Coplanner: Plan to roll out conservatively but to explore optimistically for
model-based rl, 2023. 9

Pawel Wawrzynski. Control policy with autocorrelated noise in reinforcement learning for robotics.
International Journal of Machine Learning and Computing, 5(2):91, 2015. 9

Qisong Yang and Matthijs T. J. Spaan. CEM: constrained entropy maximization for task-agnostic
safe exploration. In AAAI, pp. 10798–10806. AAAI Press, 2023. 9

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In ICLR. OpenReview.net, 2021. 2, 8

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. In ICLR. OpenReview.net, 2022. 2, 6, 8, 9

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In CoRL, volume 100 of Proceedings of Machine Learning Research, pp. 1094–1100. PMLR,
2019. 2, 5

Zhecheng Yuan, Sizhe Yang, Pu Hua, Can Chang, Kaizhe Hu, and Huazhe Xu. RL-vigen: A
reinforcement learning benchmark for visual generalization. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=RwNIqaNOgd. 24

Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph E. Gonzalez, and Stuart
Russell. MADE: exploration via maximizing deviation from explored regions. In NeurIPS, pp.
9663–9680, 2021. 9

13

https://openreview.net/forum?id=RwNIqaNOgd
https://openreview.net/forum?id=RwNIqaNOgd


Published as a conference paper at ICLR 2024

Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III, and
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A MORE VISUALIZATION RESULTS OF DORMANT RATIO
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Figure 11: Analysis of the dormant ratio in successful vs. broken seeds reveals distinct behavior patterns. In a
successful seed, a decreasing dormant ratio allows the agent to effectively explore the environment and learn
skills. Conversely, in a broken seed, the agent becomes immobile and fails to discover meaningful motions.
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Figure 12: Comparison of time-
efficiency

To assess the algorithms’ speed, we measure their frames per second
(FPS) on the same DeepMind Control Suite task, Dog Walk, using
an identical Nvidia RTX A5000 GPU. As Figure 12 shows, while
achieving significant sample efficiency and asymptotic performance,
DrM only slightly compromises wall-clock time compared to DrQ-
v2. Compared with two other baselines, DrM is roughly as time-
efficient as ALIX and about three times faster than TACO, which
needs a batch size four times larger than that of DrQ-v2 to compute
its temporal contrastive loss.
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C IMPLEMENTATION DETAILS

In this section, we describe the implementation details of DrM . We have built DrM upon the publicly
available source code of DrQ-v2. Subsequently, we present the pseudo-code outlining our approach.

C.1 DORMANT RATIO CALCULATION

In this subsection, we demonstrate how the dormant ratio is calculated in Algorithm 1.

Algorithm 1 Dormant Ratio Calculation

1: procedure CAL DORMANT RATIO(model, inputs, τ -dormant threshold)
2: Initialize counters: total neurons, dormant neurons
3: Operate a forward propagation: model(inputs)
4: for each module in model do
5: if module is Fully Connected Layer then
6: output = average over the batch (|output of the forward propagation|)
7: average output = average over the neurons (output)
8: dormant neurons + = count ( output < average output × τ -dormant threshold )
9: total neurons + = neurons in this layer

10: end if
11: end for
12: return dormant ratio = dormant neurons / total neurons
13: end procedure

C.2 DORMANT-RATIO-GUIDED PERTURBATION

In this subsection, we demonstrate how the perturbation is performed based on the dormant ratio in
Algorithm 2.

Algorithm 2 Dormant-ratio-guided Perturbation

1: procedure PERTURB(network, optimizer, perturb factor)
2: Create a new network new net which has the same shape as the original network
3: Initialize weights of new net
4: for each layer and parameter in the network do
5: if layer is Fully Connected Layer then
6: Compute noise as: new net× (1− perturb factor)
7: Update parameter with: net× perturb factor + noise
8: end if
9: end for

10: Reset the state of the optimizer
11: return updated network, optimizer
12: end procedure
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C.3 AWAKEN EXPLORATION SCHEDULER

In this subsection, we demonstrate how the awaken exploration scheduler is performed in Algorithm 3.

Algorithm 3 Awaken Exploration Scheduler

1: Initialize awaken step to None
2: function STDDEV(step)
3: if awaken step is None then
4: return dormant stddev
5: else
6: linear stddev = linear schedule(step− awaken step)
7: return max(dormant stddev, linear stddev)
8: end if
9: end function

10: function UPDATE AWAKEN STEP(step)
11: if awaken step is None and dormant ratio < dormant ratio threshold then
12: awaken step← step
13: end if
14: end function

C.4 DORMANT-RATIO-GUIDED EXPLOITATION

In this subsection, we demonstrate how the dormant-ratio-guided exploitation is performed in
Algorithm 4.

Algorithm 4 Dormant-ratio-guided exploitation

1: function UPDATE VALUE NETWORK(obs, action)
2: Q1, Q2 = critic(obs, action)
3: Q = min(Q1, Q2)
4: V = Vnet(obs)
5: error = V −Q

6: sign =

{
1 if error > 0

0 otherwise
7: weight = (1− sign)expectile + sign(1− expectile)
8: value loss = mean(weight× error2)
9: Update value network using value loss

10: end function
11: function CAL TARGET Q(next obs, reward, discount)
12: action distribution = actor(next obs, awaken exploration scheduler)
13: Sample next action from the distribution with clipping
14: target Q1, target Q2 = critic target(next obs, next action)
15: target V explore = min(target Q1, target Q2)
16: target V exploit = Vnet(next obs)
17: target V = λ× target V exploit + (1− λ)× target V explore
18: target Q = reward + (discount× target V)
19: return target Q
20: end function
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D HYPERPARAMETERS

D.1 HYPERPARAMETERS IN DRM

We summarize all the hyperparameters of DrM in Table 1. While we are trying to keep the settings
identical for each of the task, there are a few specific deviations of DrM hyperparameters for
some tasks. Additionally, in D.2, we demonstrate the performance of DrM with a single set of
hyperparameters across these tasks.

Hammer, Pen, Door of Adroit: Exploitation expectile 0.7
Dog [Stand, Walk, Run], Humanoid Run, Coffee Push & Soccer: Maximum perturb factor
αmax = 0.6

Parameter Setting

Replay buffer capacity 106

Action repeat 2
Seed frames 4000
Exploration steps 2000
n-step returns 3
Mini-batch size 256
Discount γ 0.99
Optimizer Adam
Learning rate 8× 10−5 (DeepMind Control Suite)

10−4 (MetaWorld & Adroit)
Agent update frequency 2
Soft update rate 0.01
Features dimension 100 (Humanoid & Dog)

50 (Others)
Hidden dimension 1024
τ -Dormant ratio 0.025
Dormant ratio threshold β̂ 0.2
Minimum perturb factor αmin 0.2
Maximum perturb factor αmax 0.9
Perturb rate k 2
Perturb frames 200000
Linear exploration stddev. clip 0.3
Linear exploration stddev. schedule linear(1.0, 0.1, 2000000) (DeepMind Control Suite)

linear(1.0,0.1,300000) (MetaWorld & Adroit)
Awaken exploration temperature T 0.1
Target exploitation parameter λ̂ 0.6
Exploitation temperature T ′ 0.02
Exploitation expectile 0.9

Table 1: A default set of hyper-parameters used in our experiments.

Note: For learning rate, feature dimension, and linear exploration schedule, we simply follow the
standard of DrQ-v2, which has a separate setting for hard DMC tasks (lower learning rate, larger
feature dimensionality, longer exploration schedule). These three hyperparameters are not introduced
by DrM , and we do not do any tuning on these three.
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D.2 PERFORMANCE WITH ONE SET OF DRM HYPERPARAMETERS

Here we show the performance of DrM on tasks where we use a single set of hyperparameters instead
of the domain-specific ones.
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Figure 13: Comparison of DrM against DrM with fixed hyperparameters nine tasks where we used the non-
default hyperparameter settings.

In general, we find that applying DrM with the default hyperparameter setting, using a unified set of
hyperparameter off-the-shelf has a decently great performance across all tasks. But for some tasks
such as Humanoid Run in DMC and Hammer in Adroit, some additional hyperparameter tuning
would be beneficial to get further performance gain.
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E DRM VERSUS INTRINSIC REWARD BASED EXPLORATION TECHNIQUES

While the primary advantage of our method (DrM ) lies in employing the dormant ratio to guide the
agent’s exploration-exploitation tradeoff, encouraging more active exploration of the environment,
DrM demonstrates remarkable performance on the most challenging tasks, particularly those involving
complex environmental dynamics and sparse rewards. Here, we compare DrMwith an intrinsic reward-
based exploration approach, which also aims for encouraging the exploration of a RL agent. For this
comparison, we select Random Network Distillation (RND), a popular and widely used technique in
intrinsic reward based exploration.

For RND, we implement RND on top of DrQ-v2 and compare its performance against DrM on
three Adroit tasks. We introduce a random encoder f whose architecture is same as the encoder in
DrQ-v2, and we introduce a predictor network g with the same architecture. The predictor network
is then trained to predict representations from a random encoder f given the same observations,
i.e., minimizing ϵ = ∥f(si) − g(si)∥2. We use prediction error ϵ as an intrinsic reward and learn
a policy that maximizes rtotal = re + ρri. We perform hyperparameter search over the weight
ρ ∈ {0.1, 1.0, 10.0} on the Pen task and and then use the best hyperparameter (ρ = 1.0) for the three
Adroit tasks.
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Figure 14: Comparison of DrM against an intrinsic exploration baseline (DrQ-v2 with RND) on three Adroit
tasks.

As shown in Figure 14, an additional intrinsic exploration mechanism such as RND could indeed
improve DrQ-v2’s performance. (DrQ-v2 achieves 0% success rate across all tasks.) However, adding
only an intrinsic exploration mechanism is still insufficient for the agents to discover the optimal
policies. The performance gap again demonstrates the significance of DrM , which uses the dormant
ratio to guide the agent’s exploration-exploitation tradeoff. Furthermore, in principle, an RND-like
intrinsic exploration technique could also be combined with DrM to further boost exploration. This
integration could be implemented as a separate mechanism or as a replacement for the awaken
exploration schedule in DrM . We could also use a similar strategy as in DrM , using the dormant
ratio to control the magnitude of the intrinsic noise ρ. While we encourage future research in this
direction, such exploration falls outside the scope of the current work.
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F COMPARISON WITH REDO

To compare our approach with ReDo (Sokar et al., 2023), which only resets the weights of dormant
neurons, we conducted experiments in three different environments on MetaWorld . In Figure 15, it
can be observed that our method significantly outperforms the approach of resetting only dormant
neurons and DrM with ReDo. We speculate that this improvement is due to the positive impact of
resetting non-dormant neurons on exploration. Additionally, our use of the dormant ratio to guide
exploration strategy distinguishes our approach from previous works.
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Figure 15: Comparison of DrM against ReDo (Sokar et al., 2023)

G DETAILED ABLATION RESULTS

In this section, we present the results of additional ablation studies for DrM in addition to Figure 10.
In particular, we conduct additional ablation studies on two MetWorld tasks, and we show the ablation
study in three Adroit tasks separately instead of an aggregated plot.
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Figure 16: Additional ablation studies: Drg represents Dormant-ratio-guided.
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H AN ADDITIONAL ABLATIONON STUDY ON DORMANT-RATIO-GUIDED
EXPLORATION

To justify our design choice of dormant-ratio-guided exploration, here we have conducted an ad-
ditional ablation study on the Adroit domain, where we compare DrM with a baseline such that it
sets a maximal exploration noise (i.e., std = 1) before awakening and then using the linear schedule
afterward.
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Figure 17: Comparison of DrM with an alternative exploration strategy

As shown from Figure 17, we find that using the maximal exploration noise instead of our adaptive
adjustment of exploration noise based on the dormant ratio results in significant performance degrada-
tion across all three Adroit tasks. This further justifies our design choice of the Dormant-ratio-guided
exploration mechanism.

22



Published as a conference paper at ICLR 2024

I RESULTS WITH MORE RUNS

Considering the variability in results introduced by random seeds and for statistical rigor, we con-
ducted 10 runs of experiments for both DrQ-v2 and DrM across multiple MetaWorld environments,
following the suggestion by Patterson et al. (2023). This was done to compare the performance of
the algorithms across a broader range of seeds. It is evident that our algorithm is not sensitive to
the randomness of seeds, and it consistently maintains a significant performance lead over baseline
algorithms.
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Figure 18: 10 runs of DrM vs. DrQ-v2 on three Metaworld Tasks.

J EFFECT OF SHRINK-AND-PERTURB

Regarding the potential complementary effects of ”dithering” exploration introduced by the awaken
scheduler and deeper exploration induced by network resets, we perform experiments by replacing
reinitialized perturbations with the original initialization parameters. The results, depicted in the
following figures, demonstrate that 1-shrink perturbations caused only a 10% decrease in perfor-
mance in the Sweep-Into while maintaining comparable performance in Stick-Pull. This suggests
that the combination of these exploration strategies may be complementary, providing a nuanced
understanding of their interplay.
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K FURTHER DISCUSSION OF DORMANT RATIO

In this section, we aim to evaluate an alternative hypothesis regarding the dormant ratio and DrM .
The hypothesis is that dormant ratio measures the change from frame to frame and by minimizing it,
DrM promotes the agent to maximize the velocity of change between frames, thereby encouraging
exploration and yielding good empirical results. Through three experiments, we demonstrate that this
is not the case. Instead, as argued in the main paper, the dormant ratio should be an intrinsic indicator
of the agent’s activity level, rather than merely reflecting the speed of change in observations from
external environments.

First, we performed an additional experiment using the DMC-Generalization Benchmark (Hansen
& Wang, 2021; Yuan et al., 2023). Unlike standard DMC tasks where the agents have a static
background, DMC-Generalization introduces a dynamic element by inserting a video clip into the
background. If a low dormant ratio truly corresponded to significant frame-to-frame changes, then we
would expect the dormant ratio in DMC-Gen to be low throughout the training process. However, our
findings contradict this assumption. As demonstrated in Figure 19, the pattern of the dormant ratio
in DMC-Gen mirrors that of ordinary DMC tasks. Initially, the agent’s dormant ratio remains high,
instead of being consistently low throughout the training, challenging the hypothesis that dormant
ratio is merely a reflection of rapid frame-to-frame changes.
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Figure 19: The dormant ratio of DrM in DMC-Generalization Benchmark.

Next, to further investigate whether using the difference between frames as an intrinsic reward
for optimization is effective, we conducted an additional experiment on three Adroit tasks. The
hypothesis suggests that by using the difference between consecutive observation frames as an
intrinsic reward, an agent could achieve performance comparable to DrM by maximizing this reward.
However, our empirical tests on three Adroit tasks indicate otherwise. For these experiments, we
defined the intrinsic reward ri

t as the difference between the first and third frame of the agent’s
observations at timestep t. (Here, same as DrM , we follow the standard practice to use a stack of
three consecutive image frames as the agent’s observation at each timestep.) For our experiments, we
calculated the L1 difference between the first and third frames. We then normalized this intrinsic
reward using the running mean and standard deviation and trained a policy to maximize the total
reward rtotal = re + ri.
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Figure 20: DrM vs. DrQ-v2 with intrinsic reward defined as L1 difference between consecutive frames

In Figure 20, we show the performance of DrM against such baseline. As shown from the plot, simply
maximizing the difference between frames clearly cannot solve the three tasks.
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Figure 21: DrM against baseline algo-
rithms on Cartpole Balance Sparse

Finally, it’s important to note that if DrM solely focused on max-
imizing the difference between frames, it would likely strug-
gle with tasks that require minimal motion, such as Acrobot
Swingup, Humanoid Stand, and Dog Stand. In these tasks, ex-
cessive motion could lead to a low reward. Here we conducted
an additional experiment on Cartpole Balance Sparse, a task
that also necessitates reduced motion for maintaining balance.
As illustrated in Figure 21, despite its simplicity, DrM continues
to perform well when compared to baseline algorithms. This
further indicates that DrM ’s effectiveness is not merely a result
of maximizing frame-to-frame differences.
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