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ABSTRACT

Integrating combinatorial optimization layers into neural networks has recently
attracted significant research interest. However, many existing approaches lack
theoretical guarantees or fail to perform adequately when relying on inexact solvers.
This is a critical limitation, as many operations research problems are NP-hard,
often necessitating the use of neighborhood-based local search heuristics. In this pa-
per, we introduce a theoretically-principled approach for learning with such inexact
solvers. Inspired by the connection between simulated annealing and Metropolis-
Hastings, we propose to transform problem-specific neighborhood systems used
in local search heuristics into proposal distributions, implementing MCMC on the
combinatorial space of feasible solutions. This allows us to construct differentiable,
stochastic combinatorial layers and associated loss functions. Replacing an exact
solver by a local search strongly reduces the computational burden of learning on
many applications. We demonstrate our approach on a dynamic vehicle routing
problem with time windows, a multi-dimensional knapsack problem, and on binary
vector and k-subset prediction tasks.

1 INTRODUCTION

Models that combine neural networks and combinatorial optimization have recently attracted signifi-
cant attention (Sadana et al., 2024; Mandi et al., 2024; Donti et al., 2017; Berthet et al., 2020; Bengio
et al., 2020; Blondel and Roulet, 2024). They enrich combinatorial optimization algorithms with
context-dependent features, making decisions more resilient to uncertainty. An important subset of
this line of research integrates, within a neural network, a linear programming layer of the form:

θ 7→ argmax
y∈Y

⟨θ,y⟩ ⊆ argmax
y∈conv(Y)

⟨θ,y⟩, (1)

where Y is a finite set of feasible outputs. In the graphical models and structured prediction literature,
Eq. (1) is known as the maximum a posteriori (MAP) problem (Wainwright and Jordan, 2008).
Such layers enable the transformation of learned, continuous latent representations into structured,
discrete outputs, that satisfy complex constraints. This setting is known as decision-focused learning
(DFL), where a fixed solver is parameterized by θ, predicted from features x, in contrast to neural
combinatorial optimization (NCO), which aims to replace the solver entirely with ML-based heuristics.

The main challenge, however, lies in end-to-end training: as piecewise-constant functions, such layers
lack meaningful gradients. Many relaxations and loss functions have been proposed for this setting;
see Section 2 for a review. Table 1 contrasts them based on the type of oracle they assume access to.
Some rely on an oracle for a regularized version of Eq. (1), while others use a solver for the original
problem (i.e., a MAP oracle), performing multiple calls per instance for smoothing reasons. However,
theoretical guarantees for these approaches typically assume exact solutions.

Unfortunately, many problems in operations research are NP-hard in nature, making exact oracles
impractical. Instead, applications often rely on local search heuristics (e.g., simulated annealing),
which iteratively generate and then accept or reject a neighbor of the current solution. We aim to
provide a principled approach for learning with such inexact combinatorial solvers. This is crucial
for exploiting popular heuristics from the operations research literature as layers in neural networks.

To do so, we open the solver "black box", by bridging local search heuristics and Markov chain
Monte-Carlo (MCMC) methods. These lines of research have evolved quite separately, and their
links remain unexploited for designing principled combinatorial optimization layers.
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Table 1: The proposed approach leverages the neighborhood systems used by local search heuristics
(inexact solvers) to obtain a differentiable combinatorial layer when usual oracles are not available.

Regularization Oracle Approach

Differentiable DP (2009; 2018) Entropy Exact marginal DP
SparseMAP (2018) Quadratic Exact MAP Frank-Wolfe
Barrier FW (2015) TRW Entropy Exact MAP Frank-Wolfe

IntOpt (2020) Log barrier Interior point solver Primal-Dual
Perturbed optimizers (2020) Implicit via noise Exact MAP Monte-Carlo

DYS-net (2024) Quadratic Projection oracles Davis-Yin Splitting
Blackbox solvers (2020) None Exact MAP Interpolation

Contrastive divergences (2000) Entropy Gibbs / Langevin sampler MCMC
Proposed Entropy Local search MCMC

We make the following contributions:

• We integrate local search heuristics as differentiable, stochastic layers in neural networks, by
converting their neighborhood systems to proposal distributions, turning the local search oracle
into a discrete MCMC sampler over the combinatorial set of solutions.

• We extend our framework to handle local search heuristics that leverage a diversity of neighbor-
hood systems, enabling this class of powerful solvers to be used as a unified MCMC sampler.

• We show that the proposed layer yields stochastic gradients of a Fenchel-Young loss (Blondel
et al., 2020) (even with a single MCMC iteration), leading to principled learning algorithms for
conditional and unconditional settings, for which we provide a convergence analysis.

• The proposed layer reduces the computational bottleneck, especially with few MCMC iterations,
enabling larger training instances and better generalization at scale (Parmentier, 2021; 2022).

• We demonstrate our approach on the EURO Meets NeurIPS 2022 challenge (Kool et al., 2023), a
large-scale dynamic vehicle routing problem with time windows, and on binary vector prediction
tasks. Abundant additional experiments are included in Section A of the appendix.

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM SETUP

In this paper, our goal is to learn models that incorporate optimization layers of the form:

ŷ : θ 7→ argmax
y∈Y

⟨θ, y⟩+ φ(y), (2)

where Y ⊂ Rd is a finite but combinatorially-large set, and φ encodes structural costs or preferences
on outputs (e.g., routing distances, fixed costs) that do not depend on θ (not to be confused with a
regularization term). This formulation therefore extends the standard linear objective in Eq. (1) by
allowing additional problem-specific structure.

We focus on settings where Eq. (2) is intractable and only heuristic algorithms are available to obtain
an approximate solution. Our goal is to integrate NP-hard problems arising in operations research
(e.g., routing, scheduling, network design), within a neural network. Unfortunately, many existing
approaches lack formal guarantees or simply do not work when used with inexact solvers.

We distinguish between two settings. In the unconditional setting, our goal will be to learn θ ∈ Rd

from observations y1, . . . ,yN ∈ Y . In the conditional setting, we will assume that θ = gW (x) and
our goal will be to learn the parameters W from observation pairs (x1,y1), . . . , (xN ,yN ).

2.2 COMBINATORIAL OPTIMIZATION AS A LAYER

Since the layer defined in Eq. (1) is piecewise constant, a frequent strategy consists in introducing
regularization in the problem so as to obtain a continuous relaxation. In some cases, we may have
access to an oracle for directly solving the regularized problem. For instance, dynamic programming
solvers can handle entropic regularization through a change of semi-ring (Li and Eisner, 2009) or
algorithmic smoothing (Mensch and Blondel, 2018). As another example, interior point solvers can
be used to compute a logarithmic barrier regularized solution (Mandi and Guns, 2020). More recently,
McKenzie et al. (2024) handle quadratic regularization by leveraging projection oracles.
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We focus on settings where only a MAP oracle is available for the original, unregularized optimization
problem. While prior work is often limited to the linear form in Eq. (1) for the latter, our framework
also handles the more general Eq. (2). Frank-Wolfe-like methods can be used to solve the regularized
problem using only MAP oracle calls (Niculae et al., 2018; Krishnan et al., 2015). Another strategy
consists in injecting noise perturbations (Berthet et al., 2020) in the oracle, which can be shown to
be implicitly using regularization. In both cases, a Fenchel-Young loss can be associated, enabling
principled learning. However, formal guarantees require an exact oracle, often called multiple times
during the forward pass. Our proposal enjoys guarantees even with inexact solvers and a single call.

Regarding differentiation, several strategies are possible. When the approach only needs to differ-
entiate through a (regularized) max, as is the case of Fenchel-Young losses, we can use Danskin’s
theorem (Danskin, 1966). When the approach needs to differentiate a (regularized) argmax, we can
either use autodiff on the unrolled solver iterations or implicit differentiation (Amos and Kolter, 2017;
Agrawal et al., 2019; Blondel et al., 2022). Differently, Vlastelica et al. (2020) propose to compute
gradients via continuous interpolation of the solver.

2.3 CONTRASTIVE DIVERGENCES

An alternative approach to learning in combinatorial spaces is to use energy-based models (EBMs)
(Lecun et al., 2006), which define a distribution over outputs via a parameterized energy function Eθ:

pθ(y) ∝ exp(Eθ(y)), with ∇θ log pθ(y) = ∇θEθ(y)− EY∼pθ
[∇θEθ(Y )] .

Therefore, we can perform maximum likelihood estimation (MLE) if we can sample from pθ , but this
is hard both in continuous and combinatorial settings, due to its intractable normalization constant.
Contrastive divergences (Hinton, 2000; Carreira-Perpiñán and Hinton, 2005; Song and Kingma,
2021) address this by using MCMC to obtain (biased) stochastic gradients. Originally developed for
restricted Boltzmann machines with Y = {0, 1}d and a Gibbs sampler, they have also been applied
in continuous domains via Langevin dynamics (Du and Mordatch, 2020; Du et al., 2021).

MCMC in discrete spaces. Contrastive divergences rely on MCMC to sample the model distribu-
tion. Unfortunately, designing MCMC samplers is often case-by-case, and discrete domains have
received less attention than continuous ones. Recent efforts adapt continuous techniques, such as
Langevin dynamics (Zhang et al., 2022; Sun et al., 2023a) or gradient-informed proposals (Grathwohl
et al., 2021; Rhodes and Gutmann, 2022), to discrete settings. However, these works often assume
simple state spaces (e.g., the hypercube or categorical codebooks), and do not handle complex
constraints ubiquitous in operations research. Sun et al. (2023b) allow structured spaces via relaxed
constraints in the energy function, yet ignore these structures in their proposal supports. Notably, we
emphasize that all these works focus on sampling, not on designing differentiable MCMC layers.

3 LOCAL SEARCH-BASED MCMC LAYERS

This section introduces our core contribution. We first connect local search heuristics and MCMC
methods, then use this link to define a stochastic layer based on a single neighborhood system
(Algorithm 1), and subsequently generalize it to leverage diverse neighborhood systems (Algorithm 2).

3.1 FROM LOCAL SEARCH TO MCMC

Local search and neighborhood systems. Local search heuristics (Gendreau et al., 2010) iteratively
generate a neighbor y′ ∈ N (y(k)) of the current solution y(k), and either accept it or reject it based
on an acceptance rule, that depends on the objective function, y(k) and y′. In this context, a
neighborhood system N defines, for each feasible solution y ∈ Y , a set of neighbors N (y) ⊆ Y .

Neighborhoods are problem-specific, and must respect the structure of the problem, i.e., must maintain
solution feasibility. They are typically defined implicitly via a set of allowed moves from y. For
instance, Table 2 lists example moves for a vehicle routing problem.

Formally, we denote the neighborhood graph by GN := (Y, EN ), where edges are defined byN . We
assume the graph is undirected, i.e., y′ ∈ N (y) if and only if y ∈ N (y′), and without self-loops –
i.e., y /∈ N (y). A stochastic neighbor generating function is also provided, in the form of a proposal
distribution q(y , · ) with support either equal to N (y) or N (y) ∪ {y}.
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Algorithm 1 SA / MH as a layer

Inputs: θ∈Rd, y(0)∈Y , (tk), K∈N, N , q
for k = 0 : K do

Sample a neighbor in N (y(k)):
y′ ∼ q

(
y(k), ·

)
α(y(k),y′)← 1 (SA) or

α(y(k),y′)← q(y′,y(k))
q(y(k),y′)

(MH)
U ∼ U([0, 1])
∆(k)←⟨θ,y′⟩+φ(y′)−⟨θ,y(k)⟩−φ(y(k))
p(k) ← α(y(k),y′) exp

(
∆(k)/tk

)
If U ≤ p(k), accept move: y(k+1) ← y′

If U > p(k), reject move: y(k+1) ← y(k)

end for
Output: ŷ(θ) ≈ y(K) (SA) or
ŷt(θ) = Eπθ,t

[Y ] ≈ 1
K

∑K
k=1 y

(k) (MH)

Algorithm 2 Neighborhood mixture MCMC

Inputs: θ∈Rd, y(0)∈Y, t, K∈N, (Ns,qs)
S
s=1

for k = 0 : K do
Sample a neighborhood system:
s ∼ U(Q(y(k)))
Sample a neighbor in Ns(y

(k)):
y′ ∼ qs(y

(k), ·)
αs(y

(k),y′)← |Q(y(k))|
|Q(y′)|

qs(y
′,y(k))

qs(y(k),y′)

U ∼ U([0, 1])
∆(k)←⟨θ,y′⟩+φ(y′)−⟨θ,y(k)⟩−φ(y(k))
p(k) ← αs(y

(k),y′) exp
(
∆(k)/t

)
If U ≤ p(k), accept move: y(k+1) ← y′

If U > p(k), reject move: y(k+1) ← y(k)

end for
Output: ŷt(θ) = Eπθ,t

[Y ] ≈ 1
K

∑K
k=1 y

(k)

Link between simulated annealing and Metropolis-Hastings. A well-known example of local
search heuristic is simulated annealing (SA) (Kirkpatrick et al., 1983). It is intimately related to
Metropolis-Hastings (MH) (Hastings, 1970), an instance of a MCMC algorithm. We provide a unified
view of both in Algorithm 1.

The difference lies in the acceptance rule, which incorporates a proposal correction ratio for MH,
and in the choice of the sequence of temperatures (tk)k∈N. In the case of SA, it is chosen to verify
tk −→ 0. In the case of MH, it is such that tk ≡ t. In this case, the iterates y(k) of Algorithm 1 follow
a time-homogenous Markov chain on Y , defined by the following transition kernel:

Pθ,t(y,y
′) =


q (y,y′)min

[
1, q(y′,y)

q(y,y′) exp
(

⟨θ ,y′⟩+φ(y′)−⟨θ,y⟩−φ(y)
t

)]
if y′ ∈ N (y),

1−∑y′′∈N (y) Pθ,tk(y,y
′′) if y′ = y,

0 else.

(3)

In past work, the link between the two algorithms has primarily been used to show that SA converges
to the exact MAP solution in the limit of infinite iterations (Mitra et al., 1986; Faigle and Schrader,
1988). Under mild conditions – if the neighborhood graph GN is connected and the chain is aperiodic,
the iterates (y(k))k∈N of Algorithm 1 (MH case) converge in distribution to the Gibbs distribution
(see Section E.1 for a proof):

πθ,t(y) ∝ exp ([⟨θ , y⟩+ φ(y)] /t) . (4)

Proposed layer. Algorithm 1 and this result motivate us to define the combinatorial MCMC layer

ŷt(θ) := Eπθ,t
[Y ] , (5)

where θ ∈ Rd are logits and t > 0 is a temperature parameter, defaulting to t = 1. Computing ŷt(θ)
is known as the marginal inference problem in the graphical models literature. Naturally, the estimate
of ŷt(θ) returned by Algorithm 1 (MH case) is biased, as the Markov chain cannot perfectly mix
in a finite number of iterations, except if it is initialized at πθ,t. In Section 4, we will show that this
does not hinder the convergence of the proposed learning algorithms. The next proposition, proved in
Section E.2, states some useful properties of the proposed layer.

Proposition 1. Let θ ∈ Rd. We have the following properties:

ŷt(θ) ∈ relint(C), ŷt(θ) −−−−→
t→0+

argmax
y∈Y

⟨θ, y⟩+ φ(y), and ŷt(θ) −−−→
t→∞

1

|Y|
∑
y∈Y

y .

Moreover, ŷt is differentiable and its Jacobian matrix is given by Jθŷt(θ) =
1
t covπθ,t

[Y ] .
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3.2 MIXING NEIGHBORHOOD SYSTEMS

Central to local search algorithms in combinatorial optimization is the use of multiple neighborhood
systems to more effectively explore the solution space (Mladenović and Hansen, 1997; Blum and
Roli, 2003). In this section, we propose a tractable way to incorporate such diversity of neighborhood
systems into the combinatorial MCMC layer, while preserving the correct stationary distribution.

Definitions. Let (Ns)
S
s=1 be a set of different neighborhood systems. Typically, all neighborhood

systems are not defined on all solutions y ∈ Y , so we note Q(y) ⊆ J1, SK the set of neighborhood
systems defined on y (i.e., the set of allowed moves on y). Let (qs)s∈Q(y) be the corresponding
proposal distributions, such that the support of qs(y, · ) is either Ns(y) or Ns(y) ∪ {y}. Let N̄ be
the aggregate neighborhood system defined by N̄ : y 7→ ⋃

s∈Q(y)Ns(y).

Computational challenge of neighborhood mixing. A standard way to combine these neighbor-
hood systems would be to use Algorithm 1 by defining an aggregated proposal q(y, · ) as, e.g.:

q(y,y′) :=
1

|Q(y)|
∑

s∈Q(y)

qs(y,y
′), giving: α(y,y′) =

|Q(y)|
|Q(y′)| ·

∑
s∈Q(y′) qs(y

′,y)∑
s∈Q(y) qs(y,y

′)
.

However, this leads to intractable updates. Indeed, computing the correction ratio α(y,y′) is
prohibitively expensive as it involves summing the forward proposal probabilities for all move types
in Q(y) and the reverse probabilities for all move types in Q(y′). The difficulty is that multiple,
distinct proposal types can generate the same solution y′ from y. For example, in our vehicle routing
application in Section 5.1, relocating a pair of clients before the first one in a route of three gives the
same solution y′ as relocating the first client at the last position (see the relocate and relocate
pair moves from Table 2). Identifying and calculating all these potential forward and reverse
pathways for every step is a significant computational hurdle.

Proposed efficient sampler. In contrast, the update we propose in Algorithm 2 circumvents this
summation entirely by sampling the move type s first. It only requires computing the single individual
ratio αs(y,y

′) := |Q(y)|
|Q(y′)| ·

qs(y
′,y)

qs(y,y′) for the unique move type s that was actually sampled.

Proposition 2. If each neighborhood graph GNs
is undirected and without self-loops, and

the aggregate neighborhood graph GN̄ is connected, the iterations (y(k))k∈N produced by
Algorithm 2 follow a Markov chain with unique stationary distribution πθ,t.

See Section E.3 for the proof. Importantly, our method is not an approximation: it targets the exact
same stationary distribution as the naive approach, but does so efficiently. Furthermore, only the
aggregate neighborhood graph GN̄ is required to be connected. This enables combining neighborhood
systems Ns that could not connect Y if used individually, and an irreducible Markov chain can be
obtained by mixing the proposal distributions of reducible ones. As a concrete example, the moves
used as proposals in our dynamic vehicle routing experiment (Section 5.1) are defined in Table 2.

4 LOSS FUNCTIONS AND THEORETICAL ANALYSIS

Building upon the differentiable MCMC layer developed in Section 3, this section constructs the
corresponding learning framework. We derive principled Fenchel-Young loss functions for our layer,
present practical stochastic gradient algorithms for both conditional and unconditional learning, and
provide theoretical convergence guarantees for these algorithms.

4.1 NEGATIVE LOG-LIKELIHOOD AND ASSOCIATED FENCHEL-YOUNG LOSS

We now show that the proposed layer ŷt(θ) can be viewed as the solution of a regularized optimization
problem on C = conv(Y). Let At(θ) := t · log∑y∈Y exp ([⟨θ , y⟩+ φ(y)] /t) be the cumulant
function (Wainwright and Jordan, 2008) associated to πθ,t, scaled by t. We define the regularization
function Ωt and the corresponding Fenchel-Young loss (Blondel et al., 2020) as:

Ωt(µ) := A∗
t (µ) = sup

θ∈Rd

⟨µ , θ⟩ −At(θ), and ℓt(θ ;y) := (Ωt)
∗(θ) + Ωt(y)− ⟨θ, y⟩.
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Since Ωt = A∗
t is strictly convex on relint(C) (see Section E.4 for a proof) and ŷt(θ) = ∇θAt(θ),

the proposed layer is the solution of the regularized optimization problem

ŷt(θ) = argmax
µ∈C

{⟨θ,µ⟩ − Ωt(µ)} , (6)

the Fenchel-Young loss ℓt is differentiable, satisfies ℓt(θ,y) = 0 ⇔ ŷt(θ) = y, and has gradient
∇θℓt(θ ;y) = ŷt(θ)− y (Blondel et al., 2020). It is therefore equivalent, up to a constant, to the
negative log-likelihood loss, as we have −∇θ log πθ,t(y) = (ŷt(θ)− y)/t. Algorithms 1 and 2 can
thus be used to perform MLE, by returning a (biased) stochastic estimate of the gradient of ℓt.

4.2 EMPIRICAL RISK MINIMIZATION

In the conditional learning setting, we are given observations (xi, yi)
N
i=1 ∈ (Rp × Y)N , and want

to fit a model gW : Rp → Rd such that ŷt(gW (xi)) ≈ yi. This is motivated by a generative model
where, for some weights W0 ∈ Rp, the data is generated with yi ∼ πgW0

(xi),t. We aim at minimizing
the empirical risk LN , defined below along with its exact gradient:

LN (W ) :=
1

N

N∑
i=1

ℓt (gW (xi) ;yi) , with ∇WLN (W )=
1

N

N∑
i=1

JW gW (xi) (ŷt(gW (xi))−yi) .

Doubly stochastic gradient estimator. In practice, we cannot compute the exact gradient above.
Using Algorithm 1 or 2 to get a MCMC estimate of ŷt(gW (xi)), we propose the following estimator:

∇WLN (W ) ≈ JW gW (xi)

(
1

K

K∑
k=1

y
(k)
i − yi

)
,

where y
(k)
i is the k-th iterate of the algorithm with maximization direction θi = gW (xi) and

temperature t. This estimator is doubly stochastic, since we sample both data points and Markov
iterations, and can be seamlessly used with batches. The term JW gW (xi) is computed via autodiff.

Markov chain initialization. Following the contrastive divergence literature (Hinton, 2000), in
the conditional setting, we initialize the Markov chains at the corresponding ground-truth, by setting
y
(0)
i = yi. In the unconditional setting, we use a persistent initialization (Tieleman, 2008) instead.

4.3 ASSOCIATED FENCHEL-YOUNG LOSS WITH A SINGLE MCMC ITERATION

To obtain an unbiased gradient estimator for the Fenchel-Young loss ℓt associated with ŷt, the MCMC
sampler must be run until it reaches its stationary distribution πθ,t. This requirement makes any
practical estimator with a finite number of steps K inherently biased.

Although our convergence analysis in Section 4.4 shows that this bias does not hinder the convergence
of the proposed learning algorithms, we now demonstrate that when a single MCMC iteration is used
(K = 1), there exists another target-dependent Fenchel-Young loss such that the gradient estimator
is unbiased with respect to that loss. See Section E.7 for the construction of Ωy and the proof.

Proposition 3 (Existence of a Fenchel-Young loss when K = 1). Let p(1)
θ,y denote the distribu-

tion of the first iterate of the Markov chain defined by Eq. (3), with proposal distribution q and
initialized at ground-truth y ∈ Y . There exists a target-dependent regularization function Ωy

with the following properties: Ωy is t/Eq(y, · )||Y − y||22-strongly convex, it is such that:

E
p
(1)
θ,y

[Y ] = argmax
µ∈conv(N (y)∪{y})

{⟨θ,µ⟩ − Ωy(µ)} ,

and the Fenchel-Young loss ℓΩy generated by Ωy is Eq(y, · )||Y − y||22/t-smooth in its first
argument, and such that ∇θℓΩy (θ ;y) = E

p
(1)
θ,y

[Y ]− y.

A similar result in the unconditional setting with data-based initialization is given in Proposition 6. In
contrast, Sutskever and Tieleman (2010) showed that the expected CD-1 update with Gibbs sampling
for restricted Boltzmann machines is not the gradient of any function, let alone a convex one.
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Table 2: Local search moves used for creating neighborhoods in our vehicle routing experiments.

Name Description
relocate Removes a single request from its route and re-inserts it at a different position in

the solution.
relocate pair Removes a pair of consecutive requests from their route and re-inserts them at a

different position in the solution.
swap Exchanges the position of two requests in the solution.
swap pair Exchanges the positions of two pairs of consecutive requests in the solution.
2-opt Reverses a route segment.
serve request Inserts a currently unserved request into the solution.
remove request Removes a request from the solution.

4.4 CONVERGENCE ANALYSIS IN THE UNCONDITIONAL SETTING

In the unconditional setting, we are given observations (yi)
N
i=1∈YN and want to fit a model πθ,t,

motivated by an underlying generative model such that yi ∼ πθ0,t for some true parameter θ0.
We assume here that C = conv(Y) is of full dimension in Rd (if not, the model is specified only
up to vectors µ orthogonal to the affine subspace spanned by C, as πθ+µ,t = πθ,t). We have the
corresponding empirical LN and population Lθ0

Fenchel-Young losses:

LN (θ;y1, . . . ,yN ) :=
1

N

N∑
i=1

ℓt (θ; yi) , Lθ0
(θ) := E(yi)

N
i=1∼(πθ0,t)⊗N [LN (θ;y1, . . . ,yN )] ,

which are minimized for θ such that ŷt(θ) = ȲN := 1
N

∑N
i=1 yi, and for θ such that ŷt(θ) = ŷt(θ0),

respectively. Let θ⋆
N as the minimizer of the empirical loss LN . For it to be defined, we assume

that ȲN ∈ int(C) (which is always the case for N large enough, as πθ0,t has dense support on Y). A
slight variation on Proposition 4.1 in Berthet et al. (2020) gives the following asymptotic normality:

Proposition 4 (Convergence of the empirical loss minimizer to the true parameter).
√
N(θ⋆

N − θ0)
D−−−−→

N→∞
N
(
0, t2 covπθ0,t

[Y ]
−1
)
.

The proof is given in Section E.5. We now consider the sample size as fixed to N samples, and define
θ̂n as the n-th iterate of the following stochastic gradient algorithm:

θ̂n+1 = θ̂n + γn+1

ȲN −
1

Kn+1

Kn+1∑
k=1

y(n+1, k)

 , (7)

where y(n+1,k) is the k-th iterate of Algorithm 1 with temperature t, maximization direction θ̂n,
and initialized at y(n+1,1) = y(n,Kn). This initialization corresponds to the persistent contrastive
divergences (PCD) algorithm (Tieleman, 2008), and is further discussed in Section B.3.

Proposition 5 (Convergence of the stochastic gradient estimate). Suppose the following hold
for the step sizes (γn)n≥1, sample sizes (Kn)n≥1, and proposal distribution q:

(i) γn = an−b, with b ∈
(
1
2 , 1
]

and a > 0.

(ii) Kn+1 > ⌊1 + a′ exp( 8RC
t ∥θ̂n∥)⌋, with a′ > 0 and RC = maxy∈Y ∥y∥.

(iii) 1√
Kn
− 1√

Kn−1

≤ a′′n−c, with a′′ > 0 and c > 1− b
2 .

(iv) q(y,y′) =


1

2d∗ , y′ ∈ N (y),

1− d(y)
2d∗ , y′ = y,

0, else,
where d(y) := |N (y)| and d∗ := maxy∈Y d(y).

Then the iterates θ̂n defined by Eq. (7) converge almost surely: θ̂n
a.s.−−→ θ⋆

N .

See Section E.6 for the proof. The assumptions on q are used for obtaining a closed-form convergence
rate bound for the Markov chain, using graph-based geometric bounds (Ingrassia, 1994).
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Figure 1: Overview of the vehicle routing pipeline, represented at request wave ω.

5 NUMERICAL EXPERIMENTS

5.1 DYNAMIC VEHICLE ROUTING

We empirically validate our approach on the dynamic vehicle routing problem with time windows
(DVRPTW) from the EURO Meets NeurIPS 2022 Vehicle Routing Competition (Kool et al., 2023). A
detailed introduction to the challenge with precise notations is given in Section C.

Reduction to supervised learning. In this DVRPTW, requests arrive in delivery waves ω, at the
start of which a dispatching and vehicle routing problem for the current set of requests Rω must
be solved, to get a feasible solution yω ∈ Y(Rω). Following Baty et al. (2023), we frame each
dispatching and routing problem as a prize-collecting (PC-)VRP, where a model gW predicts a "prize"
vector θω for serving each request. This PC-VRP fits the general formulation of Eq. (2):

ŷ(θω) = argmax
y∈Y(Rω)

⟨θω,y⟩+ φ(y), (8)

where φ(y) := −⟨c,y⟩ is the negative routing cost. The overall pipeline is shown in Fig. 1. The
model is trained to imitate an anticipative oracle f⋆, i.e., we use its output as ground-truth for
supervised learning. We compute f⋆ by solving a static VRPTW where all future information in the
instance is revealed from the start, turning dispatching waves into time windows.

Approach and baseline. The baseline Baty et al. (2023), winner of the competition, relies on a
perturbation-based method (Berthet et al., 2020) with the state-of-the-art PC-HGS heuristic ỹ (Vidal,
2022) as a combinatorial optimization layer. Since ỹ is an inexact solver, the theoretical guarantees
granted by the framework of Berthet et al. (2020) no longer hold. Our approach instead uses a local
search MCMC layer to train gW . We use a mixture of proposals (Algorithm 2) defined precisely
in Section C.5, derived from the local search moves used by the PC-HGS solver itself (which are
summarized in Table 2). At inference time, we follow the baseline, and use fW := ỹ ◦ gW .

Results. We use the competition’s metric: the routing cost over full instances with multiple
dispatching waves, relative to the anticipative oracle f⋆. In Fig. 2, initializing the Markov chain with
the ground-truth solution clearly outperforms a random start (even more so when refined by the fast
initialization heuristic used by ỹ), and performance increases with the MCMC iteration number K.

In Table 3, we compare training methods under a fixed time budget for the layer’s forward pass
(the main computational bottleneck). We observe that our approach significantly outperforms the
perturbation-based method in low time-limit regimes (1-100ms), thus enabling faster and more
efficient training. Full experimental details and additional results are in Section C.8.

Table 3: Best test relative cost (%) w.r.t. f⋆ for different training methods and time limits.

Time limit (ms) 1 5 10 50 100 1000

Perturbed inexact oracle 65.2± 5.8 13.1± 3.4 8.7± 1.9 6.5± 1.1 6.3± 0.76 5.5± 0.4

Proposed (y(0)=y) 10.0± 1.7 12.0± 2.6 11.8± 2.8 9.1± 1.7 8.4± 1.7 7.7± 1.1

Proposed (y(0)=heuristic(y)) 7.8± 0.8 7.2± 0.6 6.3± 0.7 6.2± 0.8 5.9± 0.7 5.9± 0.6
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Figure 2: Test relative cost (%) w.r.t. f⋆. Left: varying initialization method. Center: varying
number of Markov iterations K, random initialization. Right: varying K, ground-truth initialization.

5.2 MULTI-DIMENSIONAL KNAPSACK PROBLEM

In this section, we evaluate our framework on the multi-dimensional knapsack problem (MKP)
(Martello and Toth, 1990; Kellerer et al., 2004), which is a resource allocation problem involving
subset selection under multiple constraints. We benchmark our method against a broader landscape
of differentiable optimization baselines provided by the PyEPO library (Tang and Khalil, 2023).
Experimental and methodological details are given in Section D.

Problem formulation. We consider the decision-focused learning setup where the goal is to select
a subset of items to maximize a total value while respecting M capacity constraints. The item values
θ are predicted from features x. Formally, the combinatorial optimization problem is defined as:

ŷ(θ) := argmax
y∈{0,1}d

d∑
i=1

θiyi = argmax
y∈Y

⟨θ,y⟩ , (9)

s.t. ∀j ∈ [M ],

d∑
i=1

wi,jyi ≤ Cj

where θ = gW (x) ∈ Rd are the item values, wi,j ≥ 0 is the weight of item i in dimension j, and Cj is
the capacity of dimension j. The feasible set is Y := {y ∈ {0, 1}d | ∀j ∈ [M ],

∑d
i=1 wi,jyi ≤ Cj}.

We are given a training set (xi,yi)
N
i=1 (the SPO+ baseline also requires access to the true values θi).

At test time, given only x, the goal is to predict y with minimal regret compared to the ground-truth.

Proposed layer. For our Local Search-MCMC layer ŷt, we use Algorithm 2 with ground-truth ini-
tialization, temperature t = 1.0, and a mixture of three proposal distributions, detailed in Section D.1.

Baselines. We compare against four established decision-focused learning methods from the PyEPO
library: smart predict-then-optimize (SPO+, Elmachtoub and Grigas (2020)), perturbed optimizers
using K = 5 Monte-Carlo samples (PFY, Berthet et al. (2020)), negative identity backpropagation
(NID, Sahoo et al. (2023)), and noise-contrastive estimation (NCE, Mulamba et al. (2021)).

Compute and performance benchmark. We generate a dataset (xi,yi)
N
i=1 using PyEPO with

N = 2000, d = 100 and J = 50 (we also give θi to the SPO+ loss). Our approach achieves
competitive test relative regret (Fig. 3, left) while drastically reducing the computational burden
(Fig. 3, center). The variance of the LS-MCMC gradients remains consistently lower than that of
other methods (Fig. 3, right), showing that the proposed method provides a stable signal for learning.
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Figure 3: Benchmark results on the MKP.
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5.3 LEARNING TO PREDICT BINARY VECTORS

Setup. To further validate the proposed gradient estimators, we use a synthetic unconditional learn-
ing task with hypercube output space, Y = {0, 1}d. This setting is ideal for controlled experiments
because the Gibbs distribution πθ,t is fully factorized, leading to trivial sampling and a tractable
closed-form expectation Eπθ,t

[Y ] = σ(θ/t), where σ is the logistic sigmoid function. This allows us
to both faithfully generate datasets from a known distribution πθ,t , and to minimize the population
Fenchel-Young loss Lθ directly (see Section 4.4 for its definition). The latter lets us decouple the
noise from our MCMC estimator from the statistical noise inherent in finite datasets.

In all experiments, the goal is to recover a known “true” parameter vector θ0 from independent
samples (yi)

N
i=1 ∼ (πθ0,t)

⊗N . We summarize our key findings in Fig. 4, which shows the distance
to θ0 along a stochastic gradient trajectory, either minimizing LN (left) or Lθ0

(center, right). Full
experimental and theoretical details are available in Section A, together with additional results on
both the hypercube and the top-κ polytope.

Results. The results highlight three important aspects for effective learning. First, persistent
and data-based initializations for the MCMC chains are critical (see Section B.3 for a detailed
discussion), vastly outperforming random restarts, which introduce systematic bias in the gradient
estimation (Fig. 4, center). Second, a larger dataset size N provides a better approximation of the
population loss, leading to a more accurate parameter recovery (Fig. 4, left), in line with Proposition 4.
Finally (defining Hamming distance-based neighborhood systems (Nrs)

S
s=1 by y′ ∈ Nrs(y) ⇔

dH (y, y′) = rs), using a mixture of proposals with Algorithm 2 (e.g., with rs ∈ {1, 2, 3, 6}) enables
more effective exploration, improving convergence compared to a single proposal type (Fig. 4, right).
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Figure 4: Squared distance ||θ̂n − θ0||22 to the true parameter over optimization steps.

6 CONCLUSION

In this paper, we introduced a principled framework for integrating NP-hard combinatorial optimiza-
tion layers into neural networks without relying on exact solvers. Our approach adapts neighborhood
systems from the metaheuristics community, to design structure-aware proposal distributions for
combinatorial MCMC. This leads to significant training speed-ups, enabling to tackle larger problem
instances, which is crucial in operations research, where scaling up leads to substantial value creation
by reducing marginal costs. In future work, we plan to extend our framework to large neighborhood
search algorithms, which are heuristics that leverage neighborhood-wise exact optimization oracles.
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NOTATION

Notation Description
⟨θ,y⟩ Euclidean inner product between two vectors θ,y ∈ Rd.
conv(Y) Convex hull of a set Y .
dom(Ω) Domain of a function Ω : Rd → R ∪ {∞}, defined as {µ ∈ Rd : Ω(µ) <∞}.
Ω∗ Fenchel conjugate of Ω, defined as Ω∗(θ) := supµ∈Rd⟨θ,µ⟩ − Ω(µ).
∇Ω Gradient of Ω.
∂Ω Subgradient of Ω.
Jxf(x,y) Jacobian of a function f : X × Y → Rd with X ⊆Rn at point (x,y) w.r.t. x,

viewed as a matrix Jxf(x,y) ∈ Rn×d.
U(X ) Uniform distribution on a set X .
N (x,Σ) Normal distribution with mean x ∈ Rd and covariance Σ ∈ Rd×d.

A EXPERIMENTS ON EMPIRICAL CONVERGENCE OF GRADIENTS AND
PARAMETERS

In this section, we evaluate the proposed approach on two discrete output spaces: sets and κ-subsets.
These output spaces are for instance useful for multilabel classification. We focus on these output
spaces because the exact MAP and marginal inference oracles are available, allowing us to compare
our gradient estimators to exact gradients. We set φ ≡ 0 in these experiments.

A.1 POLYTOPES AND CORRESPONDING ORACLES

The vertex set of the first polytope is the set of binary vectors in Rd, which we denote Yd := {0, 1}d,
and conv(Yd) = [0, 1]d is the “hypercube”. The vertex set of the second is the set of binary vectors
with exactly κ ones and d− κ zeros (with 0 < κ < d),

Yd
κ :=

{
y ∈ {0, 1}d : ⟨y,1⟩ = κ

}
,

and conv(Yd
κ) is referred to as “top-κ polytope” or “hypersimplex”. Although these polytopes would

not provide relevant use cases of the proposed approach in practice, since exact marginal inference
oracles are available (see below), they allow us to compare the Fenchel-Young loss value and gradient
estimated by our algorithm to their true value.

Marginal inference. For the hypercube, we have:

Eπθ,t
[Yi] =

∑
y∈Yd

exp (⟨θ,y⟩/t)∑
y′∈Yd exp (⟨θ,y′⟩/t)yi =

∑
y∈{0,1}d

exp
(∑d

j=1 θjyj/t
)

∑
y′∈{0,1}d exp

(∑d
j=1 θjy

′
j/t
)yi

=
∑

yi∈{0,1}

∑
y−i∈{0,1}d−1

exp
(
θiyi/t+

∑
j ̸=i θjyj/t

)
∑

y′
i∈{0,1}

∑
y′
−i∈{0,1}d−1 exp

(
θiy′i/t+

∑
j ̸=i θjy

′
j/t
)yi

=
∑

yi∈{0,1}

exp (θiyi/t)∑
y′
i∈{0,1} exp (θiy

′
i/t)

yi
∑

y−i∈{0,1}d−1

exp
(∑

j ̸=i θjyj/t
)

∑
y′
−i∈{0,1}d−1 exp

(∑
j ̸=i θjy

′
j/t
)

=
∑

yi∈{0,1}

exp (θiyi/t)∑
y′
i∈{0,1} exp (θiy

′
i/t)

yi

=
exp (θi/t)

1 + exp (θi/t)

= σ

(
θi
t

)
,
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which gives Eπθ,t
[Y ] = σ

(
θ
t

)
, where the logistic sigmoid function σ is applied component-wise.

The cumulant function is also tractable, as we have

log
∑
y∈Yd

exp (⟨θ,y⟩/t) = log
∑

y∈{0,1}d

exp

(
d∑

i=1

θiyi/t

)

= log

1∑
y1=0

1∑
y2=0

· · ·
1∑

yd=0

exp

(
d∑

i=1

θiyi/t

)

= log

d∏
i=1

1∑
yi=0

exp (θiyi/t)

= log

d∏
i=1

(exp(0) + exp (θi/t))

= log

d∏
i=1

(1 + exp (θi/t))

=

d∑
i=1

log (1 + exp (θi/t)) .

Another way to derive this is via the Fenchel conjugate.

For the top-κ polytope, such closed-form formulas do not exist for the cumulant and its gradient.
However, we implement them with dynamic programming, by viewing the top-κ MAP problem
as a 0/1-knapsack problem with constant item weights, and by changing the (max,+) semiring
into a (LSE,+) semiring. This returns the cumulant function, and we leverage PyTorch’s automatic
differentiation framework to compute its gradient. This simple implementation allows us to compute
true Fenchel-Young losses values and their gradients in O(dκ) time and space complexity.

Sampling. For the hypercube, sampling from the Gibbs distribution on Yd has closed form. Indeed,
the latter is fully factorized, and we can sample y ∼ πθ,t by sampling independently each component
with yi ∼ Bern (σ(θi/t)). Sampling from πθ,t is also possible on Yd

κ , by sampling coordinates
iteratively using the dynamic programming table used to compute the cumulant function (see, e.g.,
Algorithm 2 in Ahmed et al. (2024) for a detailed explanation).

A.2 NEIGHBORHOOD GRAPHS

Hypercube. On Yd, we use a family of neighborhood systems N r
≤ parameterized by a Hamming

distance radius r ∈ [d− 1]. The graph is defined by:

∀y,y′ ∈ Yd : y′ ∈ N r
≤(y)⇔ 1 ≤ dH (y, y′) ≤ r.

That is, two vertices are neighbors if their Hamming distance is at most r. This graph is regular,
with degree |N r

≤(y)| =
∑r

i=1

(
d
i

)
. This graph is naturally connected, as any binary vector y′

can be reached from any other binary vector y in ||y′ − y||1 moves, by flipping each bit where
y′i ̸= yi, iteratively. Indeed, this trajectory consists in moves between vertices with Hamming dis-
tance equal to 1, and are therefore along edges of the neighborhood graph, regardless of the value of r.

We also use a slight variation on this family of neighborhood systems, the graphs N r
=, defined by:

∀y,y′ ∈ Yd : y′ ∈ N r
=(y)⇔ dH (y, y′) = r.

These graphs, on the contrary, are not always connected: indeed, if r is even, they contain two
connected components (binary vectors with an even sum, and binary vectors with an odd sum).
We only use such graphs when experimenting with neighborhood mixtures (see Algorithm 2), by
aggregating them into a connected graph.
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Top-κ polytope. On Yd
κ , we use a family of neighborhoods systemsN s parameterized by a number

of “swaps” s ∈ J1,min(κ, d− κ)K. The graph is defined by

∀y,y′ ∈ Yd
κ : y′ ∈ N s(y)⇔ dH (y, y′) = 2s.

That is, two vertices are neighbors if one can be reached from the other by performing s “swaps”,
each swap corresponding to flipping a 1 to a 0 and vice-versa. This ensures that the resulting vector
is still in Yd

κ . All s swaps must be performed on distinct components. The resulting graph is known
as the Generalized Johnson Graph J(d, κ, κ− s), or Uniform Subset Graph (Chen and Lih, 1987). It
is a regular graph, with degree |N s(y)| =

(
κ
s

)(
d−κ
s

)
. It is proved to be connected in Jones (2005),

except if d = 2κ and s = κ (in this case, it consists in 1
2

(
d
κ

)
disjoint edges).

When s = 1, the neighborhood graph is the Johnson Graph J(d, κ), which coincides with the graph
associated to the polytope conv(Yd

κ) = ∆d,κ (Rispoli, 2008).

A.3 CONVERGENCE TO EXACT GRADIENTS

In this section, we conduct experiments on the convergence of the MCMC estimators to the exact
corresponding expectation (that is, convergence of the stochastic gradient estimator to the true
gradient). The estimators are defined as

ŷt(θ) = Eπθ,t
[Y ] ≈ 1

K −K0

K∑
k=K0+1

y(k),

where y(k) is the k-th iterate of Algorithm 1 with maximization direction θ, final temperature t,
and K0 is a number of burn-in (or warm-up) iterations. The obtained estimator is compared to the
exact expectation by performing marginal inference as described in Section A.1 (with a closed-form
formula in the case of Yd, and by dynamic programming in the case of Yd

κ).

Setup. For T > K0, let Ẽ(θ, T ) := 1
T−K0

∑T
k=K0+1 y

(k) be the stochastic estimate of the
expectation at step T . We proceed by first randomly generating Θ ∈ RM×d, with M being the
number of instances, by sampling Θi,j ∼ N (0, 1) independently. Then, we evaluate the impact of
the following hyperparameters on the estimation of EπΘi

,t [Y ], for i ∈ [M ]:

1. K0, the number of burn-in iterations,

2. t, the temperature parameter,

3. C, the number of parallel Markov chains.

Metric. The metric used is the squared Euclidean distance to the exact expectation, averaged on the
M instances

1

M

M∑
i=1

||EπΘi
,t [Y ]− Ẽ(Θi, T )||22,

which we measure for T ∈ JK0 + 1,KK.

Polytopes. For the hypercube Yd and its neighborhood system N r
≤, we use d = 10 and r = 1,

which gives |Yd| = 210 and |N r
≤(y)| = 10. For the top-κ polytope Yd

κ and its neighborhood system
N s, we use d = 10, κ = 3 and s = 1, which gives |Yd

κ| = 120 and |N s(y)| = 30. We also
use a larger scale for both polytopes in order to highlight the varying impact of the temperature
t depending on the combinatorial size of the problem, in the second experiment. For the large
scale, we use d = 1000 and r = 10 for the hypercube, which give |Yd| = 21000 ≈ 10301 and
|N r

≤(y)| ≈ 2.7× 1023, and we use d = 1000, κ = 50 and s = 10 for the top-κ polytope, which give
|Yd

κ| ≈ 9.5× 1084 and |N s(y)| ≈ 1.6× 1033.
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Hyperparameters. For each experiment, we use K = 3000. We average over M = 1000 problem
instances for statistical significance. We use K0 = 0, except for the first experiment, where it varies.
We use a final temperature t = 1, except for the second experiment, where it varies. We use an initial
temperature t0 = t = 1 (leading to a constant temperature schedule), except for the first experiment,
where it depends on K0. We use only one Markov chain and thus have C = 1, except for the third
experiment, where it varies.

(1) Impact of burn-in. First, we evaluate the impact of K0, the number of burn-in iterations.
We use a truncated geometric cooling schedule tk = max(γk · t0, t) with γ = 0.995. The initial
temperature t0 is set to 1/(γK0), so that ∀k ≥ K0 +1, tk = t = 1. The results are gathered in Fig. 5.

(2) Impact of temperature. We then evaluate the impact of the final temperature t on the difficulty
of the estimation task (different temperatures lead to different target expectations). The results for the
small scale are gathered in Fig. 6, and the results for the large scale are gathered in Fig. 7.

(3) Impact of the number of parallel Markov chains. Finally, we evaluate the impact of the
number of parallel Markov chains C on the estimation. The results are gathered in Fig. 8.
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Figure 5: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying
number of burn-in iterations K0. We conclude that burn-in is not beneficial to the estimation, and
taking K0 = 0 is the best option.
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Figure 6: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying final
temperature t (small scale experiment). We conclude that lower temperatures facilitate the estimation.
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Figure 7: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying
final temperature t (large scale experiment). Contrary to the small scale case, larger temperatures are
beneficial to the estimation when the solution set is combinatorially large.
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Figure 8: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying
number of parallel Markov chains C. Running 10 times more chains in parallel provides roughly
the same benefit as extending each chain by 10 times more iterations, highlighting the advantage of
massively parallelized estimation.
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A.4 CONVERGENCE TO EXACT PARAMETERS

In this section, we conduct experiments in the unconditional setting described in Section 4.4. As a
reminder, the empirical LN and population Lθ0 Fenchel-Young losses are given by:

LN (θ;y1, . . . ,yN ) :=
1

N

N∑
i=1

ℓt (θ; yi)

= At(θ) +
1

N

N∑
i=1

Ωt(yi)− ⟨θ, ȲN ⟩

= ℓt(θ; ȲN ) + C1(Y ), (10)

and

Lθ0(θ) := E(yi)
N
i=1∼(πθ0,t)⊗N [LN (θ;y1, . . . ,yN )]

= At(θ) + Eπθ0,t
[Ωt(Y )]− ⟨θ, ŷt(θ0)⟩

= ℓt(θ; ŷt(θ0)) + C2(θ0), (11)

where the constants C1(Y )= 1
N

∑N
i=1Ωt(yi)−Ωt(ȲN ) and C2(θ0)=Eπθ0,t

[Ωt(Y )]−Ωt (ŷt(θ0))
do not depend on θ. As Jensen gaps, they are non-negative by convexity of Ωt.

2D visualization. As an introductory example, we display stochastic gradient trajectories in Fig. 9.
The parameter θ ∈ Rd is updated following Eq. (7) to minimize the population loss Lθ0 defined
in Eq. (11), with θ0 = (1/2, 1/2). The polytope used is the 2-dimensional hypercube Y2, with
neighborhood graph N1 (neighbors are adjacent vertices of the square). We present trajectories
obtained using MCMC-sampled gradients, comparing results from both 1 and 100 Markov chain
iterations with Algorithm 1. For comparison, we include trajectories obtained using Monte Carlo-
sampled (i.e., unbiased) gradients, using 1 and 100 samples.

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

Simulated Annealing (Blue) vs. Monte-Carlo (Red)

SA-1
SA-100

MC-1
MC-100

θ0

Figure 9: Comparison of stochastic gradient trajectories for a SA / M-H oracle on Y2 and unbiased
stochastic gradients obtained via Monte Carlo sampling. Increasing the number of Markov chain
iterations yields smoother trajectories, similar to the effect of using more Monte Carlo samples in the
case of perturbation-based methods (Berthet et al., 2020).
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General setup. We proceed by first randomly generating true parameters Θ0 ∈ RM×d, with M
being a number of problem instances we average on (in order to reduce noise in our observations),
by sampling Θi,j ∼ N (0, 1) independently. The goal is to learn each parameter vector (Θ0)i ∈
Rd, i ∈ [M ], as M independent problems. The model is randomly initialized at Θ̂0, and updated
with Adam (Kingma and Ba, 2017) to minimize the loss. In order to better separate noise due to the
optimization process and noise due to the sampling process, we use the population loss L(Θ0)i for
general experiments, and use the empirical loss LN only when focusing on the impact of the dataset
size N . In this case, we create a dataset Y ∈ RM×N×d, with N being the number of samples, by
sampling independently Yi,j ∼ π(Θ0)i , ∀i ∈ [M ], ∀j ∈ [N ].

We study the impact of the following hyperparameters on learning:

1. K, the number of Markov chain iterations,

2. C, the number of parallel Markov chains,

3. the initialization method used for the chains (either random, persistent, or data-based),

4. N , the number of samples in the dataset.

Metrics. The first metric used is the objective function actually minimized, i.e., the population loss,
averaged on the M instances:

1

M

M∑
i=1

L(Θ0)i((Θ̂n)i),

where (Θ̂n)i is the n-th iterate of the optimization process for the problem instance i ∈ [M ]. We
measure this loss for n ∈ [nmax], with nmax the total number of gradient iterations. For the fourth
experiment, where we evaluate the impact of the number of samples N , we measure instead the
empirical Fenchel-Young loss:

1

M

M∑
i=1

LN ((Θ̂n)i ; Yi,1, . . . Yi,N )

In both cases, the best loss value that can be reached is positive but cannot be computed: it
corresponds to the constants C1 and C2 in Eq. (10) and Eq. (11). Thus, we also provide "stretched"
figures, where we plot the loss minus the best loss found during the optimization process.

The second metric used is the squared euclidean distance of the estimate to the true parameter, also
averaged on the M instances:

1

M

M∑
i=1

||(Θ0)i − (Θ̂n)i||22.

As the top-κ polytope is of dimension d− 1, the model is only specified up to vectors orthogonal to
the direction of the smallest affine subspace it spans. Thus, in this case, we measure instead:

1

M

M∑
i=1

||P⊥
D

((Θ0)i)− P⊥
D

(
(Θ̂n)i

)
||22,

where P⊥
D is the orthogonal projector on the hyperplane D = {x ∈ Rd : ⟨1, x⟩ = 0}, which is the

corresponding direction.
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Polytopes. For the hypercube Yd and its neighborhood system N r
≤, we use d = 10 and r = 1,

except in the fifth experiment, where we use a mixture of N r
= neighborhoods (detailed below). For

the top-κ polytope Yd
κ and its neighborhood system N s, we use d = 10, κ = 3 and s = 1.

Hyperparameters. For each experiment, we perform 1000 gradient steps. We use K0 = 0, final
temperature t = 1 and initial temperature t0 = t = 1 (leading to a constant temperature schedule).
We use K = 1000 Markov chain iterations, except in the first experiment, where it varies. We use
only one Markov chain and thus have C = 1, except for the second experiment, where it varies. We
use a persistent initialization method for the Markov chains, except in the third experiment, where we
compare the three different methods. For statistical significance, we average over M = 100 problem
instances for each experiment, except in the third experiment, where we use M = 1000. We work in
the limit case N →∞, except in the fourth experiment, where N varies.

(1) Impact of the length of Markov chains. First, we evaluate the impact of K, the number of
inner iterations, i.e., the length of each Markov chain. The results are gathered in Fig. 10.

(2) Impact of the number of parallel Markov chains. We now evaluate the impact of the number
of Markov chains C run in parallel to perform each gradient estimation on the learning process. The
results are gathered in Fig. 11.

(3) Impact of the initialization method. Then, we evaluate the impact of the method to initialize
each Markov chain used for gradient estimation. The persistent method consists in setting y(n+1,0) =
y(n,K), the data-based method consists in setting y(n+1,0) = yi with i ∼ U([N ]), and the random
method consists in setting y(n+1,0) ∼ U(Y) (see Section B.3 and Table 4 for a detailed explanation).
The results are gathered in Fig. 12.

(4) Impact of the dataset size. We now evaluate the impact of the number of samples N from
πθ0

(i.e., the size of the dataset (yi)
N
i=1) on the estimation of the true parameter θ0. The results are

gathered in Fig. 13.

(5) Impact of neigborhood mixtures. Finally, we evaluate the impact of the use of neighborhood
mixtures. To do so, we use mixtures {N rs

= }Ss=1, once with {rs}Ss=1 = {5} opposed to {rs}Ss=1 =
{1, 5}, and once with {rs}Ss=1 = {6} (which gives a reducible Markov chain as 6 is even, so that the
individual neighborhood graph N 6

= is not connected, and has to connected components) opposed to
{rs}Ss=1 = {1, 2, 3, 6}. The results are gathered in Fig. 14.
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Figure 10: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying number of Markov chain iterations K. Longer chains improve learning.
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Figure 11: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying number of parallel Markov chains C. Adding Markov chains improves estimation.
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Figure 12: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying Markov chain initialization method. The persistent and data-based initialization methods
significantly outperform the random initialization method.
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(d) Fenchel-Young loss (up to constant)
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(e) FY loss minus best loss
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(f) Fenchel-Young loss minus best loss

Figure 13: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying number of samples N in the dataset. As the dataset is different for each task, the empirical
Fenchel-Young loss LN , which is the minimized objective function (contrary to other experiments,
where we minimize Lθ0

), also varies. Although empirical Fenchel-Young losses associated to smaller
datasets appear easier to minimize, increasing the dataset size reduces the bias and thus the distance
to θ0, as expected.
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(d) FY loss (up to constant), rs ∈ {6} or {1, 2, 3, 6}
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(e) FY loss minus best loss, rs ∈ {5} or {1, 5}
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(f) FY loss minus best loss, rs ∈ {6} or {1, 2, 3, 6}

Figure 14: Convergence to the true parameter on the hypercube, with different mixtures of neigh-
borhood systems {N rs

= }Ss=1: comparing rs ∈ {5} to rs ∈ {1, 5} (left), and comparing rs ∈ {6} to
rs ∈ {1, 2, 3, 6} (right). Using more neighborhoods in the mixture improves learning.
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B ADDITIONAL MATERIAL

B.1 FENCHEL-YOUNG LOSS FOR K = 1 IN THE UNCONDITIONAL SETTING

This proposition is analogous to Proposition 3, but in the unconditional setting, when using a data-
based initialization method – i.e., the original CD initialization scheme, without persistent Markov
chains. See Section B.3 for a detailed discussion about this.

Proposition 6. Let p(1)

θ,ȲN
denote the distribution of the first iterate of the Markov chain defined

by the Markov transition kernel given in Eq. (3), with proposal distribution q and initialized by
y(0) = yi, with i ∼ U(J1, NK). There exists a dataset-dependent regularization ΩȲN

with the
following properties: ΩȲN

is tN/
∑N

i=1 Eq(yi, · )||Y − yi||22-strongly convex; it is such that:

E
p
(1)

θ,ȲN

[Y ] = argmax
µ∈conv(

⋃N
i=1{N (yi)∪{yi}})

{
⟨θ,µ⟩ − ΩȲN

(µ)
}
;

and the Fenchel-Young loss LΩȲN
generated by ΩȲN

is 1
N

∑N
i=1 Eq(yi, · )||Y − yi||22/t-smooth

in its first argument, and such that ∇θLΩȲN
(θ ;y) = E

p
(1)

θ,ȲN

[Y ]− y.

The proof is given in Section E.7.

B.2 PROPERTIES OF THE EXPECTED FIRST ITERATE

Proposition 7. Let θ ∈ Rd, y ∈ Y . Let

Nbetter(y) := {y′ ∈ N (y) | ⟨θ,y′⟩+ φ(y′) > ⟨θ,y⟩+ φ(y)}
denote the set of improving neighbors of y for the unregularized objective function. We have the
following properties:

E
p
(1)
θ,y

[Y ] ∈ conv (N (y) ∪ {y}) ,

E
p
(1)
θ,y

[Y ] −−−−→
t→0+

y +
∑

y′∈Nbetter(y)

q(y,y′) · (y′ − y),

and E
p
(1)
θ,y

[Y ] −−−→
t→∞

y +
∑

y′∈N (y)

min [q(y,y′), q(y′,y)] · (y′ − y).

The proof is given in Section E.8. Thus, as the set Nbetter is defined according the value of the
original, unregularized objective function y 7→ ⟨θ,y⟩ + φ(y), the low temperature behavior of
the regularized maximizer E

p
(1)
θ,y

[Y ] effectively reflects the fact that the regularization function Ωy

extends the influence of φ from the vertices N (y) ∪ {y} to their convex hull.

B.3 MARKOV CHAIN INITIALIZATION

In contrastive divergence (CD) learning, the intractable expectation in the log-likelihood gradient is
approximated by short-run MCMC, initialized at the data distribution (Hinton, 2000) (using a Gibbs
sampler in the setting of Restricted Boltzmann Machines).

Here, we note, at the n-th iteration of gradient descent:

∇WLN (Ŵn) ≈
1

|Bn|
∑
i∈Bn

JW gŴn
(xi)

(
1

K

K∑
k=1

y
(n+1, k)
i − yi

)
,

for theconditional setting, with Bn being the mini-batch (or full batch) used at iteration n, yi the
ground-truth structure associated to xi in the dataset, and y

(n+1, k)
i the k-th iterate of Algorithm 1,

with maximization direction gŴn
(xi), and initialization point y(n+1, 0)

i . We also note:

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

∇θLN (θ̂n) ≈
1

K

K∑
k=1

y(n+1, k) − ȲN

for the unconditional setting, with y(n+1, k) being the k-th iterate of Algorithm 1, with maximization
direction θ̂n, and initialization point y(n+1, 0).

In CD learning of unconditional EBMs (i.e., in our unconditional setting), the Markov Chain is
initialized at the empirical data distribution (Hinton, 2000; Carreira-Perpiñán and Hinton, 2005),
as explained earlier. Persistent Contrastive Divergence (PCD) learning (Tieleman, 2008) modifies
CD by maintaining a persistent Markov chain. Thus, instead of initializing the chain from the data
distribution in each iteration, the chain continues from its last state in the previous iteration, by setting
y(n+1, 0) = y(n,K). This approach aims to provide a better approximation of the model distribution
and to reduce the bias introduced by the initialization of the Markov chain in CD. These are two types
of informative initialization methods, which aim at reducing the mixing times of the Markov Chains.

However, neither of these can be applied to the conditional setting, as observed in (Mnih et al., 2012)
in the context of conditional Restricted Boltzmann Machines (which are a type of EBMs). Indeed,
on the one hand, PCD takes advantage of the fact that the parameter θ̂ does not change too much
from one iteration to the next, so that a Markov Chain that has reached equilibrium on θ̂n is not
far from equilibrium on θ̂n+1. This does not hold in the conditional setting, as each xi leads to a
different θ̂i = gŴ (xi). On the other hand, the data-based initialization method in CD would amount
to initialize the chains at the empirical marginal data distribution on Y , and would be irrelevant in a
conditional setting, since the distribution we want each Markov Chain to approximate is conditioned
on the input xi.

An option is to use persistent chains if training for multiple epochs, and to initialize the Markov
Chain associated to (xi,yi) for epoch j at the final state of the one associated to the same data point
(xi,yi) at epoch j − 1. However, this method is relevant than PCD in the unconditional setting, as ŵ
changes a lot more in a full epoch than θ̂ in just one gradient step in the unconditional setting. It
might be relevant, however, if each epoch consists in a single, full-batch gradient step. Nevertheless,
it would require to store a significant number of states y(n,K)

i (one for each point in the dataset).
The solution we propose, for both full-batch and mini-batch settings, is to initialize the chains at
the empirical data distribution conditioned on the input xi, which amounts to initialize them at the
ground-truth yi.

This discussion is summed up in Table 4.

Table 4: Possible Markov Chain Initialization Methods under each Learning Setting

Init.
Method

Setting
Unconditional Conditional, Batch Conditional,

Mini-Batch

Persistent y(n+1,0) = y(n,K) y
(n+1, 0)
i = y

(n,K)
i /

Data-Based y(n+1,0) = yj , with
j ∼ U(J1, NK)

y
(n+1, 0)
i = yi y

(n+1, 0)
i = yi

Random y(n+1,0) ∼ U(Y) y
(n+1, 0)
i ∼ U(Y) y

(n+1, 0)
i ∼ U(Y)
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Remark 1. The use of uniform distributions on Y for the random initialization method can
naturally be replaced by any other different prior distribution.

C DETAILS ON THE DVRPTW

C.1 OVERVIEW OF THE CHALLENGE.

We evaluate the proposed approach on a large-scale, ML-enriched combinatorial optimization
problem: the EURO Meets NeurIPS 2022 Vehicle Routing Competition (Kool et al., 2023).
In this dynamic vehicle routing problem with time windows (DVRPTW), requests arrive con-
tinuously throughout a planning horizon, which is partitioned into a series of delivery waves
W = {[τ0, τ1] , [τ1, τ2] , . . . ,

[
τ|W|−1, τ|W|

]
}.

At the start of each wave ω, a dispatching and vehicle routing problem must be solved for the set of
requestsRω specific to that wave (in which we include the depot D), encoded into the system state
xω . We note Y(xω) the set of feasible decisions associated to state xω .

A feasible solution yω ∈ Y(xω) must contain all requests that must be dispatched before τω (the rest
are postponable), allow each of its routes to visit the requests they dispatch within their respective
time windows, and be such that the cumulative customer demand on each of its routes does not exceed
a given vehicle capacity. It is encoded thanks to a vector

(
yωi,j
)
i,j ∈Rω , where yωi,j = 1 if the solution

contains the directed route segment from i to j, and yωi,j = 0 otherwise. The set of requestsRω+1 is
obtained by removing all requests dispatched by the chosen solution yω fromRω and adding all new
requests which arrived between τω and τω+1.

The aim of the challenge is to find an optimal policy f : X → Y assigning decisions yω ∈ Y(xω) to
system states xω ∈ X . This can be cast as a reinforcement learning problem:

min
f

E [cW(f)] , with cW(f) :=
∑
ω∈W

c(f(xω)),

where c : yω 7→ ∑
i,j ∈Rω ci,j y

ω
i,j gives the routing cost of yω ∈ Yω and where ci,j ≥ 0 is the

routing cost from i to j. The expectation is taken over full problem instances.

C.2 REDUCTION TO SUPERVISED LEARNING.

We follow the method of (Baty et al., 2023), which was the winning approach for the challenge.
Central to this approach is the concept of prize-collecting dynamic vehicle routing problem with time
windows (PC-VRPTW). In this setting, each request i ∈ Rω is assigned an artificial prize θωi ∈ R,
that reflects the benefit of serving it. The prize of the depot D is set to θωD = 0. The objective is then
to identify a set of routes that maximizes the total prize collected while minimizing the associated
travel costs. The model gW predicts the prize vector θω = gW (xω). Denoting φ(y) := −⟨c,y⟩, the
corresponding optimization problem can be written as:

ŷ(θω) = argmax
y∈Y(xω)

∑
i,j ∈Rω

θωj yi,j −
∑

i,j ∈Rω

ci,j yi,j = ⟨θω,y⟩+ φ(y). (12)

The overall pipeline is summarized in Fig. 1. Following (Baty et al., 2023), we approximately solve
the problem in Eq. (12) using the prize-collecting HGS heuristic (PC-HGS), a variant of hybrid
genetic search (HGS) (Vidal, 2022). We denote this approximate solver ỹ ≈ ŷ, so that their proposed
policy decomposes as fW := ỹ ◦ gW . The ground-truth routes are created by using an anticipative
strategy, i.e., by solving multiple instances where all future information is revealed from the start, and
the requests’ arrival times information is translated into time windows (thus removing the dynamic
aspect of the problem). This anticipative policy, which we note f⋆ (which cannot be attained as it
needs unavailable information) is thus the target policy imitated by the model – see Section C.8 for
more details.

C.3 PERTURBATION-BASED BASELINE.

In (Baty et al., 2023), a perturbation-based method (Berthet et al., 2020) was used. This method is
based on injecting noise in the PC-HGS solver ỹ. Similarly to our approach, the parameters W can
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Name Description
relocate removes request i from its route and re-inserts it before or after request j
relocate pair removes pair of requests (i, next(i)) from their route and re-inserts them before

or after request j
swap exchanges the position of requests i and j in the solution
swap pair exchanges the positions of the pairs (i, next(i)) and (j, next(j)) in the solution
2-opt reverses the route segment between i and j
serve request inserts currently undispatched request i before or after request j
remove request removes currently dispatched request i from the solution

Table 5: PC-VRPTW Local search moves

then be learned using a Fenchel-Young loss, since the loss is minimized when the perturbed solver
correctly predicts the ground truth. However, since ỹ is not an exact solver, all theoretical learning
guarantees associated with this method (e.g., correctness of the gradients) no longer hold.

C.4 PROPOSED APPROACH.

Our proposed approach instead uses the Fenchel-Young loss associated with the proposed layer, which
is minimized when the proposed layer correctly predicts the ground-truth. At inference time, however,
we use fW := ỹ ◦ gW . We use a mixture of proposals, as defined in Algorithm 2. To design each
proposal qs, we build randomized versions of moves specifically designed for the prize-collecting
dynamic vehicle routing problem with time windows. More precisely, we base our proposals on
moves used in the local search part of the PC-HGS algorithm, which are summarized in Table 2. The
details of turning these moves into proposal distributions with tractable individual correction ratios
are given in Section C.5.

We evaluate three different initialization methods: (i) initialize y(0) by constructing routes dispatching
random requests, (ii) initialize y(0) to the ground-truth solution, (iii) initialize y(0) by starting from
the dataset ground-truth and applying a heuristic initialization algorithm to improve it. This heuristic
initialization, similar to a short local search, is also used by the PC-HGS algorithm ỹ, and is set to
take up to half the time allocated to the layer (a limit it does not reach in practice).

C.5 PROPOSAL DISTRIBUTION DESIGN

Original deterministic moves. The selected moves, designed for Local Search algorithms on
vehicle routing problems (specifically for the PC-VRPTW for serve request and remove
request), are given in Table 5.

All of these moves (except for remove request) involve selecting two clients i and j from the
request setRω (for example, the relocate move relocates client i after client j in the solution).

In the Local Search part of the PC-HGS algorithm from Vidal (2022), they are implemented as
deterministic functions used within a quadratic loop over clients, and are performed only if they
improve the solution’s objective value. The search is narrowed down to client pairs (i, j) such that
d(i, j) is among the Nprox lowest values in

{
d(i, k) | k ∈ Rω \{D, i}

}
, where d is a problem-specific

heuristic distance measure between clients, based on spatial features and time windows, and Nprox
is a hyperparameter. These distances are independent from the chosen solution routes (they are
computed once at the start of the algorithm, from the problem features), non-negative, and symmetric:
d(i, j) = d(j, i).

Randomization. In order to transform these deterministic moves into proposals, we first adapt the
choice of clients i and j, by sampling i uniformly from V 1

s (y), which contains the set of valid choices
of client i for move s from solution y. Then, we sample j from V 2

s (y)[i] \ {i} using the following
softmax distribution: Ps(j | i) = exp[−d(i,j)/β]∑

k∈V 2
s (y)[i]\{i} exp[−d(i,k)/β] , where β > 0 is a neighborhood

sampling temperature. The set V 2
s (y)[i] contains all valid choices of client j for move s from solution

y, and is precised along with V 1
s (y) in Table 6. We normalize the distance measures inside the

softmax, by dividing them by the maximum distance: d(i, ·)← d(i, ·)/maxk∈V 2
s (y)[i]\{i} d(i, k).
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Move V 1
s (y) V 2

s (y)[i]
relocate D(y) \ D1(y) D(y)
relocate pair D(y) \

{
D2(y) ∪ Dlast(y)

}
D(y) \ {next(i)}

swap D(y) D(y)
swap pair D(y) \ Dlast(y) D(y) \

{
Dlast(y) ∪ {prev(i), next(i)}

}
2-opt D(y) \ D2(y) D(y) \ D2(y)
serve request D̄(y) D(y) ∪ ID(y)
remove request

{
D(y) \ D1(y)

}
∪ I1(y)

Table 6: Sets of valid clients for each move. D(y) contains all dispatched clients in solution y. D1(y)
contains all dispatched clients that are the only client in their route. D2(y) contains all dispatched
clients that are in a route with 2 clients or less. Dlast(y) contains all dispatched clients that are the
last of their route. D̄(y) contains all non-dispatched clients. ID(y) contains the depot of the first
empty route, if it exists (all routes may be non-empty), or else is the empty set. I1(y) contains the
only client in the last non-empty route if it contains exactly one client, or else is the empty set.

Neighborhood graph symmetrization. Then, we ensure that each individual neighborhood graph
Ns is undirected. This is already the case for the moves swap, swap pair and 2-opt, as they
are actually involutions (applying the same move on the same couple (i, j) from y′ will result
in y). However, this is obviously not the case for serve request and remove request.
Indeed, if solution y′ is obtained from y by removing a dispatched client (respectively serving an
non-dispatched one), y cannot be obtained by removing another one (respectively, serving another
one). To fix this, we merge these two moves into a single one. First, it evaluates which of the two
moves are allowed (i.e., if they are such that V 1

s (y) ̸= ∅). Then, it samples one (the probability of
selecting "remove" is chosen to be equal to the number of removable clients divided by the number
of removable clients plus the number of servable clients) in the case where both are possible, or else
simply performs the only move allowed. Thus, the corresponding neighborhood graph is undirected as
it is always possible to perform the reverse operation (as when removing a client, it becomes unserved,
thus allowing the serve request move from y′, and vice-versa). We also allow the serve
request move to insert a client after the depot of the first empty route, to allow the creation of new
routes. In consequence, we allow the remove request move to remove the only client in the last
non-empty route if it contains exactly one client (to maintain symmetry of the neighborhood graph).

For the relocate and relocate pair moves, the non-reversibility comes from the fact that
they only relocate client i (or clients i and next(i) in the pair case) after client j, so that if client i
was the first in its route, relocating it back would be impossible (the depot, which is the start of the
route, cannot be selected as j). Thus, we allow insertions before clients too, and add a random choice
with probability ( 12 ,

1
2 ) to determine if the relocated client(s) will be inserted before or after j. We

also add this feature to the serve request move.

Correction ratio computation. Next, we implement the computation of the individual correction
ratio α̃s(y,y

′) = qs(y
′,y)

qs(y,y′) for each proposal qs.

• In the case of swap and 2-opt, we have α̃s(y,y
′) = 1. Indeed, let y′ be the result of

applying one of these moves s on y when sampling i ∈ V 1
s (y) and j ∈ V 2

s (y)[i] \ {i}. We
then have:

qs(y,y
′) =

1

|V 1
s (y)|

· exp [−d(i, j)/β]∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β]

+
1

|V 1
s (y)|

· exp [−d(j, i)/β]∑
k∈V 2

s (y)[j]\{j} exp [−d(j, k)/β]
,

where the first term accounts for the probability of selecting i then j and the second term
accounts for that of selecting j then i (one can easily check that these two cases are the
only way of sampling y′ from y). Then, noticing that we have |V 1

s (y
′)| = |V 1

s (y)|, that
these moves are involutions (selecting (i, j) or (j, i) from y′ is also the only way to sample
y), and that we have the equalities V 2

s (y)[i] = V 2
s (y

′)[i] and V 2
s (y)[j] = V 2

s (y
′)[j], we

actually have qs(y
′,y) = qs(y,y

′).
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• For swap pair, the same arguments hold (leading to the same form for qs), except for the
equalities V 2

s (y)[i] = V 2
s (y

′)[i] and V 2
s (y)[j] = V 2

s (y
′)[j]. Thus, we have the following

form for the correction ratio:

qs(y
′,y)

qs(y,y′)
=

∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β] +
∑

k∈V 2
s (y)[j]\{j} exp [−d(j, k)/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β] +

∑
k∈V 2

s (y′)[j]\{j} exp [−d(j, k)/β]
.

• In the case of relocate, let j′ denote next(j) if the selected insertion type was "after",
and prev(j) if it was "before" – where next(j) ∈ Rω denotes the request following j in
solution y, i.e., the only index k such that yj,k = 1, and prev(j) is the one preceding it, i.e.,
the only k such that yk,j = 1. We have:

qs(y,y
′) =

1

2
· 1

|V 1
s (y)|

· exp [−d(i, j)/β]∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β]

+
1

2
· 1

|V 1
s (y)|

· exp [−d(i, j′)/β]∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β]

Indeed, if i was relocated after j, the same solution y′ could have been obtained by relocating
i before j′ = next(j). Similarly, if i was relocated before j, the same solution y′ could
have been obtained by relocating i after j′ = prev(j). For the reverse move probability, the
way of obtaining y from y′ is either to select (i, prev(i)) in the after-type insertion case,
or (i, next(i)) in the before-type insertion case (where prev and next are taken w.r.t. y, i.e.,
before applying the move). Thus, we have:

qs(y
′,y) =

1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, prev(i)/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β]

+
1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, next(i))/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β]

.

• For the relocate pair move, the exact same reasoning and proposal probability form
hold for the forward move, but we have for the reverse direction:

qs(y
′,y) =

1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, prev(i)/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β]

+
1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, next(next(i)))/β]∑
k∈V 2

s (y′)[i]\{i} exp [−d(i, k)/β]
,

as client next(i) is also relocated.

• For the serve request / remove request move, we have the forward probability:

qs(y,y
′) =

|
{
D(y) \ D1(y)

}
∪ I1(y)|

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

× 1

|
{
D(y) \ D1(y)

}
∪ I1(y)|

=
1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

if the chosen move is remove request. The expression corresponds to the composition
of move choice sampling and uniform sampling over removable clients.

Still in the same case (remove request is chosen) and if the removed request i was in
I1(y) (i.e., was the only client in the last non-empty route if the latter contained exactly one
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client), we have the reverse move probability:

qs(y
′,y) =

1

|
{
D(y′) \ D1(y′)

}
∪ I1(y′)|+ |D̄(y′)|

× exp
[
−d̄(i)/β

]
exp

[
−d̄(i)/β

]
+
∑

k∈D(y′) exp [−d(i, k)/β]

=
1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

× exp
[
−d̄(i)/β

]
exp

[
−d̄(i)/β

]
+
∑

k∈D(y)
k ̸=i

exp [−d(i, k)/β] .

The expression corresponds to the composition of move choice sampling and softmax
sampling of the depot of the first empty route (which was the route of the removed client
i, so that ID(y′) ̸= ∅ in this case). We use the average distance to dispatched clients
d̄(i) := 1

|D(y′)|
∑

k∈D(y′) d(i, k) as distance to the depot.

In the case where the removed request i was not in I1(y), we have instead:

qs(y
′,y) =

1

|
{
D(y′) \ D1(y′)

}
∪ I1(y′)|+ |D̄(y′)|

×
1
2 · exp [−d(i, prev(i))] + 1

2 · exp [−d(i, next(i))]
1{ID(y′)̸=∅} · exp

[
−d̄(i)/β

]
+
∑

k∈D(y′) exp [−d(i, k)/β]

=
1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

×
1
2 · exp [−d(i, prev(i))] + 1

2 · exp [−d(i, next(i))]
1{ID(y′)̸=∅} · exp

[
−d̄(i)/β

]
+
∑

k∈D(y)
k ̸=i

exp [−d(i, k)/β] .

The right term corresponds to softmax sampling of the previous node with "after" insertion
type (which has probability 1/2) and of the next node with "before" insertion type. The
non-emptiness of ID(y′) is not guaranteed anymore, as all routes might be non-empty
(indeed, we did not create an empty one by removing i, as i ∈ D(y) \ D1(y) in this case).
Similarly, if the chosen move is serve request, we have the forward probability:

qs(y,y
′) =

|D̄(y)|
|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

×
1
2 · exp [−d(i, j)] + 1

2 · exp [−d(i, j′)]
1{ID(y)̸=∅} · exp

[
−d̄(i)/β

]
+
∑

k∈D(y) exp [−d(i, k)/β]

if the selected insertion node j is not in ID(y) (i.e., is not the depot of the first empty route
in y), where j′ = prev(j) if the insertion type selected was "before" (which has probability
1/2), and j′ = next(j) if it was "after".
We have instead the forward probability:

qs(y,y
′) =

1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

× exp
[
−d̄(i)/β

]
exp

[
−d̄(i)/β

]
+
∑

k∈D(y) exp [−d(i, k)/β]

if the selected insertion node j is in ID(y) (i.e., is the depot of the first empty route in y).
In every case, we have the reverse move probability:

qs(y
′,y) =

1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

.
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In each case, we set d(i,D) =∞ to account for the fact that the depot can never be sampled during
the process (except in the serve request / remove request move, where we allow the depot
of the first empty route / last non-empty route to be selected, for which we use the average distance to
other requests as explained earlier) – in fact, the distance measure from a client to the depot is not
even defined in the original HGS implementation.

The second correction factor needed is |Q(y)|
|Q(y′)| (see Algorithm 2). We compute it by checking if each

move is allowed, i.e., if there exists at least one i ∈ V 1
s (y) such that V 2

s (y)[i] \ {i} ̸= ∅. This can be
determined in O(Rω) for each move.

C.6 PERFORMANCE METRIC.

As the Fenchel-Young loss ℓt actually minimized is intractable to compute exactly, we only use the
challenge metric. More precisely, we measure the cost relative to that of the anticipative baseline,
cW(fW )−cW(f⋆)

cW(f⋆) , which we average over a test dataset of unseen instances.

C.7 RESULTS.

In Fig. 2, we observe that the initialization method plays an important role, and the ground-truth-based
ones greatly outperform the random one.

We observe that the number of Markov iterations K is an important performance factor. Interestingly,
the ground-truth initialization significantly improves the learning process for small K.

In Table 3, we compare training methods with fixed compute time budget for the layer (perturbed
solver or proposed MCMC approach), which is by far the main computational bottleneck. This
parameter limits the time allowed for a single forward pass through the combinatorial optimization
layer (be it the perturbed inexact oracle or the proposed method). In both cases, the backward pass
through the layer is immediate, as a property of the expression of the gradient of Fenchel-Young
losses. The models are selected using a validation set and evaluated on the test set. We observe that
the proposed approach significantly outperforms the perturbation-based method (Berthet et al., 2020)
using ỹ in low time limit regimes, thus allowing for faster and more efficient training.

Full experimental details and additional results on the impact of temperature are given in Section C.8.

C.8 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS FOR SECTION 5.1

Model, features, dataset, hyperparameters, compute. Following Baty et al. (2023), the differ-
entiable ML model gW is implemented as a sparse graph neural network. We also use the same
feature set, which represents the system state xω as a vector comprising request-level features, such
as coordinates, time windows, demands, travel time to the depot, and quantiles from the distribution
of the travel time to all other requests (named complete feature set, and described in the Table 4 of
their paper). We use the same training, validation, and testing datasets, which are created from 30, 15
and 25 problem instances respectively. The training set uses a sample size of 50 requests per wave,
while the rest use 100. The solutions in the training dataset, i.e., the examples from the anticipative
strategy f⋆ imitated by the model, are obtained by solving the corresponding offline VRPTWs using
HGS (Vidal, 2022) with a time limit of 3600 seconds. During evaluation, the PC-HGS solver ỹ is
used with a constant time limit of 60 seconds for all models. We use Adam (Kingma and Ba, 2017)
together with the proposed stochastic gradient estimators, with a learning rate of 5 · 10−3. Each
training is performed using only a single CPU worker. For Fig. 2, we use a temperature t = 102. For
Table 3, we use 1 Monte-Carlo sample for the perturbation-based method and 1 Markov chain for
the proposed approach (in order to have a fair comparison: an equal number of oracle calls / equal
compute).

Statistical significance. Each training is performed 50 times with the same parameters and different
random seeds. Then, the learning curves are averaged, and plotted with a 95% confidence interval.
For the results in Table 3, we report the performance of the best model iteration (selected with respect
to the validation set) on the test set. This procedure is also averaged over 50 trainings, and reported
with 95% confidence intervals.
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Additional results. In Fig. 15, we report model performance for varying temperature t. Inter-
estingly, lower temperatures perform better when using random initialization. In the ground-truth
initialization setting, a sweet spot is found at t = 102, but lower temperatures do not particularly
decrease performance.
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Figure 15: Test relative cost (%). Left: varying temperature t with random initialization. Right:
varying temperature t with ground-truth initialization.

D DETAILS ON THE MULTI-DIMENSIONAL KNAPSACK PROBLEM

First, we recall that the combinatorial optimization layer is defined as:

ŷ(θ) := argmax
y∈{0,1}d

d∑
i=1

θiyi = argmax
y∈Y

⟨θ,y⟩ , (13)

s.t. ∀j ∈ [M ],

d∑
i=1

wi,jyi ≤ Cj

where θ = gW (x) ∈ Rd are the item values, wi,j ≥ 0 is the weight of item i in dimension j, and Cj is
the capacity of dimension j. The feasible set is Y := {y ∈ {0, 1}d | ∀j ∈ [M ],

∑d
i=1 wi,jyi ≤ Cj}.

D.1 PROPOSAL DISTRIBUTION DESIGN

In this experiment, defined in Section 5.2, we use Algorithm 2 with a mixture of three proposal
distributions q1, q2 and q3 (S = 3).

Let y ∈ Y be a current feasible solution, and let I(y) = {i | yi = 1} and Ī(y) = {j | yj = 0}
denote the indices of selected and unselected items. Given a binary vector y ∈ {0, 1}d and an index
i ∈ [d], we denote by yyi→ȳi

the vector where the i-th bit is flipped, i.e.:

(yyi→ȳi
)k =

{
1− yi if k = i,
yi else.

Given two indices i, j ∈ [d], we denote by yi↔j ∈ {0, 1}d the vector where the i-th and j-th bits are
swapped, i.e.:

(yi↔j)k =


yj if k = i,
yi if k = j,
yk else.

We use a sampling temperature β = 1.0 and define the following moves:
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• Uniform swap (q1). The neighborhood N1(y) consists of all feasible solutions obtained by
swapping an active item i ∈ I(y) with an inactive one j ∈ Ī(y), i.e.:

N1(y) = {y′ ∈ Y | ∃i ∈ I(y), j ∈ Ī(y) : y′ = yi↔j}.
The proposal is uniform over this neighborhood: ∀yi↔j ∈ N1(y), q1(y,yi↔j) =

1
|N1(y)| .

• Guided swap (q2). Using the same swap neighborhood N2(y) = N1(y), we bias the selection
using the predicted item values θ. We sample item i ∈ I(y) to drop with probability pdrop(i) ∝
e−θi/β and item j ∈ Ī(y) to add with padd(j) ∝ eθj/β .

The proposal distribution is therefore: ∀yi↔j ∈ N1(y), q2(y,yi↔j) ∝ exp
(

θj−θi
β

)
.

• Guided flip (q3). The neighborhood N3(y) consists of all feasible solutions obtained by flipping a
single bit i, i.e.:

N3(y) = {y′ ∈ Y | ∃i ∈ [d] : y′ = yyi→ȳi
}.

We sample index i with probability proportional to e−θi/β if yi = 1 (favoring dropping low-value
items) and eθi/β if yi = 0 (favoring adding high-value items).

The proposal distribution is therefore: ∀yyi→ȳi
∈ N3(y), q3(y,yyi→ȳi

) ∝ exp
(

(1−2yi)·θi
β

)
.

D.2 DATA GENERATION

For the benchmark experiment in Fig. 3, we generate a synthetic dataset of 5, 000 instances using
the PyEPO library (Tang and Khalil, 2023). We set the problem size to d = 100 items and J = 50
constraints. For each instance, we sample feature vectors x ∈ R64 and generate the item values θ
(cost vector) with a polynomial dependence on x of degree 4 and multiplicative noise ϵ = 0.5. The
item weights wi,j are sampled uniformly, and the capacities Cj are generated using a capacity ratio
of 0.5.

To obtain the ground-truth labels yi for the conditional learning task, we solve each instance using
the Gurobi ILP solver with a time limit of 1000ms. The dataset is partitioned into training (80%),
validation (10%), and test (10%) sets. We use the validation set to select best model iterations (in
terms of relative regret on the validation set), before evaluating their test relative regret.

D.3 IMPLEMENTATION DETAILS

The predictive model gW is a Multi-Layer Perceptron (MLP) with two hidden layers of size 64
and ReLU activations. We train the model for 20 epochs using the Adam (Kingma and Ba, 2017)
optimizer with a learning rate of 5× 10−3 and a batch size of 32.

For the benchmark experiment in Fig. 3, we use a time limit of 1.0ms for both the LS-MCMC layer
and the Gurobi ILP solver at training time (at this scale, the solver consistently finds optimal solutions
with this time budget).

E PROOFS

E.1 PROOF OF EQ. (4)

Proof. At fixed temperature tk = t, the iterates of Algorithm 1 (MH case) follow a time-homogenous
Markov chain, defined by the following transition kernel Pθ,t:

Pθ,t(y,y
′) =


q (y,y′)min

[
1, q(y′,y)

q(y,y′) exp
(

⟨θ ,y′⟩+φ(y′)−⟨θ,y⟩−φ(y)
t

)]
if y′ ∈ N (y),

1−∑y′′∈N (y) Pθ,t(y,y
′′) if y′ = y,

0 else.

Irreducibility. As we assumed the neighborhood graph GN to be connected and undirected, the
Markov Chain is irreducible as we have ∀y ∈ Y,∀y′ ∈ N (y), Pθ,t(y,y

′) > 0.
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Aperiodicity. For simplicity, we directly assumed aperiodicity in the main text. Here, we show
that this is a mild condition, which is verified for instance if there is a solution y ∈ Y such that
q(y,y) > 0. Indeed, we then have:

Pθ,t(y,y) = 1−
∑

y′∈N (y)

Pθ,t(y,y
′)

= 1−
∑

y′∈N (y)

q (y,y′)min

[
1,

q(y′,y)
q(y,y′)

exp

( ⟨θ , y′⟩+ φ(y′)− ⟨θ, y⟩ − φ(y)

t

)]
≥ 1−

∑
y′∈N (y)

q (y,y′)

≥ q(y,y′)

> 0.

Thus, we have Pθ,t(y,y) > 0, which implies that the chain is aperiodic. As an irreducible and
aperiodic Markov Chain on a finite state space, it converges to its stationary distribution and the
latter is unique (Freedman, 2017). Finally, one can easily check that the detailed balance equation is
satisfied for πθ,t, i.e.:

∀y,y′ ∈ Y, πθ,t(y)Pθ,t(y,y
′) = πθ,t(y

′)Pθ,t(y
′,y),

giving that πθ,t is indeed the stationary distribution of the chain, which concludes the proof.

E.2 PROOF OF PROPOSITION 1

Proof. Let θ ∈ Rd and t > 0. The fact that ŷt(θ) ∈ relint(C) = relint(conv(Y)) follows directly
from the fact that ŷt(θ) is a convex combination of the elements of Y with positive coefficients, as
∀y ∈ Y, πθ,t(y) > 0.

Low temperature limit. Let y⋆ := argmaxy∈Y⟨θ,y⟩ + φ(y). The argmax is assumed to be
single-valued. Let y ∈ Y \ {y⋆}. We have:

πθ,t(y) =
exp

(
⟨θ,y⟩+φ(y)

t

)
∑

y′∈Y exp
(

⟨θ,y′⟩+φ(y′)
t

)
≤

exp
(

⟨θ,y⟩+φ(y)
t

)
exp

(
⟨θ,y⋆⟩+φ(y⋆)

t

)
≤ exp

(
(⟨θ,y⟩+ φ(y))− (⟨θ,y⋆⟩+ φ(y⋆))

t

)
−−−−→
t→0+

0,

as ⟨θ,y⟩+ φ(y) < ⟨θ,y⋆⟩+ φ(y⋆) by definition of y⋆. Thus, we have:

πθ,t(y
⋆) = 1−

∑
y∈Y\{y⋆}

πθ,t(y) −−−−→
t→0+

1.

Thus, the expectation of πθ,t converges to y⋆. Naturally, if the argmax is not unique, the distribution
converges to a uniform distribution on the maximizing structures.

High temperature limit. For all y ∈ Y , we have:

πθ,t(y) =
exp

(
⟨θ,y⟩+φ(y)

t

)
∑

y′∈Y exp
(

⟨θ,y′⟩+φ(y′)
t

)
−−−→
t→∞

1

|Y| ,
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as exp(x/t) −−−→
t→∞

1 for all x ∈ R. Thus, πθ,t converges to the uniform distribution on Y , and its
expectation converges to the average of all structures.

Expression of the Jacobian. Let At : θ 7→ t · log∑y∈Y exp (⟨θ,y⟩+ φ(y)) be the cumulant
function of the exponential family defined by πθ,t, scaled by t. One can easily check that we have
∇θAt(θ) = ŷt(θ). Thus, we have Jθŷt(θ) = ∇2

θAt(θ). However, we also have that the hessian
matrix of the cumulant function θ 7→ 1

tAt(θ) is equal to the covariance matrix of the random vector
Y
t under πθ,t (Wainwright and Jordan, 2008). Thus, we have:

Jθŷt(θ) = ∇2
θAt(θ)

= t · ∇2
θ

(
1

t
At(θ)

)
= t · covπθ,t

[
Y

t

]
=

1

t
covπθ,t

[Y ] .

E.3 PROOF OF PROPOSITION 2

Proof. Let Kθ,t be the Markov transition kernel associated to Algorithm 2, which can be written as:

Kθ,t(y,y
′) =


∑

s∈Q(y)
s.t. qs(y,y′)>0

1
|Q(y)|qs(y,y

′)min
(
1, |Q(y)|

|Q(y′)| ·
qs(y

′,y)πθ,t(y
′)

qs(y,y′)πθ,t(y)

)
if y′ ∈ N̄ (y),

1−∑y′′∈N̄ (y) Kθ,t(y,y
′′) if y′ = y,

0 else.

As ∀y ∈ Y, ∀y′ ∈ N̄ (y),Kθ,t(y,y
′) > 0, the irreducibility of the chain on Y is directly implied by

the connectedness of GN̄ .

Thus, we only have to check that the detailed balance equation

πθ,t(y)Kθ,t(y,y
′) = πθ,t(y

′)Kθ,t(y
′,y)

is satisfied for all y′ ∈ N̄ (y). We have:

πθ,t(y)Kθ,t(y,y
′) =

∑
s∈Q(y)

s.t. qs(y,y′)>0

[
qs(y,y

′)πθ,t(y)

|Q(y)| min

(
1,
|Q(y)|
|Q(y′)| ·

qs(y
′,y)πθ,t(y

′)
qs(y,y′)πθ,t(y)

)]
.

The main point consists in noticing that the undirectedness assumption for each individual neighbor-
hood graph GNs

implies:

{s ∈ Q(y) : qs(y,y
′) > 0} = {s ∈ Q(y′) : qs(y

′,y) > 0}.
Thus, a simple case analysis on how |Q(y)|qs(y′,y)πθ,t(y

′) and |Q(y′)|qs(y,y′)πθ,t(y) compare
allows us to observe that the expression of πθ,t(y)Kθ,t(y,y

′) is symmetric in y and y′, which
concludes the proof.

E.4 PROOF OF STRICT CONVEXITY

Proof. As At is a differentiable convex function on Rd (as the log-sum-exp of such functions), it is
an essentially smooth closed proper convex function. Thus, it is such that

relint (dom((At)
∗)) ⊆ ∇At(Rd) ⊆ dom((At)

∗),

and we have that the restriction of (At)
∗ to ∇At(Rd) is strictly convex on every convex subset of

∇At(Rd) (corollary 26.4.1 in Rockafellar (1970)). As the range of the gradient of the cumulant
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function θ 7→ At(θ)/t is exactly the relative interior of the marginal polytope conv ({y/t,y ∈ Y})
(see appendix B.1 in Wainwright and Jordan (2008)), and (At)

∗ =: Ωt, we actually have that

relint (dom(Ωt)) ⊆ relint(C) ⊆ dom(Ωt),

and that Ωt is stricly convex on every convex subset of relint(C), i.e., strictly convex on relint(C) (as
relint(C) is itself convex).

As At is closed proper convex, it is equal to its biconjugate by the Fenchel-Moreau theorem. Thus,
we have:

At(θ) = sup
µ∈Rd

{⟨θ,µ⟩ − (At)
∗(µ)} = sup

µ∈Rd

{⟨θ,µ⟩ − Ωt(µ)} .

Moreover, as ∇At(Rd) = relint(C), we have ||∇At(θ)|| ≤ RC := maxµ∈C ||µ||, which gives
dom(Ωt) ⊂ B(0, RC). Thus we can actually write:

At(θ) = sup
µ∈B(0,RC)

{⟨θ,µ⟩ − Ωt(µ)} ,

and now apply Danksin’s theorem as B(0, RC) is compact, which further gives:

∂At(θ) = argmax
µ∈B(0,RC)

{⟨θ,µ⟩ − Ωt(µ)} ,

and the fact that At is differentiable gives that both sides are single-valued. Moreover, as∇At(Rd) =
relint(C), we know that the right hand side is maximized in C, and we can actually write:

∇At(θ) = argmax
µ∈C

{⟨θ,µ⟩ − Ωt(µ)} .

We end this proof by noting that a simple calculation yields ∇At(θ) = Eπθ,t
[Y ] = ŷt(θ). The

expression of ∇θℓt(θ ;y) follows.

Remark 2. The proposed Fenchel-Young loss can also be obtained via distribution-space
regularization. Let sθ := (⟨θ , y⟩+ φ(y))y∈Y ∈ R|Y| be a vector containing the score of
all structures, and L−tH : R|Y| × ∆|Y| → R be the Fenchel-Young loss generated by
−tH , where H is the Shannon entropy. We have ∇sθ (−tH)∗(sθ) = πθ,t. The chain rule
further gives ∇θ(−tH)∗(sθ) = Eπθ,t

[Y ]. Thus, we have ∇θL−tH(sθ ;py) = ∇θℓt(θ ;y),
where py is the Dirac distribution on y. In the case where φ ≡ 0 and t = 1, we have
Ωt(µ) = −

(
maxp∈∆|Y| Hs(p) s.t. Ep [Y ] = µ

)
, with Hs the Shannon entropy (Blondel et al.,

2020), and ℓt is known as the CRF loss (Lafferty et al., 2001).

E.5 PROOF OF PROPOSITION 4

Proof. The proof is exactly the proof of Proposition 4.1 in Berthet et al. (2020), in which the setting is
similar, and all the same arguments hold (we also have that πθ0 is dense on Y , giving ȲN ∈ relint(C)
for N large enough). The only difference is the choice of regularization function, and we have to
prove that it is also convex and smooth in our case. While the convexity of Ωt is directly implied by
its definition as a Fenchel conjugate, the fact that is is smooth is due to Theorem 26.3 in Rockafellar
(1970) and the essential strict convexity of At (which is itself closed proper convex). The latter relies
on the fact that C is assumed to be of full-dimension (otherwise At would be linear when restricted to
any affine subspace of direction equal to the subspace orthogonal to the direction of the smallest affine
subspace spanned by C), which in turn implies that At is strictly convex on Rd. Thus, Proposition 4.1
in Berthet et al. (2020) gives the asymptotic normality:

√
N(θ⋆

N − θ0)
D−−−−→

N→∞
N
(
0,
(
∇2

θAt(θ0)
)−1

covπθ0,t
[Y ]
(
∇2

θAt(θ0)
)−1
)
.

Moreover, we already derived ∇2
θAt(θ0) =

1
t covπθ0,t

[Y ] in Section E.2, leading to the simplified
asymptotic normality given in the proposition.
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E.6 PROOF OF PROPOSITION 5

Proof. The proof consists in bounding the convergence rate of the Markov chain
(
y(k)

)
k∈N (which

has transition kernel Pθ,t) for all θ, in order to apply Theorem 4.1 in Younes (1998). It is defined as
the smallest constant λθ such that:

∃A > 0 : ∀y ∈ Y, |P(y(k) = y)− πθ,t(y)| ≤ Aλk
θ.

More precisely, we must find a constant D such that ∃B > 0 : λθ ≤ 1−Be−D||θ||, in order to
impose Kn+1 >

⌊
1 + a′ exp

(
2D||θ̂n||

)⌋
.

A known result gives λθ ≤ ρ(θ) with ρ(θ) = maxλ∈Sθ\{1} |λ| (Madras and Randall, 2002), where
Sθ is the spectrum of the transition kernel Pθ,t (in this context, 1− ρ(θ) is known as the spectral
gap of the Markov chain). To bound ρ(θ), we use the results of Ingrassia (1994), which study the
Markov chain with transition kernel P ′

θ,t, such that Pθ,t =
1
2

(
I + P ′

θ,t

)
. It corresponds to the same

algorithm, but with a proposal distribution q′ defined as:

q′ (y,y′) =


1
d∗ if y′ ∈ N (y),
1− d(y)

d∗ if y′ = y,
0 else.

As P ′
θ,t is a row-stochastic matrix, Gershgorin’s circle theorem gives that its spectrum is included

in the complex unit disc. Moreover, one can easily check that the associated Markov chain is also
reversible with respect to πθ,t, and the corresponding detailed balance equation gives:

∀y,y′ ∈ Y, πθ,t(y)P
′
θ,t(y,y

′) = πθ,t(y
′)P ′

θ,t(y
′,y),

which is equivalent to:

∀y,y′ ∈ Y,
√

πθ,t(y)

πθ,t(y′)
P ′
θ,t(y,y

′) =

√
πθ,t(y′)
πθ,t(y)

P ′
θ,t(y

′,y)

as πθ,t has full support on Y , which can be further written in matrix form as:

Π
1/2
θ P ′

θ,tΠ
−1/2
θ = Π

−1/2
θ P ′⊤

θ,tΠ
1/2
θ ,

where Πθ = diag(πθ;t). Thus, the matrix Π
1/2
θ P ′

θ,tΠ
−1/2
θ is symmetric, and the spectral theorem

ensures its eigenvalues are real. As it is similar to the transition kernel P ′
θ,t (with change of basis

matrix Π
−1/2
θ ), they share the same spectrum S′

θ, and we have S′
θ ⊂ [−1, 1]. Let us order S′

θ as

−1 ≤ λ′
min ≤ · · · ≤ λ′

2 ≤ λ′
1 = 1. As Pθ,t = 1

2

(
I + P ′

θ,t

)
, we clearly have ρ(θ) =

1+λ′
2

2 .
Thus, we can use Theorem 4.1 of Ingrassia (1994), which gives λ′

2 ≤ 1−G · Z(θ) exp(−m (θ))
(we keep their notations for Z and m, and add the dependency in θ for clarity), where G is a constant
depending only on the graph GN , and with:

Z(θ) =
∑
y∈Y

exp

( ⟨θ, y⟩+ φ(y)

t
−max

y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

])

≥ |Y| exp
(
1

t

[
min
y∈Y
⟨θ, y⟩+min

y∈Y
φ(y)−max

y′∈Y
⟨θ, y′⟩ −max

y′∈Y
φ(y′)

])
≥ |Y| exp

(
−2RC

t
||θ|| − 2Rφ

t

)
,
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and:

m(θ) ≤ max
y∈Y

{
max
y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

]
− ⟨θ,y⟩+ φ(y)

t

}
− 2min

y∈Y

{
max
y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

]
− ⟨θ,y⟩+ φ(y)

t

}
= max

y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

]
−min

y∈Y

[ ⟨θ, y⟩+ φ(y)

t

]
≤ 1

t

(
max
y′∈Y
⟨θ, y′⟩+ max

y′∈Y
φ(y′)−min

y∈Y
⟨θ, y⟩ −min

y∈Y
φ(y)

)
≤ 2RC

t
||θ||+ 2Rφ

t
,

where RC = maxy∈Y ||y|| and Rφ = maxy∈Y |φ(y)|. Thus, we have:

λ′
2 ≤ 1−G|Y| exp

(
−4Rφ

t

)
exp

(
−4RC

t
||θ||

)
,

and finally:

λθ ≤ 1−
G|Y| exp

(
− 4Rφ

t

)
2

exp

(
−4RC

t
||θ||

)
,

so taking D = 4RC/t concludes the proof.

Remark 3. The stationary distribution in Ingrassia (1994) is defined as proportional to
exp (−H(y)), with the assumption that the function H is such that miny∈Y H(y) = 0. Thus,
we apply their results with

H(y) := max
y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

]
− ⟨θ,y⟩+ φ(y)

t

(which gives correct distribution πθ,t and respects this assumption), hence the obtained forms
for Z(θ) and the upper bound on m(θ).

E.7 PROOFS OF PROPOSITION 3 AND PROPOSITION 6

Proposition 3. The distribution of the first iterate of the Markov chain with transition kernel defined
in Eq. (3) and initialized at the ground-truth structure y is given by:

(p
(1)
θ,y)(y

′) = Pθ,t(y,y
′)

=


q(y,y′)min

[
1, q(y′,y)

q(y,y′) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t)
]

if y′ ∈ N (y),

1−∑y′′∈N (y)(p
(1)
θ,y)(y

′′) if y′ = y,
0 else.

Let αy(θ,y
′) := q(y′,y)

q(y,y′) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t). Define also the following sets:

N−
y (θ) = {y′ ∈ N (y) | αy(θ,y

′) ≤ 1} , N+
y (θ) = {y′ ∈ N (y) | αy(θ,y

′) > 1} .
The expectation of the first iterate is then given by:

E
p
(1)
θ,y

[Y ] =
∑

y′∈N (y)

(p
(1)
θ,y)(y

′) · y′ +

1−
∑

y′′∈N (y)

(p
(1)
θ,y)(y

′′)

 · y
= y +

∑
y′∈N (y)

(p
(1)
θ,y)(y

′) · (y′ − y)

= y +
∑

y′∈N−
y (θ)

q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) · (y′ − y) +
∑

y′∈N+
y (θ)

q(y,y′) · (y′ − y) .
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Let now fy : Rd ×N (y)→ R be defined as:

fy : (θ ;y′) 7→
{
t · q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) if αy(θ,y

′) ≤ 1,

t · q(y,y′)
(
[⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t+ 1− log q(y,y′)

q(y′,y)

)
if αy(θ,y

′) > 1.

Let Fy : θ 7→ ⟨θ,y⟩+∑y′∈N (y) fy(θ ;y′). We define the target-dependent regularization function
Ωy and the corresponding Fenchel-Young loss as:

Ωy : µ 7→ (Fy)
∗(µ), LΩy (θ ;y) := (Ωy)

∗(θ) + Ωy(y)− ⟨θ,y⟩.

• Ωy is t/Eq(y, · )||Y − y||22-strongly convex:

One can easily check that fy( · ;y′) is continuous for all y′ ∈ N (y), as it is defined piecewise as
continuous functions that match on the junction affine hyperplane defined by:{

θ ∈ Rd | αy(θ;y
′) = 1

}
=

{
θ ∈ Rd | ⟨θ,y′ − y⟩ = t log

q(y,y′)
q(y′,y)

+ φ(y)− φ(y′)

}
.

Moreover, we have that fy( · ;y′) is actually differentiable everywhere as its gradient can be continu-
ously extended to the junction affine hyperplane with constant value equal to q(y,y′)(y′ − y). We
now show that fy( · ;y′) is 1

t q(y,y
′) · ||y′ − y||2-smooth. Indeed, it is defined as the composition of

the linear form θ 7→ ⟨θ,y′ − y⟩ and the function g : R→ R given by:

g : x 7→

t · q(y′,y) exp ([x+ φ(y′)− φ(y)] /t) if x ≤ t log q(y,y′)
q(y′,y) + φ(y)− φ(y′),

t · q(y,y′)
(
[x+ φ(y′)− φ(y)] /t+ 1− log q(y,y′)

q(y′,y)

)
if x > t log q(y,y′)

q(y′,y) + φ(y)− φ(y′).

We begin by showing that g is 1
t q(y,y

′)-smooth. We have:

g′ : x 7→
{
q(y′,y) exp ([x+ φ(y′)− φ(y)] /t) if x ≤ t log q(y,y′)

q(y′,y) + φ(y)− φ(y′),

q(y,y′) if x > t log q(y,y′)
q(y′,y) + φ(y)− φ(y′).

Thus, g′ is continuous, and differentiable everywhere except in x0 := t log q(y,y′)
q(y′,y) + φ(y)− φ(y′).

Its derivative is given by:

g′′ : x 7→
{

1
t q(y

′,y) exp ([x+ φ(y′)− φ(y)] /t) if x ≤ t log q(y,y′)
q(y′,y) + φ(y)− φ(y′),

0 if x > t log q(y,y′)
q(y′,y) + φ(y)− φ(y′).

• For x1, x2 ≤ x0, we have:

|g′(x1)− g′(x2)| ≤ |x1 − x2| sup
x∈]−∞,x0[

|g′′(x)|

= |x1 − x2| limx→x0
x<x0

|g′′(x)|

=
1

t
q(y,y′) · |x1 − x2|.

• For x1, x2 ≥ x0, we trivially have |g′(x1)− g′(x2)| = 0.

• For x1 ≤ x0 ≤ x2, we have:

|g′(x1)− g′(x2)| = |(g′(x1)− g′(x0))− (g′(x2)− g′(x0))|
≤ |g′(x1)− g′(x0)|+ |g′(x2)− g′(x0)|

≤ 1

t
q(y,y′) · |x1 − x0|

≤ 1

t
q(y,y′) · |x1 − x2|.
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Thus, we have:

∀x1, x2 ∈ R, |g′(x1)− g′(x2)| ≤
1

t
q(y,y′) · |x1 − x2|,

and g is 1
t q(y,y

′)-smooth. Nevertheless, we have fy( · ,y′) = g(⟨ · ,y′ − y⟩). Thus, we have, for
θ1,θ2 ∈ Rd:

||∇θfy(θ1,y
′)−∇θfy(θ2,y

′)|| = ||g′(⟨θ1,y′ − y⟩)(y′ − y)− g′(⟨θ2,y′ − y⟩)(y′ − y)||
= |g′(⟨θ1,y′ − y⟩)− g′(⟨θ2,y′ − y⟩)| · ||y′ − y||

≤ 1

t
q(y,y′) · |⟨θ1,y′ − y⟩ − ⟨θ2,y′ − y⟩| · ||y′ − y||

≤ 1

t
q(y,y′) · ||y′ − y||2 · ||θ1 − θ2||,

and fy( · ,y′) is 1
t q(y,y

′) · ||y′ − y||2-smooth. Thus, recalling that Fy is defined as

Fy : θ 7→ ⟨θ,y⟩+
∑

y′∈N (y)

fy(θ;y
′),

we have that Fy is
∑

y′∈N (y)
1
t q(y,y

′) · ||y′ − y||2 = Eq(y, · )||Y − y||22/t-smooth. Finally, as
Ωy := (Fy)

∗, Fenchel duality theory gives that Ωy is t/Eq(y, · )||Y − y||22-strongly convex.

• E
p
(1)
θ,y

[Y ] = argmaxµ∈conv(N (y)∪{y}) {⟨θ,µ⟩ − Ωy(µ)}:

Noticing that g is continuous on R, convex on
]
−∞, t log q(y,y′)

q(y′,y) + φ(y)− φ(y′)
[

and on]
t log q(y,y′)

q(y′,y) + φ(y)− φ(y′),+∞
[
, and with matching derivatives on the junction:

g′(t)
t→t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

−−−−−−−−−−−−−−−−−−→
t<t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

q(y,y′), g′(t)
t→t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

−−−−−−−−−−−−−−−−−−→
t>t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

q(y,y′),

gives that g is convex on R. Thus, fy( · ;y′) is convex on Rd by composition. Thus,

Fy : θ 7→ ⟨θ,y⟩+
∑

y′∈N (y)

fy(θ;y
′)

is closed proper convex as the sum of such functions. The Fenchel-Moreau theorem then gives that it
is equal to its biconjugate. Thus, we have:

Fy(θ) = sup
µ∈Rd

{⟨θ,µ⟩ − (Fy)
∗(µ)} = sup

µ∈Rd

{⟨θ,µ⟩ − Ωy(µ)} .

Nonetheless, the gradient of Fy is given by:

∇θFy(θ) = y +
∑

y′∈N−
y (θ)

q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) · (y′ − y) +
∑

y′∈N+
y (θ)

q(y,y′) · (y′ − y)

= E
p
(1)
θ,y

[Y ] .

Thus, we have ∇Fy(Rd) ⊂ conv (N (y) ∪ {y}), which gives:

∀θ ∈ Rd, ||∇Fy(θ)|| ≤ RN (y) := max
µ∈conv(N (y)∪{y})

||µ||,

so that we have dom(Ωy) ⊂ B(0, RN (y)). Thus we can actually write:

Fy(θ) = sup
µ∈B(0,RN(y))

{⟨θ,µ⟩ − Ωy(µ)} ,
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and now apply Danksin’s theorem as B(0, RN (y)) is compact, which further gives:

∂Fy(θ) = argmax
µ∈B(0,RN(y))

{⟨θ,µ⟩ − Ωy(µ)} ,

and the fact that Fy is differentiable gives that both sides are single-valued. Moreover, as∇Fy(Rd) ⊂
conv (N (y) ∪ {y}), we know that the right hand side is maximized in conv (N (y) ∪ {y}), and we
can actually write:

E
p
(1)
θ,y

[Y ] = ∇Fy(θ) = argmax
µ∈conv(N (y)∪{y})

{⟨θ,µ⟩ − Ωy(µ)} .

• Smoothness of LΩy ( · ;y) and expression of its gradient:

Based on the above, we have:

LΩy (θ ;y) = Fy(θ) + Ωy(y)− ⟨θ,y⟩.

Thus, the Eq(y, · )||Y − y||22/t-smoothness of LΩy ( · ;y) follows directly from the previously estab-
lished Eq(y, · )||Y − y||22/t-smoothness of Fy. Similarly, the expression of ∇θLΩy (θ ;y) follows
from the previously established expression of ∇θFy(θ), and we have:

∇θLΩy (θ ;y) = ∇θFy(θ)− y = E
p
(1)
θ,y

[Y ]− y.

Proposition 6. In the unconditional setting, given a dataset (yi)
N
i=1, the distribution of the first iterate

of the Markov chain with transition kernel defined in Eq. (3) and initialized by y(0) = yi, with
i ∼ U(J1, NK), is given by:

(p
(1)

θ,ȲN
)(y) =

∑
y′∈Y

(
N∑
i=1

1{yi=y′} ·
1

N

)
Pθ,t(y

′,y)

=
∑
y′∈Y

(
N∑
i=1

1{yi=y′} ·
1

N

)
p
(1)
θ,y′(y)

=
1

N

N∑
i=1

p
(1)
θ,yi

(y).

Thus, keeping the same notations as in the previous proof, previous calculations give:

E
p
(1)

θ,ȲN

[Y ] =
1

N

N∑
i=1

E
p
(1)
θ,yi

[Y ]

=
1

N

N∑
i=1

∇θFyi
(θ)

= ∇θ

(
1

N

N∑
i=1

Fyi

)
(θ).

Let FȲN
:= 1

N

∑N
i=1 Fyi

Then, the exact same arguments as in the conditional case hold, and
the results of Proposition 6 are obtained by replacing Fy by FȲN

in the proof of Proposition 3,
and noticing that the previously shown Eq(yi, · )||Y − yi||22/t-smoothness of Fyi gives that FȲN

is
1
N

∑N
i=1 Eq(yi, · )||Y − yi||22/t-smooth. Similar arguments also hold for the regularized optimization

formulation, by noting that this time we have ∇FȲN
(Rd) ⊂ conv

(⋃N
i=1 {N (yi) ∪ {yi}}

)
.
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E.8 PROOF OF PROPOSITION 7

Proof. The first point is directly given by the fact that E
p
(1)
θ,y

[Y ] is the expectation of a distribution

over N (y) ∪ {y}. For the second and third points, as derived in Section E.7, we have:

E
p
(1)
θ,y

[Y ] = y +
∑

y′∈N−
y (θ)

q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) · (y′ − y) +
∑

y′∈N+
y (θ)

q(y,y′) · (y′ − y) .

Define then:

Nbetter(y) := {y′ ∈ N (y) | ⟨θ,y′⟩+ φ(y′) > ⟨θ,y⟩+ φ(y)} ,
Nworse(y) := {y′ ∈ N (y) | ⟨θ,y′⟩+ φ(y′) < ⟨θ,y⟩+ φ(y)}

as the sets of improving and worsening neighbors of y respectively (assuming no neighbor of y has
exactly equal objective value for simplicity, which is true almost everywhere w.r.t. θ ∈ Rd).

Low temperature limit. We have:

N+
y (θ) −−−−→

t→0+
Nbetter(y), and N−

y (θ) −−−−→
t→0+

Nworse(y).

Then, as x < 0 =⇒ exp(x/t) −−−−→
t→0+

0, we have effectively

E
p
(1)
θ,y

[Y ] −−−−→
t→0+

y +
∑

y′∈Nbetter(y)

q(y,y′) · (y′ − y).

High temperature limit. As ∀x ∈ R, exp(x/t) −−−→
t→∞

1, we have:

N+
y (θ) −−−→

t→∞
{y′ ∈ N (y) | q(y′,y) > q(y,y′)} , and N−

y (θ) −−−→
t→∞

{y′ ∈ N (y) | q(y′,y) ≤ (y,y′)} .

Thus, we have:

E
p
(1)
θ,y

[Y ] −−−→
t→∞

y +
∑

y′|q(y′,y)≤(y,y′)

q(y′,y) · (y′ − y) +
∑

y′|q(y′,y)>(y,y′)

q(y,y′) · (y′ − y),

which gives effectively:

E
p
(1)
θ,y

[Y ] −−−→
t→∞

y +
∑

y′∈N (y)

min [q(y,y′), q(y′,y)] · (y′ − y).
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