
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING WITH LOCAL SEARCH MCMC LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Integrating combinatorial optimization layers into neural networks has recently
attracted significant research interest. However, many existing approaches lack
theoretical guarantees or fail to perform adequately when relying on inexact solvers.
This is a critical limitation, as many operations research problems are NP-hard,
often necessitating the use of neighborhood-based local search heuristics. These
heuristics iteratively generate and evaluate candidate solutions based on an ac-
ceptance rule. In this paper, we introduce a theoretically-principled approach
for learning with such inexact combinatorial solvers. Inspired by the connection
between simulated annealing and Metropolis-Hastings, we propose to transform
problem-specific neighborhood systems used in local search heuristics into pro-
posal distributions, implementing MCMC on the combinatorial space of feasible
solutions. This allows us to construct differentiable combinatorial layers and asso-
ciated loss functions. Replacing an exact solver by a local search strongly reduces
the computational burden of learning on many applications. We demonstrate our
approach on a large-scale dynamic vehicle routing problem with time windows.

1 INTRODUCTION

Models that combine neural networks and combinatorial optimization have recently attracted signifi-
cant attention (Sadana et al., 2024; Mandi et al., 2024; Donti et al., 2017; Berthet et al., 2020; Bengio
et al., 2020; Blondel and Roulet, 2024). They enrich combinatorial optimization algorithms with
context-dependent features, making decisions more resilient to uncertainty. An important subset of
this line of research integrates, within a neural network, a linear programming layer of the form:

θ 7→ argmax
y∈Y

⟨θ,y⟩ ⊆ argmax
y∈conv(Y)

⟨θ,y⟩, (1)

where Y is a finite set of feasible outputs. Such layers enable the transformation of learned, continuous
latent representations into structured, discrete outputs, that satisfy complex constraints. In the
graphical models and structured prediction literature, Eq. (1) is known as the maximum a posteriori
(MAP) problem (Wainwright and Jordan, 2008). The main challenge in using such layers lies in
end-to-end model training. Indeed, as piecewise-constant functions, they break the differentiable
computational graph, and prevent one from backpropagating meaningful gradients for learning.

Many approaches have been proposed to derive relaxations and loss functions for this setting; see
Section 2 for a review. Table 1 contrasts existing approaches, based on the type of oracle they assume
access to. Some rely on an oracle for a regularized version of Eq. (1), typically performing a single
oracle call per data point. Others use a solver for the original problem (i.e., a MAP oracle), requiring
multiple calls for smoothing reasons. Theoretical guarantees for these approaches usually assume an
oracle returning exact solutions.

Unfortunately, many problems in operations research are NP-hard in nature, making exact oracles
impractical. Instead, applications often rely on local search heuristics (e.g., simulated annealing),
which iteratively generate and then accept or reject a neighbor of the current solution. We aim to
provide a principled approach for learning with such inexact combinatorial solvers. This is crucial
for exploiting popular heuristics from the operations research literature as layers in neural networks.

To do so, we propose to leverage links between local search heuristics (used for approximate MAP
inference in combinatorial optimization problems) and Markov chain Monte-Carlo (MCMC) methods
(used for approximate marginal inference in graphical models). These lines of research have evolved
quite separately, and their links remain unexploited for designing principled combinatorial layers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Table 1: The proposed approach leverages the neighborhood systems used by local search heuristics
(inexact solvers) to obtain a differentiable combinatorial layer when usual oracles are not available.

Regularization Oracle Approach

Differentiable DP (2009; 2018) Entropy Exact marginal DP
SparseMAP (2018) Quadratic Exact MAP Frank-Wolfe
Barrier FW (2015) TRW Entropy Exact MAP Frank-Wolfe

IntOpt (2020) Log barrier Interior point solver Primal-Dual
Perturbed optimizers (2020) Implicit via noise Exact MAP Monte-Carlo

DYS-net (2024) Quadratic Projection oracles Davis-Yin Splitting
Blackbox solvers (2020) None Exact MAP Interpolation

Contrastive divergences (2000) Entropy Gibbs / Langevin sampler MCMC
Proposed Entropy Local search MCMC

We make the following contributions:

• We integrate local search heuristics as differentiable, stochastic layers in neural networks, by
converting their neighborhood systems to proposal distributions, turning the local search oracle
into a discrete MCMC sampler over the combinatorial set of solutions.

• We extend our framework to handle local search heuristics that leverage a diversity of neighbor-
hood systems, enabling this class of powerful solvers to be used as a unified MCMC sampler.

• We show that the proposed layer yields stochastic gradients of a Fenchel-Young loss (Blondel
et al., 2020) (even with a single MCMC iteration), leading to principled learning algorithms for
conditional and unconditional settings, for which we provide a convergence analysis.

• The proposed layer reduces the computational bottleneck, especially with few MCMC iterations,
enabling larger training instances and better generalization at scale (Parmentier, 2021; 2022).

• We demonstrate our approach on the EURO Meets NeurIPS 2022 challenge (Kool et al., 2023), a
large-scale dynamic vehicle routing problem with time windows, and on binary vector prediction
tasks. Abundant additional experiments are included in Section A of the appendix.

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM SETUP

In this paper, our goal is to learn models that incorporate optimization layers of the form:

ŷ : θ 7→ argmax
y∈Y

⟨θ, y⟩+ φ(y), (2)

where Y ⊂ Rd is a finite but combinatorially-large set, and φ encodes structural costs or preferences
on outputs (e.g., routing distances, fixed costs) that do not depend on θ (not to be confused with a
regularization term). This formulation therefore extends the standard linear objective in Eq. (1) by
allowing additional problem-specific structure.

We focus on settings where Eq. (2) is intractable and only heuristic algorithms are available to obtain
an approximate solution. Our goal is to integrate NP-hard problems arising in operations research
(e.g., routing, scheduling, network design), within a neural network. Unfortunately, many existing
approaches lack formal guarantees or simply do not work when used with inexact solvers.

We distinguish between two settings. In the unconditional setting, our goal will be to learn θ ∈ Rd

from observations y1, . . . ,yN ∈ Y . In the conditional setting, we will assume that θ = gW (x) and
our goal will be to learn the parameters W from observation pairs (x1,y1), . . . , (xN ,yN).

2.2 COMBINATORIAL OPTIMIZATION AS A LAYER

Since the layer defined in Eq. (1) is piecewise constant, a frequent strategy consists in introducing
regularization in the problem so as to obtain a continuous relaxation. In some cases, we may have
access to an oracle for directly solving the regularized problem. For instance, dynamic programming
solvers can handle entropic regularization through a change of semi-ring (Li and Eisner, 2009) or
algorithmic smoothing (Mensch and Blondel, 2018). As another example, interior point solvers can
be used to compute a logarithmic barrier regularized solution (Mandi and Guns, 2020). More recently,
McKenzie et al. (2024) handle quadratic regularization by leveraging projection oracles.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

We focus on settings where only a MAP oracle is available for the original, unregularized optimization
problem. While prior work is often limited to the linear form in Eq. (1) for the latter, our framework
also handles the more general Eq. (2). Frank-Wolfe-like methods can be used to solve the regularized
problem using only MAP oracle calls (Niculae et al., 2018; Krishnan et al., 2015). Another strategy
consists in injecting noise perturbations (Berthet et al., 2020) in the oracle, which can be shown to
be implicitly using regularization. In both cases, a Fenchel-Young loss can be associated, enabling
principled learning. However, formal guarantees require an exact oracle, often called multiple times
during the forward pass. Our proposal enjoys guarantees even with inexact solvers and a single call.

Regarding differentiation, several strategies are possible. When the approach only needs to differ-
entiate through a (regularized) max, as is the case of Fenchel-Young losses, we can use Danskin’s
theorem (Danskin, 1966). When the approach needs to differentiate a (regularized) argmax, we can
either use autodiff on the unrolled solver iterations or implicit differentiation (Amos and Kolter, 2017;
Agrawal et al., 2019; Blondel et al., 2022). Differently, Vlastelica et al. (2020) propose to compute
gradients via continuous interpolation of the solver.

2.3 CONTRASTIVE DIVERGENCES

An alternative approach to learning in combinatorial spaces is to use energy-based models (EBMs)
(Lecun et al., 2006), which define a distribution over outputs via a parameterized energy function Eθ:

pθ(y) ∝ exp(Eθ(y)), with ∇θ log pθ(y) = ∇θEθ(y)− EY∼pθ
[∇θEθ(Y)] .

Therefore, we can perform maximum likelihood estimation (MLE) if we can sample from pθ , but this
is hard both in continuous and combinatorial settings, due to its intractable normalization constant.
Contrastive divergences (Hinton, 2000; Carreira-Perpiñán and Hinton, 2005; Song and Kingma,
2021) address this by using MCMC to obtain (biased) stochastic gradients. Originally developed for
restricted Boltzmann machines with Y = {0, 1}d and a Gibbs sampler, they have also been applied
in continuous domains via Langevin dynamics (Du and Mordatch, 2020; Du et al., 2021).

MCMC in discrete spaces. Contrastive divergences rely on MCMC to sample the model distribu-
tion. Unfortunately, designing MCMC samplers is often case-by-case, and discrete domains have
received less attention than continuous ones. Recent efforts adapt continuous techniques, such as
Langevin dynamics (Zhang et al., 2022; Sun et al., 2023a) or gradient-informed proposals (Grathwohl
et al., 2021; Rhodes and Gutmann, 2022), to discrete settings. However, these works often assume
simple state spaces (e.g., the hypercube or categorical codebooks), and do not handle complex
constraints ubiquitous in operations research. Sun et al. (2023b) allow structured spaces via relaxed
constraints in the energy function, yet ignore these structures in their proposal supports. Notably, we
emphasize that all these works focus on sampling, not on designing differentiable MCMC layers.

3 LOCAL SEARCH-BASED MCMC LAYERS

This section introduces our core contribution. We first connect local search heuristics and MCMC
methods, then use this link to define a stochastic layer based on a single neighborhood system
(Algorithm 1), and subsequently generalize it to leverage diverse neighborhood systems (Algorithm 2).

3.1 FROM LOCAL SEARCH TO MCMC

Local search and neighborhood systems. Local search heuristics (Gendreau et al., 2010) iteratively
generate a neighbor y′ ∈ N (y(k)) of the current solution y(k), and either accept it or reject it based
on an acceptance rule, that depends on the objective function, y(k) and y′. In this context, a
neighborhood system N defines, for each feasible solution y ∈ Y , a set of neighbors N (y) ⊆ Y .

Neighborhoods are problem-specific, and must respect the structure of the problem, i.e., must maintain
solution feasibility. They are typically defined implicitly via a set of allowed moves from y. For
instance, Table 2 lists example moves for a vehicle routing problem.

Formally, we denote the neighborhood graph by GN := (Y, EN), where edges are defined byN . We
assume the graph is undirected, i.e., y′ ∈ N (y) if and only if y ∈ N (y′), and without self-loops –
i.e., y /∈ N (y). A stochastic neighbor generating function is also provided, in the form of a proposal
distribution q(y , ·) with support either equal to N (y) or N (y) ∪ {y}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 SA / MH as a layer

Inputs: θ∈Rd, y(0)∈Y , (tk), K∈N, N , q
for k = 0 : K do

Sample a neighbor in N (y(k)):
y′ ∼ q

(
y(k), ·

)
α(y(k),y′)← 1 (SA) or

α(y(k),y′)← q(y′,y(k))
q(y(k),y′)

(MH)
U ∼ U([0, 1])
∆(k)←⟨θ,y′⟩+φ(y′)−⟨θ,y(k)⟩−φ(y(k))
p(k) ← α(y(k),y′) exp

(
∆(k)/tk

)
If U ≤ p(k), accept move: y(k+1) ← y′

If U > p(k), reject move: y(k+1) ← y(k)

end for
Output: ŷ(θ) ≈ y(K) (SA) or
ŷt(θ) = Eπθ,t

[Y] ≈ 1
K

∑K
k=1 y

(k) (MH)

Algorithm 2 Neighborhood mixture MCMC

Inputs: θ∈Rd, y(0)∈Y, t, K∈N, (Ns,qs)
S
s=1

for k = 0 : K do
Sample a neighborhood system:
s ∼ U(Q(y(k)))
Sample a neighbor in Ns(y

(k)):
y′ ∼ qs(y

(k), ·)
αs(y

(k),y′)← |Q(y(k))|
|Q(y′)|

qs(y
′,y(k))

qs(y(k),y′)

U ∼ U([0, 1])
∆(k)←⟨θ,y′⟩+φ(y′)−⟨θ,y(k)⟩−φ(y(k))
p(k) ← αs(y

(k),y′) exp
(
∆(k)/t

)
If U ≤ p(k), accept move: y(k+1) ← y′

If U > p(k), reject move: y(k+1) ← y(k)

end for
Output: ŷt(θ) = Eπθ,t

[Y] ≈ 1
K

∑K
k=1 y

(k)

Link between simulated annealing and Metropolis-Hastings. A well-known example of local
search heuristic is simulated annealing (SA) (Kirkpatrick et al., 1983). It is intimately related to
Metropolis-Hastings (MH) (Hastings, 1970), an instance of a MCMC algorithm. We provide a unified
view of both in Algorithm 1.

The difference lies in the acceptance rule, which incorporates a proposal correction ratio for MH,
and in the choice of the sequence of temperatures (tk)k∈N. In the case of SA, it is chosen to verify
tk −→ 0. In the case of MH, it is such that tk ≡ t. In this case, the iterates y(k) of Algorithm 1 follow
a time-homogenous Markov chain on Y , defined by the following transition kernel:

Pθ,t(y,y
′) =


q (y,y′)min

[
1, q(y′,y)

q(y,y′) exp
(

⟨θ ,y′⟩+φ(y′)−⟨θ,y⟩−φ(y)
t

)]
if y′ ∈ N (y),

1−∑y′′∈N (y) Pθ,tk(y,y
′′) if y′ = y,

0 else.

(3)

In past work, the link between the two algorithms has primarily been used to show that SA converges
to the exact MAP solution in the limit of infinite iterations (Mitra et al., 1986; Faigle and Schrader,
1988). Under mild conditions – if the neighborhood graph GN is connected and the chain is aperiodic,
the iterates (y(k))k∈N of Algorithm 1 (MH case) converge in distribution to the Gibbs distribution
(see Section D.1 for a proof):

πθ,t(y) ∝ exp ([⟨θ , y⟩+ φ(y)] /t) . (4)

Proposed layer. Algorithm 1 and this result motivate us to define the combinatorial MCMC layer

ŷt(θ) := Eπθ,t
[Y] , (5)

where θ ∈ Rd are logits and t > 0 is a temperature parameter, defaulting to t = 1. Computing ŷt(θ)
is known as the marginal inference problem in the graphical models literature. Naturally, the estimate
of ŷt(θ) returned by Algorithm 1 (MH case) is biased, as the Markov chain cannot perfectly mix
in a finite number of iterations, except if it is initialized at πθ,t. In Section 4, we will show that this
does not hinder the convergence of the proposed learning algorithms. The next proposition, proved in
Section D.2, states some useful properties of the proposed layer.

Proposition 1. Let θ ∈ Rd. We have the following properties:

ŷt(θ) ∈ relint(C), ŷt(θ) −−−−→
t→0+

argmax
y∈Y

⟨θ, y⟩+ φ(y), and ŷt(θ) −−−→
t→∞

1

|Y|
∑
y∈Y

y .

Moreover, ŷt is differentiable and its Jacobian matrix is given by Jθŷt(θ) =
1
t covπθ,t

[Y] .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.2 MIXING NEIGHBORHOOD SYSTEMS

Central to local search algorithms in combinatorial optimization is the use of multiple neighborhood
systems to more effectively explore the solution space (Mladenović and Hansen, 1997; Blum and
Roli, 2003). In this section, we propose a tractable way to incorporate such diversity of neighborhood
systems into the combinatorial MCMC layer, while preserving the correct stationary distribution, by
mixing the corresponding proposal distributions.

Definitions. Let (Ns)
S
s=1 be a set of different neighborhood systems. Typically, all neighborhood

systems are not defined on all solutions y ∈ Y , so we note Q(y) ⊆ J1, SK the set of neighborhood
systems defined on y (i.e., the set of allowed moves on y). Let (qs)s∈Q(y) be the corresponding
proposal distributions, such that the support of qs(y, ·) is either Ns(y) or Ns(y) ∪ {y}. Let N̄ be
the aggregate neighborhood system defined by N̄ : y 7→ ⋃

s∈Q(y)Ns(y).

Mixing proposals. A naive way to combine these neighborhood systems would be to use Algo-
rithm 1 by defining an aggregated proposal q(y, ·), with support N̄ (y) or N̄ (y) ∪ {y}, as:

q(y,y′) :=
1

|Q(y)|
∑

s∈Q(y)

qs(y,y
′), giving: α(y,y′) =

|Q(y)|
|Q(y′)| ·

∑
s∈Q(y′) qs(y

′,y)∑
s∈Q(y) qs(y,y

′)
.

However, this leads to intractable updates due to the computation of the correction ratio. Indeed, com-
puting α(y,y′) is prohibitively expensive as it involves summing the forward proposal probabilities
for all move types in Q(y) and the reverse probabilities for all move types in Q(y′). The difficulty
is that multiple, distinct proposal types can generate the same solution y′ from y. For example, in
our vehicle routing application in Section 5.1, relocating a pair of clients (see the relocate pair
move from Table 2) before the first one in a route of three gives the same solution y′ as relocating
the first client (with relocate) at the last position. Identifying and calculating all these potential
forward and reverse pathways for every step is a significant computational hurdle.

In contrast, the update we propose in Algorithm 2 only requires computing the single individual ratio
αs(y,y

′) := |Q(y)|
|Q(y′)| ·

qs(y
′,y)

qs(y,y′) for the unique move type s that was actually sampled.

Proposition 2. If each neighborhood graph GNs is undirected and without self-loops, and
the aggregate neighborhood graph GN̄ is connected, the iterations (y(k))k∈N produced by
Algorithm 2 follow a Markov chain with unique stationary distribution πθ,t.

See Section D.3 for the proof. Importantly, only the aggregate neighborhood graph GN̄ is required to
be connected. This enables combining neighborhood systems Ns that could not connect Y if used
individually, and an irreducible Markov chain can be obtained by mixing the proposal distributions of
reducible ones. As a concrete example, the moves used as proposals in our dynamic vehicle routing
experiment (Section 5.1) are defined in Table 2.

4 LOSS FUNCTIONS AND THEORETICAL ANALYSIS

Building upon the differentiable MCMC layer developed in Section 3, this section constructs the
corresponding learning framework. We derive principled Fenchel-Young loss functions for our layer,
present practical stochastic gradient algorithms for both conditional and unconditional learning, and
provide theoretical convergence guarantees for these algorithms.

4.1 NEGATIVE LOG-LIKELIHOOD AND ASSOCIATED FENCHEL-YOUNG LOSS

We now show that the proposed layer ŷt(θ) can be viewed as the solution of a regularized optimization
problem on C = conv(Y). Let At(θ) := t · log∑y∈Y exp ([⟨θ , y⟩+ φ(y)] /t) be the cumulant
function (Wainwright and Jordan, 2008) associated to πθ,t, scaled by t. We define the regularization
function Ωt and the corresponding Fenchel-Young loss (Blondel et al., 2020) as:

Ωt(µ) := A∗
t (µ) = sup

θ∈Rd

⟨µ , θ⟩ −At(θ), and ℓt(θ ;y) := (Ωt)
∗(θ) + Ωt(y)− ⟨θ, y⟩.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Since Ωt = A∗
t is strictly convex on relint(C) (see Section D.4 for a proof) and ŷt(θ) = ∇θAt(θ),

the proposed layer is the solution of the regularized optimization problem

ŷt(θ) = argmax
µ∈C

{⟨θ,µ⟩ − Ωt(µ)} , (6)

the Fenchel-Young loss ℓt is differentiable, satisfies ℓt(θ,y) = 0 ⇔ ŷt(θ) = y, and has gradient
∇θℓt(θ ;y) = ŷt(θ)− y (Blondel et al., 2020). It is therefore equivalent, up to a constant, to the
negative log-likelihood loss, as we have −∇θ log πθ,t(y) = (ŷt(θ)− y)/t. Algorithms 1 and 2 can
thus be used to perform MLE, by returning a (biased) stochastic estimate of the gradient of ℓt.

4.2 EMPIRICAL RISK MINIMIZATION

In the conditional learning setting, we are given observations (xi, yi)
N
i=1 ∈ (Rp × Y)N , and want

to fit a model gW : Rp → Rd such that ŷt(gW (xi)) ≈ yi. This is motivated by a generative model
where, for some weights W0 ∈ Rp, the data is generated with yi ∼ πgW0

(xi),t. We aim at minimizing
the empirical risk LN , defined below along with its exact gradient:

LN (W) :=
1

N

N∑
i=1

ℓt (gW (xi) ;yi) , with ∇WLN (W)=
1

N

N∑
i=1

JW gW (xi) (ŷt(gW (xi))−yi) .

Doubly stochastic gradient estimator. In practice, we cannot compute the exact gradient above.
Using Algorithm 1 or 2 to get a MCMC estimate of ŷt(gW (xi)), we propose the following estimator:

∇WLN (W) ≈ JW gW (xi)

(
1

K

K∑
k=1

y
(k)
i − yi

)
,

where y
(k)
i is the k-th iterate of the algorithm with maximization direction θi = gW (xi) and

temperature t. This estimator is doubly stochastic, since we sample both data points and Markov
iterations, and can be seamlessly used with batches. The term JW gW (xi) is computed via autodiff.

Markov chain initialization. Following the contrastive divergence literature (Hinton, 2000), in
the conditional setting, we initialize the Markov chains at the corresponding ground-truth, by setting
y
(0)
i = yi. In the unconditional setting, we use a persistent initialization (Tieleman, 2008) instead.

4.3 ASSOCIATED FENCHEL-YOUNG LOSS WITH A SINGLE MCMC ITERATION

To obtain an unbiased gradient estimator for the Fenchel-Young loss ℓt associated with ŷt, the MCMC
sampler must be run until it reaches its stationary distribution πθ,t. This requirement makes any
practical estimator with a finite number of steps K inherently biased.

Although our convergence analysis in Section 4.4 shows that this bias does not hinder the convergence
of the proposed learning algorithms, we now demonstrate that when a single MCMC iteration is used
(K = 1), there exists another target-dependent Fenchel-Young loss such that the gradient estimator
is unbiased with respect to that loss. See Section D.7 for the construction of Ωy and the proof.

Proposition 3 (Existence of a Fenchel-Young loss when K = 1). Let p(1)
θ,y denote the distribu-

tion of the first iterate of the Markov chain defined by Eq. (3), with proposal distribution q and
initialized at ground-truth y ∈ Y . There exists a target-dependent regularization function Ωy

with the following properties: Ωy is t/Eq(y, ·)||Y − y||22-strongly convex, it is such that:

E
p
(1)
θ,y

[Y] = argmax
µ∈conv(N (y)∪{y})

{⟨θ,µ⟩ − Ωy(µ)} ,

and the Fenchel-Young loss ℓΩy generated by Ωy is Eq(y, ·)||Y − y||22/t-smooth in its first
argument, and such that ∇θℓΩy (θ ;y) = E

p
(1)
θ,y

[Y]− y.

A similar result in the unconditional setting with data-based initialization is given in Proposition 6. In
contrast, Sutskever and Tieleman (2010) showed that the expected CD-1 update with Gibbs sampling
for restricted Boltzmann machines is not the gradient of any function, let alone a convex one.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: Local search moves used for creating neighborhoods in our vehicle routing experiments.

Name Description
relocate Removes a single request from its route and re-inserts it at a different position in

the solution.
relocate pair Removes a pair of consecutive requests from their route and re-inserts them at a

different position in the solution.
swap Exchanges the position of two requests in the solution.
swap pair Exchanges the positions of two pairs of consecutive requests in the solution.
2-opt Reverses a route segment.
serve request Inserts a currently unserved request into the solution.
remove request Removes a request from the solution.

4.4 CONVERGENCE ANALYSIS IN THE UNCONDITIONAL SETTING

In the unconditional setting, we are given observations (yi)
N
i=1∈YN and want to fit a model πθ,t,

motivated by an underlying generative model such that yi ∼ πθ0,t for some true parameter θ0.
We assume here that C = conv(Y) is of full dimension in Rd (if not, the model is specified only
up to vectors µ orthogonal to the affine subspace spanned by C, as πθ+µ,t = πθ,t). We have the
corresponding empirical LN and population Lθ0

Fenchel-Young losses:

LN (θ;y1, . . . ,yN) :=
1

N

N∑
i=1

ℓt (θ; yi) , Lθ0
(θ) := E(yi)

N
i=1∼(πθ0,t)⊗N [LN (θ;y1, . . . ,yN)] ,

which are minimized for θ such that ŷt(θ) = ȲN := 1
N

∑N
i=1 yi, and for θ such that ŷt(θ) = ŷt(θ0),

respectively. Let θ⋆
N as the minimizer of the empirical loss LN . For it to be defined, we assume

that ȲN ∈ int(C) (which is always the case for N large enough, as πθ0,t has dense support on Y). A
slight variation on Proposition 4.1 in Berthet et al. (2020) gives the following asymptotic normality:

Proposition 4 (Convergence of the empirical loss minimizer to the true parameter).
√
N(θ⋆

N − θ0)
D−−−−→

N→∞
N
(
0, t2 covπθ0,t

[Y]
−1
)
.

The proof is given in Section D.5. We now consider the sample size as fixed to N samples, and define
θ̂n as the n-th iterate of the following stochastic gradient algorithm:

θ̂n+1 = θ̂n + γn+1

ȲN −
1

Kn+1

Kn+1∑
k=1

y(n+1, k)

 , (7)

where y(n+1,k) is the k-th iterate of Algorithm 1 with temperature t, maximization direction θ̂n,
and initialized at y(n+1,1) = y(n,Kn). This initialization corresponds to the persistent contrastive
divergences (PCD) algorithm (Tieleman, 2008), and is further discussed in Section B.3.

Proposition 5 (Convergence of the stochastic gradient estimate). Suppose the following hold
for the step sizes (γn)n≥1, sample sizes (Kn)n≥1, and proposal distribution q:

(i) γn = an−b, with b ∈
(
1
2 , 1
]

and a > 0.

(ii) Kn+1 > ⌊1 + a′ exp(8RC
t ∥θ̂n∥)⌋, with a′ > 0 and RC = maxy∈Y ∥y∥.

(iii) 1√
Kn
− 1√

Kn−1

≤ a′′n−c, with a′′ > 0 and c > 1− b
2 .

(iv) q(y,y′) =


1

2d∗ , y′ ∈ N (y),

1− d(y)
2d∗ , y′ = y,

0, else,
where d(y) := |N (y)| and d∗ := maxy∈Y d(y).

Then the iterates θ̂n defined by Eq. (7) converge almost surely: θ̂n
a.s.−−→ θ⋆

N .

See Section D.6 for the proof. The assumptions on q are used for obtaining a closed-form convergence
rate bound for the Markov chain, using graph-based geometric bounds (Ingrassia, 1994).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

�� ��Model gW Optim. layer
System state

xω

Request prizes

θω

Solution routes
yω

D

Depot

i ∈ Rω

Request
(Client)

θωi
10

5

2

−1 50

7

Figure 1: Overview of the vehicle routing pipeline, represented at request wave ω.

5 NUMERICAL EXPERIMENTS

5.1 DYNAMIC VEHICLE ROUTING

We empirically validate our approach on the dynamic vehicle routing problem with time windows
(DVRPTW) from the EURO Meets NeurIPS 2022 Vehicle Routing Competition (Kool et al., 2023). A
detailed introduction to the challenge with precise notations is given in Section C.

Reduction to supervised learning. In this DVRPTW, requests arrive in delivery waves ω, at the
start of which a dispatching and vehicle routing problem for the current set of requests Rω must
be solved, to get a feasible solution yω ∈ Y(Rω). Following Baty et al. (2023), we frame each
dispatching and routing problem as a prize-collecting (PC-)VRP, where a model gW predicts a "prize"
vector θω for serving each request. This PC-VRP fits the general formulation of Eq. (2):

ŷ(θω) = argmax
y∈Y(Rω)

⟨θω,y⟩+ φ(y), (8)

where φ(y) := −⟨c,y⟩ is the negative routing cost. The overall pipeline is shown in Fig. 1. The
model is trained to imitate an anticipative oracle f⋆, i.e., we use its output as ground-truth for
supervised learning. We compute f⋆ by solving a static VRPTW where all future information in the
instance is revealed from the start, turning dispatching waves into time windows.

Approach and baseline. The baseline Baty et al. (2023), winner of the competition, relies on a
perturbation-based method (Berthet et al., 2020) with the state-of-the-art PC-HGS heuristic ỹ (Vidal,
2022) as a combinatorial optimization layer. Since ỹ is an inexact solver, the theoretical guarantees
granted by the framework of Berthet et al. (2020) no longer hold. Our approach instead uses a local
search MCMC layer to train gW . We use a mixture of proposals (Algorithm 2) defined precisely
in Section B.4, derived from the local search moves used by the PC-HGS solver itself (which are
summarized in Table 2). At inference time, we follow the baseline, and use fW := ỹ ◦ gW .

Results. We use the competition’s metric: the routing cost over full instances with multiple
dispatching waves, relative to the anticipative oracle f⋆. In Fig. 2, initializing the Markov chain with
the ground-truth solution clearly outperforms a random start (even more so when refined by the fast
initialization heuristic used by ỹ), and performance increases with the MCMC iteration number K.

In Table 3, we compare training methods under a fixed time budget for the layer’s forward pass
(the main computational bottleneck). We observe that our approach significantly outperforms the
perturbation-based method in low time-limit regimes (1-100 ms), thus enabling faster and more
efficient training. Full experimental details and additional results are in Section C.7.

Table 3: Best test relative cost (%) w.r.t. f⋆ for different training methods and time limits.

Time limit (ms) 1 5 10 50 100 1000

Perturbed inexact oracle 65.2± 5.8 13.1± 3.4 8.7± 1.9 6.5± 1.1 6.3± 0.76 5.5± 0.4

Proposed (y(0)=y) 10.0± 1.7 12.0± 2.6 11.8± 2.8 9.1± 1.7 8.4± 1.7 7.7± 1.1

Proposed (y(0)=heuristic(y)) 7.8± 0.8 7.2± 0.6 6.3± 0.7 6.2± 0.8 5.9± 0.7 5.9± 0.6

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 10 20 30 40 50
Epoch

0

20

40

60

80

Te
st

 R
el

at
iv

e
Co

st
 (%

) Initialization
Random
Ground-truth
Ground-truth + heuristic

0 10 20 30 40 50
Epoch

0

20

40

60

80 K

100

101

102

103

104

105

106

0 10 20 30 40 50
Epoch

0

20

40

60

80 K

100

101

102

103

104

105

106

Figure 2: Test relative cost (%) w.r.t. f⋆. Left: varying initialization method. Center: varying
number of Markov iterations K, random initialization. Right: varying K, ground-truth initialization.

5.2 LEARNING TO PREDICT BINARY VECTORS

Setup. To further validate the proposed gradient estimators, we use a synthetic unconditional learn-
ing task with hypercube output space, Y = {0, 1}d. This setting is ideal for controlled experiments
because the Gibbs distribution πθ,t is fully factorized, leading to trivial sampling and a tractable
closed-form expectation Eπθ,t

[Y] = σ(θ/t), where σ is the logistic sigmoid function. This allows us
to both faithfully generate datasets from a known distribution πθ,t , and to minimize the population
Fenchel-Young loss Lθ directly (see Section 4.4 for its definition). The latter lets us decouple the
noise from our MCMC estimator from the statistical noise inherent in finite datasets.

In all experiments, the goal is to recover a known “true” parameter vector θ0 from independent
samples (yi)

N
i=1 ∼ (πθ0,t)

⊗N . We summarize our key findings in Fig. 3, which shows the distance
to θ0 along a stochastic gradient trajectory, either minimizing LN (left) or Lθ0

(center, right). Full
experimental and theoretical details are available in Section A, together with additional results on
both the hypercube and the top-κ polytope.

Results. The results highlight three important aspects for effective learning. First, a larger dataset
size N provides a better approximation of the population loss, leading to a more accurate parameter
recovery (Fig. 3, left), in line with Proposition 4. Second, persistent and data-based initializations for
the MCMC chains are critical (see Section B.3 for a detailed discussion), vastly outperforming random
restarts, which introduce systematic bias in the gradient estimation (Fig. 3, center). Finally (defining
Hamming distance-based neighborhood systems (Nrs)

S
s=1 by y′ ∈ Nrs(y) ⇔ dH (y, y′) = rs),

using a mixture of proposals with Algorithm 2 (e.g., with rs ∈ {1, 2, 3, 6}) enables more effective
exploration, improving convergence compared to a single proposal type (Fig. 3, right).

100 101 102 103

Gradient Steps

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

N

100

500

1000

5000

10000

(a) Varying dataset size N

100 101 102 103

Gradient Steps

10−2

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

Initialization
Persistent
Data-based
Random

(b) Varying initialization

100 101 102 103

Gradient Steps

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

{rs}Ss=1

{6}
{1, 2, 3, 6}

(c) Varying neighborhoods

Figure 3: Squared distance ||θ̂n − θ0||22 to the true parameter over optimization steps.

6 CONCLUSION

In this paper, we introduced a principled framework for integrating NP-hard combinatorial optimiza-
tion layers into neural networks without relying on exact solvers. Our approach adapts neighborhood
systems from the metaheuristics community, to design structure-aware proposal distributions for
combinatorial MCMC. This leads to significant training speed-ups, enabling to tackle larger problem
instances, which is crucial in operations research, where scaling up leads to substantial value creation
by reducing marginal costs. In future work, we plan to extend our framework to large neighborhood
search algorithms, which are heuristics that leverage neighborhood-wise exact optimization oracles.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico Kolter.
Differentiable convex optimization layers, 2019. URL https://arxiv.org/abs/1910.
12430.

Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A gradient estimator
for k-subset sampling, 2024. URL http://arxiv.org/abs/2210.01941.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pages 136–145. PMLR, 2017.

Léo Baty, Kai Jungel, Patrick S. Klein, Axel Parmentier, and Maximilian Schiffer. Combinatorial
optimization enriched machine learning to solve the dynamic vehicle routing problem with time
windows, 2023. URL http://arxiv.org/abs/2304.00789.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon, 2020. URL http://arxiv.org/abs/1811.06128.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable perturbed optimizers, 2020. URL http://arxiv.org/
abs/2002.08676.

Mathieu Blondel and Vincent Roulet. The Elements of Differentiable Programming. arXiv preprint
arXiv:2403.14606, 2024.

Mathieu Blondel, André F. T. Martins, and Vlad Niculae. Learning with fenchel-young losses, 2020.
URL http://arxiv.org/abs/1901.02324.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. Advances
in neural information processing systems, 35:5230–5242, 2022.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. 35(3):268–308, 2003. ISSN 0360-0300. doi: 10.1145/937503.937505.
URL https://doi.org/10.1145/937503.937505.

Miguel A Carreira-Perpiñán and Geoffrey Hinton. On contrastive divergence learning. In Inter-
national Workshop on Artificial Intelligence and Statistics, pages 33–40. PMLR, 2005. URL
https://proceedings.mlr.press/r5/carreira-perpinan05a.html.

Bor-Liang Chen and Ko-Wei Lih. Hamiltonian uniform subset graphs. 42(3):257–263, 1987. ISSN
0095-8956. doi: 10.1016/0095-8956(87)90044-X. URL https://www.sciencedirect.
com/science/article/pii/009589568790044X.

John M. Danskin. The theory of max-min, with applications. 14(4):641–664, 1966. ISSN 0036-
1399. doi: 10.1137/0114053. URL https://epubs.siam.org/doi/abs/10.1137/
0114053.

Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochas-
tic optimization. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models, 2020.
URL https://arxiv.org/abs/1903.08689.

Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence
training of energy based models, 2021. URL https://arxiv.org/abs/2012.01316.

Ulrich Faigle and Rainer Schrader. On the convergence of stationary distributions in
simulated annealing algorithms. 27(4):189–194, 1988. ISSN 0020-0190. doi: 10.
1016/0020-0190(88)90024-5. URL https://www.sciencedirect.com/science/
article/pii/0020019088900245.

10

https://arxiv.org/abs/1910.12430
https://arxiv.org/abs/1910.12430
http://arxiv.org/abs/2210.01941
http://arxiv.org/abs/2304.00789
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/2002.08676
http://arxiv.org/abs/2002.08676
http://arxiv.org/abs/1901.02324
https://doi.org/10.1145/937503.937505
https://proceedings.mlr.press/r5/carreira-perpinan05a.html
https://www.sciencedirect.com/science/article/pii/009589568790044X
https://www.sciencedirect.com/science/article/pii/009589568790044X
https://epubs.siam.org/doi/abs/10.1137/0114053
https://epubs.siam.org/doi/abs/10.1137/0114053
https://arxiv.org/abs/1903.08689
https://arxiv.org/abs/2012.01316
https://www.sciencedirect.com/science/article/pii/0020019088900245
https://www.sciencedirect.com/science/article/pii/0020019088900245

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Ari Freedman. CONVERGENCE THEOREM FOR FINITE MARKOV
CHAINS. 2017. URL https://www.semanticscholar.org/paper/
CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/
65f7c092bd9c59cbbc88dd69266d39cd79840648.

Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer, 2010.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris J. Maddison. Oops
i took a gradient: Scalable sampling for discrete distributions, 2021. URL https://arxiv.
org/abs/2102.04509.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970. ISSN 00063444, 14643510. URL http://www.jstor.
org/stable/2334940.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive
divergence. 2000. URL https://www.semanticscholar.org/
paper/Training-Products-of-Experts-by-Minimizing-Hinton/
9360e5ce9c98166bb179ad479a9d2919ff13d022.

Salvatore Ingrassia. On the rate of convergence of the metropolis algorithm and gibbs sampler by
geometric bounds. 4(2):347–389, 1994. ISSN 1050-5164. URL https://www.jstor.org/
stable/2245161.

Gareth A. Jones. Automorphisms and regular embeddings of merged johnson graphs. 26(3):
417–435, 2005. ISSN 0195-6698. doi: 10.1016/j.ejc.2004.01.012. URL https://www.
sciencedirect.com/science/article/pii/S0195669804000630.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
http://arxiv.org/abs/1412.6980.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220
(4598):671–680, 1983. doi: 10.1126/science.220.4598.671. URL https://www.science.
org/doi/abs/10.1126/science.220.4598.671.

Wouter Kool, Laurens Bliek, Danilo Numeroso, Yingqian Zhang, Tom Catshoek, Kevin Tierney,
Thibaut Vidal, and Joaquim Gromicho. The EURO meets NeurIPS 2022 vehicle routing competi-
tion. In Proceedings of the NeurIPS 2022 Competitions Track, pages 35–49. PMLR, 2023. URL
https://proceedings.mlr.press/v220/kool23a.html.

Rahul G. Krishnan, Simon Lacoste-Julien, and David Sontag. Barrier frank-wolfe for marginal
inference, 2015. URL https://arxiv.org/abs/1511.02124.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning, ICML ’01, page 282–289, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558607781.

Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aurelio Ranzato, and Fu Jie Huang. A tutorial on
energy-based learning. MIT Press, 2006.

Zhifei Li and Jason Eisner. First- and second-order expectation semirings with applications
to minimum-risk training on translation forests. In Philipp Koehn and Rada Mihalcea, ed-
itors, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 40–51. Association for Computational Linguistics, August 2009. URL https:
//aclanthology.org/D09-1005/.

Neal Madras and Dana Randall. Markov chain decomposition for conver-
gence rate analysis. 12(2):581–606, 2002. ISSN 1050-5164, 2168-8737.
doi: 10.1214/aoap/1026915617. URL https://projecteuclid.org/
journals/annals-of-applied-probability/volume-12/issue-2/
Markov-chain-decomposition-for-convergence-rate-analysis/10.
1214/aoap/1026915617.full.

11

https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://arxiv.org/abs/2102.04509
https://arxiv.org/abs/2102.04509
http://www.jstor.org/stable/2334940
http://www.jstor.org/stable/2334940
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.jstor.org/stable/2245161
https://www.jstor.org/stable/2245161
https://www.sciencedirect.com/science/article/pii/S0195669804000630
https://www.sciencedirect.com/science/article/pii/S0195669804000630
http://arxiv.org/abs/1412.6980
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://proceedings.mlr.press/v220/kool23a.html
https://arxiv.org/abs/1511.02124
https://aclanthology.org/D09-1005/
https://aclanthology.org/D09-1005/
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jayanta Mandi and Tias Guns. Interior point solving for LP-based prediction+optimisation, 2020.
URL http://arxiv.org/abs/2010.13943.

Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark and
future opportunities. 80:1623–1701, 2024. ISSN 1076-9757. doi: 10.1613/jair.1.15320. URL
http://arxiv.org/abs/2307.13565.

Daniel McKenzie, Samy Wu Fung, and Howard Heaton. Differentiating Through Integer Linear
Programs with Quadratic Regularization and Davis-Yin Splitting, July 2024. URL http://
arxiv.org/abs/2301.13395. arXiv:2301.13395 [cs].

Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured prediction
and attention, 2018. URL https://arxiv.org/abs/1802.03676.

Debasis Mitra, Fabio Romeo, and Alberto Sangiovanni-Vincentelli. Convergence and finite-time
behavior of simulated annealing. Advances in Applied Probability, 18(3):747–771, 1986. ISSN
0001-8678. doi: 10.2307/1427186. URL https://www.jstor.org/stable/1427186.

Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & operations
research, 24(11):1097–1100, 1997.

Volodymyr Mnih, Hugo Larochelle, and Geoffrey E. Hinton. Conditional restricted boltzmann
machines for structured output prediction, 2012. URL http://arxiv.org/abs/1202.
3748.

Vlad Niculae, André F. T. Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable
sparse structured inference, 2018. URL https://arxiv.org/abs/1802.04223.

Axel Parmentier. Learning structured approximations of combinatorial optimization problems. arXiv
preprint arXiv:2107.04323, 2021.

Axel Parmentier. Learning to approximate industrial problems by operations research classic problems.
Operations Research, 70(1):606–623, 2022.

Benjamin Rhodes and Michael Gutmann. Enhanced gradient-based MCMC in discrete spaces, 2022.
URL http://arxiv.org/abs/2208.00040.

Fred J. Rispoli. The graph of the hypersimplex, 2008. URL http://arxiv.org/abs/0811.
2981.

R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970. ISBN 9780691015866.
URL http://www.jstor.org/stable/j.ctt14bs1ff.

Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and Thibaut
Vidal. A survey of contextual optimization methods for decision making under uncertainty, 2024.
URL http://arxiv.org/abs/2306.10374.

Yang Song and Diederik P. Kingma. How to train your energy-based models, 2021. URL https:
//arxiv.org/abs/2101.03288.

Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, and Dale Schuurmans. Discrete langevin sampler
via wasserstein gradient flow, 2023a. URL http://arxiv.org/abs/2206.14897.

Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
sampling for combinatorial optimization. In Proceedings of the 40th International Conference on
Machine Learning, pages 32859–32874. PMLR, 2023b. URL https://proceedings.mlr.
press/v202/sun23c.html.

Ilya Sutskever and Tijmen Tieleman. On the convergence properties of contrastive divergence. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics, pages 789–795. JMLR Workshop and Conference Proceedings, 2010. URL https:
//proceedings.mlr.press/v9/sutskever10a.html.

12

http://arxiv.org/abs/2010.13943
http://arxiv.org/abs/2307.13565
http://arxiv.org/abs/2301.13395
http://arxiv.org/abs/2301.13395
https://arxiv.org/abs/1802.03676
https://www.jstor.org/stable/1427186
http://arxiv.org/abs/1202.3748
http://arxiv.org/abs/1202.3748
https://arxiv.org/abs/1802.04223
http://arxiv.org/abs/2208.00040
http://arxiv.org/abs/0811.2981
http://arxiv.org/abs/0811.2981
http://www.jstor.org/stable/j.ctt14bs1ff
http://arxiv.org/abs/2306.10374
https://arxiv.org/abs/2101.03288
https://arxiv.org/abs/2101.03288
http://arxiv.org/abs/2206.14897
https://proceedings.mlr.press/v202/sun23c.html
https://proceedings.mlr.press/v202/sun23c.html
https://proceedings.mlr.press/v9/sutskever10a.html
https://proceedings.mlr.press/v9/sutskever10a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood
gradient. In Proceedings of the 25th international conference on Machine learning, ICML ’08,
pages 1064–1071. Association for Computing Machinery, 2008. ISBN 9781605582054. doi:
10.1145/1390156.1390290. URL https://doi.org/10.1145/1390156.1390290.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighbor-
hood. Computers & Operations Research, 140:105643, April 2022. ISSN 0305-0548. doi: 10.
1016/j.cor.2021.105643. URL http://dx.doi.org/10.1016/j.cor.2021.105643.

Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentiation of
blackbox combinatorial solvers, 2020. URL http://arxiv.org/abs/1912.02175.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational
inference. 1(1):1–305, 2008. ISSN 1935-8237, 1935-8245. doi: 10.1561/2200000001. URL
https://www.nowpublishers.com/article/Details/MAL-001.

Laurent Younes. Stochastic gradient estimation strategies for markov random
fields. In Bayesian Inference for Inverse Problems, volume 3459, pages
315–325. SPIE, 1998. doi: 10.1117/12.323811. URL https://www.
spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/
Stochastic-gradient-estimation-strategies-for-Markov-random-fields/
10.1117/12.323811.full.

Ruqi Zhang, Xingchao Liu, and Qiang Liu. A langevin-like sampler for discrete distributions, 2022.
URL https://arxiv.org/abs/2206.09914.

13

https://doi.org/10.1145/1390156.1390290
http://dx.doi.org/10.1016/j.cor.2021.105643
http://arxiv.org/abs/1912.02175
https://www.nowpublishers.com/article/Details/MAL-001
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://arxiv.org/abs/2206.09914

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

NOTATION

Notation Description
⟨θ,y⟩ Euclidean inner product between two vectors θ,y ∈ Rd.
conv(Y) Convex hull of a set Y .
dom(Ω) Domain of a function Ω : Rd → R ∪ {∞}, defined as {µ ∈ Rd : Ω(µ) <∞}.
Ω∗ Fenchel conjugate of Ω, defined as Ω∗(θ) := supµ∈Rd⟨θ,µ⟩ − Ω(µ).
∇Ω Gradient of Ω.
∂Ω Subgradient of Ω.
Jxf(x,y) Jacobian of a function f : X × Y → Rd with X ⊆Rn at point (x,y) w.r.t. x,

viewed as a matrix Jxf(x,y) ∈ Rn×d.
U(X) Uniform distribution on a set X .
N (x,Σ) Normal distribution with mean x ∈ Rd and covariance Σ ∈ Rd×d.

A EXPERIMENTS ON EMPIRICAL CONVERGENCE OF GRADIENTS AND
PARAMETERS

In this section, we evaluate the proposed approach on two discrete output spaces: sets and κ-subsets.
These output spaces are for instance useful for multilabel classification. We focus on these output
spaces because the exact MAP and marginal inference oracles are available, allowing us to compare
our gradient estimators to exact gradients. We set φ ≡ 0 in these experiments.

A.1 POLYTOPES AND CORRESPONDING ORACLES

The vertex set of the first polytope is the set of binary vectors in Rd, which we denote Yd := {0, 1}d,
and conv(Yd) = [0, 1]d is the “hypercube”. The vertex set of the second is the set of binary vectors
with exactly κ ones and d− κ zeros (with 0 < κ < d),

Yd
κ :=

{
y ∈ {0, 1}d : ⟨y,1⟩ = κ

}
,

and conv(Yd
κ) is referred to as “top-κ polytope” or “hypersimplex”. Although these polytopes would

not provide relevant use cases of the proposed approach in practice, since exact marginal inference
oracles are available (see below), they allow us to compare the Fenchel-Young loss value and gradient
estimated by our algorithm to their true value.

Marginal inference. For the hypercube, we have:

Eπθ,t
[Yi] =

∑
y∈Yd

exp (⟨θ,y⟩/t)∑
y′∈Yd exp (⟨θ,y′⟩/t)yi =

∑
y∈{0,1}d

exp
(∑d

j=1 θjyj/t
)

∑
y′∈{0,1}d exp

(∑d
j=1 θjy

′
j/t
)yi

=
∑

yi∈{0,1}

∑
y−i∈{0,1}d−1

exp
(
θiyi/t+

∑
j ̸=i θjyj/t

)
∑

y′
i∈{0,1}

∑
y′
−i∈{0,1}d−1 exp

(
θiy′i/t+

∑
j ̸=i θjy

′
j/t
)yi

=
∑

yi∈{0,1}

exp (θiyi/t)∑
y′
i∈{0,1} exp (θiy

′
i/t)

yi
∑

y−i∈{0,1}d−1

exp
(∑

j ̸=i θjyj/t
)

∑
y′
−i∈{0,1}d−1 exp

(∑
j ̸=i θjy

′
j/t
)

=
∑

yi∈{0,1}

exp (θiyi/t)∑
y′
i∈{0,1} exp (θiy

′
i/t)

yi

=
exp (θi/t)

1 + exp (θi/t)

= σ

(
θi
t

)
,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

which gives Eπθ,t
[Y] = σ

(
θ
t

)
, where the logistic sigmoid function σ is applied component-wise.

The cumulant function is also tractable, as we have

log
∑
y∈Yd

exp (⟨θ,y⟩/t) = log
∑

y∈{0,1}d

exp

(
d∑

i=1

θiyi/t

)

= log

1∑
y1=0

1∑
y2=0

· · ·
1∑

yd=0

exp

(
d∑

i=1

θiyi/t

)

= log

d∏
i=1

1∑
yi=0

exp (θiyi/t)

= log

d∏
i=1

(exp(0) + exp (θi/t))

= log

d∏
i=1

(1 + exp (θi/t))

=

d∑
i=1

log (1 + exp (θi/t)) .

Another way to derive this is via the Fenchel conjugate.

For the top-κ polytope, such closed-form formulas do not exist for the cumulant and its gradient.
However, we implement them with dynamic programming, by viewing the top-κ MAP problem
as a 0/1-knapsack problem with constant item weights, and by changing the (max,+) semiring
into a (LSE,+) semiring. This returns the cumulant function, and we leverage PyTorch’s automatic
differentiation framework to compute its gradient. This simple implementation allows us to compute
true Fenchel-Young losses values and their gradients in O(dκ) time and space complexity.

Sampling. For the hypercube, sampling from the Gibbs distribution on Yd has closed form. Indeed,
the latter is fully factorized, and we can sample y ∼ πθ,t by sampling independently each component
with yi ∼ Bern (σ(θi/t)). Sampling from πθ,t is also possible on Yd

κ , by sampling coordinates
iteratively using the dynamic programming table used to compute the cumulant function (see, e.g.,
Algorithm 2 in Ahmed et al. (2024) for a detailed explanation).

A.2 NEIGHBORHOOD GRAPHS

Hypercube. On Yd, we use a family of neighborhood systems N r
≤ parameterized by a Hamming

distance radius r ∈ [d− 1]. The graph is defined by:

∀y,y′ ∈ Yd : y′ ∈ N r
≤(y)⇔ 1 ≤ dH (y, y′) ≤ r.

That is, two vertices are neighbors if their Hamming distance is at most r. This graph is regular,
with degree |N r

≤(y)| =
∑r

i=1

(
d
i

)
. This graph is naturally connected, as any binary vector y′

can be reached from any other binary vector y in ||y′ − y||1 moves, by flipping each bit where
y′i ̸= yi, iteratively. Indeed, this trajectory consists in moves between vertices with Hamming dis-
tance equal to 1, and are therefore along edges of the neighborhood graph, regardless of the value of r.

We also use a slight variation on this family of neighborhood systems, the graphs N r
=, defined by:

∀y,y′ ∈ Yd : y′ ∈ N r
=(y)⇔ dH (y, y′) = r.

These graphs, on the contrary, are not always connected: indeed, if r is even, they contain two
connected components (binary vectors with an even sum, and binary vectors with an odd sum).
We only use such graphs when experimenting with neighborhood mixtures (see Algorithm 2), by
aggregating them into a connected graph.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Top-κ polytope. On Yd
κ , we use a family of neighborhoods systemsN s parameterized by a number

of “swaps” s ∈ J1,min(κ, d− κ)K. The graph is defined by

∀y,y′ ∈ Yd
κ : y′ ∈ N s(y)⇔ dH (y, y′) = 2s.

That is, two vertices are neighbors if one can be reached from the other by performing s “swaps”,
each swap corresponding to flipping a 1 to a 0 and vice-versa. This ensures that the resulting vector
is still in Yd

κ . All s swaps must be performed on distinct components. The resulting graph is known
as the Generalized Johnson Graph J(d, κ, κ− s), or Uniform Subset Graph (Chen and Lih, 1987). It
is a regular graph, with degree |N s(y)| =

(
κ
s

)(
d−κ
s

)
. It is proved to be connected in Jones (2005),

except if d = 2κ and s = κ (in this case, it consists in 1
2

(
d
κ

)
disjoint edges).

When s = 1, the neighborhood graph is the Johnson Graph J(d, κ), which coincides with the graph
associated to the polytope conv(Yd

κ) = ∆d,κ (Rispoli, 2008).

A.3 CONVERGENCE TO EXACT GRADIENTS

In this section, we conduct experiments on the convergence of the MCMC estimators to the exact
corresponding expectation (that is, convergence of the stochastic gradient estimator to the true
gradient). The estimators are defined as

ŷt(θ) = Eπθ,t
[Y] ≈ 1

K −K0

K∑
k=K0+1

y(k),

where y(k) is the k-th iterate of Algorithm 1 with maximization direction θ, final temperature t,
and K0 is a number of burn-in (or warm-up) iterations. The obtained estimator is compared to the
exact expectation by performing marginal inference as described in Section A.1 (with a closed-form
formula in the case of Yd, and by dynamic programming in the case of Yd

κ).

Setup. For T > K0, let Ẽ(θ, T) := 1
T−K0

∑T
k=K0+1 y

(k) be the stochastic estimate of the
expectation at step T . We proceed by first randomly generating Θ ∈ RM×d, with M being the
number of instances, by sampling Θi,j ∼ N (0, 1) independently. Then, we evaluate the impact of
the following hyperparameters on the estimation of EπΘi

,t [Y], for i ∈ [M]:

1. K0, the number of burn-in iterations,

2. t, the temperature parameter,

3. C, the number of parallel Markov chains.

Metric. The metric used is the squared Euclidean distance to the exact expectation, averaged on the
M instances

1

M

M∑
i=1

||EπΘi
,t [Y]− Ẽ(Θi, T)||22,

which we measure for T ∈ JK0 + 1,KK.

Polytopes. For the hypercube Yd and its neighborhood system N r
≤, we use d = 10 and r = 1,

which gives |Yd| = 210 and |N r
≤(y)| = 10. For the top-κ polytope Yd

κ and its neighborhood system
N s, we use d = 10, κ = 3 and s = 1, which gives |Yd

κ| = 120 and |N s(y)| = 30. We also
use a larger scale for both polytopes in order to highlight the varying impact of the temperature
t depending on the combinatorial size of the problem, in the second experiment. For the large
scale, we use d = 1000 and r = 10 for the hypercube, which give |Yd| = 21000 ≈ 10301 and
|N r

≤(y)| ≈ 2.7× 1023, and we use d = 1000, κ = 50 and s = 10 for the top-κ polytope, which give
|Yd

κ| ≈ 9.5× 1084 and |N s(y)| ≈ 1.6× 1033.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Hyperparameters. For each experiment, we use K = 3000. We average over M = 1000 problem
instances for statistical significance. We use K0 = 0, except for the first experiment, where it varies.
We use a final temperature t = 1, except for the second experiment, where it varies. We use an initial
temperature t0 = t = 1 (leading to a constant temperature schedule), except for the first experiment,
where it depends on K0. We use only one Markov chain and thus have C = 1, except for the third
experiment, where it varies.

(1) Impact of burn-in. First, we evaluate the impact of K0, the number of burn-in iterations.
We use a truncated geometric cooling schedule tk = max(γk · t0, t) with γ = 0.995. The initial
temperature t0 is set to 1/(γK0), so that ∀k ≥ K0 +1, tk = t = 1. The results are gathered in Fig. 4.

(2) Impact of temperature. We then evaluate the impact of the final temperature t on the difficulty
of the estimation task (different temperatures lead to different target expectations). The results for the
small scale are gathered in Fig. 5, and the results for the large scale are gathered in Fig. 6.

(3) Impact of the number of parallel Markov chains. Finally, we evaluate the impact of the
number of parallel Markov chains C on the estimation. The results are gathered in Fig. 7.

100 101 102 103

Iteration

10−2

10−1

100

D
is

ta
nc

e

K0

0

10

50

100

200

300

500

(a) Hypercube

100 101 102 103

Iteration

10−2

10−1

100

D
is

ta
nc

e
K0

0

10

50

100

200

300

500

(b) Top-κ polytope

Figure 4: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying
number of burn-in iterations K0. We conclude that burn-in is not beneficial to the estimation, and
taking K0 = 0 is the best option.

100 101 102 103

Iteration

10−4

10−3

10−2

10−1

100

D
is

ta
nc

e

t

10−3

10−2

10−1

100

101

102

103

(a) Hypercube

100 101 102 103

Iteration

10−3

10−2

10−1

100

D
is

ta
nc

e

t

10−3

10−2

10−1

100

101

102

103

(b) Top-κ polytope

Figure 5: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying final
temperature t (small scale experiment). We conclude that lower temperatures facilitate the estimation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

100 101 102 103

Iteration

101

102

D
is

ta
nc

e

t

10−3

10−2

10−1

100

101

102

103

(a) Hypercube

100 101 102 103

Iteration

10−1

100

101

102

D
is

ta
nc

e

t

10−3

10−2

10−1

100

101

102

103

(b) Top-κ polytope

Figure 6: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying
final temperature t (large scale experiment). Contrary to the small scale case, larger temperatures are
beneficial to the estimation when the solution set is combinatorially large.

100 101 102 103

Iteration

10−4

10−3

10−2

10−1

100

D
is

ta
nc

e C

1

5

10

50

100

500

(a) Hypercube

100 101 102 103

Iteration

10−5

10−4

10−3

10−2

10−1

100

D
is

ta
nc

e C

1

5

10

50

100

500

(b) Top-κ polytope

Figure 7: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying
number of parallel Markov chains C. Running 10 times more chains in parallel provides roughly
the same benefit as extending each chain by 10 times more iterations, highlighting the advantage of
massively parallelized estimation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.4 CONVERGENCE TO EXACT PARAMETERS

In this section, we conduct experiments in the unconditional setting described in Section 4.4. As a
reminder, the empirical LN and population Lθ0 Fenchel-Young losses are given by:

LN (θ;y1, . . . ,yN) :=
1

N

N∑
i=1

ℓt (θ; yi)

= At(θ) +
1

N

N∑
i=1

Ωt(yi)− ⟨θ, ȲN ⟩

= ℓt(θ; ȲN) + C1(Y), (9)

and

Lθ0(θ) := E(yi)
N
i=1∼(πθ0,t)⊗N [LN (θ;y1, . . . ,yN)]

= At(θ) + Eπθ0,t
[Ωt(Y)]− ⟨θ, ŷt(θ0)⟩

= ℓt(θ; ŷt(θ0)) + C2(θ0), (10)

where the constants C1(Y)= 1
N

∑N
i=1Ωt(yi)−Ωt(ȲN) and C2(θ0)=Eπθ0,t

[Ωt(Y)]−Ωt (ŷt(θ0))
do not depend on θ. As Jensen gaps, they are non-negative by convexity of Ωt.

2D visualization. As an introductory example, we display stochastic gradient trajectories in Fig. 8.
The parameter θ ∈ Rd is updated following Eq. (7) to minimize the population loss Lθ0 defined
in Eq. (10), with θ0 = (1/2, 1/2). The polytope used is the 2-dimensional hypercube Y2, with
neighborhood graph N1 (neighbors are adjacent vertices of the square). We present trajectories
obtained using MCMC-sampled gradients, comparing results from both 1 and 100 Markov chain
iterations with Algorithm 1. For comparison, we include trajectories obtained using Monte Carlo-
sampled (i.e., unbiased) gradients, using 1 and 100 samples.

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

Simulated Annealing (Blue) vs. Monte-Carlo (Red)

SA-1
SA-100

MC-1
MC-100

θ0

Figure 8: Comparison of stochastic gradient trajectories for a SA / M-H oracle on Y2 and unbiased
stochastic gradients obtained via Monte Carlo sampling. Increasing the number of Markov chain
iterations yields smoother trajectories, similar to the effect of using more Monte Carlo samples in the
case of perturbation-based methods (Berthet et al., 2020).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

General setup. We proceed by first randomly generating true parameters Θ0 ∈ RM×d, with M
being a number of problem instances we average on (in order to reduce noise in our observations),
by sampling Θi,j ∼ N (0, 1) independently. The goal is to learn each parameter vector (Θ0)i ∈
Rd, i ∈ [M], as M independent problems. The model is randomly initialized at Θ̂0, and updated
with Adam (Kingma and Ba, 2017) to minimize the loss. In order to better separate noise due to the
optimization process and noise due to the sampling process, we use the population loss L(Θ0)i for
general experiments, and use the empirical loss LN only when focusing on the impact of the dataset
size N . In this case, we create a dataset Y ∈ RM×N×d, with N being the number of samples, by
sampling independently Yi,j ∼ π(Θ0)i , ∀i ∈ [M], ∀j ∈ [N].

We study the impact of the following hyperparameters on learning:

1. K, the number of Markov chain iterations,

2. C, the number of parallel Markov chains,

3. the initialization method used for the chains (either random, persistent, or data-based),

4. N , the number of samples in the dataset.

Metrics. The first metric used is the objective function actually minimized, i.e., the population loss,
averaged on the M instances:

1

M

M∑
i=1

L(Θ0)i((Θ̂n)i),

where (Θ̂n)i is the n-th iterate of the optimization process for the problem instance i ∈ [M]. We
measure this loss for n ∈ [nmax], with nmax the total number of gradient iterations. For the fourth
experiment, where we evaluate the impact of the number of samples N , we measure instead the
empirical Fenchel-Young loss:

1

M

M∑
i=1

LN ((Θ̂n)i ; Yi,1, . . . Yi,N)

In both cases, the best loss value that can be reached is positive but cannot be computed: it
corresponds to the constants C1 and C2 in Eq. (9) and Eq. (10). Thus, we also provide "stretched"
figures, where we plot the loss minus the best loss found during the optimization process.

The second metric used is the squared euclidean distance of the estimate to the true parameter, also
averaged on the M instances:

1

M

M∑
i=1

||(Θ0)i − (Θ̂n)i||22.

As the top-κ polytope is of dimension d− 1, the model is only specified up to vectors orthogonal to
the direction of the smallest affine subspace it spans. Thus, in this case, we measure instead:

1

M

M∑
i=1

||P⊥
D

((Θ0)i)− P⊥
D

(
(Θ̂n)i

)
||22,

where P⊥
D is the orthogonal projector on the hyperplane D = {x ∈ Rd : ⟨1, x⟩ = 0}, which is the

corresponding direction.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Polytopes. For the hypercube Yd and its neighborhood system N r
≤, we use d = 10 and r = 1,

except in the fifth experiment, where we use a mixture of N r
= neighborhoods (detailed below). For

the top-κ polytope Yd
κ and its neighborhood system N s, we use d = 10, κ = 3 and s = 1.

Hyperparameters. For each experiment, we perform 1000 gradient steps. We use K0 = 0, final
temperature t = 1 and initial temperature t0 = t = 1 (leading to a constant temperature schedule).
We use K = 1000 Markov chain iterations, except in the first experiment, where it varies. We use
only one Markov chain and thus have C = 1, except for the second experiment, where it varies. We
use a persistent initialization method for the Markov chains, except in the third experiment, where we
compare the three different methods. For statistical significance, we average over M = 100 problem
instances for each experiment, except in the third experiment, where we use M = 1000. We work in
the limit case N →∞, except in the fourth experiment, where N varies.

(1) Impact of the length of Markov chains. First, we evaluate the impact of K, the number of
inner iterations, i.e., the length of each Markov chain. The results are gathered in Fig. 9.

(2) Impact of the number of parallel Markov chains. We now evaluate the impact of the number
of Markov chains C run in parallel to perform each gradient estimation on the learning process. The
results are gathered in Fig. 10.

(3) Impact of the initialization method. Then, we evaluate the impact of the method to initialize
each Markov chain used for gradient estimation. The persistent method consists in setting y(n+1,0) =
y(n,K), the data-based method consists in setting y(n+1,0) = yi with i ∼ U([N]), and the random
method consists in setting y(n+1,0) ∼ U(Y) (see Section B.3 and Table 4 for a detailed explanation).
The results are gathered in Fig. 11.

(4) Impact of the dataset size. We now evaluate the impact of the number of samples N from
πθ0

(i.e., the size of the dataset (yi)
N
i=1) on the estimation of the true parameter θ0. The results are

gathered in Fig. 12.

(5) Impact of neigborhood mixtures. Finally, we evaluate the impact of the use of neighborhood
mixtures. To do so, we use mixtures {N rs

= }Ss=1, once with {rs}Ss=1 = {5} opposed to {rs}Ss=1 =
{1, 5}, and once with {rs}Ss=1 = {6} (which gives a reducible Markov chain as 6 is even, so that the
individual neighborhood graph N 6

= is not connected, and has to connected components) opposed to
{rs}Ss=1 = {1, 2, 3, 6}. The results are gathered in Fig. 13.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

100 101 102 103

Gradient Steps

10−2

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

K

100

200

300

500

1000

2000

5000

(a) Distance to true parameter, hypercube

100 101 102 103

Gradient Steps

10−2

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

(p
ro

je
ct

ed
)

K

100

200

300

500

1000

2000

5000

(b) Distance to true parameter, top-κ polytope

100 101 102 103

Gradient Steps

6× 100

7× 100

8× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)

K

100

200

300

500

1000

2000

5000

(c) FY loss (up to constant), hypercube

100 101 102 103

Gradient Steps

4× 100

5× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)
K

100

200

300

500

1000

2000

5000

(d) FY loss (up to constant), top-κ polytope

100 101 102 103

Gradient Steps

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

K

100

200

300

500

1000

2000

5000

(e) FY loss minus best loss, hypercube

100 101 102 103

Gradient Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

K

100

200

300

500

1000

2000

5000

(f) FY loss minus best loss, top-κ polytope

Figure 9: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying number of Markov chain iterations K. Longer chains improve learning.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

100 101 102 103

Gradient Steps

10−3

10−2

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

C

1

5

10

50

100

(a) Distance to true parameter, hypercube

100 101 102 103

Gradient Steps

10−3

10−2

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

(p
ro

je
ct

ed
)

C

1

5

10

50

100

(b) Distance to true parameter, top-κ polytope

100 101 102 103

Gradient Steps

6× 100

7× 100

8× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)

C

1

5

10

50

100

(c) FY loss (up to constant), hypercube

100 101 102 103

Gradient Steps

4× 100

5× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)
C

1

5

10

50

100

(d) FY loss (up to constant), top-κ polytope

100 101 102 103

Gradient Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

C

1

5

10

50

100

(e) FY loss minus best loss, hypercube

100 101 102 103

Gradient Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

C

1

5

10

50

100

(f) FY loss minus best loss, top-κ polytope

Figure 10: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying number of parallel Markov chains C. Adding Markov chains improves estimation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

100 101 102 103

Gradient Steps

10−2

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

Initialization
Persistent
Data-based
Random

(a) Distance to true parameter, hypercube

100 101 102 103

Gradient Steps

10−2

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

(p
ro

je
ct

ed
)

Initialization
Persistent
Data-based
Random

(b) Distance to true parameter, top-κ polytope

100 101 102 103

Gradient Steps

6× 100

7× 100

8× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)

Initialization
Persistent
Data-based
Random

(c) FY loss (up to constant), hypercube

100 101 102 103

Gradient Steps

4× 100

5× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)
Initialization

Persistent
Data-based
Random

(d) FY loss (up to constant), top-κ polytope

100 101 102 103

Gradient Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

Initialization
Persistent
Data-based
Random

(e) FY loss minus best loss, hypercube

100 101 102 103

Gradient Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

Initialization
Persistent
Data-based
Random

(f) FY loss minus best loss, top-κ polytope

Figure 11: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying Markov chain initialization method. The persistent and data-based initialization methods
significantly outperform the random initialization method.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

100 101 102 103

Gradient Steps

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

N

100

500

1000

5000

10000

(a) Distance to true parameter

100 101 102 103

Gradient Steps

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

(p
ro

je
ct

ed
)

N

100

500

1000

5000

10000

(b) Distance to true parameter

100 101 102 103

Gradient Steps

6× 100

7× 100

8× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)

N

100

500

1000

5000

10000

(c) FY loss (up to constant)

100 101 102 103

Gradient Steps

4× 100

5× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)

N

100

500

1000

5000

10000

(d) Fenchel-Young loss (up to constant)

100 101 102 103

Gradient Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

N

100

500

1000

5000

10000

(e) FY loss minus best loss

100 101 102 103

Gradient Steps

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

N

100

500

1000

5000

10000

(f) Fenchel-Young loss minus best loss

Figure 12: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying number of samples N in the dataset. As the dataset is different for each task, the empirical
Fenchel-Young loss LN , which is the minimized objective function (contrary to other experiments,
where we minimize Lθ0

), also varies. Although empirical Fenchel-Young losses associated to smaller
datasets appear easier to minimize, increasing the dataset size reduces the bias and thus the distance
to θ0, as expected.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

100 101 102 103

Gradient Steps

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

{rs}Ss=1

{5}
{1, 5}

(a) Distance to true parameter, rs ∈ {5} or {1, 5}

100 101 102 103

Gradient Steps

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

{rs}Ss=1

{6}
{1, 2, 3, 6}

(b) Distance to true parameter, rs ∈ {6} or {1, 2, 3, 6}

100 101 102 103

Gradient Steps

6× 100

7× 100

8× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)

{rs}Ss=1

{5}
{1, 5}

(c) FY loss (up to constant), rs ∈ {5} or {1, 5}

100 101 102 103

Gradient Steps

6× 100

7× 100

8× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)
{rs}Ss=1

{6}
{1, 2, 3, 6}

(d) FY loss (up to constant), rs ∈ {6} or {1, 2, 3, 6}

100 101 102 103

Gradient Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

{rs}Ss=1

{5}
{1, 5}

(e) FY loss minus best loss, rs ∈ {5} or {1, 5}

100 101 102 103

Gradient Steps

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

{rs}Ss=1

{6}
{1, 2, 3, 6}

(f) FY loss minus best loss, rs ∈ {6} or {1, 2, 3, 6}

Figure 13: Convergence to the true parameter on the hypercube, with different mixtures of neigh-
borhood systems {N rs

= }Ss=1: comparing rs ∈ {5} to rs ∈ {1, 5} (left), and comparing rs ∈ {6} to
rs ∈ {1, 2, 3, 6} (right). Using more neighborhoods in the mixture improves learning.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

B ADDITIONAL MATERIAL

B.1 FENCHEL-YOUNG LOSS FOR K = 1 IN THE UNCONDITIONAL SETTING

This proposition is analogous to Proposition 3, but in the unconditional setting, when using a data-
based initialization method – i.e., the original CD initialization scheme, without persistent Markov
chains. See Section B.3 for a detailed discussion about this.

Proposition 6. Let p(1)

θ,ȲN
denote the distribution of the first iterate of the Markov chain defined

by the Markov transition kernel given in Eq. (3), with proposal distribution q and initialized by
y(0) = yi, with i ∼ U(J1, NK). There exists a dataset-dependent regularization ΩȲN

with the
following properties: ΩȲN

is tN/
∑N

i=1 Eq(yi, ·)||Y − yi||22-strongly convex; it is such that:

E
p
(1)

θ,ȲN

[Y] = argmax
µ∈conv(

⋃N
i=1{N (yi)∪{yi}})

{
⟨θ,µ⟩ − ΩȲN

(µ)
}
;

and the Fenchel-Young loss LΩȲN
generated by ΩȲN

is 1
N

∑N
i=1 Eq(yi, ·)||Y − yi||22/t-smooth

in its first argument, and such that ∇θLΩȲN
(θ ;y) = E

p
(1)

θ,ȲN

[Y]− y.

The proof is given in Section D.7.

B.2 PROPERTIES OF THE EXPECTED FIRST ITERATE

Proposition 7. Let θ ∈ Rd, y ∈ Y . Let

Nbetter(y) := {y′ ∈ N (y) | ⟨θ,y′⟩+ φ(y′) > ⟨θ,y⟩+ φ(y)}
denote the set of improving neighbors of y for the unregularized objective function. We have the
following properties:

E
p
(1)
θ,y

[Y] ∈ conv (N (y) ∪ {y}) ,

E
p
(1)
θ,y

[Y] −−−−→
t→0+

y +
∑

y′∈Nbetter(y)

q(y,y′) · (y′ − y),

and E
p
(1)
θ,y

[Y] −−−→
t→∞

y +
∑

y′∈N (y)

min [q(y,y′), q(y′,y)] · (y′ − y).

The proof is given in Section D.8. Thus, as the set Nbetter is defined according the value of the
original, unregularized objective function y 7→ ⟨θ,y⟩ + φ(y), the low temperature behavior of
the regularized maximizer E

p
(1)
θ,y

[Y] effectively reflects the fact that the regularization function Ωy

extends the influence of φ from the vertices N (y) ∪ {y} to their convex hull.

B.3 MARKOV CHAIN INITIALIZATION

In contrastive divergence (CD) learning, the intractable expectation in the log-likelihood gradient is
approximated by short-run MCMC, initialized at the data distribution (Hinton, 2000) (using a Gibbs
sampler in the setting of Restricted Boltzmann Machines).

Here, we note, at the n-th iteration of gradient descent:

∇WLN (Ŵn) ≈
1

|Bn|
∑
i∈Bn

JW gŴn
(xi)

(
1

K

K∑
k=1

y
(n+1, k)
i − yi

)
,

for theconditional setting, with Bn being the mini-batch (or full batch) used at iteration n, yi the
ground-truth structure associated to xi in the dataset, and y

(n+1, k)
i the k-th iterate of Algorithm 1,

with maximization direction gŴn
(xi), and initialization point y(n+1, 0)

i . We also note:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

∇θLN (θ̂n) ≈
1

K

K∑
k=1

y(n+1, k) − ȲN

for the unconditional setting, with y(n+1, k) being the k-th iterate of Algorithm 1, with maximization
direction θ̂n, and initialization point y(n+1, 0).

In CD learning of unconditional EBMs (i.e., in our unconditional setting), the Markov Chain is
initialized at the empirical data distribution (Hinton, 2000; Carreira-Perpiñán and Hinton, 2005),
as explained earlier. Persistent Contrastive Divergence (PCD) learning (Tieleman, 2008) modifies
CD by maintaining a persistent Markov chain. Thus, instead of initializing the chain from the data
distribution in each iteration, the chain continues from its last state in the previous iteration, by setting
y(n+1, 0) = y(n,K). This approach aims to provide a better approximation of the model distribution
and to reduce the bias introduced by the initialization of the Markov chain in CD. These are two types
of informative initialization methods, which aim at reducing the mixing times of the Markov Chains.

However, neither of these can be applied to the conditional setting, as observed in (Mnih et al., 2012)
in the context of conditional Restricted Boltzmann Machines (which are a type of EBMs). Indeed,
on the one hand, PCD takes advantage of the fact that the parameter θ̂ does not change too much
from one iteration to the next, so that a Markov Chain that has reached equilibrium on θ̂n is not
far from equilibrium on θ̂n+1. This does not hold in the conditional setting, as each xi leads to a
different θ̂i = gŴ (xi). On the other hand, the data-based initialization method in CD would amount
to initialize the chains at the empirical marginal data distribution on Y , and would be irrelevant in a
conditional setting, since the distribution we want each Markov Chain to approximate is conditioned
on the input xi.

An option is to use persistent chains if training for multiple epochs, and to initialize the Markov
Chain associated to (xi,yi) for epoch j at the final state of the one associated to the same data point
(xi,yi) at epoch j − 1. However, this method is relevant than PCD in the unconditional setting, as ŵ
changes a lot more in a full epoch than θ̂ in just one gradient step in the unconditional setting. It
might be relevant, however, if each epoch consists in a single, full-batch gradient step. Nevertheless,
it would require to store a significant number of states y(n,K)

i (one for each point in the dataset).
The solution we propose, for both full-batch and mini-batch settings, is to initialize the chains at
the empirical data distribution conditioned on the input xi, which amounts to initialize them at the
ground-truth yi.

This discussion is summed up in Table 4.

Table 4: Possible Markov Chain Initialization Methods under each Learning Setting

Init.
Method

Setting
Unconditional Conditional, Batch Conditional,

Mini-Batch

Persistent y(n+1,0) = y(n,K) y
(n+1, 0)
i = y

(n,K)
i /

Data-Based y(n+1,0) = yj , with
j ∼ U(J1, NK)

y
(n+1, 0)
i = yi y

(n+1, 0)
i = yi

Random y(n+1,0) ∼ U(Y) y
(n+1, 0)
i ∼ U(Y) y

(n+1, 0)
i ∼ U(Y)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Name Description
relocate removes request i from its route and re-inserts it before or after request j
relocate pair removes pair of requests (i, next(i)) from their route and re-inserts them before

or after request j
swap exchanges the position of requests i and j in the solution
swap pair exchanges the positions of the pairs (i, next(i)) and (j, next(j)) in the solution
2-opt reverses the route segment between i and j
serve request inserts currently undispatched request i before or after request j
remove request removes currently dispatched request i from the solution

Table 5: PC-VRPTW Local search moves

Move V 1
s (y) V 2

s (y)[i]
relocate D(y) \ D1(y) D(y)
relocate pair D(y) \

{
D2(y) ∪ Dlast(y)

}
D(y) \ {next(i)}

swap D(y) D(y)
swap pair D(y) \ Dlast(y) D(y) \

{
Dlast(y) ∪ {prev(i), next(i)}

}
2-opt D(y) \ D2(y) D(y) \ D2(y)
serve request D̄(y) D(y) ∪ ID(y)
remove request

{
D(y) \ D1(y)

}
∪ I1(y)

Table 6: Sets of valid clients for each move. D(y) contains all dispatched clients in solution y. D1(y)
contains all dispatched clients that are the only client in their route. D2(y) contains all dispatched
clients that are in a route with 2 clients or less. Dlast(y) contains all dispatched clients that are the
last of their route. D̄(y) contains all non-dispatched clients. ID(y) contains the depot of the first
empty route, if it exists (all routes may be non-empty), or else is the empty set. I1(y) contains the
only client in the last non-empty route if it contains exactly one client, or else is the empty set.

Remark 1. The use of uniform distributions on Y for the random initialization method can
naturally be replaced by any other different prior distribution.

B.4 PROPOSAL DISTRIBUTION DESIGN FOR THE DVRPTW

Original deterministic moves. The selected moves, designed for Local Search algorithms on
vehicle routing problems (specifically for the PC-VRPTW for serve request and remove
request), are given in Table 5.

All of these moves (except for remove request) involve selecting two clients i and j from the
request setRω (for example, the relocate move relocates client i after client j in the solution).

In the Local Search part of the PC-HGS algorithm from Vidal (2022), they are implemented as
deterministic functions used within a quadratic loop over clients, and are performed only if they
improve the solution’s objective value. The search is narrowed down to client pairs (i, j) such that
d(i, j) is among the Nprox lowest values in

{
d(i, k) | k ∈ Rω \{D, i}

}
, where d is a problem-specific

heuristic distance measure between clients, based on spatial features and time windows, and Nprox
is a hyperparameter. These distances are independent from the chosen solution routes (they are
computed once at the start of the algorithm, from the problem features), non-negative, and symmetric:
d(i, j) = d(j, i).

Randomization. In order to transform these deterministic moves into proposals, we first adapt the
choice of clients i and j, by sampling i uniformly from V 1

s (y), which contains the set of valid choices
of client i for move s from solution y. Then, we sample j from V 2

s (y)[i] \ {i} using the following
softmax distribution: Ps(j | i) = exp[−d(i,j)/β]∑

k∈V 2
s (y)[i]\{i} exp[−d(i,k)/β] , where β > 0 is a neighborhood

sampling temperature. The set V 2
s (y)[i] contains all valid choices of client j for move s from solution

y, and is precised along with V 1
s (y) in Table 6. We normalize the distance measures inside the

softmax, by dividing them by the maximum distance: d(i, ·)← d(i, ·)/maxk∈V 2
s (y)[i]\{i} d(i, k).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Neighborhood graph symmetrization. Then, we ensure that each individual neighborhood graph
Ns is undirected. This is already the case for the moves swap, swap pair and 2-opt, as they
are actually involutions (applying the same move on the same couple (i, j) from y′ will result
in y). However, this is obviously not the case for serve request and remove request.
Indeed, if solution y′ is obtained from y by removing a dispatched client (respectively serving an
non-dispatched one), y cannot be obtained by removing another one (respectively, serving another
one). To fix this, we merge these two moves into a single one. First, it evaluates which of the two
moves are allowed (i.e., if they are such that V 1

s (y) ̸= ∅). Then, it samples one (the probability of
selecting "remove" is chosen to be equal to the number of removable clients divided by the number
of removable clients plus the number of servable clients) in the case where both are possible, or else
simply performs the only move allowed. Thus, the corresponding neighborhood graph is undirected as
it is always possible to perform the reverse operation (as when removing a client, it becomes unserved,
thus allowing the serve request move from y′, and vice-versa). We also allow the serve
request move to insert a client after the depot of the first empty route, to allow the creation of new
routes. In consequence, we allow the remove request move to remove the only client in the last
non-empty route if it contains exactly one client (to maintain symmetry of the neighborhood graph).

For the relocate and relocate pair moves, the non-reversibility comes from the fact that
they only relocate client i (or clients i and next(i) in the pair case) after client j, so that if client i
was the first in its route, relocating it back would be impossible (the depot, which is the start of the
route, cannot be selected as j). Thus, we allow insertions before clients too, and add a random choice
with probability (12 ,

1
2) to determine if the relocated client(s) will be inserted before or after j. We

also add this feature to the serve request move.

Correction ratio computation. Next, we implement the computation of the individual correction
ratio α̃s(y,y

′) = qs(y
′,y)

qs(y,y′) for each proposal qs.

• In the case of swap and 2-opt, we have α̃s(y,y
′) = 1. Indeed, let y′ be the result of

applying one of these moves s on y when sampling i ∈ V 1
s (y) and j ∈ V 2

s (y)[i] \ {i}. We
then have:

qs(y,y
′) =

1

|V 1
s (y)|

· exp [−d(i, j)/β]∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β]

+
1

|V 1
s (y)|

· exp [−d(j, i)/β]∑
k∈V 2

s (y)[j]\{j} exp [−d(j, k)/β]
,

where the first term accounts for the probability of selecting i then j and the second term
accounts for that of selecting j then i (one can easily check that these two cases are the
only way of sampling y′ from y). Then, noticing that we have |V 1

s (y
′)| = |V 1

s (y)|, that
these moves are involutions (selecting (i, j) or (j, i) from y′ is also the only way to sample
y), and that we have the equalities V 2

s (y)[i] = V 2
s (y

′)[i] and V 2
s (y)[j] = V 2

s (y
′)[j], we

actually have qs(y
′,y) = qs(y,y

′).
• For swap pair, the same arguments hold (leading to the same form for qs), except for the

equalities V 2
s (y)[i] = V 2

s (y
′)[i] and V 2

s (y)[j] = V 2
s (y

′)[j]. Thus, we have the following
form for the correction ratio:

qs(y
′,y)

qs(y,y′)
=

∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β] +
∑

k∈V 2
s (y)[j]\{j} exp [−d(j, k)/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β] +

∑
k∈V 2

s (y′)[j]\{j} exp [−d(j, k)/β]
.

• In the case of relocate, let j′ denote next(j) if the selected insertion type was "after",
and prev(j) if it was "before" – where next(j) ∈ Rω denotes the request following j in
solution y, i.e., the only index k such that yj,k = 1, and prev(j) is the one preceding it, i.e.,
the only k such that yk,j = 1. We have:

qs(y,y
′) =

1

2
· 1

|V 1
s (y)|

· exp [−d(i, j)/β]∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β]

+
1

2
· 1

|V 1
s (y)|

· exp [−d(i, j′)/β]∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β]

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Indeed, if i was relocated after j, the same solution y′ could have been obtained by relocating
i before j′ = next(j). Similarly, if i was relocated before j, the same solution y′ could
have been obtained by relocating i after j′ = prev(j). For the reverse move probability, the
way of obtaining y from y′ is either to select (i, prev(i)) in the after-type insertion case,
or (i, next(i)) in the before-type insertion case (where prev and next are taken w.r.t. y, i.e.,
before applying the move). Thus, we have:

qs(y
′,y) =

1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, prev(i)/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β]

+
1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, next(i))/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β]

.

• For the relocate pair move, the exact same reasoning and proposal probability form
hold for the forward move, but we have for the reverse direction:

qs(y
′,y) =

1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, prev(i)/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β]

+
1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, next(next(i)))/β]∑
k∈V 2

s (y′)[i]\{i} exp [−d(i, k)/β]
,

as client next(i) is also relocated.

• For the serve request / remove request move, we have the forward probability:

qs(y,y
′) =

|
{
D(y) \ D1(y)

}
∪ I1(y)|

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

× 1

|
{
D(y) \ D1(y)

}
∪ I1(y)|

=
1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

if the chosen move is remove request. The expression corresponds to the composition
of move choice sampling and uniform sampling over removable clients.

Still in the same case (remove request is chosen) and if the removed request i was in
I1(y) (i.e., was the only client in the last non-empty route if the latter contained exactly one
client), we have the reverse move probability:

qs(y
′,y) =

1

|
{
D(y′) \ D1(y′)

}
∪ I1(y′)|+ |D̄(y′)|

× exp
[
−d̄(i)/β

]
exp

[
−d̄(i)/β

]
+
∑

k∈D(y′) exp [−d(i, k)/β]

=
1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

× exp
[
−d̄(i)/β

]
exp

[
−d̄(i)/β

]
+
∑

k∈D(y)
k ̸=i

exp [−d(i, k)/β] .

The expression corresponds to the composition of move choice sampling and softmax
sampling of the depot of the first empty route (which was the route of the removed client
i, so that ID(y′) ̸= ∅ in this case). We use the average distance to dispatched clients
d̄(i) := 1

|D(y′)|
∑

k∈D(y′) d(i, k) as distance to the depot.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

In the case where the removed request i was not in I1(y), we have instead:

qs(y
′,y) =

1

|
{
D(y′) \ D1(y′)

}
∪ I1(y′)|+ |D̄(y′)|

×
1
2 · exp [−d(i, prev(i))] + 1

2 · exp [−d(i, next(i))]
1{ID(y′)̸=∅} · exp

[
−d̄(i)/β

]
+
∑

k∈D(y′) exp [−d(i, k)/β]

=
1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

×
1
2 · exp [−d(i, prev(i))] + 1

2 · exp [−d(i, next(i))]
1{ID(y′)̸=∅} · exp

[
−d̄(i)/β

]
+
∑

k∈D(y)
k ̸=i

exp [−d(i, k)/β] .

The right term corresponds to softmax sampling of the previous node with "after" insertion
type (which has probability 1/2) and of the next node with "before" insertion type. The
non-emptiness of ID(y′) is not guaranteed anymore, as all routes might be non-empty
(indeed, we did not create an empty one by removing i, as i ∈ D(y) \ D1(y) in this case).
Similarly, if the chosen move is serve request, we have the forward probability:

qs(y,y
′) =

|D̄(y)|
|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

×
1
2 · exp [−d(i, j)] + 1

2 · exp [−d(i, j′)]
1{ID(y)̸=∅} · exp

[
−d̄(i)/β

]
+
∑

k∈D(y) exp [−d(i, k)/β]

if the selected insertion node j is not in ID(y) (i.e., is not the depot of the first empty route
in y), where j′ = prev(j) if the insertion type selected was "before" (which has probability
1/2), and j′ = next(j) if it was "after".
We have instead the forward probability:

qs(y,y
′) =

1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

× exp
[
−d̄(i)/β

]
exp

[
−d̄(i)/β

]
+
∑

k∈D(y) exp [−d(i, k)/β]

if the selected insertion node j is in ID(y) (i.e., is the depot of the first empty route in y).
In every case, we have the reverse move probability:

qs(y
′,y) =

1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D̄(y)|

.

In each case, we set d(i,D) =∞ to account for the fact that the depot can never be sampled during
the process (except in the serve request / remove request move, where we allow the depot
of the first empty route / last non-empty route to be selected, for which we use the average distance to
other requests as explained earlier) – in fact, the distance measure from a client to the depot is not
even defined in the original HGS implementation.

The second correction factor needed is |Q(y)|
|Q(y′)| (see Algorithm 2). We compute it by checking if each

move is allowed, i.e., if there exists at least one i ∈ V 1
s (y) such that V 2

s (y)[i] \ {i} ̸= ∅. This can be
determined in O(Rω) for each move.

C DETAILS ON THE DVRPTW

C.1 OVERVIEW OF THE CHALLENGE.

We evaluate the proposed approach on a large-scale, ML-enriched combinatorial optimization
problem: the EURO Meets NeurIPS 2022 Vehicle Routing Competition (Kool et al., 2023).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

In this dynamic vehicle routing problem with time windows (DVRPTW), requests arrive con-
tinuously throughout a planning horizon, which is partitioned into a series of delivery waves
W = {[τ0, τ1] , [τ1, τ2] , . . . ,

[
τ|W|−1, τ|W|

]
}.

At the start of each wave ω, a dispatching and vehicle routing problem must be solved for the set of
requestsRω specific to that wave (in which we include the depot D), encoded into the system state
xω . We note Y(xω) the set of feasible decisions associated to state xω .

A feasible solution yω ∈ Y(xω) must contain all requests that must be dispatched before τω (the rest
are postponable), allow each of its routes to visit the requests they dispatch within their respective
time windows, and be such that the cumulative customer demand on each of its routes does not exceed
a given vehicle capacity. It is encoded thanks to a vector

(
yωi,j
)
i,j ∈Rω , where yωi,j = 1 if the solution

contains the directed route segment from i to j, and yωi,j = 0 otherwise. The set of requestsRω+1 is
obtained by removing all requests dispatched by the chosen solution yω fromRω and adding all new
requests which arrived between τω and τω+1.

The aim of the challenge is to find an optimal policy f : X → Y assigning decisions yω ∈ Y(xω) to
system states xω ∈ X . This can be cast as a reinforcement learning problem:

min
f

E [cW(f)] , with cW(f) :=
∑
ω∈W

c(f(xω)),

where c : yω 7→ ∑
i,j ∈Rω ci,j y

ω
i,j gives the routing cost of yω ∈ Yω and where ci,j ≥ 0 is the

routing cost from i to j. The expectation is taken over full problem instances.

C.2 REDUCTION TO SUPERVISED LEARNING.

We follow the method of (Baty et al., 2023), which was the winning approach for the challenge.
Central to this approach is the concept of prize-collecting dynamic vehicle routing problem with time
windows (PC-VRPTW). In this setting, each request i ∈ Rω is assigned an artificial prize θωi ∈ R,
that reflects the benefit of serving it. The prize of the depot D is set to θωD = 0. The objective is then
to identify a set of routes that maximizes the total prize collected while minimizing the associated
travel costs. The model gW predicts the prize vector θω = gW (xω). Denoting φ(y) := −⟨c,y⟩, the
corresponding optimization problem can be written as

ŷ(θω) = argmax
y∈Y(xω)

∑
i,j ∈Rω

θωj yi,j −
∑

i,j ∈Rω

ci,j yi,j = ⟨θω,y⟩+ φ(y). (11)

The overall pipeline is summarized in Fig. 1. Following (Baty et al., 2023), we approximately solve
the problem in Eq. (11) using the prize-collecting HGS heuristic (PC-HGS), a variant of hybrid
genetic search (HGS) (Vidal, 2022). We denote this approximate solver ỹ ≈ ŷ, so that their proposed
policy decomposes as fW := ỹ ◦ gW . The ground-truth routes are created by using an anticipative
strategy, i.e., by solving multiple instances where all future information is revealed from the start, and
the requests’ arrival times information is translated into time windows (thus removing the dynamic
aspect of the problem). This anticipative policy, which we note f⋆ (which cannot be attained as it
needs unavailable information) is thus the target policy imitated by the model – see Section C.7 for
more details.

C.3 PERTURBATION-BASED BASELINE.

In (Baty et al., 2023), a perturbation-based method (Berthet et al., 2020) was used. This method is
based on injecting noise in the PC-HGS solver ỹ. Similarly to our approach, the parameters W can
then be learned using a Fenchel-Young loss, since the loss is minimized when the perturbed solver
correctly predicts the ground truth. However, since ỹ is not an exact solver, all theoretical learning
guarantees associated with this method (e.g., correctness of the gradients) no longer hold.

C.4 PROPOSED APPROACH.

Our proposed approach instead uses the Fenchel-Young loss associated with the proposed layer, which
is minimized when the proposed layer correctly predicts the ground-truth. At inference time, however,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

we use fW := ỹ ◦ gW . We use a mixture of proposals, as defined in Algorithm 2. To design each
proposal qs, we build randomized versions of moves specifically designed for the prize-collecting
dynamic vehicle routing problem with time windows. More precisely, we base our proposals on
moves used in the local search part of the PC-HGS algorithm, which are summarized in Table 2. The
details of turning these moves into proposal distributions with tractable individual correction ratios
are given in Section B.4.

We evaluate three different initialization methods: (i) initialize y(0) by constructing routes dispatching
random requests, (ii) initialize y(0) to the ground-truth solution, (iii) initialize y(0) by starting from
the dataset ground-truth and applying a heuristic initialization algorithm to improve it. This heuristic
initialization, similar to a short local search, is also used by the PC-HGS algorithm ỹ, and is set to
take up to half the time allocated to the layer (a limit it does not reach in practice).

C.5 PERFORMANCE METRIC.

As the Fenchel-Young loss ℓt actually minimized is intractable to compute exactly, we only use the
challenge metric. More precisely, we measure the cost relative to that of the anticipative baseline,
cW(fW)−cW(f⋆)

cW(f⋆) , which we average over a test dataset of unseen instances.

C.6 RESULTS.

In Fig. 2, we observe that the initialization method plays an important role, and the ground-truth-based
ones greatly outperform the random one.

We observe that the number of Markov iterations K is an important performance factor. Interestingly,
the ground-truth initialization significantly improves the learning process for small K.

In Table 3, we compare training methods with fixed compute time budget for the layer (perturbed
solver or proposed MCMC approach), which is by far the main computational bottleneck. This
parameter limits the time allowed for a single forward pass through the combinatorial optimization
layer (be it the perturbed inexact oracle or the proposed method). In both cases, the backward pass
through the layer is immediate, as a property of the expression of the gradient of Fenchel-Young
losses. The models are selected using a validation set and evaluated on the test set. We observe that
the proposed approach significantly outperforms the perturbation-based method (Berthet et al., 2020)
using ỹ in low time limit regimes, thus allowing for faster and more efficient training.

Full experimental details and additional results on the impact of temperature are given in Section C.7.

C.7 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS FOR SECTION 5.1

Model, features, dataset, hyperparameters, compute. Following Baty et al. (2023), the differ-
entiable ML model gW is implemented as a sparse graph neural network. We also use the same
feature set, which represents the system state xω as a vector comprising request-level features, such
as coordinates, time windows, demands, travel time to the depot, and quantiles from the distribution
of the travel time to all other requests (named complete feature set, and described in the Table 4 of
their paper). We use the same training, validation, and testing datasets, which are created from 30, 15
and 25 problem instances respectively. The training set uses a sample size of 50 requests per wave,
while the rest use 100. The solutions in the training dataset, i.e., the examples from the anticipative
strategy f⋆ imitated by the model, are obtained by solving the corresponding offline VRPTWs using
HGS (Vidal, 2022) with a time limit of 3600 seconds. During evaluation, the PC-HGS solver ỹ is
used with a constant time limit of 60 seconds for all models. We use Adam (Kingma and Ba, 2017)
together with the proposed stochastic gradient estimators, with a learning rate of 5 · 10−3. Each
training is performed using only a single CPU worker. For Fig. 2, we use a temperature t = 102. For
Table 3, we use 1 Monte-Carlo sample for the perturbation-based method and 1 Markov chain for
the proposed approach (in order to have a fair comparison: an equal number of oracle calls / equal
compute).

Statistical significance. Each training is performed 50 times with the same parameters and different
random seeds. Then, the learning curves are averaged, and plotted with a 95% confidence interval.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

For the results in Table 3, we report the performance of the best model iteration (selected with respect
to the validation set) on the test set. This procedure is also averaged over 50 trainings, and reported
with 95% confidence intervals.

Additional results. In Fig. 14, we report model performance for varying temperature t. Inter-
estingly, lower temperatures perform better when using random initialization. In the ground-truth
initialization setting, a sweet spot is found at t = 102, but lower temperatures do not particularly
decrease performance.

0 10 20 30 40 50
Epoch

0

20

40

60

80

Te
st

 R
el

at
iv

e
Co

st
 (%

)

t

10−1

100

101

102

2 · 102

3 · 102

5 · 102

103

0 10 20 30 40 50
Epoch

0

20

40

60

80 t

10−1

100

101

102

2 · 102

3 · 102

5 · 102

103

Figure 14: Test relative cost (%). Left: varying temperature t with random initialization. Right:
varying temperature t with ground-truth initialization.

D PROOFS

D.1 PROOF OF EQ. (4)

Proof. At fixed temperature tk = t, the iterates of Algorithm 1 (MH case) follow a time-homogenous
Markov chain, defined by the following transition kernel Pθ,t:

Pθ,t(y,y
′) =


q (y,y′)min

[
1, q(y′,y)

q(y,y′) exp
(

⟨θ ,y′⟩+φ(y′)−⟨θ,y⟩−φ(y)
t

)]
if y′ ∈ N (y),

1−∑y′′∈N (y) Pθ,t(y,y
′′) if y′ = y,

0 else.

Irreducibility. As we assumed the neighborhood graph GN to be connected and undirected, the
Markov Chain is irreducible as we have ∀y ∈ Y,∀y′ ∈ N (y), Pθ,t(y,y

′) > 0.

Aperiodicity. For simplicity, we directly assumed aperiodicity in the main text. Here, we show
that this is a mild condition, which is verified for instance if there is a solution y ∈ Y such that
q(y,y) > 0. Indeed, we then have:

Pθ,t(y,y) = 1−
∑

y′∈N (y)

Pθ,t(y,y
′)

= 1−
∑

y′∈N (y)

q (y,y′)min

[
1,

q(y′,y)
q(y,y′)

exp

(⟨θ , y′⟩+ φ(y′)− ⟨θ, y⟩ − φ(y)

t

)]
≥ 1−

∑
y′∈N (y)

q (y,y′)

≥ q(y,y′)

> 0.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Thus, we have Pθ,t(y,y) > 0, which implies that the chain is aperiodic. As an irreducible and
aperiodic Markov Chain on a finite state space, it converges to its stationary distribution and the
latter is unique (Freedman, 2017). Finally, one can easily check that the detailed balance equation is
satisfied for πθ,t, i.e.:

∀y,y′ ∈ Y, πθ,t(y)Pθ,t(y,y
′) = πθ,t(y

′)Pθ,t(y
′,y),

giving that πθ,t is indeed the stationary distribution of the chain, which concludes the proof.

D.2 PROOF OF PROPOSITION 1

Proof. Let θ ∈ Rd and t > 0. The fact that ŷt(θ) ∈ relint(C) = relint(conv(Y)) follows directly
from the fact that ŷt(θ) is a convex combination of the elements of Y with positive coefficients, as
∀y ∈ Y, πθ,t(y) > 0.

Low temperature limit. Let y⋆ := argmaxy∈Y⟨θ,y⟩ + φ(y). The argmax is assumed to be
single-valued. Let y ∈ Y \ {y⋆}. We have:

πθ,t(y) =
exp

(
⟨θ,y⟩+φ(y)

t

)
∑

y′∈Y exp
(

⟨θ,y′⟩+φ(y′)
t

)
≤

exp
(

⟨θ,y⟩+φ(y)
t

)
exp

(
⟨θ,y⋆⟩+φ(y⋆)

t

)
≤ exp

(
(⟨θ,y⟩+ φ(y))− (⟨θ,y⋆⟩+ φ(y⋆))

t

)
−−−−→
t→0+

0,

as ⟨θ,y⟩+ φ(y) < ⟨θ,y⋆⟩+ φ(y⋆) by definition of y⋆. Thus, we have:

πθ,t(y
⋆) = 1−

∑
y∈Y\{y⋆}

πθ,t(y) −−−−→
t→0+

1.

Thus, the expectation of πθ,t converges to y⋆. Naturally, if the argmax is not unique, the distribution
converges to a uniform distribution on the maximizing structures.

High temperature limit. For all y ∈ Y , we have:

πθ,t(y) =
exp

(
⟨θ,y⟩+φ(y)

t

)
∑

y′∈Y exp
(

⟨θ,y′⟩+φ(y′)
t

)
−−−→
t→∞

1

|Y| ,

as exp(x/t) −−−→
t→∞

1 for all x ∈ R. Thus, πθ,t converges to the uniform distribution on Y , and its
expectation converges to the average of all structures.

Expression of the Jacobian. Let At : θ 7→ t · log∑y∈Y exp (⟨θ,y⟩+ φ(y)) be the cumulant
function of the exponential family defined by πθ,t, scaled by t. One can easily check that we have
∇θAt(θ) = ŷt(θ). Thus, we have Jθŷt(θ) = ∇2

θAt(θ). However, we also have that the hessian
matrix of the cumulant function θ 7→ 1

tAt(θ) is equal to the covariance matrix of the random vector

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Y
t under πθ,t (Wainwright and Jordan, 2008). Thus, we have:

Jθŷt(θ) = ∇2
θAt(θ)

= t · ∇2
θ

(
1

t
At(θ)

)
= t · covπθ,t

[
Y

t

]
=

1

t
covπθ,t

[Y] .

D.3 PROOF OF PROPOSITION 2

Proof. Let Kθ,t be the Markov transition kernel associated to Algorithm 2, which can be written as:

Kθ,t(y,y
′) =


∑

s∈Q(y)
s.t. qs(y,y′)>0

1
|Q(y)|qs(y,y

′)min
(
1, |Q(y)|

|Q(y′)| ·
qs(y

′,y)πθ,t(y
′)

qs(y,y′)πθ,t(y)

)
if y′ ∈ N̄ (y),

1−∑y′′∈N̄ (y) Kθ,t(y,y
′′) if y′ = y,

0 else.

As ∀y ∈ Y, ∀y′ ∈ N̄ (y),Kθ,t(y,y
′) > 0, the irreducibility of the chain on Y is directly implied by

the connectedness of GN̄ .

Thus, we only have to check that the detailed balance equation

πθ,t(y)Kθ,t(y,y
′) = πθ,t(y

′)Kθ,t(y
′,y)

is satisfied for all y′ ∈ N̄ (y). We have:

πθ,t(y)Kθ,t(y,y
′) =

∑
s∈Q(y)

s.t. qs(y,y′)>0

[
qs(y,y

′)πθ,t(y)

|Q(y)| min

(
1,
|Q(y)|
|Q(y′)| ·

qs(y
′,y)πθ,t(y

′)
qs(y,y′)πθ,t(y)

)]
.

The main point consists in noticing that the undirectedness assumption for each individual neighbor-
hood graph GNs

implies:

{s ∈ Q(y) : qs(y,y
′) > 0} = {s ∈ Q(y′) : qs(y

′,y) > 0}.
Thus, a simple case analysis on how |Q(y)|qs(y′,y)πθ,t(y

′) and |Q(y′)|qs(y,y′)πθ,t(y) compare
allows us to observe that the expression of πθ,t(y)Kθ,t(y,y

′) is symmetric in y and y′, which
concludes the proof.

D.4 PROOF OF STRICT CONVEXITY

Proof. As At is a differentiable convex function on Rd (as the log-sum-exp of such functions), it is
an essentially smooth closed proper convex function. Thus, it is such that

relint (dom((At)
∗)) ⊆ ∇At(Rd) ⊆ dom((At)

∗),

and we have that the restriction of (At)
∗ to ∇At(Rd) is strictly convex on every convex subset of

∇At(Rd) (corollary 26.4.1 in Rockafellar (1970)). As the range of the gradient of the cumulant
function θ 7→ At(θ)/t is exactly the relative interior of the marginal polytope conv ({y/t,y ∈ Y})
(see appendix B.1 in Wainwright and Jordan (2008)), and (At)

∗ =: Ωt, we actually have that

relint (dom(Ωt)) ⊆ relint(C) ⊆ dom(Ωt),

and that Ωt is stricly convex on every convex subset of relint(C), i.e., strictly convex on relint(C) (as
relint(C) is itself convex).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

As At is closed proper convex, it is equal to its biconjugate by the Fenchel-Moreau theorem. Thus,
we have:

At(θ) = sup
µ∈Rd

{⟨θ,µ⟩ − (At)
∗(µ)} = sup

µ∈Rd

{⟨θ,µ⟩ − Ωt(µ)} .

Moreover, as ∇At(Rd) = relint(C), we have ||∇At(θ)|| ≤ RC := maxµ∈C ||µ||, which gives
dom(Ωt) ⊂ B(0, RC). Thus we can actually write:

At(θ) = sup
µ∈B(0,RC)

{⟨θ,µ⟩ − Ωt(µ)} ,

and now apply Danksin’s theorem as B(0, RC) is compact, which further gives:

∂At(θ) = argmax
µ∈B(0,RC)

{⟨θ,µ⟩ − Ωt(µ)} ,

and the fact that At is differentiable gives that both sides are single-valued. Moreover, as∇At(Rd) =
relint(C), we know that the right hand side is maximized in C, and we can actually write:

∇At(θ) = argmax
µ∈C

{⟨θ,µ⟩ − Ωt(µ)} .

We end this proof by noting that a simple calculation yields ∇At(θ) = Eπθ,t
[Y] = ŷt(θ). The

expression of ∇θℓt(θ ;y) follows.

Remark 2. The proposed Fenchel-Young loss can also be obtained via distribution-space
regularization. Let sθ := (⟨θ , y⟩+ φ(y))y∈Y ∈ R|Y| be a vector containing the score of
all structures, and L−tH : R|Y| × ∆|Y| → R be the Fenchel-Young loss generated by
−tH , where H is the Shannon entropy. We have ∇sθ (−tH)∗(sθ) = πθ,t. The chain rule
further gives ∇θ(−tH)∗(sθ) = Eπθ,t

[Y]. Thus, we have ∇θL−tH(sθ ;py) = ∇θℓt(θ ;y),
where py is the Dirac distribution on y. In the case where φ ≡ 0 and t = 1, we have
Ωt(µ) = −

(
maxp∈∆|Y| Hs(p) s.t. Ep [Y] = µ

)
, with Hs the Shannon entropy (Blondel et al.,

2020), and ℓt is known as the CRF loss (Lafferty et al., 2001).

D.5 PROOF OF PROPOSITION 4

Proof. The proof is exactly the proof of Proposition 4.1 in Berthet et al. (2020), in which the setting is
similar, and all the same arguments hold (we also have that πθ0

is dense on Y , giving ȲN ∈ relint(C)
for N large enough). The only difference is the choice of regularization function, and we have to
prove that it is also convex and smooth in our case. While the convexity of Ωt is directly implied by
its definition as a Fenchel conjugate, the fact that is is smooth is due to Theorem 26.3 in Rockafellar
(1970) and the essential strict convexity of At (which is itself closed proper convex). The latter relies
on the fact that C is assumed to be of full-dimension (otherwise At would be linear when restricted to
any affine subspace of direction equal to the subspace orthogonal to the direction of the smallest affine
subspace spanned by C), which in turn implies that At is strictly convex on Rd. Thus, Proposition 4.1
in Berthet et al. (2020) gives the asymptotic normality:

√
N(θ⋆

N − θ0)
D−−−−→

N→∞
N
(
0,
(
∇2

θAt(θ0)
)−1

covπθ0,t
[Y]
(
∇2

θAt(θ0)
)−1
)
.

Moreover, we already derived∇2
θAt(θ0) =

1
t covπθ0,t

[Y] in Section D.2, leading to the simplified
asymptotic normality given in the proposition.

D.6 PROOF OF PROPOSITION 5

Proof. The proof consists in bounding the convergence rate of the Markov chain
(
y(k)

)
k∈N (which

has transition kernel Pθ,t) for all θ, in order to apply Theorem 4.1 in Younes (1998). It is defined as
the smallest constant λθ such that:

∃A > 0 : ∀y ∈ Y, |P(y(k) = y)− πθ,t(y)| ≤ Aλk
θ.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

More precisely, we must find a constant D such that ∃B > 0 : λθ ≤ 1−Be−D||θ||, in order to
impose Kn+1 >

⌊
1 + a′ exp

(
2D||θ̂n||

)⌋
.

A known result gives λθ ≤ ρ(θ) with ρ(θ) = maxλ∈Sθ\{1} |λ| (Madras and Randall, 2002), where
Sθ is the spectrum of the transition kernel Pθ,t (in this context, 1− ρ(θ) is known as the spectral
gap of the Markov chain). To bound ρ(θ), we use the results of Ingrassia (1994), which study the
Markov chain with transition kernel P ′

θ,t, such that Pθ,t =
1
2

(
I + P ′

θ,t

)
. It corresponds to the same

algorithm, but with a proposal distribution q′ defined as:

q′ (y,y′) =


1
d∗ if y′ ∈ N (y),
1− d(y)

d∗ if y′ = y,
0 else.

As P ′
θ,t is a row-stochastic matrix, Gershgorin’s circle theorem gives that its spectrum is included

in the complex unit disc. Moreover, one can easily check that the associated Markov chain is also
reversible with respect to πθ,t, and the corresponding detailed balance equation gives:

∀y,y′ ∈ Y, πθ,t(y)P
′
θ,t(y,y

′) = πθ,t(y
′)P ′

θ,t(y
′,y),

which is equivalent to:

∀y,y′ ∈ Y,
√

πθ,t(y)

πθ,t(y′)
P ′
θ,t(y,y

′) =

√
πθ,t(y′)
πθ,t(y)

P ′
θ,t(y

′,y)

as πθ,t has full support on Y , which can be further written in matrix form as:

Π
1/2
θ P ′

θ,tΠ
−1/2
θ = Π

−1/2
θ P ′⊤

θ,tΠ
1/2
θ ,

where Πθ = diag(πθ;t). Thus, the matrix Π
1/2
θ P ′

θ,tΠ
−1/2
θ is symmetric, and the spectral theorem

ensures its eigenvalues are real. As it is similar to the transition kernel P ′
θ,t (with change of basis

matrix Π
−1/2
θ), they share the same spectrum S′

θ, and we have S′
θ ⊂ [−1, 1]. Let us order S′

θ as

−1 ≤ λ′
min ≤ · · · ≤ λ′

2 ≤ λ′
1 = 1. As Pθ,t = 1

2

(
I + P ′

θ,t

)
, we clearly have ρ(θ) =

1+λ′
2

2 .
Thus, we can use Theorem 4.1 of Ingrassia (1994), which gives λ′

2 ≤ 1−G · Z(θ) exp(−m (θ))
(we keep their notations for Z and m, and add the dependency in θ for clarity), where G is a constant
depending only on the graph GN , and with:

Z(θ) =
∑
y∈Y

exp

(⟨θ, y⟩+ φ(y)

t
−max

y′∈Y

[⟨θ, y′⟩+ φ(y′)
t

])

≥ |Y| exp
(
1

t

[
min
y∈Y
⟨θ, y⟩+min

y∈Y
φ(y)−max

y′∈Y
⟨θ, y′⟩ −max

y′∈Y
φ(y′)

])
≥ |Y| exp

(
−2RC

t
||θ|| − 2Rφ

t

)
,

and:

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

m(θ) ≤ max
y∈Y

{
max
y′∈Y

[⟨θ, y′⟩+ φ(y′)
t

]
− ⟨θ,y⟩+ φ(y)

t

}
− 2min

y∈Y

{
max
y′∈Y

[⟨θ, y′⟩+ φ(y′)
t

]
− ⟨θ,y⟩+ φ(y)

t

}
= max

y′∈Y

[⟨θ, y′⟩+ φ(y′)
t

]
−min

y∈Y

[⟨θ, y⟩+ φ(y)

t

]
≤ 1

t

(
max
y′∈Y
⟨θ, y′⟩+ max

y′∈Y
φ(y′)−min

y∈Y
⟨θ, y⟩ −min

y∈Y
φ(y)

)
≤ 2RC

t
||θ||+ 2Rφ

t
,

where RC = maxy∈Y ||y|| and Rφ = maxy∈Y |φ(y)|. Thus, we have:

λ′
2 ≤ 1−G|Y| exp

(
−4Rφ

t

)
exp

(
−4RC

t
||θ||

)
,

and finally:

λθ ≤ 1−
G|Y| exp

(
− 4Rφ

t

)
2

exp

(
−4RC

t
||θ||

)
,

so taking D = 4RC/t concludes the proof.

Remark 3. The stationary distribution in Ingrassia (1994) is defined as proportional to
exp (−H(y)), with the assumption that the function H is such that miny∈Y H(y) = 0. Thus,
we apply their results with

H(y) := max
y′∈Y

[⟨θ, y′⟩+ φ(y′)
t

]
− ⟨θ,y⟩+ φ(y)

t

(which gives correct distribution πθ,t and respects this assumption), hence the obtained forms
for Z(θ) and the upper bound on m(θ).

D.7 PROOFS OF PROPOSITION 3 AND PROPOSITION 6

Proposition 3. The distribution of the first iterate of the Markov chain with transition kernel defined
in Eq. (3) and initialized at the ground-truth structure y is given by:

(p
(1)
θ,y)(y

′) = Pθ,t(y,y
′)

=


q(y,y′)min

[
1, q(y′,y)

q(y,y′) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t)
]

if y′ ∈ N (y),

1−∑y′′∈N (y)(p
(1)
θ,y)(y

′′) if y′ = y,
0 else.

Let αy(θ,y
′) := q(y′,y)

q(y,y′) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t). Define also the following sets:

N−
y (θ) = {y′ ∈ N (y) | αy(θ,y

′) ≤ 1} , N+
y (θ) = {y′ ∈ N (y) | αy(θ,y

′) > 1} .
The expectation of the first iterate is then given by:

E
p
(1)
θ,y

[Y] =
∑

y′∈N (y)

(p
(1)
θ,y)(y

′) · y′ +

1−
∑

y′′∈N (y)

(p
(1)
θ,y)(y

′′)

 · y
= y +

∑
y′∈N (y)

(p
(1)
θ,y)(y

′) · (y′ − y)

= y +
∑

y′∈N−
y (θ)

q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) · (y′ − y) +
∑

y′∈N+
y (θ)

q(y,y′) · (y′ − y) .

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Let now fy : Rd ×N (y)→ R be defined as:

fy : (θ ;y′) 7→
{
t · q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) if αy(θ,y

′) ≤ 1,

t · q(y,y′)
(
[⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t+ 1− log q(y,y′)

q(y′,y)

)
if αy(θ,y

′) > 1.

Let Fy : θ 7→ ⟨θ,y⟩+∑y′∈N (y) fy(θ ;y′). We define the target-dependent regularization function
Ωy and the corresponding Fenchel-Young loss as:

Ωy : µ 7→ (Fy)
∗(µ), LΩy (θ ;y) := (Ωy)

∗(θ) + Ωy(y)− ⟨θ,y⟩.

• Ωy is t/Eq(y, ·)||Y − y||22-strongly convex:

One can easily check that fy(· ;y′) is continuous for all y′ ∈ N (y), as it is defined piecewise as
continuous functions that match on the junction affine hyperplane defined by:{

θ ∈ Rd | αy(θ;y
′) = 1

}
=

{
θ ∈ Rd | ⟨θ,y′ − y⟩ = t log

q(y,y′)
q(y′,y)

+ φ(y)− φ(y′)

}
.

Moreover, we have that fy(· ;y′) is actually differentiable everywhere as its gradient can be continu-
ously extended to the junction affine hyperplane with constant value equal to q(y,y′)(y′ − y). We
now show that fy(· ;y′) is 1

t q(y,y
′) · ||y′ − y||2-smooth. Indeed, it is defined as the composition of

the linear form θ 7→ ⟨θ,y′ − y⟩ and the function g : R→ R given by:

g : x 7→

t · q(y′,y) exp ([x+ φ(y′)− φ(y)] /t) if x ≤ t log q(y,y′)
q(y′,y) + φ(y)− φ(y′),

t · q(y,y′)
(
[x+ φ(y′)− φ(y)] /t+ 1− log q(y,y′)

q(y′,y)

)
if x > t log q(y,y′)

q(y′,y) + φ(y)− φ(y′).

We begin by showing that g is 1
t q(y,y

′)-smooth. We have:

g′ : x 7→
{
q(y′,y) exp ([x+ φ(y′)− φ(y)] /t) if x ≤ t log q(y,y′)

q(y′,y) + φ(y)− φ(y′),

q(y,y′) if x > t log q(y,y′)
q(y′,y) + φ(y)− φ(y′).

Thus, g′ is continuous, and differentiable everywhere except in x0 := t log q(y,y′)
q(y′,y) + φ(y)− φ(y′).

Its derivative is given by:

g′′ : x 7→
{

1
t q(y

′,y) exp ([x+ φ(y′)− φ(y)] /t) if x ≤ t log q(y,y′)
q(y′,y) + φ(y)− φ(y′),

0 if x > t log q(y,y′)
q(y′,y) + φ(y)− φ(y′).

• For x1, x2 ≤ x0, we have:

|g′(x1)− g′(x2)| ≤ |x1 − x2| sup
x∈]−∞,x0[

|g′′(x)|

= |x1 − x2| limx→x0
x<x0

|g′′(x)|

=
1

t
q(y,y′) · |x1 − x2|.

• For x1, x2 ≥ x0, we trivially have |g′(x1)− g′(x2)| = 0.

• For x1 ≤ x0 ≤ x2, we have:

|g′(x1)− g′(x2)| = |(g′(x1)− g′(x0))− (g′(x2)− g′(x0))|
≤ |g′(x1)− g′(x0)|+ |g′(x2)− g′(x0)|

≤ 1

t
q(y,y′) · |x1 − x0|

≤ 1

t
q(y,y′) · |x1 − x2|.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Thus, we have:

∀x1, x2 ∈ R, |g′(x1)− g′(x2)| ≤
1

t
q(y,y′) · |x1 − x2|,

and g is 1
t q(y,y

′)-smooth. Nevertheless, we have fy(· ,y′) = g(⟨ · ,y′ − y⟩). Thus, we have, for
θ1,θ2 ∈ Rd:

||∇θfy(θ1,y
′)−∇θfy(θ2,y

′)|| = ||g′(⟨θ1,y′ − y⟩)(y′ − y)− g′(⟨θ2,y′ − y⟩)(y′ − y)||
= |g′(⟨θ1,y′ − y⟩)− g′(⟨θ2,y′ − y⟩)| · ||y′ − y||

≤ 1

t
q(y,y′) · |⟨θ1,y′ − y⟩ − ⟨θ2,y′ − y⟩| · ||y′ − y||

≤ 1

t
q(y,y′) · ||y′ − y||2 · ||θ1 − θ2||,

and fy(· ,y′) is 1
t q(y,y

′) · ||y′ − y||2-smooth. Thus, recalling that Fy is defined as

Fy : θ 7→ ⟨θ,y⟩+
∑

y′∈N (y)

fy(θ;y
′),

we have that Fy is
∑

y′∈N (y)
1
t q(y,y

′) · ||y′ − y||2 = Eq(y, ·)||Y − y||22/t-smooth. Finally, as
Ωy := (Fy)

∗, Fenchel duality theory gives that Ωy is t/Eq(y, ·)||Y − y||22-strongly convex.

• E
p
(1)
θ,y

[Y] = argmaxµ∈conv(N (y)∪{y}) {⟨θ,µ⟩ − Ωy(µ)}:

Noticing that g is continuous on R, convex on
]
−∞, t log q(y,y′)

q(y′,y) + φ(y)− φ(y′)
[

and on]
t log q(y,y′)

q(y′,y) + φ(y)− φ(y′),+∞
[
, and with matching derivatives on the junction:

g′(t)
t→t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

−−−−−−−−−−−−−−−−−−→
t<t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

q(y,y′), g′(t)
t→t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

−−−−−−−−−−−−−−−−−−→
t>t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

q(y,y′),

gives that g is convex on R. Thus, fy(· ;y′) is convex on Rd by composition. Thus,

Fy : θ 7→ ⟨θ,y⟩+
∑

y′∈N (y)

fy(θ;y
′)

is closed proper convex as the sum of such functions. The Fenchel-Moreau theorem then gives that it
is equal to its biconjugate. Thus, we have:

Fy(θ) = sup
µ∈Rd

{⟨θ,µ⟩ − (Fy)
∗(µ)} = sup

µ∈Rd

{⟨θ,µ⟩ − Ωy(µ)} .

Nonetheless, the gradient of Fy is given by:

∇θFy(θ) = y +
∑

y′∈N−
y (θ)

q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) · (y′ − y) +
∑

y′∈N+
y (θ)

q(y,y′) · (y′ − y)

= E
p
(1)
θ,y

[Y] .

Thus, we have ∇Fy(Rd) ⊂ conv (N (y) ∪ {y}), which gives:

∀θ ∈ Rd, ||∇Fy(θ)|| ≤ RN (y) := max
µ∈conv(N (y)∪{y})

||µ||,

so that we have dom(Ωy) ⊂ B(0, RN (y)). Thus we can actually write:

Fy(θ) = sup
µ∈B(0,RN(y))

{⟨θ,µ⟩ − Ωy(µ)} ,

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

and now apply Danksin’s theorem as B(0, RN (y)) is compact, which further gives:

∂Fy(θ) = argmax
µ∈B(0,RN(y))

{⟨θ,µ⟩ − Ωy(µ)} ,

and the fact that Fy is differentiable gives that both sides are single-valued. Moreover, as∇Fy(Rd) ⊂
conv (N (y) ∪ {y}), we know that the right hand side is maximized in conv (N (y) ∪ {y}), and we
can actually write:

E
p
(1)
θ,y

[Y] = ∇Fy(θ) = argmax
µ∈conv(N (y)∪{y})

{⟨θ,µ⟩ − Ωy(µ)} .

• Smoothness of LΩy (· ;y) and expression of its gradient:

Based on the above, we have:

LΩy (θ ;y) = Fy(θ) + Ωy(y)− ⟨θ,y⟩.

Thus, the Eq(y, ·)||Y − y||22/t-smoothness of LΩy (· ;y) follows directly from the previously estab-
lished Eq(y, ·)||Y − y||22/t-smoothness of Fy. Similarly, the expression of ∇θLΩy (θ ;y) follows
from the previously established expression of ∇θFy(θ), and we have:

∇θLΩy (θ ;y) = ∇θFy(θ)− y = E
p
(1)
θ,y

[Y]− y.

Proposition 6. In the unconditional setting, given a dataset (yi)
N
i=1, the distribution of the first iterate

of the Markov chain with transition kernel defined in Eq. (3) and initialized by y(0) = yi, with
i ∼ U(J1, NK), is given by:

(p
(1)

θ,ȲN
)(y) =

∑
y′∈Y

(
N∑
i=1

1{yi=y′} ·
1

N

)
Pθ,t(y

′,y)

=
∑
y′∈Y

(
N∑
i=1

1{yi=y′} ·
1

N

)
p
(1)
θ,y′(y)

=
1

N

N∑
i=1

p
(1)
θ,yi

(y).

Thus, keeping the same notations as in the previous proof, previous calculations give:

E
p
(1)

θ,ȲN

[Y] =
1

N

N∑
i=1

E
p
(1)
θ,yi

[Y]

=
1

N

N∑
i=1

∇θFyi
(θ)

= ∇θ

(
1

N

N∑
i=1

Fyi

)
(θ).

Let FȲN
:= 1

N

∑N
i=1 Fyi

Then, the exact same arguments as in the conditional case hold, and
the results of Proposition 6 are obtained by replacing Fy by FȲN

in the proof of Proposition 3,
and noticing that the previously shown Eq(yi, ·)||Y − yi||22/t-smoothness of Fyi gives that FȲN

is
1
N

∑N
i=1 Eq(yi, ·)||Y − yi||22/t-smooth. Similar arguments also hold for the regularized optimization

formulation, by noting that this time we have ∇FȲN
(Rd) ⊂ conv

(⋃N
i=1 {N (yi) ∪ {yi}}

)
.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

D.8 PROOF OF PROPOSITION 7

Proof. The first point is directly given by the fact that E
p
(1)
θ,y

[Y] is the expectation of a distribution

over N (y) ∪ {y}. For the second and third points, as derived in Section D.7, we have:

E
p
(1)
θ,y

[Y] = y +
∑

y′∈N−
y (θ)

q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) · (y′ − y) +
∑

y′∈N+
y (θ)

q(y,y′) · (y′ − y) .

Define then:

Nbetter(y) := {y′ ∈ N (y) | ⟨θ,y′⟩+ φ(y′) > ⟨θ,y⟩+ φ(y)} ,
Nworse(y) := {y′ ∈ N (y) | ⟨θ,y′⟩+ φ(y′) < ⟨θ,y⟩+ φ(y)}

as the sets of improving and worsening neighbors of y respectively (assuming no neighbor of y has
exactly equal objective value for simplicity, which is true almost everywhere w.r.t. θ ∈ Rd).

Low temperature limit. We have:

N+
y (θ) −−−−→

t→0+
Nbetter(y), and N−

y (θ) −−−−→
t→0+

Nworse(y).

Then, as x < 0 =⇒ exp(x/t) −−−−→
t→0+

0, we have effectively

E
p
(1)
θ,y

[Y] −−−−→
t→0+

y +
∑

y′∈Nbetter(y)

q(y,y′) · (y′ − y).

High temperature limit. As ∀x ∈ R, exp(x/t) −−−→
t→∞

1, we have:

N+
y (θ) −−−→

t→∞
{y′ ∈ N (y) | q(y′,y) > q(y,y′)} , and N−

y (θ) −−−→
t→∞

{y′ ∈ N (y) | q(y′,y) ≤ (y,y′)} .

Thus, we have:

E
p
(1)
θ,y

[Y] −−−→
t→∞

y +
∑

y′|q(y′,y)≤(y,y′)

q(y′,y) · (y′ − y) +
∑

y′|q(y′,y)>(y,y′)

q(y,y′) · (y′ − y),

which gives effectively:

E
p
(1)
θ,y

[Y] −−−→
t→∞

y +
∑

y′∈N (y)

min [q(y,y′), q(y′,y)] · (y′ − y).

44

	Introduction
	Background and Related Work
	Problem setup
	Combinatorial optimization as a layer
	Contrastive divergences

	Local search-based MCMC layers
	From local search to MCMC
	Mixing neighborhood systems

	Loss functions and theoretical analysis
	Negative log-likelihood and associated Fenchel-Young loss
	Empirical risk minimization
	Associated Fenchel-Young loss with a single MCMC iteration
	Convergence analysis in the unconditional setting

	Numerical experiments
	Dynamic vehicle routing
	Learning to predict binary vectors

	Conclusion
	Experiments on empirical convergence of gradients and parameters
	Polytopes and corresponding oracles
	Neighborhood graphs
	Convergence to exact gradients
	Convergence to exact parameters

	Additional material
	Fenchel-Young loss for K=1 in the unconditional setting
	Properties of the expected first iterate
	Markov chain initialization
	Proposal distribution design for the DVRPTW

	Details on the DVRPTW
	Overview of the challenge.
	Reduction to supervised learning.
	Perturbation-based baseline.
	Proposed approach.
	Performance metric.
	Results.
	Additional experimental details and results for sec:dvrptw

	Proofs
	Proof of eq:stationarygibbs
	Proof of prop:layerproperties
	Proof of prop:mixturesa
	Proof of strict convexity
	Proof of prop:asympnormality
	Proof of prop:stochasticgradientestimate
	Proofs of prop:1stepfylsup and prop:1stepfylunsup
	Proof of prop:onestepproperties

