
000 LEARNING WITH LOCAL SEARCH MCMC LAYERS

001

002

003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 ABSTRACT

009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053

Integrating combinatorial optimization layers into neural networks has recently attracted significant research interest. However, many existing approaches lack theoretical guarantees or fail to perform adequately when relying on inexact solvers. This is a critical limitation, as many operations research problems are NP-hard, often necessitating the use of neighborhood-based local search heuristics. In this paper, we introduce a theoretically-principled approach for learning with such inexact solvers. Inspired by the connection between simulated annealing and Metropolis-Hastings, we propose to transform problem-specific neighborhood systems used in local search heuristics into proposal distributions, implementing MCMC on the combinatorial space of feasible solutions. This allows us to construct differentiable, stochastic combinatorial layers and associated loss functions. Replacing an exact solver by a local search strongly reduces the computational burden of learning on many applications. **We demonstrate our approach on a dynamic vehicle routing problem with time windows, a multi-dimensional knapsack problem, and on binary vector and k-subset prediction tasks.**

1 INTRODUCTION

Models that combine neural networks and combinatorial optimization have recently attracted significant attention (Sadana et al., 2024; Mandi et al., 2024; Donti et al., 2017; Berthet et al., 2020; Bengio et al., 2020; Blondel and Roulet, 2024). They enrich combinatorial optimization algorithms with context-dependent features, making decisions more resilient to uncertainty. An important subset of this line of research integrates, within a neural network, a linear programming layer of the form:

$$\boldsymbol{\theta} \mapsto \underset{\mathcal{Y}}{\operatorname{argmax}} \langle \boldsymbol{\theta}, \mathbf{y} \rangle \subseteq \underset{\mathbf{y} \in \operatorname{conv}(\mathcal{Y})}{\operatorname{argmax}} \langle \boldsymbol{\theta}, \mathbf{y} \rangle, \quad (1)$$

where \mathcal{Y} is a finite set of feasible outputs. In the graphical models and structured prediction literature, Eq. (1) is known as the *maximum a posteriori* (MAP) problem (Wainwright and Jordan, 2008). Such layers enable the transformation of learned, continuous latent representations into structured, discrete outputs, that satisfy complex constraints. **This setting is known as *decision-focused learning* (DFL), where a fixed solver is parameterized by $\boldsymbol{\theta}$, predicted from features \mathbf{x} , in contrast to *neural combinatorial optimization* (NCO), which aims to replace the solver entirely with ML-based heuristics.**

The main challenge, however, lies in end-to-end training: as piecewise-constant functions, such layers lack meaningful gradients. Many relaxations and loss functions have been proposed for this setting; see Section 2 for a review. Table 1 contrasts them based on the type of oracle they assume access to. Some rely on an oracle for a regularized version of Eq. (1), while others use a solver for the original problem (i.e., a MAP oracle), performing multiple calls per instance for smoothing reasons. However, theoretical guarantees for these approaches typically assume exact solutions.

Unfortunately, many problems in operations research are NP-hard in nature, making exact oracles impractical. Instead, applications often rely on *local search heuristics* (e.g., simulated annealing), which iteratively generate and then accept or reject a neighbor of the current solution. We aim to provide a principled approach for learning with such inexact combinatorial solvers. This is crucial for exploiting popular heuristics from the operations research literature as layers in neural networks.

To do so, we open the solver "black box", by bridging local search heuristics and Markov chain Monte-Carlo (MCMC) methods. These lines of research have evolved quite separately, and their links remain unexploited for designing principled combinatorial optimization layers.

054
055 Table 1: The proposed approach leverages the neighborhood systems used by local search heuristics
056 (inexact solvers) to obtain a differentiable combinatorial layer when usual oracles are not available.
057

	Regularization	Oracle	Approach
Differentiable DP (2009; 2018)	Entropy	Exact marginal	DP
SparseMAP (2018)	Quadratic	Exact MAP	Frank-Wolfe
Barrier FW (2015)	TRW Entropy	Exact MAP	Frank-Wolfe
IntOpt (2020)	Log barrier	Interior point solver	Primal-Dual
Perturbed optimizers (2020)	Implicit via noise	Exact MAP	Monte-Carlo
DYS-net (2024)	Quadratic	Projection oracles	Davis-Yin Splitting
Blackbox solvers (2020)	None	Exact MAP	Interpolation
Contrastive divergences (2000)	Entropy	Gibbs / Langevin sampler	MCMC
Proposed	Entropy	Local search	MCMC

066 We make the following contributions:

- 068 We integrate local search heuristics as differentiable, stochastic layers in neural networks, by
069 converting their neighborhood systems to proposal distributions, turning the local search oracle
070 into a discrete MCMC sampler over the combinatorial set of solutions.
- 071 We extend our framework to handle local search heuristics that leverage a diversity of neighbor-
072 hood systems, enabling this class of powerful solvers to be used as a unified MCMC sampler.
- 073 We show that the proposed layer yields stochastic gradients of a Fenchel-Young loss (Blondel
074 et al., 2020) (even with a single MCMC iteration), leading to principled learning algorithms for
075 conditional and unconditional settings, for which we provide a convergence analysis.
- 076 The proposed layer reduces the computational bottleneck, especially with few MCMC iterations,
077 enabling larger training instances and better generalization at scale (Parmentier, 2021; 2022).
- 078 We demonstrate our approach on the EURO Meets NeurIPS 2022 challenge (Kool et al., 2023), a
079 large-scale dynamic vehicle routing problem with time windows, and on binary vector prediction
080 tasks. Abundant additional experiments are included in Section A of the appendix.

081 **2 BACKGROUND AND RELATED WORK**

082 **2.1 PROBLEM SETUP**

085 In this paper, our goal is to learn models that incorporate optimization layers of the form:

$$\hat{y} : \theta \mapsto \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \langle \theta, y \rangle + \varphi(y), \quad (2)$$

088 where $\mathcal{Y} \subset \mathbb{R}^d$ is a finite but combinatorially-large set, and φ encodes structural costs or preferences
089 on outputs (e.g., routing distances, fixed costs) that do not depend on θ (not to be confused with a
090 regularization term). This formulation therefore extends the standard linear objective in Eq. (1) by
091 allowing additional problem-specific structure.

092 We focus on settings where Eq. (2) is intractable and only heuristic algorithms are available to obtain
093 an approximate solution. Our goal is to integrate NP-hard problems arising in operations research
094 (e.g., routing, scheduling, network design), within a neural network. Unfortunately, many existing
095 approaches lack formal guarantees or simply do not work when used with inexact solvers.

097 We distinguish between two settings. In the unconditional setting, our goal will be to learn $\theta \in \mathbb{R}^d$
098 from observations $y_1, \dots, y_N \in \mathcal{Y}$. In the conditional setting, we will assume that $\theta = g_W(x)$ and
099 our goal will be to learn the parameters W from observation pairs $(x_1, y_1), \dots, (x_N, y_N)$.

100 **2.2 COMBINATORIAL OPTIMIZATION AS A LAYER**

102 Since the layer defined in Eq. (1) is piecewise constant, a frequent strategy consists in introducing
103 regularization in the problem so as to obtain a continuous relaxation. In some cases, we may have
104 access to an oracle for directly solving the regularized problem. For instance, dynamic programming
105 solvers can handle entropic regularization through a change of semi-ring (Li and Eisner, 2009) or
106 algorithmic smoothing (Mensch and Blondel, 2018). As another example, interior point solvers can
107 be used to compute a logarithmic barrier regularized solution (Mandi and Guns, 2020). More recently,
108 McKenzie et al. (2024) handle quadratic regularization by leveraging projection oracles.

108 We focus on settings where only a MAP oracle is available for the original, unregularized optimization
109 problem. While prior work is often limited to the linear form in Eq. (1) for the latter, our framework
110 also handles the more general Eq. (2). Frank-Wolfe-like methods can be used to solve the regularized
111 problem using only MAP oracle calls (Niculae et al., 2018; Krishnan et al., 2015). Another strategy
112 consists in injecting noise perturbations (Berthet et al., 2020) in the oracle, which can be shown to
113 be implicitly using regularization. In both cases, a Fenchel-Young loss can be associated, enabling
114 principled learning. However, formal guarantees require an exact oracle, often called multiple times
115 during the forward pass. Our proposal enjoys guarantees even with inexact solvers and a single call.

116 Regarding differentiation, several strategies are possible. When the approach only needs to differ-
117 entiate through a (regularized) max, as is the case of Fenchel-Young losses, we can use Danskin’s
118 theorem (Danskin, 1966). When the approach needs to differentiate a (regularized) argmax, we can
119 either use autodiff on the unrolled solver iterations or implicit differentiation (Amos and Kolter, 2017;
120 Agrawal et al., 2019; Blondel et al., 2022). Differently, Vlastelica et al. (2020) propose to compute
121 gradients via continuous interpolation of the solver.

122 2.3 CONTRASTIVE DIVERGENCES

124 An alternative approach to learning in combinatorial spaces is to use energy-based models (EBMs)
125 (Lecun et al., 2006), which define a distribution over outputs via a parameterized energy function E_θ :

$$126 \quad p_\theta(\mathbf{y}) \propto \exp(E_\theta(\mathbf{y})), \quad \text{with} \quad \nabla_\theta \log p_\theta(\mathbf{y}) = \nabla_\theta E_\theta(\mathbf{y}) - \mathbb{E}_{Y \sim p_\theta} [\nabla_\theta E_\theta(Y)].$$

128 Therefore, we can perform maximum likelihood estimation (MLE) if we can sample from p_θ , but this
129 is hard both in continuous and combinatorial settings, due to its intractable normalization constant.
130 Contrastive divergences (Hinton, 2000; Carreira-Perpiñán and Hinton, 2005; Song and Kingma,
131 2021) address this by using MCMC to obtain (biased) stochastic gradients. Originally developed for
132 restricted Boltzmann machines with $\mathcal{Y} = \{0, 1\}^d$ and a Gibbs sampler, they have also been applied
133 in continuous domains via Langevin dynamics (Du and Mordatch, 2020; Du et al., 2021).

134 **MCMC in discrete spaces.** Contrastive divergences rely on MCMC to sample the model distribu-
135 tion. Unfortunately, designing MCMC samplers is often case-by-case, and discrete domains have
136 received less attention than continuous ones. Recent efforts adapt continuous techniques, such as
137 Langevin dynamics (Zhang et al., 2022; Sun et al., 2023a) or gradient-informed proposals (Grathwohl
138 et al., 2021; Rhodes and Gutmann, 2022), to discrete settings. However, these works often assume
139 simple state spaces (e.g., the hypercube or categorical codebooks), and do not handle complex
140 constraints ubiquitous in operations research. Sun et al. (2023b) allow structured spaces via relaxed
141 constraints in the energy function, yet ignore these structures in their proposal supports. Notably, we
142 emphasize that all these works focus on sampling, not on designing differentiable MCMC layers.

143 3 LOCAL SEARCH-BASED MCMC LAYERS

146 This section introduces our core contribution. We first connect local search heuristics and MCMC
147 methods, then use this link to define a stochastic layer based on a single neighborhood system
148 (Algorithm 1), and subsequently generalize it to leverage diverse neighborhood systems (Algorithm 2).

149 3.1 FROM LOCAL SEARCH TO MCMC

151 **Local search and neighborhood systems.** Local search heuristics (Gendreau et al., 2010) iteratively
152 generate a neighbor $\mathbf{y}' \in \mathcal{N}(\mathbf{y}^{(k)})$ of the current solution $\mathbf{y}^{(k)}$, and either accept it or reject it based
153 on an acceptance rule, that depends on the objective function, $\mathbf{y}^{(k)}$ and \mathbf{y}' . In this context, a
154 neighborhood system \mathcal{N} defines, for each feasible solution $\mathbf{y} \in \mathcal{Y}$, a set of neighbors $\mathcal{N}(\mathbf{y}) \subseteq \mathcal{Y}$.

156 Neighborhoods are problem-specific, and must respect the structure of the problem, i.e., must maintain
157 solution feasibility. They are typically defined implicitly via a set of allowed *moves* from \mathbf{y} . For
158 instance, Table 2 lists example moves for a vehicle routing problem.

159 Formally, we denote the neighborhood graph by $G_{\mathcal{N}} := (\mathcal{Y}, E_{\mathcal{N}})$, where edges are defined by \mathcal{N} . We
160 assume the graph is undirected, i.e., $\mathbf{y}' \in \mathcal{N}(\mathbf{y})$ if and only if $\mathbf{y} \in \mathcal{N}(\mathbf{y}')$, and without self-loops –
161 i.e., $\mathbf{y} \notin \mathcal{N}(\mathbf{y})$. A stochastic neighbor generating function is also provided, in the form of a proposal
distribution $q(\mathbf{y}', \cdot)$ with support either equal to $\mathcal{N}(\mathbf{y})$ or $\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\}$.

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Algorithm 1 SA / MH as a layer

Inputs: $\theta \in \mathbb{R}^d$, $\mathbf{y}^{(0)} \in \mathcal{Y}$, (t_k) , $K \in \mathbb{N}$, \mathcal{N} , q
for $k = 0 : K$ **do**
 Sample a neighbor in $\mathcal{N}(\mathbf{y}^{(k)})$:
 $\mathbf{y}' \sim q(\mathbf{y}^{(k)}, \cdot)$
 $\alpha(\mathbf{y}^{(k)}, \mathbf{y}') \leftarrow 1$ (SA) or
 $\alpha(\mathbf{y}^{(k)}, \mathbf{y}') \leftarrow \frac{q(\mathbf{y}', \mathbf{y}^{(k)})}{q(\mathbf{y}^{(k)}, \mathbf{y}')} \text{ (MH)}$
 $U \sim \mathcal{U}([0, 1])$
 $\Delta^{(k)} \leftarrow \langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}') - \langle \theta, \mathbf{y}^{(k)} \rangle - \varphi(\mathbf{y}^{(k)})$
 $p^{(k)} \leftarrow \alpha(\mathbf{y}^{(k)}, \mathbf{y}') \exp(\Delta^{(k)} / t_k)$
 If $U \leq p^{(k)}$, accept move: $\mathbf{y}^{(k+1)} \leftarrow \mathbf{y}'$
 If $U > p^{(k)}$, reject move: $\mathbf{y}^{(k+1)} \leftarrow \mathbf{y}^{(k)}$
end for
Output: $\hat{\mathbf{y}}(\theta) \approx \mathbf{y}^{(K)}$ (SA) or
 $\hat{\mathbf{y}}(\theta) = \mathbb{E}_{\pi_{\theta, t}} [Y] \approx \frac{1}{K} \sum_{k=1}^K \mathbf{y}^{(k)}$ (MH)

181

182

183

184

Link between simulated annealing and Metropolis-Hastings. A well-known example of local search heuristic is simulated annealing (SA) (Kirkpatrick et al., 1983). It is intimately related to Metropolis-Hastings (MH) (Hastings, 1970), an instance of a MCMC algorithm. We provide a unified view of both in Algorithm 1.

The difference lies in the acceptance rule, which incorporates a proposal correction ratio for MH, and in the choice of the sequence of temperatures $(t_k)_{k \in \mathbb{N}}$. In the case of SA, it is chosen to verify $t_k \rightarrow 0$. In the case of MH, it is such that $t_k \equiv t$. In this case, the iterates $\mathbf{y}^{(k)}$ of Algorithm 1 follow a time-homogenous Markov chain on \mathcal{Y} , defined by the following transition kernel:

$$P_{\theta, t}(\mathbf{y}, \mathbf{y}') = \begin{cases} q(\mathbf{y}, \mathbf{y}') \min \left[1, \frac{q(\mathbf{y}', \mathbf{y})}{q(\mathbf{y}, \mathbf{y}')} \exp \left(\frac{\langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}') - \langle \theta, \mathbf{y} \rangle - \varphi(\mathbf{y})}{t} \right) \right] & \text{if } \mathbf{y}' \in \mathcal{N}(\mathbf{y}), \\ 1 - \sum_{\mathbf{y}'' \in \mathcal{N}(\mathbf{y})} P_{\theta, t_k}(\mathbf{y}, \mathbf{y}'') & \text{if } \mathbf{y}' = \mathbf{y}, \\ 0 & \text{else.} \end{cases} \quad (3)$$

In past work, the link between the two algorithms has primarily been used to show that SA converges to the exact MAP solution in the limit of infinite iterations (Mitra et al., 1986; Faigle and Schrader, 1988). Under mild conditions – if the neighborhood graph $G_{\mathcal{N}}$ is connected and the chain is aperiodic, the iterates $(\mathbf{y}^{(k)})_{k \in \mathbb{N}}$ of Algorithm 1 (MH case) converge in distribution to the Gibbs distribution (see Section E.1 for a proof):

$$\pi_{\theta, t}(\mathbf{y}) \propto \exp([\langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})] / t). \quad (4)$$

201

202

Proposed layer. Algorithm 1 and this result motivate us to define the combinatorial MCMC layer

$$\hat{\mathbf{y}}_t(\theta) := \mathbb{E}_{\pi_{\theta, t}} [Y], \quad (5)$$

203

204

where $\theta \in \mathbb{R}^d$ are logits and $t > 0$ is a temperature parameter, defaulting to $t = 1$. Computing $\hat{\mathbf{y}}_t(\theta)$ is known as the *marginal inference* problem in the graphical models literature. Naturally, the estimate of $\hat{\mathbf{y}}_t(\theta)$ returned by Algorithm 1 (MH case) is biased, as the Markov chain cannot perfectly mix in a finite number of iterations, except if it is initialized at $\pi_{\theta, t}$. In Section 4, we will show that this does not hinder the convergence of the proposed learning algorithms. The next proposition, proved in Section E.2, states some useful properties of the proposed layer.

211

212

Proposition 1. Let $\theta \in \mathbb{R}^d$. We have the following properties:

213

214

215

$$\hat{\mathbf{y}}_t(\theta) \in \text{relint}(\mathcal{C}), \quad \hat{\mathbf{y}}_t(\theta) \xrightarrow[t \rightarrow 0^+]{\text{argmax}_{\mathbf{y} \in \mathcal{Y}}} \langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y}), \quad \text{and} \quad \hat{\mathbf{y}}_t(\theta) \xrightarrow[t \rightarrow \infty]{1/|\mathcal{Y}|} \frac{1}{|\mathcal{Y}|} \sum_{\mathbf{y} \in \mathcal{Y}} \mathbf{y}.$$

Moreover, $\hat{\mathbf{y}}_t$ is differentiable and its Jacobian matrix is given by $J_{\theta} \hat{\mathbf{y}}_t(\theta) = \frac{1}{t} \text{cov}_{\pi_{\theta, t}} [Y]$.

216 3.2 MIXING NEIGHBORHOOD SYSTEMS
217

218 Central to local search algorithms in combinatorial optimization is the use of multiple neighborhood
219 systems to more effectively explore the solution space (Mladenović and Hansen, 1997; Blum and
220 Roli, 2003). In this section, we propose a tractable way to incorporate such diversity of neighborhood
221 systems into the combinatorial MCMC layer, while preserving the correct stationary distribution.

222 **Definitions.** Let $(\mathcal{N}_s)_{s=1}^S$ be a set of different neighborhood systems. Typically, all neighborhood
223 systems are not defined on all solutions $\mathbf{y} \in \mathcal{Y}$, so we note $Q(\mathbf{y}) \subseteq \llbracket 1, S \rrbracket$ the set of neighborhood
224 systems defined on \mathbf{y} (i.e., the set of allowed moves on \mathbf{y}). Let $(q_s)_{s \in Q(\mathbf{y})}$ be the corresponding
225 proposal distributions, such that the support of $q_s(\mathbf{y}, \cdot)$ is either $\mathcal{N}_s(\mathbf{y})$ or $\mathcal{N}_s(\mathbf{y}) \cup \{\mathbf{y}\}$. Let $\bar{\mathcal{N}}$ be
226 the aggregate neighborhood system defined by $\bar{\mathcal{N}} : \mathbf{y} \mapsto \bigcup_{s \in Q(\mathbf{y})} \mathcal{N}_s(\mathbf{y})$.

227 **Computational challenge of neighborhood mixing.** A standard way to combine these neighborhood
228 systems would be to use Algorithm 1 by defining an aggregated proposal $q(\mathbf{y}, \cdot)$ as, e.g.:

229
$$q(\mathbf{y}, \mathbf{y}') := \frac{1}{|Q(\mathbf{y})|} \sum_{s \in Q(\mathbf{y})} q_s(\mathbf{y}, \mathbf{y}'), \quad \text{giving: } \alpha(\mathbf{y}, \mathbf{y}') = \frac{|Q(\mathbf{y})|}{|Q(\mathbf{y}')|} \cdot \frac{\sum_{s \in Q(\mathbf{y}')} q_s(\mathbf{y}', \mathbf{y})}{\sum_{s \in Q(\mathbf{y})} q_s(\mathbf{y}, \mathbf{y}')}.$$
230

231 However, this leads to intractable updates. Indeed, computing the correction ratio $\alpha(\mathbf{y}, \mathbf{y}')$ is
232 prohibitively expensive as it involves **summing the forward proposal probabilities** for all move types
233 in $Q(\mathbf{y})$ and the reverse probabilities for all move types in $Q(\mathbf{y}')$. The difficulty is that multiple,
234 distinct proposal types can generate the same solution \mathbf{y}' from \mathbf{y} . For example, in our vehicle routing
235 application in Section 5.1, relocating a pair of clients before the first one in a route of three gives the
236 same solution \mathbf{y}' as relocating the first client at the last position (see the `relocate` and `relocate`
237 `pair` moves from Table 2). Identifying and calculating all these potential forward and reverse
238 pathways for every step is a significant computational hurdle.

239 **Proposed efficient sampler.** In contrast, the update we propose in Algorithm 2 circumvents this
240 summation entirely by sampling the move type s first. It only requires computing the single individual
241 ratio $\alpha_s(\mathbf{y}, \mathbf{y}') := \frac{|Q(\mathbf{y})|}{|Q(\mathbf{y}')|} \cdot \frac{q_s(\mathbf{y}', \mathbf{y})}{q_s(\mathbf{y}, \mathbf{y}')}$ for the unique move type s that was actually sampled.

242 **Proposition 2.** If each neighborhood graph $G_{\mathcal{N}_s}$ is undirected and without self-loops, and
243 the aggregate neighborhood graph $G_{\bar{\mathcal{N}}}$ is connected, the iterations $(\mathbf{y}^{(k)})_{k \in \mathbb{N}}$ produced by
244 Algorithm 2 follow a Markov chain with unique stationary distribution $\pi_{\theta, t}$.

245 See Section E.3 for the proof. Importantly, our method is not an approximation: it targets the exact
246 same stationary distribution as the naive approach, but does so efficiently. Furthermore, only the
247 aggregate neighborhood graph $G_{\bar{\mathcal{N}}}$ is required to be connected. This enables combining neighborhood
248 systems \mathcal{N}_s that could not connect \mathcal{Y} if used individually, and an irreducible Markov chain can be
249 obtained by mixing the proposal distributions of reducible ones. As a concrete example, the moves
250 used as proposals in our dynamic vehicle routing experiment (Section 5.1) are defined in Table 2.

251 4 LOSS FUNCTIONS AND THEORETICAL ANALYSIS

252 Building upon the differentiable MCMC layer developed in Section 3, this section constructs the
253 corresponding learning framework. We derive principled Fenchel-Young loss functions for our layer,
254 present practical stochastic gradient algorithms for both conditional and unconditional learning, and
255 provide theoretical convergence guarantees for these algorithms.

256 4.1 NEGATIVE LOG-LIKELIHOOD AND ASSOCIATED FENCHEL-YOUNG LOSS

257 We now show that the proposed layer $\hat{y}_t(\theta)$ can be viewed as the solution of a regularized optimization
258 problem on $\mathcal{C} = \text{conv}(\mathcal{Y})$. Let $A_t(\theta) := t \cdot \log \sum_{\mathbf{y} \in \mathcal{Y}} \exp([\langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})]/t)$ be the cumulant
259 function (Wainwright and Jordan, 2008) associated to $\pi_{\theta, t}$, scaled by t . We define the regularization
260 function Ω_t and the corresponding Fenchel-Young loss (Blondel et al., 2020) as:

261
$$\Omega_t(\mu) := A_t^*(\mu) = \sup_{\theta \in \mathbb{R}^d} \langle \mu, \theta \rangle - A_t(\theta), \quad \text{and} \quad \ell_t(\theta; \mathbf{y}) := (\Omega_t)^*(\theta) + \Omega_t(\mathbf{y}) - \langle \theta, \mathbf{y} \rangle.$$
262

270 Since $\Omega_t = A_t^*$ is strictly convex on $\text{relint}(\mathcal{C})$ (see Section E.4 for a proof) and $\hat{\mathbf{y}}_t(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} A_t(\boldsymbol{\theta})$,
271 the proposed layer is the solution of the regularized optimization problem

$$273 \quad \hat{\mathbf{y}}_t(\boldsymbol{\theta}) = \underset{\boldsymbol{\mu} \in \mathcal{C}}{\operatorname{argmax}} \{ \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle - \Omega_t(\boldsymbol{\mu}) \}, \quad (6)$$

274 the Fenchel-Young loss ℓ_t is differentiable, satisfies $\ell_t(\boldsymbol{\theta}, \mathbf{y}) = 0 \Leftrightarrow \hat{\mathbf{y}}_t(\boldsymbol{\theta}) = \mathbf{y}$, and has gradient
275 $\nabla_{\boldsymbol{\theta}} \ell_t(\boldsymbol{\theta}; \mathbf{y}) = \hat{\mathbf{y}}_t(\boldsymbol{\theta}) - \mathbf{y}$ (Blondel et al., 2020). It is therefore equivalent, up to a constant, to the
276 negative log-likelihood loss, as we have $-\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}, t}(\mathbf{y}) = (\hat{\mathbf{y}}_t(\boldsymbol{\theta}) - \mathbf{y})/t$. Algorithms 1 and 2 can
277 thus be used to perform MLE, by returning a (biased) stochastic estimate of the gradient of ℓ_t .
278

279 4.2 EMPIRICAL RISK MINIMIZATION

281 In the conditional learning setting, we are given observations $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N \in (\mathbb{R}^p \times \mathcal{Y})^N$, and want
282 to fit a model $g_W: \mathbb{R}^p \rightarrow \mathbb{R}^d$ such that $\hat{\mathbf{y}}_t(g_W(\mathbf{x}_i)) \approx \mathbf{y}_i$. This is motivated by a generative model
283 where, for some weights $W_0 \in \mathbb{R}^p$, the data is generated with $\mathbf{y}_i \sim \pi_{g_{W_0}(\mathbf{x}_i), t}$. We aim at minimizing
284 the empirical risk L_N , defined below along with its exact gradient:
285

$$286 \quad L_N(W) := \frac{1}{N} \sum_{i=1}^N \ell_t(g_W(\mathbf{x}_i); \mathbf{y}_i), \quad \text{with} \quad \nabla_W L_N(W) = \frac{1}{N} \sum_{i=1}^N J_W g_W(\mathbf{x}_i) (\hat{\mathbf{y}}_t(g_W(\mathbf{x}_i)) - \mathbf{y}_i).$$

289 **Doubly stochastic gradient estimator.** In practice, we cannot compute the exact gradient above.
290 Using Algorithm 1 or 2 to get a MCMC estimate of $\hat{\mathbf{y}}_t(g_W(\mathbf{x}_i))$, we propose the following estimator:

$$291 \quad \nabla_W L_N(W) \approx J_W g_W(\mathbf{x}_i) \left(\frac{1}{K} \sum_{k=1}^K \mathbf{y}_i^{(k)} - \mathbf{y}_i \right),$$

294 where $\mathbf{y}_i^{(k)}$ is the k -th iterate of the algorithm with maximization direction $\boldsymbol{\theta}_i = g_W(\mathbf{x}_i)$ and
295 temperature t . This estimator is doubly stochastic, since we sample both data points and Markov
296 iterations, and can be seamlessly used with batches. The term $J_W g_W(\mathbf{x}_i)$ is computed via autodiff.
297

298 **Markov chain initialization.** Following the contrastive divergence literature (Hinton, 2000), in
299 the conditional setting, we initialize the Markov chains at the corresponding ground-truth, by setting
300 $\mathbf{y}_i^{(0)} = \mathbf{y}_i$. In the unconditional setting, we use a persistent initialization (Tieleman, 2008) instead.
301

302 4.3 ASSOCIATED FENCHEL-YOUNG LOSS WITH A SINGLE MCMC ITERATION

304 To obtain an unbiased gradient estimator for the Fenchel-Young loss ℓ_t associated with $\hat{\mathbf{y}}_t$, the MCMC
305 sampler must be run until it reaches its stationary distribution $\pi_{\boldsymbol{\theta}, t}$. This requirement makes any
306 practical estimator with a finite number of steps K inherently biased.

307 Although our convergence analysis in Section 4.4 shows that this bias does not hinder the convergence
308 of the proposed learning algorithms, we now demonstrate that when a single MCMC iteration is used
309 ($K = 1$), there exists *another* target-dependent Fenchel-Young loss such that the gradient estimator
310 is *unbiased* with respect to that loss. See Section E.7 for the construction of Ω_y and the proof.

311 **Proposition 3** (Existence of a Fenchel-Young loss when $K = 1$). *Let $\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)}$ denote the distribution
312 of the first iterate of the Markov chain defined by Eq. (3), with proposal distribution q and
313 initialized at ground-truth $\mathbf{y} \in \mathcal{Y}$. There exists a target-dependent regularization function Ω_y
314 with the following properties: Ω_y is $t/\mathbb{E}_{q(\mathbf{y}, \cdot)}\|\mathbf{Y} - \mathbf{y}\|_2^2$ -strongly convex, it is such that:*

$$316 \quad \mathbb{E}_{\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)}}[Y] = \underset{\boldsymbol{\mu} \in \text{conv}(\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\})}{\operatorname{argmax}} \{ \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle - \Omega_y(\boldsymbol{\mu}) \},$$

318 and the Fenchel-Young loss ℓ_{Ω_y} generated by Ω_y is $\mathbb{E}_{q(\mathbf{y}, \cdot)}\|\mathbf{Y} - \mathbf{y}\|_2^2/t$ -smooth in its first
319 argument, and such that $\nabla_{\boldsymbol{\theta}} \ell_{\Omega_y}(\boldsymbol{\theta}; \mathbf{y}) = \mathbb{E}_{\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)}}[Y] - \mathbf{y}$.
320

322 A similar result in the unconditional setting with data-based initialization is given in Proposition 6. In
323 contrast, Sutskever and Tieleman (2010) showed that the expected CD-1 update with Gibbs sampling
324 for restricted Boltzmann machines is not the gradient of any function, let alone a convex one.

324 Table 2: Local search moves used for creating neighborhoods in our vehicle routing experiments.
325

Name	Description
relocate	Removes a single request from its route and re-inserts it at a different position in the solution.
relocate pair	Removes a pair of consecutive requests from their route and re-inserts them at a different position in the solution.
swap	Exchanges the position of two requests in the solution.
swap pair	Exchanges the positions of two pairs of consecutive requests in the solution.
2-opt	Reverses a route segment.
serve request	Inserts a currently unserved request into the solution.
remove request	Removes a request from the solution.

335 4.4 CONVERGENCE ANALYSIS IN THE UNCONDITIONAL SETTING
336

337 In the unconditional setting, we are given observations $(\mathbf{y}_i)_{i=1}^N \in \mathcal{Y}^N$ and want to fit a model $\pi_{\theta,t}$,
338 motivated by an underlying generative model such that $\mathbf{y}_i \sim \pi_{\theta_0,t}$ for some true parameter θ_0 .
339 We assume here that $\mathcal{C} = \text{conv}(\mathcal{Y})$ is of full dimension in \mathbb{R}^d (if not, the model is specified only
340 up to vectors μ orthogonal to the affine subspace spanned by \mathcal{C} , as $\pi_{\theta+\mu,t} = \pi_{\theta,t}$). We have the
341 corresponding empirical L_N and population L_{θ_0} Fenchel-Young losses:

$$342 L_N(\theta; \mathbf{y}_1, \dots, \mathbf{y}_N) := \frac{1}{N} \sum_{i=1}^N \ell_t(\theta; \mathbf{y}_i), \quad L_{\theta_0}(\theta) := \mathbb{E}_{(\mathbf{y}_i)_{i=1}^N \sim (\pi_{\theta_0,t})^{\otimes N}} [L_N(\theta; \mathbf{y}_1, \dots, \mathbf{y}_N)],$$

345 which are minimized for θ such that $\hat{y}_t(\theta) = \bar{Y}_N := \frac{1}{N} \sum_{i=1}^N \mathbf{y}_i$, and for θ such that $\hat{y}_t(\theta) = \hat{y}_t(\theta_0)$,
346 respectively. Let θ_N^* as the minimizer of the empirical loss L_N . For it to be defined, we assume
347 that $\bar{Y}_N \in \text{int}(\mathcal{C})$ (which is always the case for N large enough, as $\pi_{\theta_0,t}$ has dense support on \mathcal{Y}). A
348 slight variation on Proposition 4.1 in [Berthet et al. \(2020\)](#) gives the following asymptotic normality:

349 **Proposition 4** (Convergence of the empirical loss minimizer to the true parameter).
350

$$351 \sqrt{N}(\theta_N^* - \theta_0) \xrightarrow[N \rightarrow \infty]{\mathcal{D}} \mathcal{N}\left(\mathbf{0}, t^2 \text{cov}_{\pi_{\theta_0,t}}[Y]^{-1}\right).$$

353 The proof is given in Section E.5. We now consider the sample size as fixed to N samples, and define
354 $\hat{\theta}_n$ as the n -th iterate of the following stochastic gradient algorithm:
355

$$356 \hat{\theta}_{n+1} = \hat{\theta}_n + \gamma_{n+1} \left[\bar{Y}_N - \frac{1}{K_{n+1}} \sum_{k=1}^{K_{n+1}} \mathbf{y}^{(n+1,k)} \right], \quad (7)$$

359 where $\mathbf{y}^{(n+1,k)}$ is the k -th iterate of Algorithm 1 with temperature t , maximization direction $\hat{\theta}_n$,
360 and initialized at $\mathbf{y}^{(n+1,1)} = \mathbf{y}^{(n,K_n)}$. This initialization corresponds to the persistent contrastive
361 divergences (PCD) algorithm ([Tieleman, 2008](#)), and is further discussed in Section B.3.

362 **Proposition 5** (Convergence of the stochastic gradient estimate). *Suppose the following hold
363 for the step sizes $(\gamma_n)_{n \geq 1}$, sample sizes $(K_n)_{n \geq 1}$, and proposal distribution q :*

365 **(i)** $\gamma_n = an^{-b}$, with $b \in (\frac{1}{2}, 1]$ and $a > 0$.

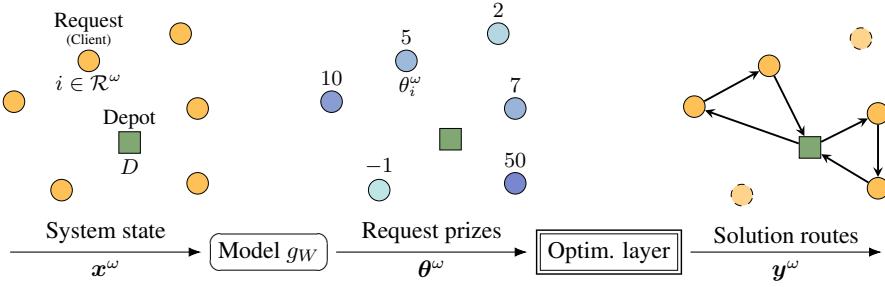
367 **(ii)** $K_{n+1} > \lfloor 1 + a' \exp(\frac{8R_C}{t} \|\hat{\theta}_n\|) \rfloor$, with $a' > 0$ and $R_C = \max_{\mathbf{y} \in \mathcal{Y}} \|\mathbf{y}\|$.

368 **(iii)** $\frac{1}{\sqrt{K_n}} - \frac{1}{\sqrt{K_{n-1}}} \leq a'' n^{-c}$, with $a'' > 0$ and $c > 1 - \frac{b}{2}$.

370 **(iv)** $q(\mathbf{y}, \mathbf{y}') = \begin{cases} \frac{1}{2d^*}, & \mathbf{y}' \in \mathcal{N}(\mathbf{y}), \\ 1 - \frac{d(\mathbf{y}')}{2d^*}, & \mathbf{y}' = \mathbf{y}, \\ 0, & \text{else,} \end{cases}$ where $d(\mathbf{y}) := |\mathcal{N}(\mathbf{y})|$ and $d^* := \max_{\mathbf{y} \in \mathcal{Y}} d(\mathbf{y})$.

374 **Then the iterates $\hat{\theta}_n$ defined by Eq. (7) converge almost surely:** $\hat{\theta}_n \xrightarrow{a.s.} \theta_N^*$.

375 See Section E.6 for the proof. The assumptions on q are used for obtaining a closed-form convergence
376 rate bound for the Markov chain, using graph-based geometric bounds ([Ingrassia, 1994](#)).



378
379
380
381
382
383
384
385
386
387
388 Figure 1: Overview of the vehicle routing pipeline, represented at request wave ω .
389
390

5 NUMERICAL EXPERIMENTS

5.1 DYNAMIC VEHICLE ROUTING

393 We empirically validate our approach on the dynamic vehicle routing problem with time windows
394 (DVRPTW) from the *EURO Meets NeurIPS 2022 Vehicle Routing Competition* (Kool et al., 2023). A
395 detailed introduction to the challenge with precise notations is given in Section C.
396

397 **Reduction to supervised learning.** In this DVRPTW, requests arrive in delivery waves ω , at the
398 start of which a dispatching and vehicle routing problem for the current set of requests \mathcal{R}^ω must
399 be solved, to get a feasible solution $y^\omega \in \mathcal{Y}(\mathcal{R}^\omega)$. Following Baty et al. (2023), we frame each
400 dispatching and routing problem as a prize-collecting (PC)-VRP, where a model g_W predicts a "prize"
401 vector θ^ω for serving each request. This PC-VRP fits the general formulation of Eq. (2):
402

$$\hat{y}(\theta^\omega) = \underset{\mathbf{y} \in \mathcal{Y}(\mathcal{R}^\omega)}{\operatorname{argmax}} \langle \theta^\omega, \mathbf{y} \rangle + \varphi(\mathbf{y}), \quad (8)$$

405 where $\varphi(\mathbf{y}) := -\langle \mathbf{c}, \mathbf{y} \rangle$ is the negative routing cost. The overall pipeline is shown in Fig. 1. The
406 model is trained to imitate an anticipative oracle f^* , i.e., we use its output as ground-truth for
407 supervised learning. We compute f^* by solving a static VRPTW where all future information in the
408 instance is revealed from the start, turning dispatching waves into time windows.
409

410 **Approach and baseline.** The baseline Baty et al. (2023), winner of the competition, relies on a
411 perturbation-based method (Berthet et al., 2020) with the state-of-the-art PC-HGS heuristic \tilde{y} (Vidal,
412 2022) as a combinatorial optimization layer. Since \tilde{y} is an inexact solver, the theoretical guarantees
413 granted by the framework of Berthet et al. (2020) no longer hold. Our approach instead uses a local
414 search MCMC layer to train g_W . We use a mixture of proposals (Algorithm 2) defined precisely
415 in Section C.5, derived from the local search moves used by the PC-HGS solver itself (which are
416 summarized in Table 2). At inference time, we follow the baseline, and use $f_W := \tilde{y} \circ g_W$.
417

418 **Results.** We use the competition's metric: the routing cost over full instances with multiple
419 dispatching waves, relative to the anticipative oracle f^* . In Fig. 2, initializing the Markov chain with
420 the ground-truth solution clearly outperforms a random start (even more so when refined by the fast
421 initialization heuristic used by \tilde{y}), and performance increases with the MCMC iteration number K .
422

423 In Table 3, we compare training methods under a fixed time budget for the layer's forward pass
424 (the main computational bottleneck). We observe that our approach significantly outperforms the
425 perturbation-based method in low time-limit regimes (1-100ms), thus enabling faster and more
426 efficient training. Full experimental details and additional results are in Section C.8.
427

428 Table 3: Best test relative cost (%) w.r.t. f^* for different training methods and time limits.
429

Time limit (ms)	1	5	10	50	100	1000
Perturbed inexact oracle	65.2 ± 5.8	13.1 ± 3.4	8.7 ± 1.9	6.5 ± 1.1	6.3 ± 0.76	5.5 ± 0.4
Proposed ($\mathbf{y}^{(0)} = \mathbf{y}$)	10.0 ± 1.7	12.0 ± 2.6	11.8 ± 2.8	9.1 ± 1.7	8.4 ± 1.7	7.7 ± 1.1
Proposed ($\mathbf{y}^{(0)} = \text{heuristic}(\mathbf{y})$)	7.8 ± 0.8	7.2 ± 0.6	6.3 ± 0.7	6.2 ± 0.8	5.9 ± 0.7	5.9 ± 0.6

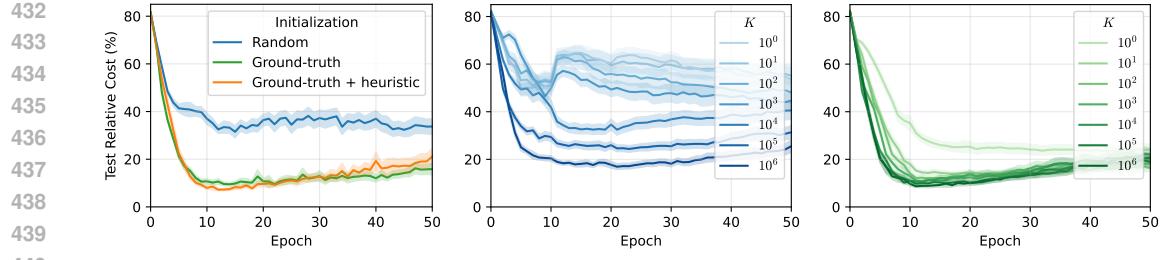


Figure 2: Test relative cost (%) w.r.t. f^* . **Left:** varying initialization method. **Center:** varying number of Markov iterations K , random initialization. **Right:** varying K , ground-truth initialization.

5.2 MULTI-DIMENSIONAL KNAPSACK PROBLEM

In this section, we evaluate our framework on the multi-dimensional knapsack problem (MKP) (Martello and Toth, 1990; Kellerer et al., 2004), which is a resource allocation problem involving subset selection under multiple constraints. We benchmark our method against a broader landscape of differentiable optimization baselines provided by the PyEPO library (Tang and Khalil, 2023). Experimental and methodological details are given in Section D.

Problem formulation. We consider the decision-focused learning setup where the goal is to select a subset of items to maximize a total value while respecting M capacity constraints. The item values θ are predicted from features \mathbf{x} . Formally, the combinatorial optimization problem is defined as:

$$\begin{aligned} \hat{\mathbf{y}}(\theta) &:= \underset{\mathbf{y} \in \{0,1\}^d}{\operatorname{argmax}} \sum_{i=1}^d \theta_i y_i = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \theta, \mathbf{y} \rangle, \\ \text{s.t. } \forall j \in [M], \sum_{i=1}^d w_{i,j} y_i &\leq C_j \end{aligned} \quad (9)$$

where $\theta = g_W(\mathbf{x}) \in \mathbb{R}^d$ are the item values, $w_{i,j} \geq 0$ is the weight of item i in dimension j , and C_j is the capacity of dimension j . The feasible set is $\mathcal{Y} := \{\mathbf{y} \in \{0,1\}^d \mid \forall j \in [M], \sum_{i=1}^d w_{i,j} y_i \leq C_j\}$. We are given a training set $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ (the SPO+ baseline also requires access to the true values θ_i). At test time, given only \mathbf{x} , the goal is to predict \mathbf{y} with minimal regret compared to the ground-truth.

Proposed layer. For our Local Search-MCMC layer $\hat{\mathbf{y}}_t$, we use Algorithm 2 with ground-truth initialization, temperature $t = 1.0$, and a mixture of three proposal distributions, detailed in Section D.1.

Baselines. We compare against four established decision-focused learning methods from the PyEPO library: smart predict-then-optimize (SPO+, Elmachtoub and Grigas (2020)), perturbed optimizers using $K = 5$ Monte-Carlo samples (PFY, Berthet et al. (2020)), negative identity backpropagation (NID, Sahoo et al. (2023)), and noise-contrastive estimation (NCE, Mulamba et al. (2021)).

Compute and performance benchmark. We generate a dataset $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ using PyEPO with $N = 2000$, $d = 100$ and $J = 50$ (we also give θ_i to the SPO+ loss). Our approach achieves competitive test relative regret (Fig. 3, left) while drastically reducing the computational burden (Fig. 3, center). The variance of the LS-MCMC gradients remains consistently lower than that of other methods (Fig. 3, right), showing that the proposed method provides a stable signal for learning.

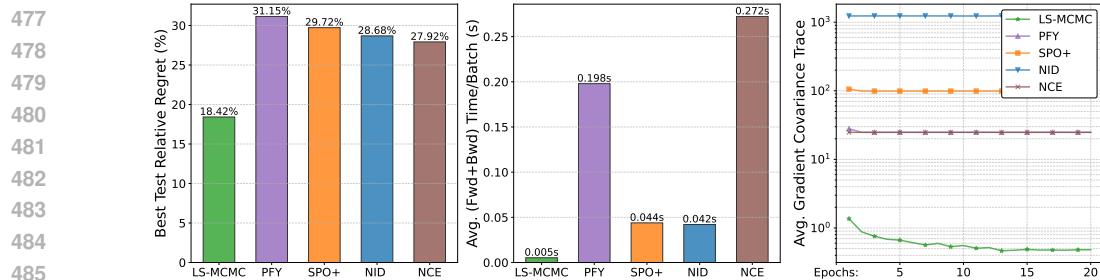
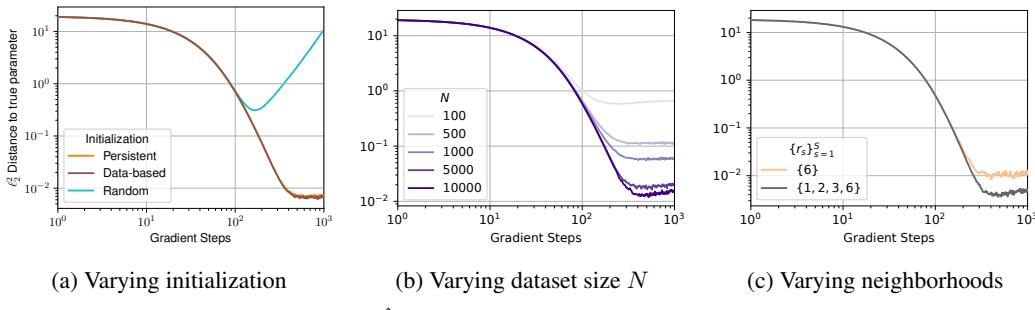


Figure 3: Benchmark results on the MKP.

486 5.3 LEARNING TO PREDICT BINARY VECTORS
487

488 **Setup.** To further validate the proposed gradient estimators, we use a synthetic unconditional learning
489 task with hypercube output space, $\mathcal{Y} = \{0, 1\}^d$. This setting is ideal for controlled experiments
490 because the Gibbs distribution $\pi_{\theta, t}$ is fully factorized, leading to trivial sampling and a tractable
491 closed-form expectation $\mathbb{E}_{\pi_{\theta, t}}[Y] = \sigma(\theta/t)$, where σ is the logistic sigmoid function. This allows us
492 to both faithfully generate datasets from a known distribution $\pi_{\theta, t}$, and to minimize the population
493 Fenchel-Young loss L_θ directly (see Section 4.4 for its definition). The latter lets us decouple the
494 noise from our MCMC estimator from the statistical noise inherent in finite datasets.
495

496 In all experiments, the goal is to recover a known “true” parameter vector θ_0 from independent
497 samples $(\mathbf{y}_i)_{i=1}^N \sim (\pi_{\theta_0, t})^{\otimes N}$. We summarize our key findings in Fig. 4, which shows the distance
498 to θ_0 along a stochastic gradient trajectory, either minimizing L_N (left) or L_{θ_0} (center, right). Full
499 experimental and theoretical details are available in Section A, together with additional results on
500 both the hypercube and the top- κ polytope.
501

502 **Results.** The results highlight three important aspects for effective learning. First, persistent
503 and data-based initializations for the MCMC chains are critical (see Section B.3 for a detailed
504 discussion), vastly outperforming random restarts, which introduce systematic bias in the gradient
505 estimation (Fig. 4, center). Second, a larger dataset size N provides a better approximation of the
506 population loss, leading to a more accurate parameter recovery (Fig. 4, left), in line with Proposition 4.
507 Finally (defining Hamming distance-based neighborhood systems $(\mathcal{N}_{r_s})_{s=1}^S$ by $\mathbf{y}' \in \mathcal{N}_{r_s}(\mathbf{y}) \Leftrightarrow$
508 $d_H(\mathbf{y}, \mathbf{y}') = r_s$), using a mixture of proposals with Algorithm 2 (e.g., with $r_s \in \{1, 2, 3, 6\}$) enables
509 more effective exploration, improving convergence compared to a single proposal type (Fig. 4, right).
510

511 Figure 4: Squared distance $\|\hat{\theta}_n - \theta_0\|_2^2$ to the true parameter over optimization steps.
512

513 6 CONCLUSION
514

515 In this paper, we introduced a principled framework for integrating NP-hard combinatorial optimization
516 layers into neural networks without relying on exact solvers. Our approach adapts neighborhood
517 systems from the metaheuristics community, to design structure-aware proposal distributions for
518 combinatorial MCMC. This leads to significant training speed-ups, enabling to tackle larger problem
519 instances, which is crucial in operations research, where scaling up leads to substantial value creation
520 by reducing marginal costs. In future work, we plan to extend our framework to large neighborhood
521 search algorithms, which are heuristics that leverage neighborhood-wise exact optimization oracles.
522

523 REFERENCES
524

525

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico Kolter.
526 Differentiable convex optimization layers, 2019. URL <https://arxiv.org/abs/1910.12430>.

527

Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A gradient estimator
528 for $\$k\$$ -subset sampling, 2024. URL <http://arxiv.org/abs/2210.01941>.

529

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
530 In *International Conference on Machine Learning*, pages 136–145. PMLR, 2017.

540 Léo Baty, Kai Jungel, Patrick S. Klein, Axel Parmentier, and Maximilian Schiffer. Combinatorial
541 optimization enriched machine learning to solve the dynamic vehicle routing problem with time
542 windows, 2023. URL <http://arxiv.org/abs/2304.00789>.

543

544 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
545 a methodological tour d'horizon, 2020. URL <http://arxiv.org/abs/1811.06128>.

546

547 Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
548 Bach. Learning with differentiable perturbed optimizers, 2020. URL <http://arxiv.org/abs/2002.08676>.

549

550 Mathieu Blondel and Vincent Roulet. The Elements of Differentiable Programming. *arXiv preprint*
551 *arXiv:2403.14606*, 2024.

552

553 Mathieu Blondel, André F. T. Martins, and Vlad Niculae. Learning with fenchel-young losses, 2020.
554 URL <http://arxiv.org/abs/1901.02324>.

555

556 Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
557 Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. *Advances*
558 *in neural information processing systems*, 35:5230–5242, 2022.

559

560 Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and
561 conceptual comparison. 35(3):268–308, 2003. ISSN 0360-0300. doi: 10.1145/937503.937505.
562 URL <https://doi.org/10.1145/937503.937505>.

563

564 Miguel A Carreira-Perpiñán and Geoffrey Hinton. On contrastive divergence learning. In *International
565 Workshop on Artificial Intelligence and Statistics*, pages 33–40. PMLR, 2005. URL
566 <https://proceedings.mlr.press/r5/carreira-perpinan05a.html>.

567

568 Bor-Liang Chen and Ko-Wei Lih. Hamiltonian uniform subset graphs. 42(3):257–263, 1987. ISSN
569 0095-8956. doi: 10.1016/0095-8956(87)90044-X. URL <https://www.sciencedirect.com/science/article/pii/009589568790044X>.

570

571 John M. Danskin. The theory of max-min, with applications. 14(4):641–664, 1966. ISSN 0036-
572 1399. doi: 10.1137/0114053. URL <https://pubs.siam.org/doi/abs/10.1137/0114053>.

573

574 Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic
575 optimization. In *Advances in Neural Information Processing Systems*, volume 30. Curran
576 Associates, Inc., 2017.

577

578 Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models, 2020.
579 URL <https://arxiv.org/abs/1903.08689>.

580

581 Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence
582 training of energy based models, 2021. URL <https://arxiv.org/abs/2012.01316>.

583

584 Adam N. Elmachtoub and Paul Grigas. Smart "Predict, then Optimize", November 2020. URL
585 <http://arxiv.org/abs/1710.08005>. arXiv:1710.08005 [math].

586

587 Ulrich Faigle and Rainer Schrader. On the convergence of stationary distributions in
588 simulated annealing algorithms. 27(4):189–194, 1988. ISSN 0020-0190. doi: 10.
589 1016/0020-0190(88)90024-5. URL <https://www.sciencedirect.com/science/article/pii/0020019088900245>.

590

591 Ari Freedman. CONVERGENCE THEOREM FOR FINITE MARKOV
592 CHAINS. 2017. URL <https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648>.

593

594 Michel Gendreau, Jean-Yves Potvin, et al. *Handbook of metaheuristics*, volume 2. Springer, 2010.

595

596 Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris J. Maddison. Oops
597 i took a gradient: Scalable sampling for discrete distributions, 2021. URL <https://arxiv.org/abs/2102.04509>.

594 W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
595 *Biometrika*, 57(1):97–109, 1970. ISSN 00063444, 14643510. URL <http://www.jstor.org/stable/2334940>.
596

597 Geoffrey E. Hinton. Training products of experts by minimizing contrastive
598 divergence. 2000. URL <https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton-9360e5ce9c98166bb179ad479a9d2919ff13d022>.
599

600 Salvatore Ingrassia. On the rate of convergence of the metropolis algorithm and gibbs sampler by
601 geometric bounds. 4(2):347–389, 1994. ISSN 1050-5164. URL <https://www.jstor.org/stable/2245161>.
602

603 Gareth A. Jones. Automorphisms and regular embeddings of merged johnson graphs. 26(3):
604 417–435, 2005. ISSN 0195-6698. doi: 10.1016/j.ejc.2004.01.012. URL <https://www.sciencedirect.com/science/article/pii/S019569804000630>.
605

606 Hans Kellerer, Ulrich Pferschy, and David Pisinger. *Knapsack Problems*. Springer, Berlin, Heidelberg,
607 2004. ISBN 978-3-642-07311-3 978-3-540-24777-7. doi: 10.1007/978-3-540-24777-7. URL
608 <http://link.springer.com/10.1007/978-3-540-24777-7>.
609

610 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
611 <http://arxiv.org/abs/1412.6980>.
612

613 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. *Science*, 220
614 (4598):671–680, 1983. doi: 10.1126/science.220.4598.671. URL <https://www.science.org/doi/abs/10.1126/science.220.4598.671>.
615

616 Wouter Kool, Laurens Bliek, Danilo Numeroso, Yingqian Zhang, Tom Catshoek, Kevin Tierney,
617 Thibaut Vidal, and Joaquim Gromicho. The EURO meets NeurIPS 2022 vehicle routing competition.
618 In *Proceedings of the NeurIPS 2022 Competitions Track*, pages 35–49. PMLR, 2023. URL
619 <https://proceedings.mlr.press/v220/kool23a.html>.
620

621 Rahul G. Krishnan, Simon Lacoste-Julien, and David Sontag. Barrier frank-wolfe for marginal
622 inference, 2015. URL <https://arxiv.org/abs/1511.02124>.
623

624 John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
625 Probabilistic models for segmenting and labeling sequence data. In *Proceedings of the Eighteenth
626 International Conference on Machine Learning*, ICML '01, page 282–289, San Francisco, CA,
627 USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558607781.
628

629 Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aurelio Ranzato, and Fu Jie Huang. *A tutorial on
630 energy-based learning*. MIT Press, 2006.
631

632 Zhifei Li and Jason Eisner. First- and second-order expectation semirings with applications
633 to minimum-risk training on translation forests. In Philipp Koehn and Rada Mihalcea, editors,
634 *Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing*,
635 pages 40–51. Association for Computational Linguistics, August 2009. URL <https://aclanthology.org/D09-1005/>.
636

637 Neal Madras and Dana Randall. Markov chain decomposition for convergence rate analysis.
638 12(2):581–606, 2002. ISSN 1050-5164, 2168-8737.
639 doi: 10.1214/aoap/1026915617. URL <https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full>.
640

641 Jayanta Mandi and Tias Guns. Interior point solving for LP-based prediction+optimisation, 2020.
642 URL <http://arxiv.org/abs/2010.13943>.
643

644 Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
645 Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark and
646 future opportunities. 80:1623–1701, 2024. ISSN 1076-9757. doi: 10.1613/jair.1.15320. URL
647 <http://arxiv.org/abs/2307.13565>.
648

648 Silvano Martello and Paolo Toth. *Knapsack problems: algorithms and computer implementations*.
649 John Wiley & Sons, Inc., USA, October 1990. ISBN 978-0-471-92420-3.
650

651 Daniel McKenzie, Samy Wu Fung, and Howard Heaton. Differentiating Through Integer Linear
652 Programs with Quadratic Regularization and Davis-Yin Splitting, July 2024. URL <https://arxiv.org/abs/2301.13395>. arXiv:2301.13395 [cs].
653

654 Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured prediction
655 and attention, 2018. URL <https://arxiv.org/abs/1802.03676>.
656

657 Debasis Mitra, Fabio Romeo, and Alberto Sangiovanni-Vincentelli. Convergence and finite-time
658 behavior of simulated annealing. *Advances in Applied Probability*, 18(3):747–771, 1986. ISSN
659 0001-8678. doi: 10.2307/1427186. URL <https://www.jstor.org/stable/1427186>.
660

661 Nenad Mladenović and Pierre Hansen. Variable neighborhood search. *Computers & operations
662 research*, 24(11):1097–1100, 1997.
663

664 Volodymyr Mnih, Hugo Larochelle, and Geoffrey E. Hinton. Conditional restricted boltzmann
665 machines for structured output prediction, 2012. URL <https://arxiv.org/abs/1202.3748>.
666

667 Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, and
668 Tias Guns. Contrastive Losses and Solution Caching for Predict-and-Optimize, July 2021. URL
669 <https://arxiv.org/abs/2011.05354>. arXiv:2011.05354 [cs].
670

671 Vlad Niculae, André F. T. Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable
672 sparse structured inference, 2018. URL <https://arxiv.org/abs/1802.04223>.
673

674 Axel Parmentier. Learning structured approximations of combinatorial optimization problems. *arXiv
675 preprint arXiv:2107.04323*, 2021.
676

677 Axel Parmentier. Learning to approximate industrial problems by operations research classic problems.
678 *Operations Research*, 70(1):606–623, 2022.
679

680 Benjamin Rhodes and Michael Gutmann. Enhanced gradient-based MCMC in discrete spaces, 2022.
681 URL <https://arxiv.org/abs/2208.00040>.
682

683 Fred J. Rispoli. The graph of the hypersimplex, 2008. URL <https://arxiv.org/abs/0811.2981>.
684

685 R. Tyrrell Rockafellar. *Convex Analysis*. Princeton University Press, 1970. ISBN 9780691015866.
686 URL <https://www.jstor.org/stable/j.ctt14bs1ff>.
687

688 Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and Thibaut
689 Vidal. A survey of contextual optimization methods for decision making under uncertainty, 2024.
690 URL <https://arxiv.org/abs/2306.10374>.
691

692 Subham Sekhar Sahoo, Anselm Paulus, Marin Vlastelica, Vít Musil, Volodymyr Kuleshov, and Georg
693 Martius. Backpropagation through Combinatorial Algorithms: Identity with Projection Works,
694 March 2023. URL <https://arxiv.org/abs/2205.15213>. arXiv:2205.15213 [cs].
695

696 Yang Song and Diederik P. Kingma. How to train your energy-based models, 2021. URL <https://arxiv.org/abs/2101.03288>.
697

698 Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, and Dale Schuurmans. Discrete langevin sampler
699 via wasserstein gradient flow, 2023a. URL <https://arxiv.org/abs/2206.14897>.
700

701 Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
702 sampling for combinatorial optimization. In *Proceedings of the 40th International Conference on
Machine Learning*, pages 32859–32874. PMLR, 2023b. URL <https://proceedings.mlr.press/v202/sun23c.html>.
702

702 Ilya Sutskever and Tijmen Tieleman. On the convergence properties of contrastive divergence. In
703 *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*,
704 pages 789–795. JMLR Workshop and Conference Proceedings, 2010. URL <https://proceedings.mlr.press/v9/sutskever10a.html>.
705

706 Bo Tang and Elias B. Khalil. PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library for
707 Linear and Integer Programming, April 2023. URL <http://arxiv.org/abs/2206.14234>.
708 arXiv:2206.14234 [math].
709

710 Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood
711 gradient. In *Proceedings of the 25th international conference on Machine learning*, ICML '08,
712 pages 1064–1071. Association for Computing Machinery, 2008. ISBN 9781605582054. doi:
713 10.1145/1390156.1390290. URL <https://doi.org/10.1145/1390156.1390290>.
714

715 Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighbor-
716 hood. *Computers & Operations Research*, 140:105643, April 2022. ISSN 0305-0548. doi: 10.
717 1016/j.cor.2021.105643. URL <http://dx.doi.org/10.1016/j.cor.2021.105643>.
718

719 Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentiation of
720 blackbox combinatorial solvers, 2020. URL <http://arxiv.org/abs/1912.02175>.
721

722 Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational
723 inference. 1(1):1–305, 2008. ISSN 1935-8237, 1935-8245. doi: 10.1561/2200000001. URL
724 <https://www.nowpublishers.com/article/Details/MAL-001>.
725

726 Laurent Younes. Stochastic gradient estimation strategies for markov random
727 fields. In *Bayesian Inference for Inverse Problems*, volume 3459, pages
728 315–325. SPIE, 1998. doi: 10.1117/12.323811. URL <https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full>.
729

730 Ruqi Zhang, Xingchao Liu, and Qiang Liu. A langevin-like sampler for discrete distributions, 2022.
731 URL <https://arxiv.org/abs/2206.09914>.
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 NOTATION
757

758

Notation	Description
$\langle \theta, y \rangle$	Euclidean inner product between two vectors $\theta, y \in \mathbb{R}^d$.
$\text{conv}(\mathcal{Y})$	Convex hull of a set \mathcal{Y} .
$\text{dom}(\Omega)$	Domain of a function $\Omega : \mathbb{R}^d \rightarrow \mathbb{R} \cup \{\infty\}$, defined as $\{\mu \in \mathbb{R}^d : \Omega(\mu) < \infty\}$.
Ω^*	Fenchel conjugate of Ω , defined as $\Omega^*(\theta) := \sup_{\mu \in \mathbb{R}^d} \langle \theta, \mu \rangle - \Omega(\mu)$.
$\nabla \Omega$	Gradient of Ω .
$\partial \Omega$	Subgradient of Ω .
$J_{\mathbf{x}} f(\mathbf{x}, \mathbf{y})$	Jacobian of a function $f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^d$ with $\mathcal{X} \subseteq \mathbb{R}^n$ at point (\mathbf{x}, \mathbf{y}) w.r.t. \mathbf{x} , viewed as a matrix $J_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{n \times d}$.
$\mathcal{U}(\mathcal{X})$	Uniform distribution on a set \mathcal{X} .
$\mathcal{N}(\mathbf{x}, \Sigma)$	Normal distribution with mean $\mathbf{x} \in \mathbb{R}^d$ and covariance $\Sigma \in \mathbb{R}^{d \times d}$.

769 770 A EXPERIMENTS ON EMPIRICAL CONVERGENCE OF GRADIENTS AND 771 PARAMETERS 772

773

In this section, we evaluate the proposed approach on two discrete output spaces: sets and κ -subsets. These output spaces are for instance useful for multilabel classification. We focus on these output spaces because the exact MAP and marginal inference oracles are available, allowing us to compare our gradient estimators to exact gradients. We set $\varphi \equiv 0$ in these experiments.

778 779 A.1 POLYTOPES AND CORRESPONDING ORACLES

780

The vertex set of the first polytope is the set of binary vectors in \mathbb{R}^d , which we denote $\mathcal{Y}^d := \{0, 1\}^d$, and $\text{conv}(\mathcal{Y}^d) = [0, 1]^d$ is the “hypercube”. The vertex set of the second is the set of binary vectors with exactly κ ones and $d - \kappa$ zeros (with $0 < \kappa < d$),

784
$$\mathcal{Y}_\kappa^d := \{y \in \{0, 1\}^d : \langle y, \mathbf{1} \rangle = \kappa\},$$
785

786

and $\text{conv}(\mathcal{Y}_\kappa^d)$ is referred to as “top- κ polytope” or “hypersimplex”. Although these polytopes would 787 not provide relevant use cases of the proposed approach in practice, since exact marginal inference 788 oracles are available (see below), they allow us to compare the Fenchel-Young loss value and gradient 789 estimated by our algorithm to their true value.

790

Marginal inference. For the hypercube, we have:

791
$$\begin{aligned} \mathbb{E}_{\pi_{\theta, t}} [Y_i] &= \sum_{y \in \mathcal{Y}^d} \frac{\exp(\langle \theta, y \rangle / t)}{\sum_{y' \in \mathcal{Y}^d} \exp(\langle \theta, y' \rangle / t)} y_i = \sum_{y \in \{0, 1\}^d} \frac{\exp\left(\sum_{j=1}^d \theta_j y_j / t\right)}{\sum_{y' \in \{0, 1\}^d} \exp\left(\sum_{j=1}^d \theta_j y'_j / t\right)} y_i \\ &= \sum_{y_i \in \{0, 1\}} \sum_{y_{-i} \in \{0, 1\}^{d-1}} \frac{\exp\left(\theta_i y_i / t + \sum_{j \neq i} \theta_j y_j / t\right)}{\sum_{y'_i \in \{0, 1\}} \sum_{y'_{-i} \in \{0, 1\}^{d-1}} \exp\left(\theta_i y'_i / t + \sum_{j \neq i} \theta_j y'_j / t\right)} y_i \\ &= \sum_{y_i \in \{0, 1\}} \frac{\exp(\theta_i y_i / t)}{\sum_{y'_i \in \{0, 1\}} \exp(\theta_i y'_i / t)} y_i \sum_{y_{-i} \in \{0, 1\}^{d-1}} \frac{\exp\left(\sum_{j \neq i} \theta_j y_j / t\right)}{\sum_{y'_{-i} \in \{0, 1\}^{d-1}} \exp\left(\sum_{j \neq i} \theta_j y'_j / t\right)} \\ &= \sum_{y_i \in \{0, 1\}} \frac{\exp(\theta_i y_i / t)}{\sum_{y'_i \in \{0, 1\}} \exp(\theta_i y'_i / t)} y_i \\ &= \frac{\exp(\theta_i / t)}{1 + \exp(\theta_i / t)} \\ &= \sigma\left(\frac{\theta_i}{t}\right), \end{aligned}$$

810 which gives $\mathbb{E}_{\pi_{\theta,t}}[Y] = \sigma\left(\frac{\theta}{t}\right)$, where the logistic sigmoid function σ is applied component-wise.
 811 The cumulant function is also tractable, as we have

$$\begin{aligned}
 813 \quad \log \sum_{\mathbf{y} \in \mathcal{Y}^d} \exp(\langle \boldsymbol{\theta}, \mathbf{y} \rangle / t) &= \log \sum_{\mathbf{y} \in \{0,1\}^d} \exp\left(\sum_{i=1}^d \theta_i y_i / t\right) \\
 814 &= \log \sum_{y_1=0}^1 \sum_{y_2=0}^1 \cdots \sum_{y_d=0}^1 \exp\left(\sum_{i=1}^d \theta_i y_i / t\right) \\
 815 &= \log \prod_{i=1}^d \sum_{y_i=0}^1 \exp(\theta_i y_i / t) \\
 816 &= \log \prod_{i=1}^d (\exp(0) + \exp(\theta_i / t)) \\
 817 &= \log \prod_{i=1}^d (1 + \exp(\theta_i / t)) \\
 818 &= \sum_{i=1}^d \log(1 + \exp(\theta_i / t)).
 \end{aligned}$$

831 Another way to derive this is via the Fenchel conjugate.
 832

833 For the top- κ polytope, such closed-form formulas do not exist for the cumulant and its gradient.
 834 However, we implement them with dynamic programming, by viewing the top- κ MAP problem
 835 as a 0/1-knapsack problem with constant item weights, and by changing the $(\max, +)$ semiring
 836 into a $(\text{LSE}, +)$ semiring. This returns the cumulant function, and we leverage PyTorch's automatic
 837 differentiation framework to compute its gradient. This simple implementation allows us to compute
 838 true Fenchel-Young losses values and their gradients in $\mathcal{O}(d\kappa)$ time and space complexity.
 839

840 **Sampling.** For the hypercube, sampling from the Gibbs distribution on \mathcal{Y}^d has closed form. Indeed,
 841 the latter is fully factorized, and we can sample $\mathbf{y} \sim \pi_{\theta,t}$ by sampling independently each component
 842 with $y_i \sim \text{Bern}(\sigma(\theta_i / t))$. Sampling from $\pi_{\theta,t}$ is also possible on \mathcal{Y}_κ^d , by sampling coordinates
 843 iteratively using the dynamic programming table used to compute the cumulant function (see, e.g.,
 844 Algorithm 2 in [Ahmed et al. \(2024\)](#) for a detailed explanation).

845 **A.2 NEIGHBORHOOD GRAPHS**

846 **Hypercube.** On \mathcal{Y}^d , we use a family of neighborhood systems \mathcal{N}_\leq^r parameterized by a Hamming
 847 distance radius $r \in [d-1]$. The graph is defined by:
 848

$$849 \quad \forall \mathbf{y}, \mathbf{y}' \in \mathcal{Y}^d : \mathbf{y}' \in \mathcal{N}_\leq^r(\mathbf{y}) \Leftrightarrow 1 \leq d_H(\mathbf{y}, \mathbf{y}') \leq r.$$

850 That is, two vertices are neighbors if their Hamming distance is at most r . This graph is regular,
 851 with degree $|\mathcal{N}_\leq^r(\mathbf{y})| = \sum_{i=1}^r \binom{d}{i}$. This graph is naturally connected, as any binary vector \mathbf{y}'
 852 can be reached from any other binary vector \mathbf{y} in $\|\mathbf{y}' - \mathbf{y}\|_1$ moves, by flipping each bit where
 853 $y'_i \neq y_i$, iteratively. Indeed, this trajectory consists in moves between vertices with Hamming dis-
 854 tance equal to 1, and are therefore along edges of the neighborhood graph, regardless of the value of r .
 855

856 We also use a slight variation on this family of neighborhood systems, the graphs \mathcal{N}_\leq^r , defined by:
 857

$$858 \quad \forall \mathbf{y}, \mathbf{y}' \in \mathcal{Y}^d : \mathbf{y}' \in \mathcal{N}_\leq^r(\mathbf{y}) \Leftrightarrow d_H(\mathbf{y}, \mathbf{y}') = r.$$

859 These graphs, on the contrary, are not always connected: indeed, if r is even, they contain two
 860 connected components (binary vectors with an even sum, and binary vectors with an odd sum).
 861 We only use such graphs when experimenting with neighborhood mixtures (see Algorithm 2), by
 862 aggregating them into a connected graph.
 863

864 **Top- κ polytope.** On \mathcal{Y}_κ^d , we use a family of neighborhoods systems \mathcal{N}^s parameterized by a number
 865 of “swaps” $s \in \llbracket 1, \min(\kappa, d - \kappa) \rrbracket$. The graph is defined by
 866

$$867 \quad \forall \mathbf{y}, \mathbf{y}' \in \mathcal{Y}_\kappa^d : \mathbf{y}' \in \mathcal{N}^s(\mathbf{y}) \Leftrightarrow d_H(\mathbf{y}, \mathbf{y}') = 2s.$$

868 That is, two vertices are neighbors if one can be reached from the other by performing s “swaps”,
 869 each swap corresponding to flipping a 1 to a 0 and vice-versa. This ensures that the resulting vector
 870 is still in \mathcal{Y}_κ^d . All s swaps must be performed on distinct components. The resulting graph is known
 871 as the *Generalized Johnson Graph* $J(d, \kappa, \kappa - s)$, or *Uniform Subset Graph* (Chen and Lih, 1987). It
 872 is a regular graph, with degree $|\mathcal{N}^s(\mathbf{y})| = \binom{\kappa}{s} \binom{d-\kappa}{s}$. It is proved to be connected in Jones (2005),
 873 except if $d = 2\kappa$ and $s = \kappa$ (in this case, it consists in $\frac{1}{2} \binom{d}{\kappa}$ disjoint edges).

874 When $s = 1$, the neighborhood graph is the Johnson Graph $J(d, \kappa)$, which coincides with the graph
 875 associated to the polytope $\text{conv}(\mathcal{Y}_\kappa^d) = \Delta_{d, \kappa}$ (Rispoli, 2008).

876 **A.3 CONVERGENCE TO EXACT GRADIENTS**

877 In this section, we conduct experiments on the convergence of the MCMC estimators to the exact
 878 corresponding expectation (that is, convergence of the stochastic gradient estimator to the true
 879 gradient). The estimators are defined as

$$880 \quad \hat{\mathbf{y}}_t(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}, t}}[Y] \approx \frac{1}{K - K_0} \sum_{k=K_0+1}^K \mathbf{y}^{(k)},$$

881 where $\mathbf{y}^{(k)}$ is the k -th iterate of Algorithm 1 with maximization direction $\boldsymbol{\theta}$, final temperature t ,
 882 and K_0 is a number of burn-in (or warm-up) iterations. The obtained estimator is compared to the
 883 exact expectation by performing marginal inference as described in Section A.1 (with a closed-form
 884 formula in the case of \mathcal{Y}^d , and by dynamic programming in the case of \mathcal{Y}_κ^d).

885 **Setup.** For $T > K_0$, let $\tilde{\mathbb{E}}(\boldsymbol{\theta}, T) := \frac{1}{T - K_0} \sum_{k=K_0+1}^T \mathbf{y}^{(k)}$ be the stochastic estimate of the
 886 expectation at step T . We proceed by first randomly generating $\boldsymbol{\Theta} \in \mathbb{R}^{M \times d}$, with M being the
 887 number of instances, by sampling $\boldsymbol{\Theta}_{i,j} \sim \mathcal{N}(0, 1)$ independently. Then, we evaluate the impact of
 888 the following hyperparameters on the estimation of $\mathbb{E}_{\pi_{\boldsymbol{\Theta}_i, t}}[Y]$, for $i \in [M]$:

- 889 1. K_0 , the number of burn-in iterations,
- 890 2. t , the temperature parameter,
- 891 3. C , the number of parallel Markov chains.

902 **Metric.** The metric used is the squared Euclidean distance to the exact expectation, averaged on the
 903 M instances

$$904 \quad \frac{1}{M} \sum_{i=1}^M \|\mathbb{E}_{\pi_{\boldsymbol{\Theta}_i, t}}[Y] - \tilde{\mathbb{E}}(\boldsymbol{\Theta}_i, T)\|_2^2,$$

905 which we measure for $T \in \llbracket K_0 + 1, K \rrbracket$.

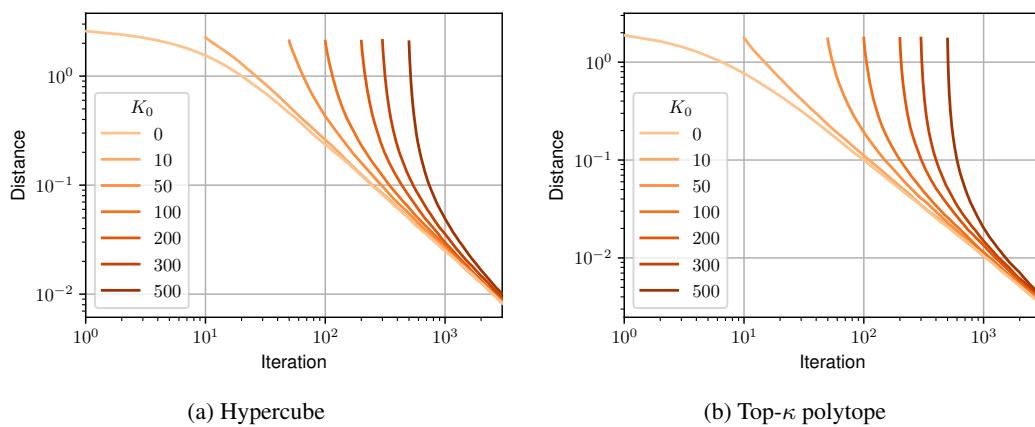
906 **Polytopes.** For the hypercube \mathcal{Y}^d and its neighborhood system \mathcal{N}_\leq^r , we use $d = 10$ and $r = 1$,
 907 which gives $|\mathcal{Y}^d| = 2^{10}$ and $|\mathcal{N}_\leq^r(\mathbf{y})| = 10$. For the top- κ polytope \mathcal{Y}_κ^d and its neighborhood system
 908 \mathcal{N}^s , we use $d = 10$, $\kappa = 3$ and $s = 1$, which gives $|\mathcal{Y}_\kappa^d| = 120$ and $|\mathcal{N}^s(\mathbf{y})| = 30$. We also
 909 use a larger scale for both polytopes in order to highlight the varying impact of the temperature
 910 t depending on the combinatorial size of the problem, in the second experiment. For the large
 911 scale, we use $d = 1000$ and $r = 10$ for the hypercube, which give $|\mathcal{Y}^d| = 2^{1000} \approx 10^{301}$ and
 912 $|\mathcal{N}_\leq^r(\mathbf{y})| \approx 2.7 \times 10^{23}$, and we use $d = 1000$, $\kappa = 50$ and $s = 10$ for the top- κ polytope, which give
 913 $|\mathcal{Y}_\kappa^d| \approx 9.5 \times 10^{84}$ and $|\mathcal{N}^s(\mathbf{y})| \approx 1.6 \times 10^{33}$.

918 **Hyperparameters.** For each experiment, we use $K = 3000$. We average over $M = 1000$ problem
 919 instances for statistical significance. We use $K_0 = 0$, except for the first experiment, where it varies.
 920 We use a final temperature $t = 1$, except for the second experiment, where it varies. We use an initial
 921 temperature $t_0 = t = 1$ (leading to a constant temperature schedule), except for the first experiment,
 922 where it depends on K_0 . We use only one Markov chain and thus have $C = 1$, except for the third
 923 experiment, where it varies.

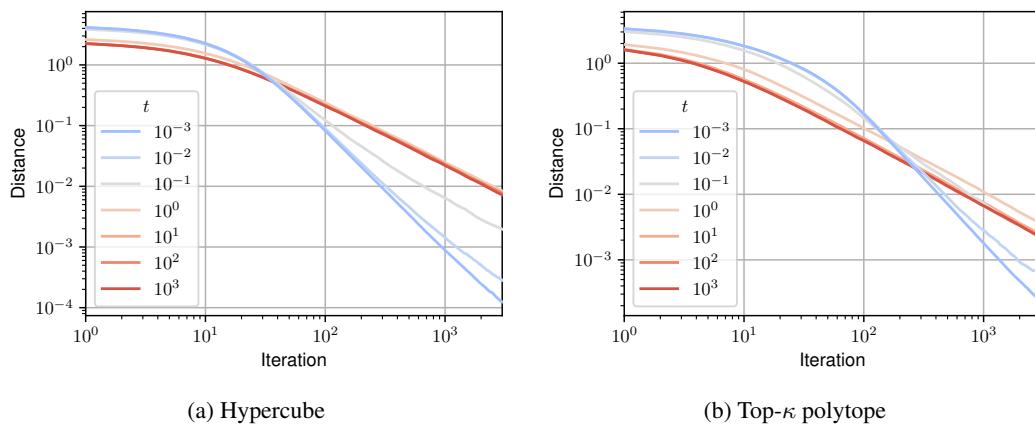
924 **(1) Impact of burn-in.** First, we evaluate the impact of K_0 , the number of burn-in iterations.
 925 We use a truncated geometric cooling schedule $t_k = \max(\gamma^k \cdot t_0, t)$ with $\gamma = 0.995$. The initial
 926 temperature t_0 is set to $1/(\gamma^{K_0})$, so that $\forall k \geq K_0 + 1, t_k = t = 1$. The results are gathered in Fig. 5.
 927

928 **(2) Impact of temperature.** We then evaluate the impact of the final temperature t on the difficulty
 929 of the estimation task (different temperatures lead to different target expectations). The results for the
 930 small scale are gathered in Fig. 6, and the results for the large scale are gathered in Fig. 7.
 931

932 **(3) Impact of the number of parallel Markov chains.** Finally, we evaluate the impact of the
 933 number of parallel Markov chains C on the estimation. The results are gathered in Fig. 8.
 934

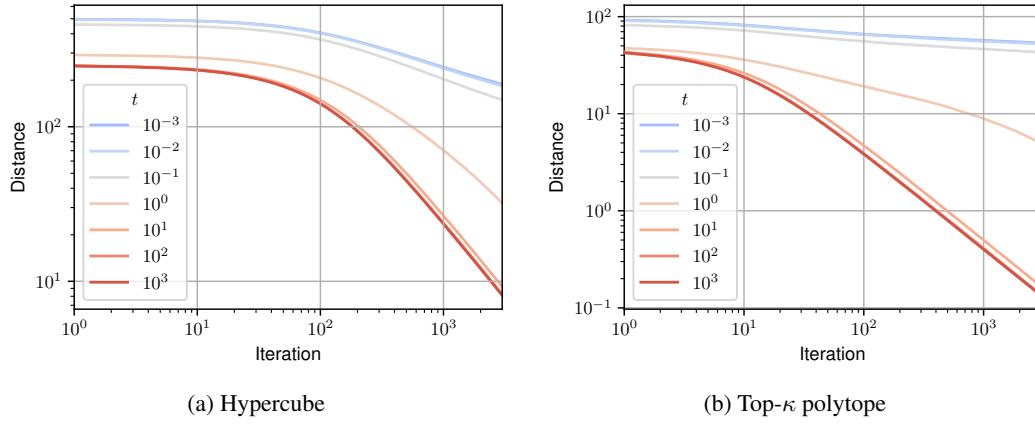


949 Figure 5: Convergence to exact expectation on the hypercube and the top- κ polytope, for varying
 950 number of burn-in iterations K_0 . We conclude that burn-in is not beneficial to the estimation, and
 951 taking $K_0 = 0$ is the best option.
 952

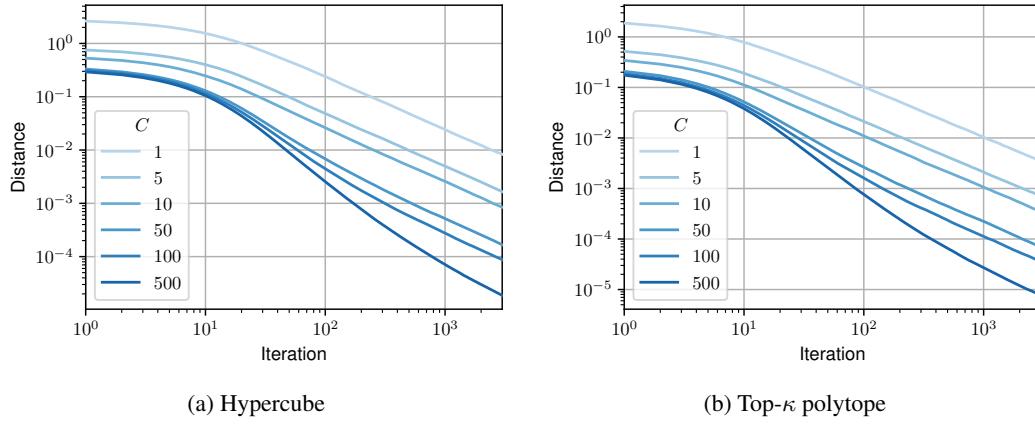


954 Figure 6: Convergence to exact expectation on the hypercube and the top- κ polytope, for varying final
 955 temperature t (small scale experiment). We conclude that lower temperatures facilitate the estimation.
 956

972
973
974
975
976



991 Figure 7: Convergence to exact expectation on the hypercube and the top- κ polytope, for varying
992 final temperature t (large scale experiment). Contrary to the small scale case, larger temperatures are
993 beneficial to the estimation when the solution set is combinatorially large.



1018 Figure 8: Convergence to exact expectation on the hypercube and the top- κ polytope, for varying
1019 number of parallel Markov chains C . Running 10 times more chains in parallel provides roughly
1020 the same benefit as extending each chain by 10 times more iterations, highlighting the advantage of
1021 massively parallelized estimation.

1022
1023
1024
1025

1026
1027

A.4 CONVERGENCE TO EXACT PARAMETERS

1028
1029
1030

In this section, we conduct experiments in the unconditional setting described in Section 4.4. As a reminder, the empirical L_N and population L_{θ_0} Fenchel-Young losses are given by:

1031
1032
1033
1034
1035
1036
1037
1038

$$\begin{aligned} L_N(\boldsymbol{\theta}; \mathbf{y}_1, \dots, \mathbf{y}_N) &:= \frac{1}{N} \sum_{i=1}^N \ell_t(\boldsymbol{\theta}; \mathbf{y}_i) \\ &= A_t(\boldsymbol{\theta}) + \frac{1}{N} \sum_{i=1}^N \Omega_t(\mathbf{y}_i) - \langle \boldsymbol{\theta}, \bar{Y}_N \rangle \\ &= \ell_t(\boldsymbol{\theta}; \bar{Y}_N) + C_1(Y), \end{aligned} \quad (10)$$

1039
1040
1041
1042
1043
1044
1045

and

$$\begin{aligned} L_{\theta_0}(\boldsymbol{\theta}) &:= \mathbb{E}_{(\mathbf{y}_i)_{i=1}^N \sim (\pi_{\theta_0, t})^{\otimes N}} [L_N(\boldsymbol{\theta}; \mathbf{y}_1, \dots, \mathbf{y}_N)] \\ &= A_t(\boldsymbol{\theta}) + \mathbb{E}_{\pi_{\theta_0, t}} [\Omega_t(Y)] - \langle \boldsymbol{\theta}, \hat{y}_t(\boldsymbol{\theta}_0) \rangle \\ &= \ell_t(\boldsymbol{\theta}; \hat{y}_t(\boldsymbol{\theta}_0)) + C_2(\boldsymbol{\theta}_0), \end{aligned} \quad (11)$$

1046
1047
1048

where the constants $C_1(Y) = \frac{1}{N} \sum_{i=1}^N \Omega_t(\mathbf{y}_i) - \Omega_t(\bar{Y}_N)$ and $C_2(\boldsymbol{\theta}_0) = \mathbb{E}_{\pi_{\theta_0, t}} [\Omega_t(Y)] - \Omega_t(\hat{y}_t(\boldsymbol{\theta}_0))$ do not depend on $\boldsymbol{\theta}$. As Jensen gaps, they are non-negative by convexity of Ω_t .

1049
1050
1051
1052
1053
1054
1055

2D visualization. As an introductory example, we display stochastic gradient trajectories in Fig. 9. The parameter $\boldsymbol{\theta} \in \mathbb{R}^d$ is updated following Eq. (7) to minimize the population loss L_{θ_0} defined in Eq. (11), with $\boldsymbol{\theta}_0 = (1/2, 1/2)$. The polytope used is the 2-dimensional hypercube \mathcal{Y}^2 , with neighborhood graph \mathcal{N}_1 (neighbors are adjacent vertices of the square). We present trajectories obtained using MCMC-sampled gradients, comparing results from both 1 and 100 Markov chain iterations with Algorithm 1. For comparison, we include trajectories obtained using Monte Carlo-sampled (i.e., unbiased) gradients, using 1 and 100 samples.

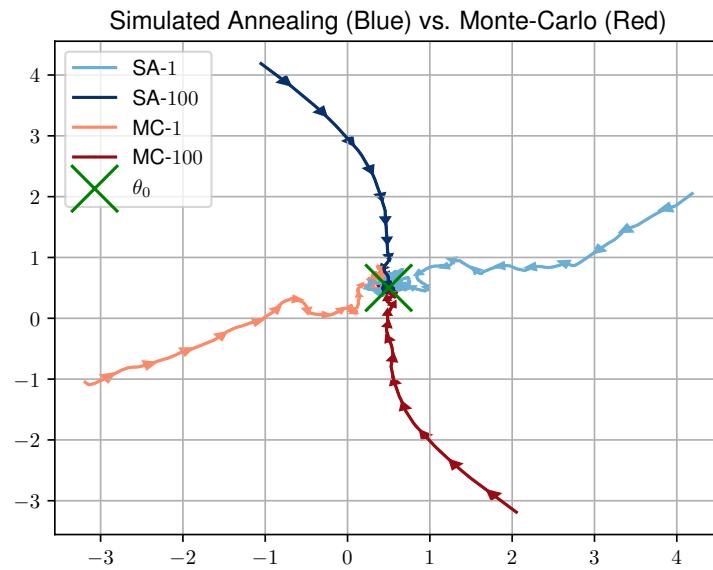
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
10751076
1077
1078
1079

Figure 9: Comparison of stochastic gradient trajectories for a SA / M-H oracle on \mathcal{Y}^2 and unbiased stochastic gradients obtained via Monte Carlo sampling. Increasing the number of Markov chain iterations yields smoother trajectories, similar to the effect of using more Monte Carlo samples in the case of perturbation-based methods (Berthet et al., 2020).

1080 **General setup.** We proceed by first randomly generating true parameters $\Theta_0 \in \mathbb{R}^{M \times d}$, with M
 1081 being a number of problem instances we average on (in order to reduce noise in our observations),
 1082 by sampling $\Theta_{i,j} \sim \mathcal{N}(0, 1)$ independently. The goal is to learn each parameter vector $(\Theta_0)_i \in$
 1083 $\mathbb{R}^d, i \in [M]$, as M independent problems. The model is randomly initialized at $\hat{\Theta}_0$, and updated
 1084 with Adam (Kingma and Ba, 2017) to minimize the loss. In order to better separate noise due to the
 1085 optimization process and noise due to the sampling process, we use the population loss $L_{(\Theta_0)_i}$ for
 1086 general experiments, and use the empirical loss L_N only when focusing on the impact of the dataset
 1087 size N . In this case, we create a dataset $Y \in \mathbb{R}^{M \times N \times d}$, with N being the number of samples, by
 1088 sampling independently $Y_{i,j} \sim \pi_{(\Theta_0)_i}, \forall i \in [M], \forall j \in [N]$.

1089 We study the impact of the following hyperparameters on learning:
 1090

1091 1. K , the number of Markov chain iterations,
 1092 2. C , the number of parallel Markov chains,
 1093 3. the initialization method used for the chains (either random, persistent, or data-based),
 1094 4. N , the number of samples in the dataset.
 1095

1096 **Metrics.** The first metric used is the objective function actually minimized, i.e., the population loss,
 1097 averaged on the M instances:

1100
 1101
$$\frac{1}{M} \sum_{i=1}^M L_{(\Theta_0)_i}((\hat{\Theta}_n)_i),$$

 1102
 1103

1104 where $(\hat{\Theta}_n)_i$ is the n -th iterate of the optimization process for the problem instance $i \in [M]$. We
 1105 measure this loss for $n \in [n_{\max}]$, with n_{\max} the total number of gradient iterations. For the fourth
 1106 experiment, where we evaluate the impact of the number of samples N , we measure instead the
 1107 empirical Fenchel-Young loss:
 1108

1109
 1110
$$\frac{1}{M} \sum_{i=1}^M L_N((\hat{\Theta}_n)_i; Y_{i,1}, \dots, Y_{i,N})$$

 1111
 1112

1113 In both cases, the best loss value that can be reached is positive but cannot be computed: it
 1114 corresponds to the constants C_1 and C_2 in Eq. (10) and Eq. (11). Thus, we also provide "stretched"
 1115 figures, where we plot the loss minus the best loss found during the optimization process.
 1116

1117 The second metric used is the squared euclidean distance of the estimate to the true parameter, also
 1118 averaged on the M instances:

1120
 1121
 1122
$$\frac{1}{M} \sum_{i=1}^M \|(\Theta_0)_i - (\hat{\Theta}_n)_i\|_2^2.$$

 1123
 1124

1125 As the top- κ polytope is of dimension $d - 1$, the model is only specified up to vectors orthogonal to
 1126 the direction of the smallest affine subspace it spans. Thus, in this case, we measure instead:
 1127

1128
 1129
 1130
$$\frac{1}{M} \sum_{i=1}^M \|\mathbb{P}_D^\perp((\Theta_0)_i) - \mathbb{P}_D^\perp((\hat{\Theta}_n)_i)\|_2^2,$$

 1131

1132 where \mathbb{P}_D^\perp is the orthogonal projector on the hyperplane $D = \{\mathbf{x} \in \mathbb{R}^d : \langle \mathbf{1}, \mathbf{x} \rangle = 0\}$, which is the
 1133 corresponding direction.

1134 **Polytopes.** For the hypercube \mathcal{Y}^d and its neighborhood system \mathcal{N}_{\leq}^r , we use $d = 10$ and $r = 1$,
1135 except in the fifth experiment, where we use a mixture of \mathcal{N}_{\leq}^r neighborhoods (detailed below). For
1136 the top- κ polytope \mathcal{Y}_{κ}^d and its neighborhood system \mathcal{N}^s , we use $d = 10$, $\kappa = 3$ and $s = 1$.
1137

1138 **Hyperparameters.** For each experiment, we perform 1000 gradient steps. We use $K_0 = 0$, final
1139 temperature $t = 1$ and initial temperature $t_0 = t = 1$ (leading to a constant temperature schedule). We use
1140 $K = 1000$ Markov chain iterations, except in the first experiment, where it varies. We use
1141 only one Markov chain and thus have $C = 1$, except for the second experiment, where it varies. We use
1142 a persistent initialization method for the Markov chains, except in the third experiment, where we
1143 compare the three different methods. For statistical significance, we average over $M = 100$ problem
1144 instances for each experiment, except in the third experiment, where we use $M = 1000$. We work in
1145 the limit case $N \rightarrow \infty$, except in the fourth experiment, where N varies.
1146

1147 **(1) Impact of the length of Markov chains.** First, we evaluate the impact of K , the number of
1148 inner iterations, i.e., the length of each Markov chain. The results are gathered in Fig. 10.
1149

1150 **(2) Impact of the number of parallel Markov chains.** We now evaluate the impact of the number
1151 of Markov chains C run in parallel to perform each gradient estimation on the learning process. The
1152 results are gathered in Fig. 11.
1153

1154 **(3) Impact of the initialization method.** Then, we evaluate the impact of the method to initialize
1155 each Markov chain used for gradient estimation. The persistent method consists in setting $\mathbf{y}^{(n+1,0)} =$
1156 $\mathbf{y}^{(n,K)}$, the data-based method consists in setting $\mathbf{y}^{(n+1,0)} = \mathbf{y}_i$ with $i \sim \mathcal{U}([N])$, and the random
1157 method consists in setting $\mathbf{y}^{(n+1,0)} \sim \mathcal{U}(\mathcal{Y})$ (see Section B.3 and Table 4 for a detailed explanation).
1158 The results are gathered in Fig. 12.
1159

1160 **(4) Impact of the dataset size.** We now evaluate the impact of the number of samples N from
1161 π_{θ_0} (i.e., the size of the dataset $(\mathbf{y}_i)_{i=1}^N$) on the estimation of the true parameter θ_0 . The results are
1162 gathered in Fig. 13.
1163

1164 **(5) Impact of neighborhood mixtures.** Finally, we evaluate the impact of the use of neighborhood
1165 mixtures. To do so, we use mixtures $\{\mathcal{N}_{\leq}^{r_s}\}_{s=1}^S$, once with $\{r_s\}_{s=1}^S = \{5\}$ opposed to $\{r_s\}_{s=1}^S =$
1166 $\{1, 5\}$, and once with $\{r_s\}_{s=1}^S = \{6\}$ (which gives a reducible Markov chain as 6 is even, so that the
1167 individual neighborhood graph \mathcal{N}_{\leq}^6 is not connected, and has to connected components) opposed to
1168 $\{r_s\}_{s=1}^S = \{1, 2, 3, 6\}$. The results are gathered in Fig. 14.
1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

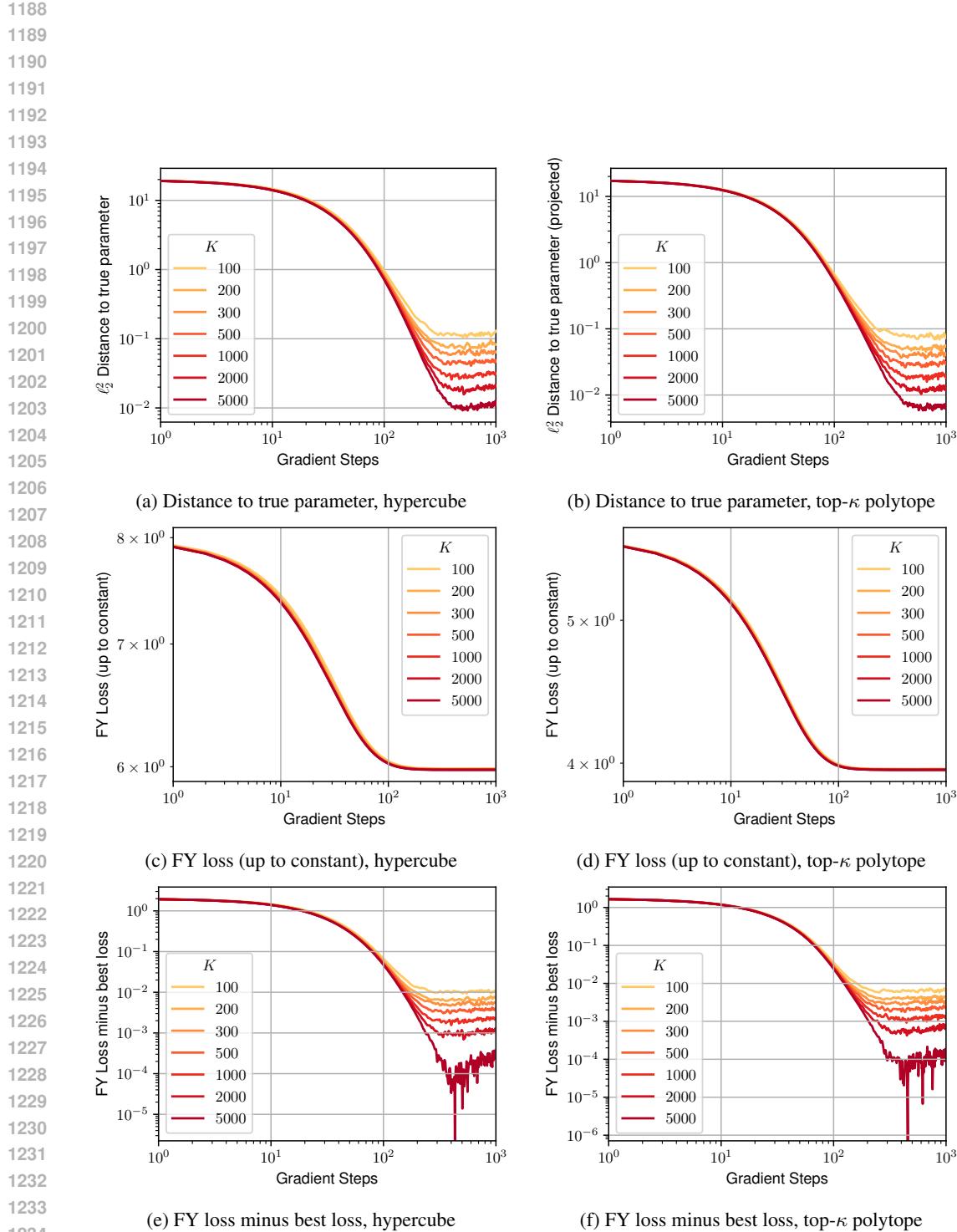


Figure 10: Convergence to the true parameter on the hypercube (left) and the top- κ polytope (right), for varying number of Markov chain iterations K . Longer chains improve learning.

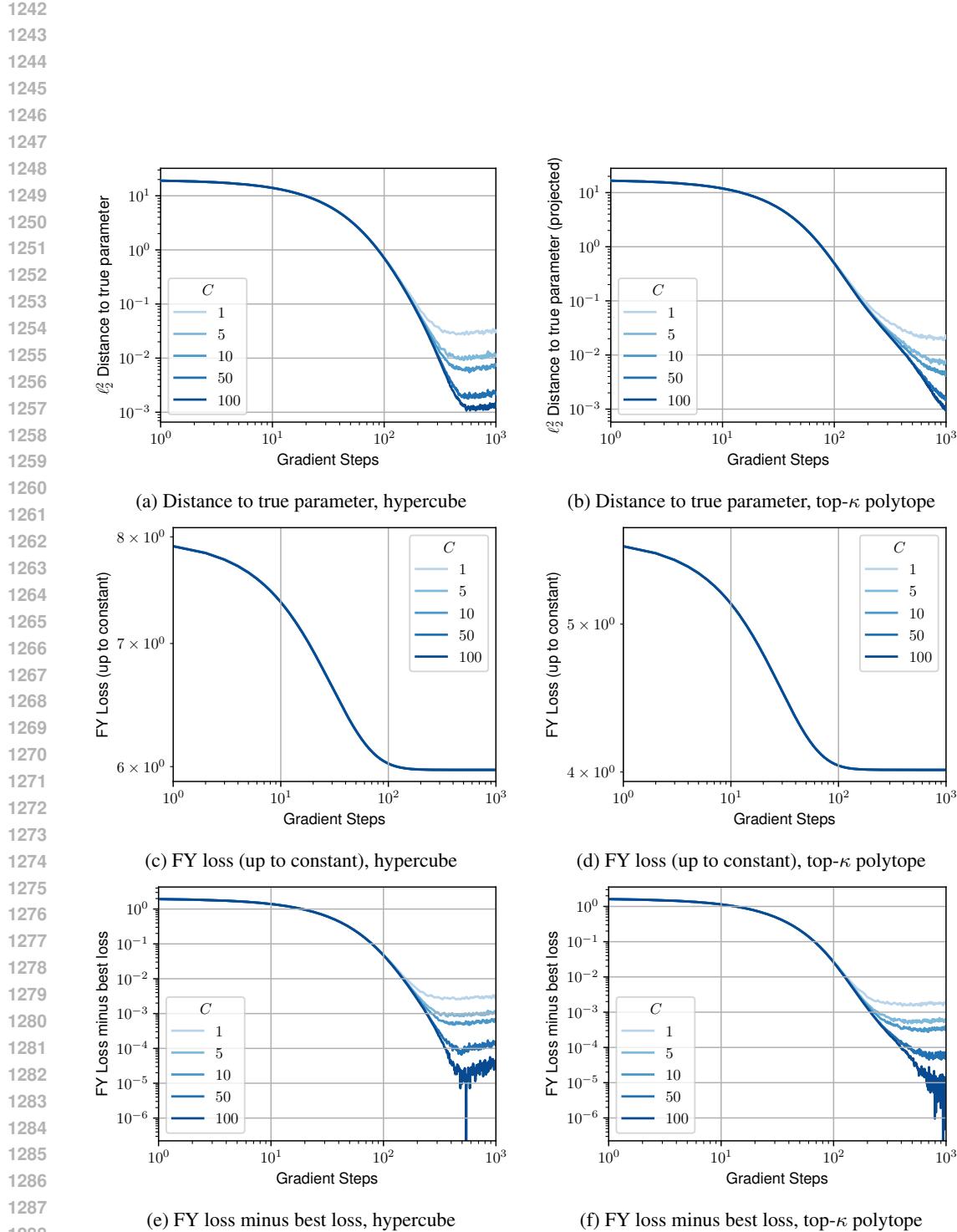


Figure 11: Convergence to the true parameter on the hypercube (left) and the top- κ polytope (right), for varying number of parallel Markov chains C . Adding Markov chains improves estimation.

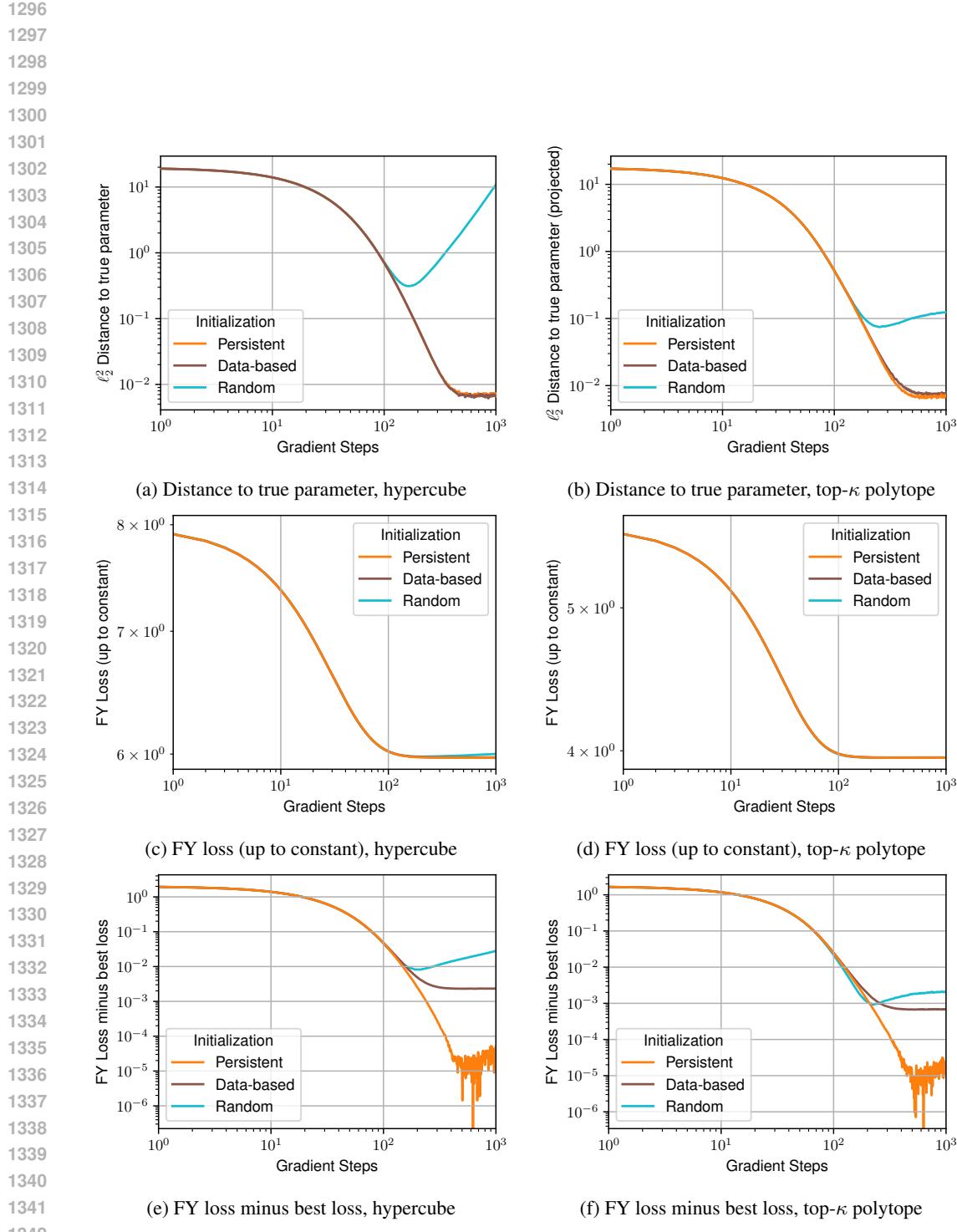


Figure 12: Convergence to the true parameter on the hypercube (left) and the top- κ polytope (right), for varying Markov chain initialization method. The persistent and data-based initialization methods significantly outperform the random initialization method.

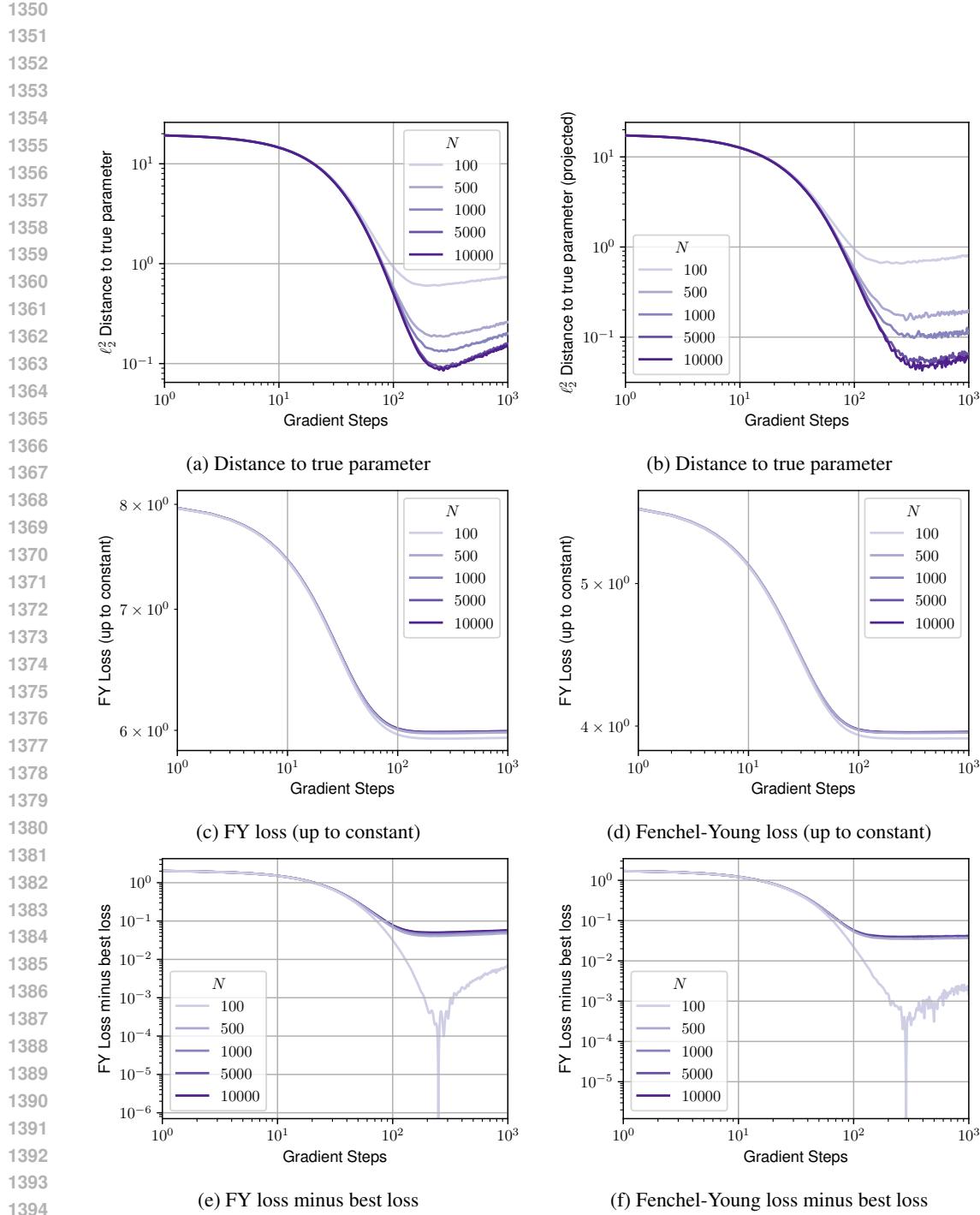


Figure 13: Convergence to the true parameter on the hypercube (left) and the top- κ polytope (right), for varying number of samples N in the dataset. As the dataset is different for each task, the empirical Fenchel-Young loss L_N , which is the minimized objective function (contrary to other experiments, where we minimize L_{θ_0}), also varies. Although empirical Fenchel-Young losses associated to smaller datasets appear easier to minimize, increasing the dataset size reduces the bias and thus the distance to θ_0 , as expected.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

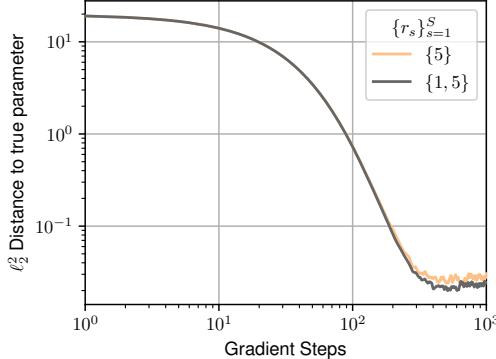
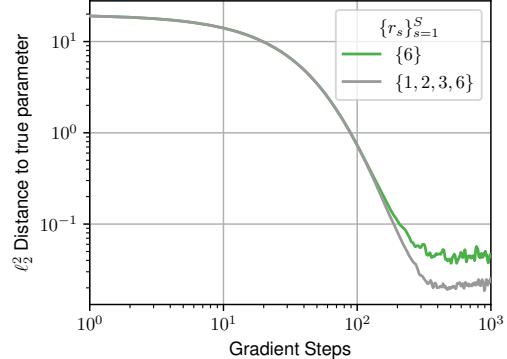
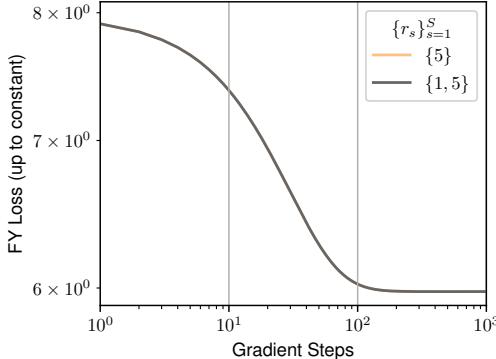
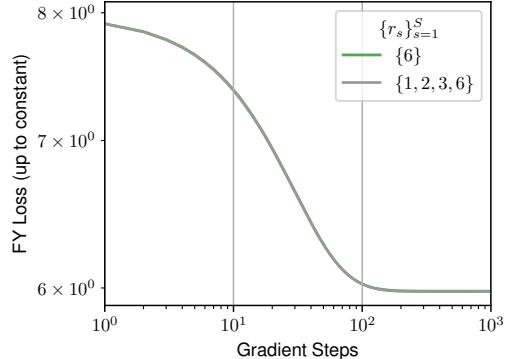
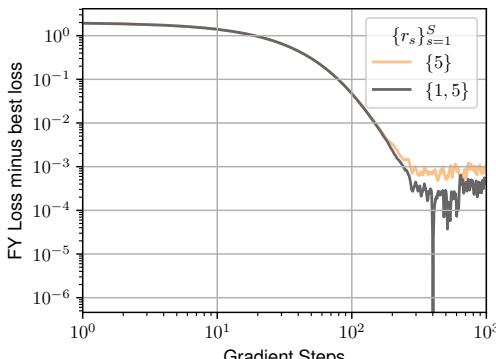
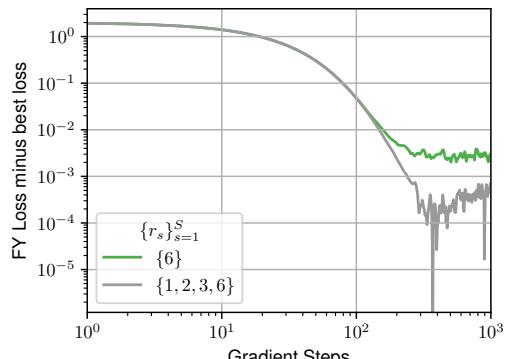
(a) Distance to true parameter, $r_s \in \{5\}$ or $\{1, 5\}$ (b) Distance to true parameter, $r_s \in \{6\}$ or $\{1, 2, 3, 6\}$ (c) FY loss (up to constant), $r_s \in \{5\}$ or $\{1, 5\}$ (d) FY loss (up to constant), $r_s \in \{6\}$ or $\{1, 2, 3, 6\}$ (e) FY loss minus best loss, $r_s \in \{5\}$ or $\{1, 5\}$ (f) FY loss minus best loss, $r_s \in \{6\}$ or $\{1, 2, 3, 6\}$

Figure 14: Convergence to the true parameter on the hypercube, with different mixtures of neighborhood systems $\{\mathcal{N}_s^{r_s}\}_{s=1}^S$: comparing $r_s \in \{5\}$ to $r_s \in \{1, 5\}$ (left), and comparing $r_s \in \{6\}$ to $r_s \in \{1, 2, 3, 6\}$ (right). Using more neighborhoods in the mixture improves learning.

1458 **B ADDITIONAL MATERIAL**

1459

1460 **B.1 FENCHEL-YOUNG LOSS FOR $K = 1$ IN THE UNCONDITIONAL SETTING**

1461

1462 This proposition is analogous to Proposition 3, but in the unconditional setting, when using a data-
1463 based initialization method – i.e., the original CD initialization scheme, without persistent Markov
1464 chains. See Section B.3 for a detailed discussion about this.

1465 **Proposition 6.** *Let $\mathbb{E}_{\theta, \bar{Y}_N}^{(1)}$ denote the distribution of the first iterate of the Markov chain defined
1466 by the Markov transition kernel given in Eq. (3), with proposal distribution q and initialized by
1467 $\mathbf{y}^{(0)} = \mathbf{y}_i$, with $i \sim \mathcal{U}(\llbracket 1, N \rrbracket)$. There exists a dataset-dependent regularization $\Omega_{\bar{Y}_N}$ with the
1468 following properties: $\Omega_{\bar{Y}_N}$ is $tN / \sum_{i=1}^N \mathbb{E}_q(\mathbf{y}_i, \cdot) \|Y - \mathbf{y}_i\|_2^2$ -strongly convex; it is such that:*

1469

$$\mathbb{E}_{\theta, \bar{Y}_N}^{(1)}[Y] = \operatorname{argmax}_{\mu \in \operatorname{conv}(\bigcup_{i=1}^N \{\mathcal{N}(\mathbf{y}_i) \cup \{\mathbf{y}_i\}\})} \{\langle \theta, \mu \rangle - \Omega_{\bar{Y}_N}(\mu)\};$$

1470

1471 and the Fenchel-Young loss $L_{\Omega_{\bar{Y}_N}}$ generated by $\Omega_{\bar{Y}_N}$ is $\frac{1}{N} \sum_{i=1}^N \mathbb{E}_q(\mathbf{y}_i, \cdot) \|Y - \mathbf{y}_i\|_2^2 / t$ -smooth
1472 in its first argument, and such that $\nabla_{\theta} L_{\Omega_{\bar{Y}_N}}(\theta; \mathbf{y}) = \mathbb{E}_{\theta, \bar{Y}_N}^{(1)}[Y] - \mathbf{y}$.

1473

1474

1475

1476 The proof is given in Section E.7.

1477

1478 **B.2 PROPERTIES OF THE EXPECTED FIRST ITERATE**

1479

1480 **Proposition 7.** *Let $\theta \in \mathbb{R}^d$, $\mathbf{y} \in \mathcal{Y}$. Let*

1481

$$\mathcal{N}_{\text{better}}(\mathbf{y}) := \{\mathbf{y}' \in \mathcal{N}(\mathbf{y}) \mid \langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}') > \langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})\}$$

1482

1483 denote the set of improving neighbors of \mathbf{y} for the unregularized objective function. We have the
1484 following properties:

1485

1486

$$\mathbb{E}_{\theta, \mathbf{y}}^{(1)}[Y] \in \operatorname{conv}(\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\}),$$

1487

1488

$$\mathbb{E}_{\theta, \mathbf{y}}^{(1)}[Y] \xrightarrow[t \rightarrow 0^+]{\quad} \mathbf{y} + \sum_{\mathbf{y}' \in \mathcal{N}_{\text{better}}(\mathbf{y})} q(\mathbf{y}, \mathbf{y}') \cdot (\mathbf{y}' - \mathbf{y}),$$

1489

1490

1491

$$\text{and } \mathbb{E}_{\theta, \mathbf{y}}^{(1)}[Y] \xrightarrow[t \rightarrow \infty]{\quad} \mathbf{y} + \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} \min[q(\mathbf{y}, \mathbf{y}'), q(\mathbf{y}', \mathbf{y})] \cdot (\mathbf{y}' - \mathbf{y}).$$

1492

1493 The proof is given in Section E.8. Thus, as the set $\mathcal{N}_{\text{better}}$ is defined according the value of the
1494 original, unregularized objective function $\mathbf{y} \mapsto \langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})$, the low temperature behavior of
1495 the regularized maximizer $\mathbb{E}_{\theta, \mathbf{y}}^{(1)}[Y]$ effectively reflects the fact that the regularization function $\Omega_{\mathbf{y}}$
1496 extends the influence of φ from the vertices $\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\}$ to their convex hull.

1497

1498 **B.3 MARKOV CHAIN INITIALIZATION**

1499

1500 In contrastive divergence (CD) learning, the intractable expectation in the log-likelihood gradient is
1501 approximated by short-run MCMC, initialized at the data distribution (Hinton, 2000) (using a Gibbs
1502 sampler in the setting of Restricted Boltzmann Machines).

1503 Here, we note, at the n -th iteration of gradient descent:

1504

1505

1506

1507

$$\nabla_W L_N(\hat{W}_n) \approx \frac{1}{|B_n|} \sum_{i \in B_n} J_W g_{\hat{W}_n}(\mathbf{x}_i) \left(\frac{1}{K} \sum_{k=1}^K \mathbf{y}_i^{(n+1, k)} - \mathbf{y}_i \right),$$

1508

1509 for the conditional setting, with B_n being the mini-batch (or full batch) used at iteration n , \mathbf{y}_i the
1510 ground-truth structure associated to \mathbf{x}_i in the dataset, and $\mathbf{y}_i^{(n+1, k)}$ the k -th iterate of Algorithm 1,
1511 with maximization direction $g_{\hat{W}_n}(\mathbf{x}_i)$, and initialization point $\mathbf{y}_i^{(n+1, 0)}$. We also note:

1512

1513

1514

1515

1516

$$\nabla_{\theta} L_N(\hat{\theta}_n) \approx \frac{1}{K} \sum_{k=1}^K \mathbf{y}^{(n+1, k)} - \bar{Y}_N$$

1517

1518

1519

1520

In CD learning of unconditional EBMs (i.e., in our unconditional setting), the Markov Chain is initialized at the empirical data distribution (Hinton, 2000; Carreira-Perpiñán and Hinton, 2005), as explained earlier. Persistent Contrastive Divergence (PCD) learning (Tieman, 2008) modifies CD by maintaining a persistent Markov chain. Thus, instead of initializing the chain from the data distribution in each iteration, the chain continues from its last state in the previous iteration, by setting $\mathbf{y}^{(n+1, 0)} = \mathbf{y}^{(n, K)}$. This approach aims to provide a better approximation of the model distribution and to reduce the bias introduced by the initialization of the Markov chain in CD. These are two types of informative initialization methods, which aim at reducing the mixing times of the Markov Chains.

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

for the unconditional setting, with $\mathbf{y}^{(n+1, k)}$ being the k -th iterate of Algorithm 1, with maximization direction $\hat{\theta}_n$, and initialization point $\mathbf{y}^{(n+1, 0)}$.

In CD learning of unconditional EBMs (i.e., in our unconditional setting), the Markov Chain is initialized at the empirical data distribution (Hinton, 2000; Carreira-Perpiñán and Hinton, 2005), as explained earlier. Persistent Contrastive Divergence (PCD) learning (Tieman, 2008) modifies CD by maintaining a persistent Markov chain. Thus, instead of initializing the chain from the data distribution in each iteration, the chain continues from its last state in the previous iteration, by setting $\mathbf{y}^{(n+1, 0)} = \mathbf{y}^{(n, K)}$. This approach aims to provide a better approximation of the model distribution and to reduce the bias introduced by the initialization of the Markov chain in CD. These are two types of informative initialization methods, which aim at reducing the mixing times of the Markov Chains.

However, neither of these can be applied to the conditional setting, as observed in (Mnih et al., 2012) in the context of conditional Restricted Boltzmann Machines (which are a type of EBMs). Indeed, on the one hand, PCD takes advantage of the fact that the parameter $\hat{\theta}$ does not change too much from one iteration to the next, so that a Markov Chain that has reached equilibrium on $\hat{\theta}_n$ is not far from equilibrium on $\hat{\theta}_{n+1}$. This does not hold in the conditional setting, as each \mathbf{x}_i leads to a different $\hat{\theta}_i = g_{\hat{W}}(\mathbf{x}_i)$. On the other hand, the data-based initialization method in CD would amount to initialize the chains at the empirical marginal data distribution on \mathcal{Y} , and would be irrelevant in a conditional setting, since the distribution we want each Markov Chain to approximate is conditioned on the input \mathbf{x}_i .

An option is to use persistent chains if training for multiple epochs, and to initialize the Markov Chain associated to $(\mathbf{x}_i, \mathbf{y}_i)$ for epoch j at the final state of the one associated to the same data point $(\mathbf{x}_i, \mathbf{y}_i)$ at epoch $j - 1$. However, this method is relevant than PCD in the unconditional setting, as $\hat{\theta}$ changes a lot more in a full epoch than $\hat{\theta}$ in just one gradient step in the unconditional setting. It might be relevant, however, if each epoch consists in a single, full-batch gradient step. Nevertheless, it would require to store a significant number of states $\mathbf{y}_i^{(n, K)}$ (one for each point in the dataset). The solution we propose, for both full-batch and mini-batch settings, is to initialize the chains at the empirical data distribution conditioned on the input \mathbf{x}_i , which amounts to initialize them at the ground-truth \mathbf{y}_i .

This discussion is summed up in Table 4.

Table 4: Possible Markov Chain Initialization Methods under each Learning Setting

Init. Method \ Setting	Unconditional	Conditional, Batch	Conditional, Mini-Batch
Persistent	$\mathbf{y}^{(n+1, 0)} = \mathbf{y}^{(n, K)}$	$\mathbf{y}_i^{(n+1, 0)} = \mathbf{y}_i^{(n, K)}$	/
Data-Based	$\mathbf{y}^{(n+1, 0)} = \mathbf{y}_j$, with $j \sim \mathcal{U}(\llbracket 1, N \rrbracket)$	$\mathbf{y}_i^{(n+1, 0)} = \mathbf{y}_i$	$\mathbf{y}_i^{(n+1, 0)} = \mathbf{y}_i$
Random	$\mathbf{y}^{(n+1, 0)} \sim \mathcal{U}(\mathcal{Y})$	$\mathbf{y}_i^{(n+1, 0)} \sim \mathcal{U}(\mathcal{Y})$	$\mathbf{y}_i^{(n+1, 0)} \sim \mathcal{U}(\mathcal{Y})$

1566 | **Remark 1.** The use of uniform distributions on \mathcal{Y} for the random initialization method can
 1567 | naturally be replaced by any other different prior distribution.
 1568

1569 | **C DETAILS ON THE DVRPTW**

1570 | **C.1 OVERVIEW OF THE CHALLENGE.**

1571 | We evaluate the proposed approach on a large-scale, ML-enriched combinatorial optimization
 1572 | problem: the *EURO Meets NeurIPS 2022 Vehicle Routing Competition* (Kool et al., 2023).
 1573 | In this dynamic vehicle routing problem with time windows (DVRPTW), requests arrive con-
 1574 | tinuously throughout a planning horizon, which is partitioned into a series of delivery waves
 1575 | $\mathcal{W} = \{[\tau_0, \tau_1], [\tau_1, \tau_2], \dots, [\tau_{|\mathcal{W}|-1}, \tau_{|\mathcal{W}|}\}\}.$
 1576

1577 | At the start of each wave ω , a dispatching and vehicle routing problem must be solved for the set of
 1578 | requests \mathcal{R}^ω specific to that wave (in which we include the depot D), encoded into the system state
 1579 | \mathbf{x}^ω . We note $\mathcal{Y}(\mathbf{x}^\omega)$ the set of feasible decisions associated to state \mathbf{x}^ω .
 1580

1581 | A feasible solution $\mathbf{y}^\omega \in \mathcal{Y}(\mathbf{x}^\omega)$ must contain all requests that must be dispatched before τ_ω (the rest
 1582 | are postponable), allow each of its routes to visit the requests they dispatch within their respective
 1583 | time windows, and be such that the cumulative customer demand on each of its routes does not exceed
 1584 | a given vehicle capacity. It is encoded thanks to a vector $(y_{i,j}^\omega)_{i,j \in \mathcal{R}^\omega}$, where $y_{i,j}^\omega = 1$ if the solution
 1585 | contains the directed route segment from i to j , and $y_{i,j}^\omega = 0$ otherwise. The set of requests $\mathcal{R}^{\omega+1}$ is
 1586 | obtained by removing all requests dispatched by the chosen solution \mathbf{y}^ω from \mathcal{R}^ω and adding all new
 1587 | requests which arrived between τ_ω and $\tau_{\omega+1}$.
 1588

1589 | The aim of the challenge is to find an optimal policy $f: \mathcal{X} \rightarrow \mathcal{Y}$ assigning decisions $\mathbf{y}^\omega \in \mathcal{Y}(\mathbf{x}^\omega)$ to
 1590 | system states $\mathbf{x}^\omega \in \mathcal{X}$. This can be cast as a reinforcement learning problem:

$$1591 \quad \min_f \mathbb{E} [c_{\mathcal{W}}(f)], \quad \text{with} \quad c_{\mathcal{W}}(f) := \sum_{\omega \in \mathcal{W}} c(f(\mathbf{x}^\omega)),$$

1592 | where $c: \mathbf{y}^\omega \mapsto \sum_{i,j \in \mathcal{R}^\omega} c_{i,j} y_{i,j}^\omega$ gives the routing cost of $\mathbf{y}^\omega \in \mathcal{Y}^\omega$ and where $c_{i,j} \geq 0$ is the
 1593 | routing cost from i to j . The expectation is taken over full problem instances.
 1594

1595 | **C.2 REDUCTION TO SUPERVISED LEARNING.**

1596 | We follow the method of (Baty et al., 2023), which was the winning approach for the challenge.
 1597 | Central to this approach is the concept of prize-collecting dynamic vehicle routing problem with time
 1598 | windows (PC-VRPTW). In this setting, each request $i \in \mathcal{R}^\omega$ is assigned an artificial *prize* $\theta_i^\omega \in \mathbb{R}$,
 1599 | that reflects the benefit of serving it. The prize of the depot D is set to $\theta_D^\omega = 0$. The objective is then
 1600 | to identify a set of routes that maximizes the total prize collected while minimizing the associated
 1601 | travel costs. The model g_W predicts the prize vector $\theta^\omega = g_W(\mathbf{x}^\omega)$. Denoting $\varphi(\mathbf{y}) := -\langle \mathbf{c}, \mathbf{y} \rangle$, the
 1602 | corresponding optimization problem can be written as:
 1603

$$1604 \quad \hat{\mathbf{y}}(\theta^\omega) = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}(\mathbf{x}^\omega)} \sum_{i,j \in \mathcal{R}^\omega} \theta_j^\omega y_{i,j} - \sum_{i,j \in \mathcal{R}^\omega} c_{i,j} y_{i,j} = \langle \theta^\omega, \mathbf{y} \rangle + \varphi(\mathbf{y}). \quad (12)$$

1605 | The overall pipeline is summarized in Fig. 1. Following (Baty et al., 2023), we approximately solve
 1606 | the problem in Eq. (12) using the prize-collecting HGS heuristic (PC-HGS), a variant of hybrid
 1607 | genetic search (HGS) (Vidal, 2022). We denote this approximate solver $\tilde{\mathbf{y}} \approx \hat{\mathbf{y}}$, so that their proposed
 1608 | policy decomposes as $f_W := \tilde{\mathbf{y}} \circ g_W$. The ground-truth routes are created by using an anticipative
 1609 | strategy, i.e., by solving multiple instances where all future information is revealed from the start, and
 1610 | the requests' arrival times information is translated into time windows (thus removing the dynamic
 1611 | aspect of the problem). This anticipative policy, which we note f^* (which cannot be attained as it
 1612 | needs unavailable information) is thus the target policy imitated by the model – see Section C.8 for
 1613 | more details.
 1614

1615 | **C.3 PERTURBATION-BASED BASELINE.**

1616 | In (Baty et al., 2023), a perturbation-based method (Berthet et al., 2020) was used. This method is
 1617 | based on injecting noise in the PC-HGS solver $\tilde{\mathbf{y}}$. Similarly to our approach, the parameters W can

Name	Description
relocate	removes request i from its route and re-inserts it before or after request j
relocate pair	removes pair of requests $(i, \text{next}(i))$ from their route and re-inserts them before or after request j
swap	exchanges the position of requests i and j in the solution
swap pair	exchanges the positions of the pairs $(i, \text{next}(i))$ and $(j, \text{next}(j))$ in the solution
2-opt	reverses the route segment between i and j
serve request	inserts currently undispatched request i before or after request j
remove request	removes currently dispatched request i from the solution

Table 5: PC-VRPTW Local search moves

then be learned using a Fenchel-Young loss, since the loss is minimized when the perturbed solver correctly predicts the ground truth. However, since \hat{y} is not an exact solver, all theoretical learning guarantees associated with this method (e.g., correctness of the gradients) no longer hold.

C.4 PROPOSED APPROACH.

Our proposed approach instead uses the Fenchel-Young loss associated with the proposed layer, which is minimized when the proposed layer correctly predicts the ground-truth. At inference time, however, we use $fw := \tilde{y} \circ gw$. We use a mixture of proposals, as defined in Algorithm 2. To design each proposal q_s , we build randomized versions of moves specifically designed for the prize-collecting dynamic vehicle routing problem with time windows. More precisely, we base our proposals on moves used in the local search part of the PC-HGS algorithm, which are summarized in Table 2. The details of turning these moves into proposal distributions with tractable individual correction ratios are given in Section C.5.

We evaluate three different initialization methods: (i) initialize $\mathbf{y}^{(0)}$ by constructing routes dispatching random requests, (ii) initialize $\mathbf{y}^{(0)}$ to the ground-truth solution, (iii) initialize $\mathbf{y}^{(0)}$ by starting from the dataset ground-truth and applying a heuristic initialization algorithm to improve it. This heuristic initialization, similar to a short local search, is also used by the PC-HGS algorithm $\tilde{\mathbf{y}}$, and is set to take up to half the time allocated to the layer (a limit it does not reach in practice).

C.5 PROPOSAL DISTRIBUTION DESIGN

Original deterministic moves. The selected moves, designed for Local Search algorithms on vehicle routing problems (specifically for the PC-VRPTW for serve request and remove request), are given in Table 5.

All of these moves (except for `remove request`) involve selecting two clients i and j from the request set \mathcal{R}^ω (for example, the `relocate` move relocates client i after client j in the solution).

In the Local Search part of the PC-HGS algorithm from [Vidal \(2022\)](#), they are implemented as deterministic functions used within a quadratic loop over clients, and are performed only if they improve the solution's objective value. The search is narrowed down to client pairs (i, j) such that $d(i, j)$ is among the N_{prox} lowest values in $\{d(i, k) \mid k \in \mathcal{R}^\omega \setminus \{D, i\}\}$, where d is a problem-specific heuristic distance measure between clients, based on spatial features and time windows, and N_{prox} is a hyperparameter. These distances are independent from the chosen solution routes (they are computed once at the start of the algorithm, from the problem features), non-negative, and symmetric: $d(i, j) = d(j, i)$.

Randomization. In order to transform these deterministic moves into proposals, we first adapt the choice of clients i and j , by sampling i uniformly from $V_s^1(\mathbf{y})$, which contains the set of valid choices of client i for move s from solution \mathbf{y} . Then, we sample j from $V_s^2(\mathbf{y})[i] \setminus \{i\}$ using the following softmax distribution: $P_s(j \mid i) = \frac{\exp[-d(i,j)/\beta]}{\sum_{k \in V_s^2(\mathbf{y})[i] \setminus \{i\}} \exp[-d(i,k)/\beta]}$, where $\beta > 0$ is a neighborhood sampling temperature. The set $V_s^2(\mathbf{y})[i]$ contains all valid choices of client j for move s from solution \mathbf{y} , and is precisely along with $V_s^1(\mathbf{y})$ in Table 6. We normalize the distance measures inside the softmax, by dividing them by the maximum distance: $d(i, \cdot) \leftarrow d(i, \cdot) / \max_{k \in V_s^2(\mathbf{y})[i] \setminus \{i\}} d(i, k)$.

Move	$V_s^1(\mathbf{y})$	$V_s^2(\mathbf{y})[i]$
relocate	$\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})$	$\mathcal{D}(\mathbf{y})$
relocate pair	$\mathcal{D}(\mathbf{y}) \setminus \{\mathcal{D}_2(\mathbf{y}) \cup \mathcal{D}^{\text{last}}(\mathbf{y})\}$	$\mathcal{D}(\mathbf{y}) \setminus \{\text{next}(i)\}$
swap	$\mathcal{D}(\mathbf{y})$	$\mathcal{D}(\mathbf{y})$
swap pair	$\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}^{\text{last}}(\mathbf{y})$	$\mathcal{D}(\mathbf{y}) \setminus \{\mathcal{D}^{\text{last}}(\mathbf{y}) \cup \{\text{prev}(i), \text{next}(i)\}\}$
2-opt	$\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_2(\mathbf{y})$	$\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_2(\mathbf{y})$
serve request	$\bar{\mathcal{D}}(\mathbf{y})$	$\mathcal{D}(\mathbf{y}) \cup \mathcal{I}_D(\mathbf{y})$
remove request	$\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})$	

Table 6: Sets of valid clients for each move. $\mathcal{D}(\mathbf{y})$ contains all dispatched clients in solution \mathbf{y} . $\mathcal{D}_1(\mathbf{y})$ contains all dispatched clients that are the only client in their route. $\mathcal{D}_2(\mathbf{y})$ contains all dispatched clients that are in a route with 2 clients or less. $\mathcal{D}^{\text{last}}(\mathbf{y})$ contains all dispatched clients that are the last of their route. $\bar{\mathcal{D}}(\mathbf{y})$ contains all non-dispatched clients. $\mathcal{I}_D(\mathbf{y})$ contains the depot of the first empty route, if it exists (all routes may be non-empty), or else is the empty set. $\mathcal{I}_1(\mathbf{y})$ contains the only client in the last non-empty route if it contains exactly one client, or else is the empty set.

Neighborhood graph symmetrization. Then, we ensure that each individual neighborhood graph \mathcal{N}_s is undirected. This is already the case for the moves swap, swap pair and 2-opt, as they are actually involutions (applying the same move on the same couple (i, j) from \mathbf{y}' will result in \mathbf{y}). However, this is obviously not the case for serve request and remove request. Indeed, if solution \mathbf{y}' is obtained from \mathbf{y} by removing a dispatched client (respectively serving an non-dispatched one), \mathbf{y} cannot be obtained by removing another one (respectively, serving another one). To fix this, we merge these two moves into a single one. First, it evaluates which of the two moves are allowed (i.e., if they are such that $V_s^1(\mathbf{y}) \neq \emptyset$). Then, it samples one (the probability of selecting "remove" is chosen to be equal to the number of removable clients divided by the number of removable clients plus the number of servable clients) in the case where both are possible, or else simply performs the only move allowed. Thus, the corresponding neighborhood graph is undirected as it is always possible to perform the reverse operation (as when removing a client, it becomes unserved, thus allowing the serve request move from \mathbf{y}' , and vice-versa). We also allow the serve request move to insert a client after the depot of the first empty route, to allow the creation of new routes. In consequence, we allow the remove request move to remove the only client in the last non-empty route if it contains exactly one client (to maintain symmetry of the neighborhood graph).

For the relocate and relocate pair moves, the non-reversibility comes from the fact that they only relocate client i (or clients i and $\text{next}(i)$ in the pair case) after client j , so that if client i was the first in its route, relocating it back would be impossible (the depot, which is the start of the route, cannot be selected as j). Thus, we allow insertions before clients too, and add a random choice with probability $(\frac{1}{2}, \frac{1}{2})$ to determine if the relocated client(s) will be inserted before or after j . We also add this feature to the serve request move.

Correction ratio computation. Next, we implement the computation of the individual correction ratio $\tilde{\alpha}_s(\mathbf{y}, \mathbf{y}') = \frac{q_s(\mathbf{y}', \mathbf{y})}{q_s(\mathbf{y}, \mathbf{y}')}}$ for each proposal q_s .

- In the case of swap and 2-opt, we have $\tilde{\alpha}_s(\mathbf{y}, \mathbf{y}') = 1$. Indeed, let \mathbf{y}' be the result of applying one of these moves s on \mathbf{y} when sampling $i \in V_s^1(\mathbf{y})$ and $j \in V_s^2(\mathbf{y})[i] \setminus \{i\}$. We then have:

$$q_s(\mathbf{y}, \mathbf{y}') = \frac{1}{|V_s^1(\mathbf{y})|} \cdot \frac{\exp[-d(i, j)/\beta]}{\sum_{k \in V_s^2(\mathbf{y})[i] \setminus \{i\}} \exp[-d(i, k)/\beta]} + \frac{1}{|V_s^1(\mathbf{y})|} \cdot \frac{\exp[-d(j, i)/\beta]}{\sum_{k \in V_s^2(\mathbf{y})[j] \setminus \{j\}} \exp[-d(j, k)/\beta]},$$

where the first term accounts for the probability of selecting i then j and the second term accounts for that of selecting j then i (one can easily check that these two cases are the only way of sampling \mathbf{y}' from \mathbf{y}). Then, noticing that we have $|V_s^1(\mathbf{y}')| = |V_s^1(\mathbf{y})|$, that these moves are involutions (selecting (i, j) or (j, i) from \mathbf{y}' is also the only way to sample \mathbf{y}), and that we have the equalities $V_s^2(\mathbf{y})[i] = V_s^2(\mathbf{y}')[i]$ and $V_s^2(\mathbf{y})[j] = V_s^2(\mathbf{y}')[j]$, we actually have $q_s(\mathbf{y}', \mathbf{y}) = q_s(\mathbf{y}, \mathbf{y}')$.

1728 • For `swap` pair, the same arguments hold (leading to the same form for q_s), except for the
 1729 equalities $V_s^2(\mathbf{y})[i] = V_s^2(\mathbf{y}')[i]$ and $V_s^2(\mathbf{y})[j] = V_s^2(\mathbf{y}')[j]$. Thus, we have the following
 1730 form for the correction ratio:

1731

1732

$$1733 \frac{q_s(\mathbf{y}', \mathbf{y})}{q_s(\mathbf{y}, \mathbf{y}')} = \frac{\sum_{k \in V_s^2(\mathbf{y})[i] \setminus \{i\}} \exp[-d(i, k)/\beta] + \sum_{k \in V_s^2(\mathbf{y})[j] \setminus \{j\}} \exp[-d(j, k)/\beta]}{\sum_{k \in V_s^2(\mathbf{y}')[i] \setminus \{i\}} \exp[-d(i, k)/\beta] + \sum_{k \in V_s^2(\mathbf{y}')[j] \setminus \{j\}} \exp[-d(j, k)/\beta]}.$$

1734

1735

1736

1737 • In the case of `relocate`, let j' denote $\text{next}(j)$ if the selected insertion type was "after",
 1738 and $\text{prev}(j)$ if it was "before" – where $\text{next}(j) \in \mathcal{R}^\omega$ denotes the request following j in
 1739 solution \mathbf{y} , i.e., the only index k such that $\mathbf{y}_{j,k} = 1$, and $\text{prev}(j)$ is the one preceding it, i.e.,
 1740 the only k such that $\mathbf{y}_{k,j} = 1$. We have:

1741

1742
$$q_s(\mathbf{y}, \mathbf{y}') = \frac{1}{2} \cdot \frac{1}{|V_s^1(\mathbf{y})|} \cdot \frac{\exp[-d(i, j)/\beta]}{\sum_{k \in V_s^2(\mathbf{y})[i] \setminus \{i\}} \exp[-d(i, k)/\beta]}$$

1743

1744
$$+ \frac{1}{2} \cdot \frac{1}{|V_s^1(\mathbf{y}')|} \cdot \frac{\exp[-d(i, j')/\beta]}{\sum_{k \in V_s^2(\mathbf{y}')[i] \setminus \{i\}} \exp[-d(i, k)/\beta]}$$

1745

1746

1747 Indeed, if i was relocated *after* j , the same solution \mathbf{y}' could have been obtained by relocating
 1748 i *before* $j' = \text{next}(j)$. Similarly, if i was relocated *before* j , the same solution \mathbf{y}' could
 1749 have been obtained by relocating i *after* $j' = \text{prev}(j)$. For the reverse move probability, the
 1750 way of obtaining \mathbf{y} from \mathbf{y}' is either to select $(i, \text{prev}(i))$ in the after-type insertion case,
 1751 or $(i, \text{next}(i))$ in the before-type insertion case (where prev and next are taken w.r.t. \mathbf{y} , i.e.,
 1752 before applying the move). Thus, we have:

1753

1754
$$q_s(\mathbf{y}', \mathbf{y}) = \frac{1}{2} \cdot \frac{1}{|V_s^1(\mathbf{y}')|} \cdot \frac{\exp[-d(i, \text{prev}(i))/\beta]}{\sum_{k \in V_s^2(\mathbf{y}')[i] \setminus \{i\}} \exp[-d(i, k)/\beta]}$$

1755

1756
$$+ \frac{1}{2} \cdot \frac{1}{|V_s^1(\mathbf{y}')|} \cdot \frac{\exp[-d(i, \text{next}(i))/\beta]}{\sum_{k \in V_s^2(\mathbf{y}')[i] \setminus \{i\}} \exp[-d(i, k)/\beta]}.$$

1757

1758

1759

1760 • For the `relocate` pair move, the exact same reasoning and proposal probability form
 1761 hold for the forward move, but we have for the reverse direction:

1762

1763
$$q_s(\mathbf{y}', \mathbf{y}) = \frac{1}{2} \cdot \frac{1}{|V_s^1(\mathbf{y}')|} \cdot \frac{\exp[-d(i, \text{prev}(i))/\beta]}{\sum_{k \in V_s^2(\mathbf{y}')[i] \setminus \{i\}} \exp[-d(i, k)/\beta]}$$

1764

1765
$$+ \frac{1}{2} \cdot \frac{1}{|V_s^1(\mathbf{y}')|} \cdot \frac{\exp[-d(i, \text{next}(\text{next}(i)))/\beta]}{\sum_{k \in V_s^2(\mathbf{y}')[i] \setminus \{i\}} \exp[-d(i, k)/\beta]},$$

1766

1767

1768

1769 as client $\text{next}(i)$ is also relocated.

1770 • For the `serve` request / `remove` request move, we have the forward probability:

1771

1772

1773
$$q_s(\mathbf{y}, \mathbf{y}') = \frac{|\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})|}{|\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})| + |\bar{\mathcal{D}}(\mathbf{y})|} \times \frac{1}{|\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})|}$$

1774

1775

1776
$$= \frac{1}{|\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})| + |\bar{\mathcal{D}}(\mathbf{y})|}$$

1777

1778 if the chosen move is `remove` request. The expression corresponds to the composition
 1779 of move choice sampling and uniform sampling over removable clients.

1780 Still in the same case (`remove` request is chosen) and if the removed request i was in
 1781 $\mathcal{I}_1(\mathbf{y})$ (i.e., was the only client in the last non-empty route if the latter contained exactly one

1782 client), we have the reverse move probability:
1783

$$\begin{aligned}
1784 \quad q_s(\mathbf{y}', \mathbf{y}) &= \frac{1}{|\{\mathcal{D}(\mathbf{y}') \setminus \mathcal{D}_1(\mathbf{y}')\} \cup \mathcal{I}_1(\mathbf{y}')| + |\bar{\mathcal{D}}(\mathbf{y}')|} \\
1785 &\times \frac{\exp[-\bar{d}(i)/\beta]}{\exp[-\bar{d}(i)/\beta] + \sum_{k \in \mathcal{D}(\mathbf{y}')} \exp[-d(i, k)/\beta]} \\
1786 &= \frac{1}{|\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})| + |\bar{\mathcal{D}}(\mathbf{y})|} \\
1787 &\times \frac{\exp[-\bar{d}(i)/\beta]}{\exp[-\bar{d}(i)/\beta] + \sum_{\substack{k \in \mathcal{D}(\mathbf{y}) \\ k \neq i}} \exp[-d(i, k)/\beta]}.
\end{aligned}$$

1788
1789
1790
1791
1792
1793
1794
1795 The expression corresponds to the composition of move choice sampling and softmax
1796 sampling of the depot of the first empty route (which was the route of the removed client
1797 i , so that $\mathcal{I}_D(\mathbf{y}') \neq \emptyset$ in this case). We use the average distance to dispatched clients
1798 $\bar{d}(i) := \frac{1}{|\mathcal{D}(\mathbf{y}')|} \sum_{k \in \mathcal{D}(\mathbf{y}')} d(i, k)$ as distance to the depot.

1799 In the case where the removed request i was not in $\mathcal{I}_1(\mathbf{y})$, we have instead:

$$\begin{aligned}
1800 \quad q_s(\mathbf{y}', \mathbf{y}) &= \frac{1}{|\{\mathcal{D}(\mathbf{y}') \setminus \mathcal{D}_1(\mathbf{y}')\} \cup \mathcal{I}_1(\mathbf{y}')| + |\bar{\mathcal{D}}(\mathbf{y}')|} \\
1801 &\times \frac{\frac{1}{2} \cdot \exp[-d(i, \text{prev}(i))] + \frac{1}{2} \cdot \exp[-d(i, \text{next}(i))]}{\mathbf{1}_{\{\mathcal{I}_D(\mathbf{y}') \neq \emptyset\}} \cdot \exp[-\bar{d}(i)/\beta] + \sum_{k \in \mathcal{D}(\mathbf{y}')} \exp[-d(i, k)/\beta]} \\
1802 &= \frac{1}{|\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})| + |\bar{\mathcal{D}}(\mathbf{y})|} \\
1803 &\times \frac{\frac{1}{2} \cdot \exp[-d(i, \text{prev}(i))] + \frac{1}{2} \cdot \exp[-d(i, \text{next}(i))]}{\mathbf{1}_{\{\mathcal{I}_D(\mathbf{y}) \neq \emptyset\}} \cdot \exp[-\bar{d}(i)/\beta] + \sum_{\substack{k \in \mathcal{D}(\mathbf{y}) \\ k \neq i}} \exp[-d(i, k)/\beta]}.
\end{aligned}$$

1804
1805
1806
1807
1808
1809
1810
1811 The right term corresponds to softmax sampling of the previous node with "after" insertion
1812 type (which has probability 1/2) and of the next node with "before" insertion type. The
1813 non-emptiness of $\mathcal{I}_D(\mathbf{y}')$ is not guaranteed anymore, as all routes might be non-empty
1814 (indeed, we did not create an empty one by removing i , as $i \in \mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})$ in this case).

1815 Similarly, if the chosen move is `serve` request, we have the forward probability:

$$\begin{aligned}
1816 \quad q_s(\mathbf{y}, \mathbf{y}') &= \frac{|\bar{\mathcal{D}}(\mathbf{y})|}{|\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})| + |\bar{\mathcal{D}}(\mathbf{y})|} \\
1817 &\times \frac{\frac{1}{2} \cdot \exp[-d(i, j)] + \frac{1}{2} \cdot \exp[-d(i, j')]}{\mathbf{1}_{\{\mathcal{I}_D(\mathbf{y}) \neq \emptyset\}} \cdot \exp[-\bar{d}(i)/\beta] + \sum_{k \in \mathcal{D}(\mathbf{y})} \exp[-d(i, k)/\beta]}
\end{aligned}$$

1818
1819
1820
1821
1822 if the selected insertion node j is not in $\mathcal{I}_D(\mathbf{y})$ (i.e., is not the depot of the first empty route
1823 in \mathbf{y}), where $j' = \text{prev}(j)$ if the insertion type selected was "before" (which has probability
1824 1/2), and $j' = \text{next}(j)$ if it was "after".

1825 We have instead the forward probability:

$$\begin{aligned}
1826 \quad q_s(\mathbf{y}, \mathbf{y}') &= \frac{1}{|\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})| + |\bar{\mathcal{D}}(\mathbf{y})|} \\
1827 &\times \frac{\exp[-\bar{d}(i)/\beta]}{\exp[-\bar{d}(i)/\beta] + \sum_{k \in \mathcal{D}(\mathbf{y})} \exp[-d(i, k)/\beta]}
\end{aligned}$$

1828
1829
1830
1831
1832 if the selected insertion node j is in $\mathcal{I}_D(\mathbf{y})$ (i.e., is the depot of the first empty route in \mathbf{y}).

1833 In every case, we have the reverse move probability:

$$q_s(\mathbf{y}', \mathbf{y}) = \frac{1}{|\{\mathcal{D}(\mathbf{y}) \setminus \mathcal{D}_1(\mathbf{y})\} \cup \mathcal{I}_1(\mathbf{y})| + |\bar{\mathcal{D}}(\mathbf{y})|}.$$

1836 In each case, we set $d(i, D) = \infty$ to account for the fact that the depot can never be sampled during
1837 the process (except in the `serve request` / `remove request` move, where we allow the depot
1838 of the first empty route / last non-empty route to be selected, for which we use the average distance to
1839 other requests as explained earlier) – in fact, the distance measure from a client to the depot is not
1840 even defined in the original HGS implementation.

1841 The second correction factor needed is $\frac{|Q(\mathbf{y})|}{|Q(\mathbf{y}')|}$ (see Algorithm 2). We compute it by checking if each
1842 move is allowed, i.e., if there exists at least one $i \in V_s^1(\mathbf{y})$ such that $V_s^2(\mathbf{y})[i] \setminus \{i\} \neq \emptyset$. This can be
1843 determined in $\mathcal{O}(\mathcal{R}^\omega)$ for each move.

1845 **C.6 PERFORMANCE METRIC.**

1848 As the Fenchel-Young loss ℓ_t actually minimized is intractable to compute exactly, we only use the
1849 challenge metric. More precisely, we measure the cost relative to that of the anticipative baseline,
1850 $\frac{c_W(f_W) - c_W(f^*)}{c_W(f^*)}$, which we average over a test dataset of unseen instances.

1852 **C.7 RESULTS.**

1854 In Fig. 2, we observe that the initialization method plays an important role, and the ground-truth-based
1855 ones greatly outperform the random one.

1856 We observe that the number of Markov iterations K is an important performance factor. Interestingly,
1857 the ground-truth initialization significantly improves the learning process for small K .

1858 In Table 3, we compare training methods with fixed compute time budget for the layer (perturbed
1859 solver or proposed MCMC approach), which is by far the main computational bottleneck. This
1860 parameter limits the time allowed for a single forward pass through the combinatorial optimization
1861 layer (be it the perturbed inexact oracle or the proposed method). In both cases, the backward pass
1862 through the layer is immediate, as a property of the expression of the gradient of Fenchel-Young
1863 losses. The models are selected using a validation set and evaluated on the test set. We observe that
1864 the proposed approach significantly outperforms the perturbation-based method (Berthet et al., 2020)
1865 using $\tilde{\mathbf{y}}$ in low time limit regimes, thus allowing for faster and more efficient training.

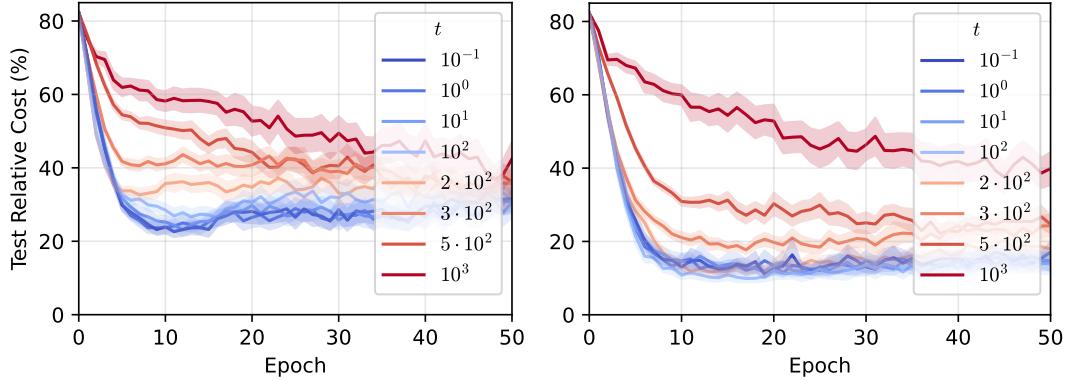
1866 Full experimental details and additional results on the impact of temperature are given in Section C.8.

1868 **C.8 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS FOR SECTION 5.1**

1870 **Model, features, dataset, hyperparameters, compute.** Following Baty et al. (2023), the differ-
1871 entiable ML model g_W is implemented as a sparse graph neural network. We also use the same
1872 feature set, which represents the system state x^ω as a vector comprising request-level features, such
1873 as coordinates, time windows, demands, travel time to the depot, and quantiles from the distribution
1874 of the travel time to all other requests (named *complete* feature set, and described in the Table 4 of
1875 their paper). We use the same training, validation, and testing datasets, which are created from 30, 15
1876 and 25 problem instances respectively. The training set uses a sample size of 50 requests per wave,
1877 while the rest use 100. The solutions in the training dataset, i.e., the examples from the anticipative
1878 strategy f^* imitated by the model, are obtained by solving the corresponding offline VRPTWs using
1879 HGS (Vidal, 2022) with a time limit of 3600 seconds. During evaluation, the PC-HGS solver $\tilde{\mathbf{y}}$ is
1880 used with a constant time limit of 60 seconds for all models. We use Adam (Kingma and Ba, 2017)
1881 together with the proposed stochastic gradient estimators, with a learning rate of $5 \cdot 10^{-3}$. Each
1882 training is performed using only a single CPU worker. For Fig. 2, we use a temperature $t = 10^2$. For
1883 Table 3, we use 1 Monte-Carlo sample for the perturbation-based method and 1 Markov chain for
1884 the proposed approach (in order to have a fair comparison: an equal number of oracle calls / equal
1885 compute).

1886 **Statistical significance.** Each training is performed 50 times with the same parameters and different
1887 random seeds. Then, the learning curves are averaged, and plotted with a 95% confidence interval.
1888 For the results in Table 3, we report the performance of the best model iteration (selected with respect
1889 to the validation set) on the test set. This procedure is also averaged over 50 trainings, and reported
with 95% confidence intervals.

1890 **Additional results.** In Fig. 15, we report model performance for varying temperature t . Interestingly, lower temperatures perform better when using random initialization. In the ground-truth
1891 initialization setting, a sweet spot is found at $t = 10^2$, but lower temperatures do not particularly
1892 decrease performance.
1893



1908 Figure 15: Test relative cost (%). **Left:** varying temperature t with random initialization. **Right:**
1909 varying temperature t with ground-truth initialization.

1912 D DETAILS ON THE MULTI-DIMENSIONAL KNAPSACK PROBLEM

1914 First, we recall that the combinatorial optimization layer is defined as:

$$1917 \quad \hat{\mathbf{y}}(\boldsymbol{\theta}) := \underset{\mathbf{y} \in \{0,1\}^d}{\operatorname{argmax}} \sum_{i=1}^d \theta_i y_i = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \boldsymbol{\theta}, \mathbf{y} \rangle, \quad (13)$$

$$1920 \quad \text{s.t. } \forall j \in [M], \sum_{i=1}^d w_{i,j} y_i \leq C_j$$

1922 where $\boldsymbol{\theta} = g_W(\mathbf{x}) \in \mathbb{R}^d$ are the item values, $w_{i,j} \geq 0$ is the weight of item i in dimension j , and C_j is
1923 the capacity of dimension j . The feasible set is $\mathcal{Y} := \{\mathbf{y} \in \{0,1\}^d \mid \forall j \in [M], \sum_{i=1}^d w_{i,j} y_i \leq C_j\}$.
1925

1926 D.1 PROPOSAL DISTRIBUTION DESIGN

1928 In this experiment, defined in Section 5.2, we use Algorithm 2 with a mixture of three proposal
1929 distributions q_1, q_2 and q_3 ($S = 3$).

1930 Let $\mathbf{y} \in \mathcal{Y}$ be a current feasible solution, and let $I(\mathbf{y}) = \{i \mid y_i = 1\}$ and $\bar{I}(\mathbf{y}) = \{j \mid y_j = 0\}$
1931 denote the indices of selected and unselected items. Given a binary vector $\mathbf{y} \in \{0,1\}^d$ and an index
1932 $i \in [d]$, we denote by $\mathbf{y}_{y_i \rightarrow \bar{y}_i}$ the vector where the i -th bit is flipped, i.e.:

$$1934 \quad (\mathbf{y}_{y_i \rightarrow \bar{y}_i})_k = \begin{cases} 1 - y_i & \text{if } k = i, \\ y_i & \text{else.} \end{cases}$$

1936 Given two indices $i, j \in [d]$, we denote by $\mathbf{y}_{i \leftrightarrow j} \in \{0,1\}^d$ the vector where the i -th and j -th bits are
1937 swapped, i.e.:

$$1940 \quad (\mathbf{y}_{i \leftrightarrow j})_k = \begin{cases} y_j & \text{if } k = i, \\ y_i & \text{if } k = j, \\ y_k & \text{else.} \end{cases}$$

1943 We use a sampling temperature $\beta = 1.0$ and define the following moves:

1944 • **Uniform swap** (q_1). The neighborhood $\mathcal{N}_1(\mathbf{y})$ consists of all feasible solutions obtained by
 1945 swapping an active item $i \in I(\mathbf{y})$ with an inactive one $j \in \bar{I}(\mathbf{y})$, i.e.:

$$1947 \quad \mathcal{N}_1(\mathbf{y}) = \{\mathbf{y}' \in \mathcal{Y} \mid \exists i \in I(\mathbf{y}), j \in \bar{I}(\mathbf{y}) : \mathbf{y}' = \mathbf{y}_{i \leftrightarrow j}\}.$$

1948 The proposal is uniform over this neighborhood: $\forall \mathbf{y}_{i \leftrightarrow j} \in \mathcal{N}_1(\mathbf{y}), q_1(\mathbf{y}, \mathbf{y}_{i \leftrightarrow j}) = \frac{1}{|\mathcal{N}_1(\mathbf{y})|}$.

1949 • **Guided swap** (q_2). Using the same swap neighborhood $\mathcal{N}_2(\mathbf{y}) = \mathcal{N}_1(\mathbf{y})$, we bias the selection
 1950 using the predicted item values θ . We sample item $i \in I(\mathbf{y})$ to drop with probability $p_{\text{drop}}(i) \propto$
 1951 $e^{-\theta_i/\beta}$ and item $j \in \bar{I}(\mathbf{y})$ to add with $p_{\text{add}}(j) \propto e^{\theta_j/\beta}$.

1952 The proposal distribution is therefore: $\forall \mathbf{y}_{i \leftrightarrow j} \in \mathcal{N}_1(\mathbf{y}), q_2(\mathbf{y}, \mathbf{y}_{i \leftrightarrow j}) \propto \exp\left(\frac{\theta_j - \theta_i}{\beta}\right)$.

1953 • **Guided flip** (q_3). The neighborhood $\mathcal{N}_3(\mathbf{y})$ consists of all feasible solutions obtained by flipping a
 1954 single bit i , i.e.:

$$1957 \quad \mathcal{N}_3(\mathbf{y}) = \{\mathbf{y}' \in \mathcal{Y} \mid \exists i \in [d] : \mathbf{y}' = \mathbf{y}_{y_i \rightarrow \bar{y}_i}\}.$$

1958 We sample index i with probability proportional to $e^{-\theta_i/\beta}$ if $y_i = 1$ (favoring dropping low-value
 1959 items) and $e^{\theta_i/\beta}$ if $y_i = 0$ (favoring adding high-value items).

1960 The proposal distribution is therefore: $\forall \mathbf{y}_{y_i \rightarrow \bar{y}_i} \in \mathcal{N}_3(\mathbf{y}), q_3(\mathbf{y}, \mathbf{y}_{y_i \rightarrow \bar{y}_i}) \propto \exp\left(\frac{(1-2y_i)\cdot\theta_i}{\beta}\right)$.

1963 D.2 DATA GENERATION

1964 For the benchmark experiment in Fig. 3, we generate a synthetic dataset of 5,000 instances using
 1965 the PyEPO library (Tang and Khalil, 2023). We set the problem size to $d = 100$ items and $J = 50$
 1966 constraints. For each instance, we sample feature vectors $\mathbf{x} \in \mathbb{R}^{64}$ and generate the item values θ
 1967 (cost vector) with a polynomial dependence on \mathbf{x} of degree 4 and multiplicative noise $\epsilon = 0.5$. The
 1968 item weights $w_{i,j}$ are sampled uniformly, and the capacities C_j are generated using a capacity ratio
 1969 of 0.5.

1970 To obtain the ground-truth labels \mathbf{y}_i for the conditional learning task, we solve each instance using
 1971 the Gurobi ILP solver with a time limit of 1000ms. The dataset is partitioned into training (80%),
 1972 validation (10%), and test (10%) sets. We use the validation set to select best model iterations (in
 1973 terms of relative regret on the validation set), before evaluating their test relative regret.

1975 D.3 IMPLEMENTATION DETAILS

1976 The predictive model g_W is a Multi-Layer Perceptron (MLP) with two hidden layers of size 64
 1977 and ReLU activations. We train the model for 20 epochs using the Adam (Kingma and Ba, 2017)
 1978 optimizer with a learning rate of 5×10^{-3} and a batch size of 32.

1979 For the benchmark experiment in Fig. 3, we use a time limit of 1.0ms for both the LS-MCMC layer
 1980 and the Gurobi ILP solver at training time (at this scale, the solver consistently finds optimal solutions
 1981 with this time budget).

1984 E PROOFS

1985 E.1 PROOF OF EQ. (4)

1986 *Proof.* At fixed temperature $t_k = t$, the iterates of Algorithm 1 (MH case) follow a time-homogenous
 1987 Markov chain, defined by the following transition kernel $P_{\theta,t}$:

$$1992 \quad P_{\theta,t}(\mathbf{y}, \mathbf{y}') = \begin{cases} q(\mathbf{y}, \mathbf{y}') \min\left[1, \frac{q(\mathbf{y}', \mathbf{y})}{q(\mathbf{y}, \mathbf{y}')} \exp\left(\frac{\langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}') - \langle \theta, \mathbf{y} \rangle - \varphi(\mathbf{y})}{t}\right)\right] & \text{if } \mathbf{y}' \in \mathcal{N}(\mathbf{y}), \\ 1 - \sum_{\mathbf{y}'' \in \mathcal{N}(\mathbf{y})} P_{\theta,t}(\mathbf{y}, \mathbf{y}'') & \text{if } \mathbf{y}' = \mathbf{y}, \\ 0 & \text{else.} \end{cases}$$

1993 **Irreducibility.** As we assumed the neighborhood graph $G_{\mathcal{N}}$ to be connected and undirected, the
 1994 Markov Chain is irreducible as we have $\forall \mathbf{y} \in \mathcal{Y}, \forall \mathbf{y}' \in \mathcal{N}(\mathbf{y}), P_{\theta,t}(\mathbf{y}, \mathbf{y}') > 0$.

1998 **Aperiodicity.** For simplicity, we directly assumed aperiodicity in the main text. Here, we show
 1999 that this is a mild condition, which is verified for instance if there is a solution $\mathbf{y} \in \mathcal{Y}$ such that
 2000 $q(\mathbf{y}, \mathbf{y}) > 0$. Indeed, we then have:
 2001

$$\begin{aligned}
 P_{\theta,t}(\mathbf{y}, \mathbf{y}) &= 1 - \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} P_{\theta,t}(\mathbf{y}, \mathbf{y}') \\
 &= 1 - \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} q(\mathbf{y}, \mathbf{y}') \min \left[1, \frac{q(\mathbf{y}', \mathbf{y})}{q(\mathbf{y}, \mathbf{y}')} \exp \left(\frac{\langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}') - \langle \theta, \mathbf{y} \rangle - \varphi(\mathbf{y})}{t} \right) \right] \\
 &\geq 1 - \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} q(\mathbf{y}, \mathbf{y}') \\
 &\geq q(\mathbf{y}, \mathbf{y}') \\
 &> 0.
 \end{aligned}$$

2013 Thus, we have $P_{\theta,t}(\mathbf{y}, \mathbf{y}) > 0$, which implies that the chain is aperiodic. As an irreducible and
 2014 aperiodic Markov Chain on a finite state space, it converges to its stationary distribution and the
 2015 latter is unique (Freedman, 2017). Finally, one can easily check that the detailed balance equation is
 2016 satisfied for $\pi_{\theta,t}$, i.e.:

$$\forall \mathbf{y}, \mathbf{y}' \in \mathcal{Y}, \pi_{\theta,t}(\mathbf{y}) P_{\theta,t}(\mathbf{y}, \mathbf{y}') = \pi_{\theta,t}(\mathbf{y}') P_{\theta,t}(\mathbf{y}', \mathbf{y}),$$

2017 giving that $\pi_{\theta,t}$ is indeed the stationary distribution of the chain, which concludes the proof. \square
 2018

2019 E.2 PROOF OF PROPOSITION 1

2022 *Proof.* Let $\theta \in \mathbb{R}^d$ and $t > 0$. The fact that $\widehat{y}_t(\theta) \in \text{relint}(\mathcal{C}) = \text{relint}(\text{conv}(\mathcal{Y}))$ follows directly
 2023 from the fact that $\widehat{y}_t(\theta)$ is a convex combination of the elements of \mathcal{Y} with positive coefficients, as
 2024 $\forall \mathbf{y} \in \mathcal{Y}, \pi_{\theta,t}(\mathbf{y}) > 0$.
 2025

2026 **Low temperature limit.** Let $\mathbf{y}^* := \text{argmax}_{\mathbf{y} \in \mathcal{Y}} \langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})$. The argmax is assumed to be
 2027 single-valued. Let $\mathbf{y} \in \mathcal{Y} \setminus \{\mathbf{y}^*\}$. We have:

$$\begin{aligned}
 \pi_{\theta,t}(\mathbf{y}) &= \frac{\exp \left(\frac{\langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})}{t} \right)}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp \left(\frac{\langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}')}{t} \right)} \\
 &\leq \frac{\exp \left(\frac{\langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})}{t} \right)}{\exp \left(\frac{\langle \theta, \mathbf{y}^* \rangle + \varphi(\mathbf{y}^*)}{t} \right)} \\
 &\leq \exp \left(\frac{(\langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})) - (\langle \theta, \mathbf{y}^* \rangle + \varphi(\mathbf{y}^*))}{t} \right) \\
 &\xrightarrow[t \rightarrow 0^+]{} 0,
 \end{aligned}$$

2039 as $\langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y}) < \langle \theta, \mathbf{y}^* \rangle + \varphi(\mathbf{y}^*)$ by definition of \mathbf{y}^* . Thus, we have:

$$\pi_{\theta,t}(\mathbf{y}^*) = 1 - \sum_{\mathbf{y} \in \mathcal{Y} \setminus \{\mathbf{y}^*\}} \pi_{\theta,t}(\mathbf{y}) \xrightarrow[t \rightarrow 0^+]{} 1.$$

2040 Thus, the expectation of $\pi_{\theta,t}$ converges to \mathbf{y}^* . Naturally, if the argmax is not unique, the distribution
 2041 converges to a uniform distribution on the maximizing structures.
 2042

2043 **High temperature limit.** For all $\mathbf{y} \in \mathcal{Y}$, we have:
 2044

$$\begin{aligned}
 \pi_{\theta,t}(\mathbf{y}) &= \frac{\exp \left(\frac{\langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})}{t} \right)}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp \left(\frac{\langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}')}{t} \right)} \\
 &\xrightarrow[t \rightarrow \infty]{} \frac{1}{|\mathcal{Y}|},
 \end{aligned}$$

2052 as $\exp(x/t) \xrightarrow[t \rightarrow \infty]{} 1$ for all $x \in \mathbb{R}$. Thus, $\pi_{\theta,t}$ converges to the uniform distribution on \mathcal{Y} , and its
 2053 expectation converges to the average of all structures.
 2054

2055 **Expression of the Jacobian.** Let $A_t : \theta \mapsto t \cdot \log \sum_{y \in \mathcal{Y}} \exp(\langle \theta, y \rangle + \varphi(y))$ be the cumulant
 2056 function of the exponential family defined by $\pi_{\theta,t}$, scaled by t . One can easily check that we have
 2057 $\nabla_{\theta} A_t(\theta) = \widehat{y}_t(\theta)$. Thus, we have $J_{\theta} \widehat{y}_t(\theta) = \nabla_{\theta}^2 A_t(\theta)$. However, we also have that the hessian
 2058 matrix of the cumulant function $\theta \mapsto \frac{1}{t} A_t(\theta)$ is equal to the covariance matrix of the random vector
 2059 $\frac{Y}{t}$ under $\pi_{\theta,t}$ (Wainwright and Jordan, 2008). Thus, we have:
 2060

$$\begin{aligned} J_{\theta} \widehat{y}_t(\theta) &= \nabla_{\theta}^2 A_t(\theta) \\ &= t \cdot \nabla_{\theta}^2 \left(\frac{1}{t} A_t(\theta) \right) \\ &= t \cdot \text{cov}_{\pi_{\theta,t}} \left[\frac{Y}{t} \right] \\ &= \frac{1}{t} \text{cov}_{\pi_{\theta,t}} [Y]. \end{aligned}$$

2061 \square

2062 E.3 PROOF OF PROPOSITION 2

2063 *Proof.* Let $K_{\theta,t}$ be the Markov transition kernel associated to Algorithm 2, which can be written as:
 2064

$$2065 K_{\theta,t}(\mathbf{y}, \mathbf{y}') = \begin{cases} \sum_{\substack{s \in Q(\mathbf{y}) \\ \text{s.t. } q_s(\mathbf{y}, \mathbf{y}') > 0}} \frac{1}{|Q(\mathbf{y})|} q_s(\mathbf{y}, \mathbf{y}') \min \left(1, \frac{|Q(\mathbf{y})|}{|Q(\mathbf{y}')|} \cdot \frac{q_s(\mathbf{y}', \mathbf{y}) \pi_{\theta,t}(\mathbf{y}')}{q_s(\mathbf{y}, \mathbf{y}') \pi_{\theta,t}(\mathbf{y})} \right) & \text{if } \mathbf{y}' \in \bar{\mathcal{N}}(\mathbf{y}), \\ 1 - \sum_{\mathbf{y}'' \in \bar{\mathcal{N}}(\mathbf{y})} K_{\theta,t}(\mathbf{y}, \mathbf{y}'') & \text{if } \mathbf{y}' = \mathbf{y}, \\ 0 & \text{else.} \end{cases}$$

2066 As $\forall \mathbf{y} \in \mathcal{Y}$, $\forall \mathbf{y}' \in \bar{\mathcal{N}}(\mathbf{y})$, $K_{\theta,t}(\mathbf{y}, \mathbf{y}') > 0$, the irreducibility of the chain on \mathcal{Y} is directly implied by
 2067 the connectedness of $G_{\bar{\mathcal{N}}}$.
 2068

2069 Thus, we only have to check that the detailed balance equation

$$2070 \pi_{\theta,t}(\mathbf{y}) K_{\theta,t}(\mathbf{y}, \mathbf{y}') = \pi_{\theta,t}(\mathbf{y}') K_{\theta,t}(\mathbf{y}', \mathbf{y})$$

2071 is satisfied for all $\mathbf{y}' \in \bar{\mathcal{N}}(\mathbf{y})$. We have:

$$2072 \pi_{\theta,t}(\mathbf{y}) K_{\theta,t}(\mathbf{y}, \mathbf{y}') = \sum_{\substack{s \in Q(\mathbf{y}) \\ \text{s.t. } q_s(\mathbf{y}, \mathbf{y}') > 0}} \left[\frac{q_s(\mathbf{y}, \mathbf{y}') \pi_{\theta,t}(\mathbf{y})}{|Q(\mathbf{y})|} \min \left(1, \frac{|Q(\mathbf{y})|}{|Q(\mathbf{y}')|} \cdot \frac{q_s(\mathbf{y}', \mathbf{y}) \pi_{\theta,t}(\mathbf{y}')}{q_s(\mathbf{y}, \mathbf{y}') \pi_{\theta,t}(\mathbf{y})} \right) \right].$$

2073 The main point consists in noticing that the undirectedness assumption for each individual neighborhood graph $G_{\mathcal{N}_s}$ implies:

$$2074 \{s \in Q(\mathbf{y}) : q_s(\mathbf{y}, \mathbf{y}') > 0\} = \{s \in Q(\mathbf{y}') : q_s(\mathbf{y}', \mathbf{y}) > 0\}.$$

2075 Thus, a simple case analysis on how $|Q(\mathbf{y})| q_s(\mathbf{y}', \mathbf{y}) \pi_{\theta,t}(\mathbf{y}')$ and $|Q(\mathbf{y}')| q_s(\mathbf{y}, \mathbf{y}') \pi_{\theta,t}(\mathbf{y})$ compare
 2076 allows us to observe that the expression of $\pi_{\theta,t}(\mathbf{y}) K_{\theta,t}(\mathbf{y}, \mathbf{y}')$ is symmetric in \mathbf{y} and \mathbf{y}' , which
 2077 concludes the proof. \square

2078 E.4 PROOF OF STRICT CONVEXITY

2079 *Proof.* As A_t is a differentiable convex function on \mathbb{R}^d (as the log-sum-exp of such functions), it is
 2080 an essentially smooth closed proper convex function. Thus, it is such that

$$2081 \text{relint}(\text{dom}((A_t)^*)) \subseteq \nabla A_t(\mathbb{R}^d) \subseteq \text{dom}((A_t)^*),$$

2082 and we have that the restriction of $(A_t)^*$ to $\nabla A_t(\mathbb{R}^d)$ is strictly convex on every convex subset of
 2083 $\nabla A_t(\mathbb{R}^d)$ (corollary 26.4.1 in Rockafellar (1970)). As the range of the gradient of the cumulant

2106 function $\theta \mapsto A_t(\theta)/t$ is exactly the relative interior of the marginal polytope $\text{conv}(\{\mathbf{y}/t, \mathbf{y} \in \mathcal{Y}\})$
2107 (see appendix B.1 in [Wainwright and Jordan \(2008\)](#)), and $(A_t)^* =: \Omega_t$, we actually have that
2108

$$2109 \text{relint}(\text{dom}(\Omega_t)) \subseteq \text{relint}(\mathcal{C}) \subseteq \text{dom}(\Omega_t),$$

2110 and that Ω_t is strictly convex on every convex subset of $\text{relint}(\mathcal{C})$, i.e., strictly convex on $\text{relint}(\mathcal{C})$ (as
2111 $\text{relint}(\mathcal{C})$ is itself convex).
2112

2113 As A_t is closed proper convex, it is equal to its biconjugate by the Fenchel-Moreau theorem. Thus,
2114 we have:

$$2115 A_t(\theta) = \sup_{\mu \in \mathbb{R}^d} \{\langle \theta, \mu \rangle - (A_t)^*(\mu)\} = \sup_{\mu \in \mathbb{R}^d} \{\langle \theta, \mu \rangle - \Omega_t(\mu)\}.$$

2117 Moreover, as $\nabla A_t(\mathbb{R}^d) = \text{relint}(\mathcal{C})$, we have $\|\nabla A_t(\theta)\| \leq R_C := \max_{\mu \in \mathcal{C}} \|\mu\|$, which gives
2118 $\text{dom}(\Omega_t) \subset B(\mathbf{0}, R_C)$. Thus we can actually write:

$$2119 A_t(\theta) = \sup_{\mu \in B(\mathbf{0}, R_C)} \{\langle \theta, \mu \rangle - \Omega_t(\mu)\},$$

2122 and now apply Danksin's theorem as $B(\mathbf{0}, R_C)$ is compact, which further gives:

$$2123 \partial A_t(\theta) = \underset{\mu \in B(\mathbf{0}, R_C)}{\text{argmax}} \{\langle \theta, \mu \rangle - \Omega_t(\mu)\},$$

2126 and the fact that A_t is differentiable gives that both sides are single-valued. Moreover, as $\nabla A_t(\mathbb{R}^d) =$
2127 $\text{relint}(\mathcal{C})$, we know that the right hand side is maximized in \mathcal{C} , and we can actually write:

$$2128 \nabla A_t(\theta) = \underset{\mu \in \mathcal{C}}{\text{argmax}} \{\langle \theta, \mu \rangle - \Omega_t(\mu)\}.$$

2131 We end this proof by noting that a simple calculation yields $\nabla A_t(\theta) = \mathbb{E}_{\pi_{\theta,t}}[Y] = \hat{y}_t(\theta)$. The
2132 expression of $\nabla_{\theta} \ell_t(\theta; \mathbf{y})$ follows. \square

2134 **Remark 2.** *The proposed Fenchel-Young loss can also be obtained via distribution-space
2135 regularization. Let $s_{\theta} := (\langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y}))_{\mathbf{y} \in \mathcal{Y}} \in \mathbb{R}^{|\mathcal{Y}|}$ be a vector containing the score of
2136 all structures, and $L_{-tH} : \mathbb{R}^{|\mathcal{Y}|} \times \Delta^{|\mathcal{Y}|} \rightarrow \mathbb{R}$ be the Fenchel-Young loss generated by
2137 $-tH$, where H is the Shannon entropy. We have $\nabla_{s_{\theta}}(-tH)^*(s_{\theta}) = \pi_{\theta,t}$. The chain rule
2138 further gives $\nabla_{\theta}(-tH)^*(s_{\theta}) = \mathbb{E}_{\pi_{\theta,t}}[Y]$. Thus, we have $\nabla_{\theta} L_{-tH}(s_{\theta}; \mathbf{p}_{\mathbf{y}}) = \nabla_{\theta} \ell_t(\theta; \mathbf{y})$,
2139 where $\mathbf{p}_{\mathbf{y}}$ is the Dirac distribution on \mathbf{y} . In the case where $\varphi \equiv 0$ and $t = 1$, we have
2140 $\Omega_t(\mu) = -(\max_{\mathbf{p} \in \Delta^{|\mathcal{Y}|}} H^s(\mathbf{p}) \text{ s.t. } \mathbb{E}_{\mathbf{p}}[Y] = \mu)$, with H^s the Shannon entropy ([Blondel et al., 2020](#)), and ℓ_t is known as the CRF loss ([Lafferty et al., 2001](#)).*

E.5 PROOF OF PROPOSITION 4

2145 *Proof.* The proof is exactly the proof of Proposition 4.1 in [Berthet et al. \(2020\)](#), in which the setting is
2146 similar, and all the same arguments hold (we also have that π_{θ_0} is dense on \mathcal{Y} , giving $\bar{Y}_N \in \text{relint}(\mathcal{C})$
2147 for N large enough). The only difference is the choice of regularization function, and we have to
2148 prove that it is also convex and smooth in our case. While the convexity of Ω_t is directly implied by
2149 its definition as a Fenchel conjugate, the fact that it is smooth is due to Theorem 26.3 in [Rockafellar
2150 \(1970\)](#) and the essential strict convexity of A_t (which is itself closed proper convex). The latter relies
2151 on the fact that \mathcal{C} is assumed to be of full-dimension (otherwise A_t would be linear when restricted to
2152 any affine subspace of direction equal to the subspace orthogonal to the direction of the smallest affine
2153 subspace spanned by \mathcal{C}), which in turn implies that A_t is strictly convex on \mathbb{R}^d . Thus, Proposition 4.1
2154 in [Berthet et al. \(2020\)](#) gives the asymptotic normality:

$$2155 \sqrt{N}(\theta_N^* - \theta_0) \xrightarrow[N \rightarrow \infty]{\mathcal{D}} \mathcal{N}\left(\mathbf{0}, (\nabla_{\theta}^2 A_t(\theta_0))^{-1} \text{cov}_{\pi_{\theta_0,t}}[Y] (\nabla_{\theta}^2 A_t(\theta_0))^{-1}\right).$$

2157 Moreover, we already derived $\nabla_{\theta}^2 A_t(\theta_0) = \frac{1}{t} \text{cov}_{\pi_{\theta_0,t}}[Y]$ in Section E.2, leading to the simplified
2158 asymptotic normality given in the proposition. \square

2160 E.6 PROOF OF PROPOSITION 5
2161

2162 *Proof.* The proof consists in bounding the convergence rate of the Markov chain $(\mathbf{y}^{(k)})_{k \in \mathbb{N}}$ (which
2163 has transition kernel $P_{\theta,t}$) for all θ , in order to apply Theorem 4.1 in Younes (1998). It is defined as
2164 the smallest constant λ_θ such that:

2166
$$\exists A > 0 : \forall \mathbf{y} \in \mathcal{Y}, |\mathbb{P}(\mathbf{y}^{(k)} = \mathbf{y}) - \pi_{\theta,t}(\mathbf{y})| \leq A \lambda_\theta^k.$$

2167

2168 More precisely, we must find a constant D such that $\exists B > 0 : \lambda_\theta \leq 1 - B e^{-D \|\theta\|}$, in order to
2169 impose $K_{n+1} > \left[1 + a' \exp \left(2D \|\theta_n\| \right) \right]$.
2170

2171 A known result gives $\lambda_\theta \leq \rho(\theta)$ with $\rho(\theta) = \max_{\lambda \in S_\theta \setminus \{1\}} |\lambda|$ (Madras and Randall, 2002), where
2172 S_θ is the spectrum of the transition kernel $P_{\theta,t}$ (in this context, $1 - \rho(\theta)$ is known as the *spectral*
2173 *gap* of the Markov chain). To bound $\rho(\theta)$, we use the results of Ingrassia (1994), which study the
2174 Markov chain with transition kernel $P'_{\theta,t}$, such that $P_{\theta,t} = \frac{1}{2} (I + P'_{\theta,t})$. It corresponds to the same
2175 algorithm, but with a proposal distribution q' defined as:
2176

2177
$$q'(\mathbf{y}, \mathbf{y}') = \begin{cases} \frac{1}{d^*} & \text{if } \mathbf{y}' \in \mathcal{N}(\mathbf{y}), \\ 1 - \frac{d(\mathbf{y})}{d^*} & \text{if } \mathbf{y}' = \mathbf{y}, \\ 0 & \text{else.} \end{cases}$$

2178

2179 As $P'_{\theta,t}$ is a row-stochastic matrix, Gershgorin's circle theorem gives that its spectrum is included
2180 in the complex unit disc. Moreover, one can easily check that the associated Markov chain is also
2181 reversible with respect to $\pi_{\theta,t}$, and the corresponding detailed balance equation gives:
2182

2183
$$\forall \mathbf{y}, \mathbf{y}' \in \mathcal{Y}, \pi_{\theta,t}(\mathbf{y}) P'_{\theta,t}(\mathbf{y}, \mathbf{y}') = \pi_{\theta,t}(\mathbf{y}') P'_{\theta,t}(\mathbf{y}', \mathbf{y}),$$

2184

2185 which is equivalent to:
2186

2187
$$\forall \mathbf{y}, \mathbf{y}' \in \mathcal{Y}, \sqrt{\frac{\pi_{\theta,t}(\mathbf{y})}{\pi_{\theta,t}(\mathbf{y}')}} P'_{\theta,t}(\mathbf{y}, \mathbf{y}') = \sqrt{\frac{\pi_{\theta,t}(\mathbf{y}')}{\pi_{\theta,t}(\mathbf{y})}} P'_{\theta,t}(\mathbf{y}', \mathbf{y})$$

2188

2189 as $\pi_{\theta,t}$ has full support on \mathcal{Y} , which can be further written in matrix form as:
2190

2191
$$\Pi_\theta^{1/2} P'_{\theta,t} \Pi_\theta^{-1/2} = \Pi_\theta^{-1/2} P'^\top_{\theta,t} \Pi_\theta^{1/2},$$

2192

2193 where $\Pi_\theta = \text{diag}(\pi_{\theta,t})$. Thus, the matrix $\Pi_\theta^{1/2} P'_{\theta,t} \Pi_\theta^{-1/2}$ is symmetric, and the spectral theorem
2194 ensures its eigenvalues are real. As it is similar to the transition kernel $P'_{\theta,t}$ (with change of basis
2195 matrix $\Pi_\theta^{-1/2}$), they share the same spectrum S'_θ , and we have $S'_\theta \subset [-1, 1]$. Let us order S'_θ as
2196 $-1 \leq \lambda'_{\min} \leq \dots \leq \lambda'_2 \leq \lambda'_1 = 1$. As $P_{\theta,t} = \frac{1}{2} (I + P'_{\theta,t})$, we clearly have $\rho(\theta) = \frac{1+\lambda'_2}{2}$.
2197 Thus, we can use Theorem 4.1 of Ingrassia (1994), which gives $\lambda'_2 \leq 1 - G \cdot Z(\theta) \exp(-m(\theta))$
2198 (we keep their notations for Z and m , and add the dependency in θ for clarity), where G is a constant
2199 depending only on the graph $G_{\mathcal{N}}$, and with:
2200

2201
$$\begin{aligned} Z(\theta) &= \sum_{\mathbf{y} \in \mathcal{Y}} \exp \left(\frac{\langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})}{t} - \max_{\mathbf{y}' \in \mathcal{Y}} \left[\frac{\langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}')}{t} \right] \right) \\ 2202 &\geq |\mathcal{Y}| \exp \left(\frac{1}{t} \left[\min_{\mathbf{y} \in \mathcal{Y}} \langle \theta, \mathbf{y} \rangle + \min_{\mathbf{y} \in \mathcal{Y}} \varphi(\mathbf{y}) - \max_{\mathbf{y}' \in \mathcal{Y}} \langle \theta, \mathbf{y}' \rangle - \max_{\mathbf{y}' \in \mathcal{Y}} \varphi(\mathbf{y}') \right] \right) \\ 2203 &\geq |\mathcal{Y}| \exp \left(-\frac{2R_c}{t} \|\theta\| - \frac{2R_\varphi}{t} \right), \end{aligned}$$

2204

2214 and:

$$\begin{aligned}
2217 \quad m(\boldsymbol{\theta}) &\leq \max_{\mathbf{y} \in \mathcal{Y}} \left\{ \max_{\mathbf{y}' \in \mathcal{Y}} \left[\frac{\langle \boldsymbol{\theta}, \mathbf{y}' \rangle + \varphi(\mathbf{y}')}{t} \right] - \frac{\langle \boldsymbol{\theta}, \mathbf{y} \rangle + \varphi(\mathbf{y})}{t} \right\} - 2 \min_{\mathbf{y} \in \mathcal{Y}} \left\{ \max_{\mathbf{y}' \in \mathcal{Y}} \left[\frac{\langle \boldsymbol{\theta}, \mathbf{y}' \rangle + \varphi(\mathbf{y}')}{t} \right] - \frac{\langle \boldsymbol{\theta}, \mathbf{y} \rangle + \varphi(\mathbf{y})}{t} \right\} \\
2218 \quad &= \max_{\mathbf{y}' \in \mathcal{Y}} \left[\frac{\langle \boldsymbol{\theta}, \mathbf{y}' \rangle + \varphi(\mathbf{y}')}{t} \right] - \min_{\mathbf{y} \in \mathcal{Y}} \left[\frac{\langle \boldsymbol{\theta}, \mathbf{y} \rangle + \varphi(\mathbf{y})}{t} \right] \\
2219 \quad &\leq \frac{1}{t} \left(\max_{\mathbf{y}' \in \mathcal{Y}} \langle \boldsymbol{\theta}, \mathbf{y}' \rangle + \max_{\mathbf{y}' \in \mathcal{Y}} \varphi(\mathbf{y}') - \min_{\mathbf{y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \mathbf{y} \rangle - \min_{\mathbf{y} \in \mathcal{Y}} \varphi(\mathbf{y}) \right) \\
2220 \quad &\leq \frac{2R_C}{t} \|\boldsymbol{\theta}\| + \frac{2R_\varphi}{t},
\end{aligned}$$

2226 where $R_C = \max_{\mathbf{y} \in \mathcal{Y}} \|\mathbf{y}\|$ and $R_\varphi = \max_{\mathbf{y} \in \mathcal{Y}} |\varphi(\mathbf{y})|$. Thus, we have:

$$2228 \quad \lambda'_2 \leq 1 - G|\mathcal{Y}| \exp\left(-\frac{4R_\varphi}{t}\right) \exp\left(-\frac{4R_C}{t} \|\boldsymbol{\theta}\|\right),$$

2229 and finally:

$$2232 \quad \lambda_{\boldsymbol{\theta}} \leq 1 - \frac{G|\mathcal{Y}| \exp\left(-\frac{4R_\varphi}{t}\right)}{2} \exp\left(-\frac{4R_C}{t} \|\boldsymbol{\theta}\|\right),$$

2235 so taking $D = 4R_C/t$ concludes the proof. □

2238 **Remark 3.** The stationary distribution in [Ingrassia \(1994\)](#) is defined as proportional to
2239 $\exp(-H(\mathbf{y}))$, with the assumption that the function H is such that $\min_{\mathbf{y} \in \mathcal{Y}} H(\mathbf{y}) = 0$. Thus,
2240 we apply their results with

$$2241 \quad H(\mathbf{y}) := \max_{\mathbf{y}' \in \mathcal{Y}} \left[\frac{\langle \boldsymbol{\theta}, \mathbf{y}' \rangle + \varphi(\mathbf{y}')}{t} \right] - \frac{\langle \boldsymbol{\theta}, \mathbf{y} \rangle + \varphi(\mathbf{y})}{t}$$

2244 (which gives correct distribution $\pi_{\boldsymbol{\theta}, t}$ and respects this assumption), hence the obtained forms
2245 for $Z(\boldsymbol{\theta})$ and the upper bound on $m(\boldsymbol{\theta})$.

E.7 PROOFS OF PROPOSITION 3 AND PROPOSITION 6

2249 **Proposition 3.** The distribution of the first iterate of the Markov chain with transition kernel defined
2250 in Eq. (3) and initialized at the ground-truth structure \mathbf{y} is given by:

$$\begin{aligned}
2251 \quad (\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)})(\mathbf{y}') &= P_{\boldsymbol{\theta}, t}(\mathbf{y}, \mathbf{y}') \\
2252 \quad &= \begin{cases} q(\mathbf{y}, \mathbf{y}') \min \left[1, \frac{q(\mathbf{y}', \mathbf{y})}{q(\mathbf{y}, \mathbf{y}')} \exp \left([\langle \boldsymbol{\theta}, \mathbf{y}' - \mathbf{y} \rangle + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t \right) \right] & \text{if } \mathbf{y}' \in \mathcal{N}(\mathbf{y}), \\ 1 - \sum_{\mathbf{y}'' \in \mathcal{N}(\mathbf{y})} (\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)})(\mathbf{y}'') & \text{if } \mathbf{y}' = \mathbf{y}, \\ 0 & \text{else.} \end{cases}
\end{aligned}$$

2257 Let $\alpha_{\mathbf{y}}(\boldsymbol{\theta}, \mathbf{y}') := \frac{q(\mathbf{y}', \mathbf{y})}{q(\mathbf{y}, \mathbf{y}')} \exp \left([\langle \boldsymbol{\theta}, \mathbf{y}' - \mathbf{y} \rangle + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t \right)$. Define also the following sets:

$$2258 \quad \mathcal{N}_{\mathbf{y}}^-(\boldsymbol{\theta}) = \{ \mathbf{y}' \in \mathcal{N}(\mathbf{y}) \mid \alpha_{\mathbf{y}}(\boldsymbol{\theta}, \mathbf{y}') \leq 1 \}, \quad \mathcal{N}_{\mathbf{y}}^+(\boldsymbol{\theta}) = \{ \mathbf{y}' \in \mathcal{N}(\mathbf{y}) \mid \alpha_{\mathbf{y}}(\boldsymbol{\theta}, \mathbf{y}') > 1 \}.$$

2259 The expectation of the first iterate is then given by:

$$\begin{aligned}
2261 \quad \mathbb{E}_{\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)}} [Y] &= \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} (\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)})(\mathbf{y}') \cdot \mathbf{y}' + \left(1 - \sum_{\mathbf{y}'' \in \mathcal{N}(\mathbf{y})} (\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)})(\mathbf{y}'') \right) \cdot \mathbf{y} \\
2262 \quad &= \mathbf{y} + \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} (\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)})(\mathbf{y}') \cdot (\mathbf{y}' - \mathbf{y}) \\
2263 \quad &= \mathbf{y} + \sum_{\mathbf{y}' \in \mathcal{N}_{\mathbf{y}}^-(\boldsymbol{\theta})} q(\mathbf{y}', \mathbf{y}) \exp \left([\langle \boldsymbol{\theta}, \mathbf{y}' - \mathbf{y} \rangle + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t \right) \cdot (\mathbf{y}' - \mathbf{y}) + \sum_{\mathbf{y}' \in \mathcal{N}_{\mathbf{y}}^+(\boldsymbol{\theta})} q(\mathbf{y}, \mathbf{y}') \cdot (\mathbf{y}' - \mathbf{y}).
\end{aligned}$$

2268 Let now $f_{\mathbf{y}} : \mathbb{R}^d \times \mathcal{N}(\mathbf{y}) \rightarrow \mathbb{R}$ be defined as:
2269

$$2270 f_{\mathbf{y}} : (\boldsymbol{\theta}; \mathbf{y}') \mapsto \begin{cases} t \cdot q(\mathbf{y}', \mathbf{y}) \exp ([\langle \boldsymbol{\theta}, \mathbf{y}' - \mathbf{y} \rangle + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t) & \text{if } \alpha_{\mathbf{y}}(\boldsymbol{\theta}, \mathbf{y}') \leq 1, \\ 2271 t \cdot q(\mathbf{y}, \mathbf{y}') \left([\langle \boldsymbol{\theta}, \mathbf{y}' - \mathbf{y} \rangle + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t + 1 - \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} \right) & \text{if } \alpha_{\mathbf{y}}(\boldsymbol{\theta}, \mathbf{y}') > 1. \end{cases}$$
2272

2273 Let $F_{\mathbf{y}} : \boldsymbol{\theta} \mapsto \langle \boldsymbol{\theta}, \mathbf{y} \rangle + \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} f_{\mathbf{y}}(\boldsymbol{\theta}; \mathbf{y}')$. We define the target-dependent regularization function
2274 $\Omega_{\mathbf{y}}$ and the corresponding Fenchel-Young loss as:
2275

2276 $\Omega_{\mathbf{y}} : \boldsymbol{\mu} \mapsto (F_{\mathbf{y}})^*(\boldsymbol{\mu}), \quad L_{\Omega_{\mathbf{y}}}(\boldsymbol{\theta}; \mathbf{y}) := (\Omega_{\mathbf{y}})^*(\boldsymbol{\theta}) + \Omega_{\mathbf{y}}(\mathbf{y}) - \langle \boldsymbol{\theta}, \mathbf{y} \rangle.$
2277

2278 \bullet $\Omega_{\mathbf{y}}$ is $t / \mathbb{E}_{q(\mathbf{y}, \cdot)} \|Y - \mathbf{y}\|_2^2$ -strongly convex:

2279

2280 One can easily check that $f_{\mathbf{y}}(\cdot; \mathbf{y}')$ is continuous for all $\mathbf{y}' \in \mathcal{N}(\mathbf{y})$, as it is defined piecewise as
2281 continuous functions that match on the junction affine hyperplane defined by:
2282

2283 $\{ \boldsymbol{\theta} \in \mathbb{R}^d \mid \alpha_{\mathbf{y}}(\boldsymbol{\theta}; \mathbf{y}') = 1 \} = \left\{ \boldsymbol{\theta} \in \mathbb{R}^d \mid \langle \boldsymbol{\theta}, \mathbf{y}' - \mathbf{y} \rangle = t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}') \right\}.$
2284

2285 Moreover, we have that $f_{\mathbf{y}}(\cdot; \mathbf{y}')$ is actually differentiable everywhere as its gradient can be continu-
2286 ously extended to the junction affine hyperplane with constant value equal to $q(\mathbf{y}, \mathbf{y}')(\mathbf{y}' - \mathbf{y})$. We
2287 now show that $f_{\mathbf{y}}(\cdot; \mathbf{y}')$ is $\frac{1}{t} q(\mathbf{y}, \mathbf{y}') \cdot \| \mathbf{y}' - \mathbf{y} \|^2$ -smooth. Indeed, it is defined as the composition of
2288 the linear form $\boldsymbol{\theta} \mapsto \langle \boldsymbol{\theta}, \mathbf{y}' - \mathbf{y} \rangle$ and the function $g : \mathbb{R} \rightarrow \mathbb{R}$ given by:
2289

2290 $g : x \mapsto \begin{cases} t \cdot q(\mathbf{y}', \mathbf{y}) \exp ([x + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t) & \text{if } x \leq t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}'), \\ 2291 t \cdot q(\mathbf{y}, \mathbf{y}') \left([x + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t + 1 - \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} \right) & \text{if } x > t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}'). \end{cases}$
2292

2293 We begin by showing that g is $\frac{1}{t} q(\mathbf{y}, \mathbf{y}')$ -smooth. We have:
2294

2295 $g' : x \mapsto \begin{cases} q(\mathbf{y}', \mathbf{y}) \exp ([x + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t) & \text{if } x \leq t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}'), \\ 2296 q(\mathbf{y}, \mathbf{y}') & \text{if } x > t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}'). \end{cases}$
2297

2298 Thus, g' is continuous, and differentiable everywhere except in $x_0 := t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}')$.
2299 Its derivative is given by:
2300

2301 $g'' : x \mapsto \begin{cases} \frac{1}{t} q(\mathbf{y}', \mathbf{y}) \exp ([x + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t) & \text{if } x \leq t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}'), \\ 2302 0 & \text{if } x > t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}'). \end{cases}$
2303

2304 \bullet For $x_1, x_2 \leq x_0$, we have:
2305

2306 $|g'(x_1) - g'(x_2)| \leq |x_1 - x_2| \sup_{x \in]-\infty, x_0[} |g''(x)|$
2307 $= |x_1 - x_2| \lim_{\substack{x \rightarrow x_0 \\ x < x_0}} |g''(x)|$
2308 $= \frac{1}{t} q(\mathbf{y}, \mathbf{y}') \cdot |x_1 - x_2|.$
2309

2310 \bullet For $x_1, x_2 \geq x_0$, we trivially have $|g'(x_1) - g'(x_2)| = 0$.
2311

2312 \bullet For $x_1 \leq x_0 \leq x_2$, we have:
2313

2314 $|g'(x_1) - g'(x_2)| = |(g'(x_1) - g'(x_0)) - (g'(x_2) - g'(x_0))|$
2315 $\leq |g'(x_1) - g'(x_0)| + |g'(x_2) - g'(x_0)|$
2316 $\leq \frac{1}{t} q(\mathbf{y}, \mathbf{y}') \cdot |x_1 - x_0|$
2317 $\leq \frac{1}{t} q(\mathbf{y}, \mathbf{y}') \cdot |x_1 - x_2|.$
2318

2322 Thus, we have:

$$2323 \quad 2324 \quad \forall x_1, x_2 \in \mathbb{R}, |g'(x_1) - g'(x_2)| \leq \frac{1}{t} q(\mathbf{y}, \mathbf{y}') \cdot |x_1 - x_2|,$$

2325 and g is $\frac{1}{t} q(\mathbf{y}, \mathbf{y}')$ -smooth. Nevertheless, we have $f_{\mathbf{y}}(\cdot, \mathbf{y}') = g(\langle \cdot, \mathbf{y}' - \mathbf{y} \rangle)$. Thus, we have, for
2326 $\theta_1, \theta_2 \in \mathbb{R}^d$:

$$2327 \quad \begin{aligned} \|\nabla_{\theta} f_{\mathbf{y}}(\theta_1, \mathbf{y}') - \nabla_{\theta} f_{\mathbf{y}}(\theta_2, \mathbf{y}')\| &= \|g'(\langle \theta_1, \mathbf{y}' - \mathbf{y} \rangle)(\mathbf{y}' - \mathbf{y}) - g'(\langle \theta_2, \mathbf{y}' - \mathbf{y} \rangle)(\mathbf{y}' - \mathbf{y})\| \\ 2328 &= |g'(\langle \theta_1, \mathbf{y}' - \mathbf{y} \rangle) - g'(\langle \theta_2, \mathbf{y}' - \mathbf{y} \rangle)| \cdot \|\mathbf{y}' - \mathbf{y}\| \\ 2329 &\leq \frac{1}{t} q(\mathbf{y}, \mathbf{y}') \cdot |\langle \theta_1, \mathbf{y}' - \mathbf{y} \rangle - \langle \theta_2, \mathbf{y}' - \mathbf{y} \rangle| \cdot \|\mathbf{y}' - \mathbf{y}\| \\ 2330 &\leq \frac{1}{t} q(\mathbf{y}, \mathbf{y}') \cdot \|\mathbf{y}' - \mathbf{y}\|^2 \cdot \|\theta_1 - \theta_2\|, \end{aligned}$$

2331 and $f_{\mathbf{y}}(\cdot, \mathbf{y}')$ is $\frac{1}{t} q(\mathbf{y}, \mathbf{y}') \cdot \|\mathbf{y}' - \mathbf{y}\|^2$ -smooth. Thus, recalling that $F_{\mathbf{y}}$ is defined as

$$2332 \quad F_{\mathbf{y}} : \theta \mapsto \langle \theta, \mathbf{y} \rangle + \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} f_{\mathbf{y}}(\theta; \mathbf{y}'),$$

2333 we have that $F_{\mathbf{y}}$ is $\sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} \frac{1}{t} q(\mathbf{y}, \mathbf{y}') \cdot \|\mathbf{y}' - \mathbf{y}\|^2 = \mathbb{E}_{q(\mathbf{y}, \cdot)} \|Y - \mathbf{y}\|_2^2 / t$ -smooth. Finally, as
2334 $\Omega_{\mathbf{y}} := (F_{\mathbf{y}})^*$, Fenchel duality theory gives that $\Omega_{\mathbf{y}}$ is $t / \mathbb{E}_{q(\mathbf{y}, \cdot)} \|Y - \mathbf{y}\|_2^2$ -strongly convex.

$$2335 \quad \bullet \mathbb{E}_{p_{\theta, y}^{(1)}} [Y] = \operatorname{argmax}_{\mu \in \operatorname{conv}(\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\})} \{ \langle \theta, \mu \rangle - \Omega_{\mathbf{y}}(\mu) \}:$$

2336 Noticing that g is continuous on \mathbb{R} , convex on $[-\infty, t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}')] \cup [t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}'), +\infty]$ and on
2337 $[t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}'), +\infty]$, and with matching derivatives on the junction:

$$2338 \quad g'(t) \xrightarrow[t < t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}')]{} q(\mathbf{y}, \mathbf{y}'), \quad g'(t) \xrightarrow[t > t \log \frac{q(\mathbf{y}, \mathbf{y}')}{q(\mathbf{y}', \mathbf{y})} + \varphi(\mathbf{y}) - \varphi(\mathbf{y}')]{} q(\mathbf{y}, \mathbf{y}'),$$

2339 gives that g is convex on \mathbb{R} . Thus, $f_{\mathbf{y}}(\cdot; \mathbf{y}')$ is convex on \mathbb{R}^d by composition. Thus,

$$2340 \quad F_{\mathbf{y}} : \theta \mapsto \langle \theta, \mathbf{y} \rangle + \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} f_{\mathbf{y}}(\theta; \mathbf{y}')$$

2341 is closed proper convex as the sum of such functions. The Fenchel-Moreau theorem then gives that it
2342 is equal to its biconjugate. Thus, we have:

$$2343 \quad F_{\mathbf{y}}(\theta) = \sup_{\mu \in \mathbb{R}^d} \{ \langle \theta, \mu \rangle - (F_{\mathbf{y}})^*(\mu) \} = \sup_{\mu \in \mathbb{R}^d} \{ \langle \theta, \mu \rangle - \Omega_{\mathbf{y}}(\mu) \}.$$

2344 Nonetheless, the gradient of $F_{\mathbf{y}}$ is given by:

$$2345 \quad \begin{aligned} \nabla_{\theta} F_{\mathbf{y}}(\theta) &= \mathbf{y} + \sum_{\mathbf{y}' \in \mathcal{N}_{\mathbf{y}}^-(\theta)} q(\mathbf{y}', \mathbf{y}) \exp([\langle \theta, \mathbf{y}' - \mathbf{y} \rangle + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t) \cdot (\mathbf{y}' - \mathbf{y}) + \sum_{\mathbf{y}' \in \mathcal{N}_{\mathbf{y}}^+(\theta)} q(\mathbf{y}, \mathbf{y}') \cdot (\mathbf{y}' - \mathbf{y}) \\ 2346 &= \mathbb{E}_{p_{\theta, y}^{(1)}} [Y]. \end{aligned}$$

2347 Thus, we have $\nabla F_{\mathbf{y}}(\mathbb{R}^d) \subset \operatorname{conv}(\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\})$, which gives:

$$2348 \quad \forall \theta \in \mathbb{R}^d, \|\nabla F_{\mathbf{y}}(\theta)\| \leq R_{\mathcal{N}(\mathbf{y})} := \max_{\mu \in \operatorname{conv}(\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\})} \|\mu\|,$$

2349 so that we have $\operatorname{dom}(\Omega_{\mathbf{y}}) \subset B(\mathbf{0}, R_{\mathcal{N}(\mathbf{y})})$. Thus we can actually write:

$$2350 \quad F_{\mathbf{y}}(\theta) = \sup_{\mu \in B(\mathbf{0}, R_{\mathcal{N}(\mathbf{y})})} \{ \langle \theta, \mu \rangle - \Omega_{\mathbf{y}}(\mu) \},$$

and now apply Danksin's theorem as $B(\mathbf{0}, R_{\mathcal{N}(\mathbf{y})})$ is compact, which further gives:

$$\partial F_{\mathbf{y}}(\boldsymbol{\theta}) = \underset{\boldsymbol{\mu} \in B(\mathbf{0}, R_{\mathcal{N}(\mathbf{y})})}{\operatorname{argmax}} \{ \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle - \Omega_{\mathbf{y}}(\boldsymbol{\mu}) \},$$

and the fact that $F_{\mathbf{y}}$ is differentiable gives that both sides are single-valued. Moreover, as $\nabla F_{\mathbf{y}}(\mathbb{R}^d) \subset \operatorname{conv}(\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\})$, we know that the right hand side is maximized in $\operatorname{conv}(\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\})$, and we can actually write:

$$\mathbb{E}_{\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)}} [Y] = \nabla F_{\mathbf{y}}(\boldsymbol{\theta}) = \underset{\boldsymbol{\mu} \in \operatorname{conv}(\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\})}{\operatorname{argmax}} \{ \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle - \Omega_{\mathbf{y}}(\boldsymbol{\mu}) \}.$$

- Smoothness of $L_{\Omega_{\mathbf{y}}}(\cdot; \mathbf{y})$ and expression of its gradient:

Based on the above, we have:

$$L_{\Omega_{\mathbf{y}}}(\boldsymbol{\theta}; \mathbf{y}) = F_{\mathbf{y}}(\boldsymbol{\theta}) + \Omega_{\mathbf{y}}(\mathbf{y}) - \langle \boldsymbol{\theta}, \mathbf{y} \rangle.$$

Thus, the $\mathbb{E}_{q(\mathbf{y}, \cdot)} \|Y - \mathbf{y}\|_2^2 / t$ -smoothness of $L_{\Omega_{\mathbf{y}}}(\cdot; \mathbf{y})$ follows directly from the previously established $\mathbb{E}_{q(\mathbf{y}, \cdot)} \|Y - \mathbf{y}\|_2^2 / t$ -smoothness of $F_{\mathbf{y}}$. Similarly, the expression of $\nabla_{\boldsymbol{\theta}} L_{\Omega_{\mathbf{y}}}(\boldsymbol{\theta}; \mathbf{y})$ follows from the previously established expression of $\nabla_{\boldsymbol{\theta}} F_{\mathbf{y}}(\boldsymbol{\theta})$, and we have:

$$\nabla_{\boldsymbol{\theta}} L_{\Omega_{\mathbf{y}}}(\boldsymbol{\theta}; \mathbf{y}) = \nabla_{\boldsymbol{\theta}} F_{\mathbf{y}}(\boldsymbol{\theta}) - \mathbf{y} = \mathbb{E}_{\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}}^{(1)}} [Y] - \mathbf{y}.$$

□

Proposition 6. In the unconditional setting, given a dataset $(\mathbf{y}_i)_{i=1}^N$, the distribution of the first iterate of the Markov chain with transition kernel defined in Eq. (3) and initialized by $\mathbf{y}^{(0)} = \mathbf{y}_i$, with $i \sim \mathcal{U}(\llbracket 1, N \rrbracket)$, is given by:

$$\begin{aligned} (\mathbf{p}_{\boldsymbol{\theta}, \bar{Y}_N}^{(1)})(\mathbf{y}) &= \sum_{\mathbf{y}' \in \mathcal{Y}} \left(\sum_{i=1}^N \mathbf{1}_{\{\mathbf{y}_i = \mathbf{y}'\}} \cdot \frac{1}{N} \right) P_{\boldsymbol{\theta}, t}(\mathbf{y}', \mathbf{y}) \\ &= \sum_{\mathbf{y}' \in \mathcal{Y}} \left(\sum_{i=1}^N \mathbf{1}_{\{\mathbf{y}_i = \mathbf{y}'\}} \cdot \frac{1}{N} \right) \mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}'}^{(1)}(\mathbf{y}) \\ &= \frac{1}{N} \sum_{i=1}^N \mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}_i}^{(1)}(\mathbf{y}). \end{aligned}$$

Thus, keeping the same notations as in the previous proof, previous calculations give:

$$\begin{aligned} \mathbb{E}_{\mathbf{p}_{\boldsymbol{\theta}, \bar{Y}_N}^{(1)}} [Y] &= \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\mathbf{p}_{\boldsymbol{\theta}, \mathbf{y}_i}^{(1)}} [Y] \\ &= \frac{1}{N} \sum_{i=1}^N \nabla_{\boldsymbol{\theta}} F_{\mathbf{y}_i}(\boldsymbol{\theta}) \\ &= \nabla_{\boldsymbol{\theta}} \left(\frac{1}{N} \sum_{i=1}^N F_{\mathbf{y}_i} \right) (\boldsymbol{\theta}). \end{aligned}$$

Let $F_{\bar{Y}_N} := \frac{1}{N} \sum_{i=1}^N F_{\mathbf{y}_i}$. Then, the exact same arguments as in the conditional case hold, and the results of Proposition 6 are obtained by replacing $F_{\mathbf{y}}$ by $F_{\bar{Y}_N}$ in the proof of Proposition 3, and noticing that the previously shown $\mathbb{E}_{q(\mathbf{y}_i, \cdot)} \|Y - \mathbf{y}_i\|_2^2 / t$ -smoothness of $F_{\mathbf{y}_i}$ gives that $F_{\bar{Y}_N}$ is $\frac{1}{N} \sum_{i=1}^N \mathbb{E}_{q(\mathbf{y}_i, \cdot)} \|Y - \mathbf{y}_i\|_2^2 / t$ -smooth. Similar arguments also hold for the regularized optimization formulation, by noting that this time we have $\nabla F_{\bar{Y}_N}(\mathbb{R}^d) \subset \operatorname{conv}(\bigcup_{i=1}^N \{\mathcal{N}(\mathbf{y}_i) \cup \{\mathbf{y}_i\}\})$. □

2430 E.8 PROOF OF PROPOSITION 7
2431

2432 *Proof.* The first point is directly given by the fact that $\mathbb{E}_{p_{\theta,y}^{(1)}}[Y]$ is the expectation of a distribution
2433 over $\mathcal{N}(\mathbf{y}) \cup \{\mathbf{y}\}$. For the second and third points, as derived in Section E.7, we have:

2434

$$\mathbb{E}_{p_{\theta,y}^{(1)}}[Y] = \mathbf{y} + \sum_{\mathbf{y}' \in \mathcal{N}_y^-(\theta)} q(\mathbf{y}', \mathbf{y}) \exp([\langle \theta, \mathbf{y}' - \mathbf{y} \rangle + \varphi(\mathbf{y}') - \varphi(\mathbf{y})] / t) \cdot (\mathbf{y}' - \mathbf{y}) + \sum_{\mathbf{y}' \in \mathcal{N}_y^+(\theta)} q(\mathbf{y}, \mathbf{y}') \cdot (\mathbf{y}' - \mathbf{y}).$$

2435 Define then:

2436

$$\begin{aligned} \mathcal{N}_{\text{better}}(\mathbf{y}) &:= \{\mathbf{y}' \in \mathcal{N}(\mathbf{y}) \mid \langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}') > \langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})\}, \\ \mathcal{N}_{\text{worse}}(\mathbf{y}) &:= \{\mathbf{y}' \in \mathcal{N}(\mathbf{y}) \mid \langle \theta, \mathbf{y}' \rangle + \varphi(\mathbf{y}') < \langle \theta, \mathbf{y} \rangle + \varphi(\mathbf{y})\} \end{aligned}$$

2437 as the sets of improving and worsening neighbors of \mathbf{y} respectively (assuming no neighbor of \mathbf{y} has
2438 exactly equal objective value for simplicity, which is true almost everywhere w.r.t. $\theta \in \mathbb{R}^d$).

2439 **Low temperature limit.** We have:

2440

$$\mathcal{N}_y^+(\theta) \xrightarrow[t \rightarrow 0^+]{\longrightarrow} \mathcal{N}_{\text{better}}(\mathbf{y}), \quad \text{and} \quad \mathcal{N}_y^-(\theta) \xrightarrow[t \rightarrow 0^+]{\longrightarrow} \mathcal{N}_{\text{worse}}(\mathbf{y}).$$

2441 Then, as $x < 0 \implies \exp(x/t) \xrightarrow[t \rightarrow 0^+]{\longrightarrow} 0$, we have effectively

2442

$$\mathbb{E}_{p_{\theta,y}^{(1)}}[Y] \xrightarrow[t \rightarrow 0^+]{\longrightarrow} \mathbf{y} + \sum_{\mathbf{y}' \in \mathcal{N}_{\text{better}}(\mathbf{y})} q(\mathbf{y}, \mathbf{y}') \cdot (\mathbf{y}' - \mathbf{y}).$$

2443 **High temperature limit.** As $\forall x \in \mathbb{R}$, $\exp(x/t) \xrightarrow[t \rightarrow \infty]{\longrightarrow} 1$, we have:

2444

$$\mathcal{N}_y^+(\theta) \xrightarrow[t \rightarrow \infty]{\longrightarrow} \{\mathbf{y}' \in \mathcal{N}(\mathbf{y}) \mid q(\mathbf{y}', \mathbf{y}) > q(\mathbf{y}, \mathbf{y}')\}, \quad \text{and} \quad \mathcal{N}_y^-(\theta) \xrightarrow[t \rightarrow \infty]{\longrightarrow} \{\mathbf{y}' \in \mathcal{N}(\mathbf{y}) \mid q(\mathbf{y}', \mathbf{y}) \leq q(\mathbf{y}, \mathbf{y}')\}.$$

2445 Thus, we have:

2446

$$\mathbb{E}_{p_{\theta,y}^{(1)}}[Y] \xrightarrow[t \rightarrow \infty]{\longrightarrow} \mathbf{y} + \sum_{\mathbf{y}' \mid q(\mathbf{y}', \mathbf{y}) \leq q(\mathbf{y}, \mathbf{y}')} q(\mathbf{y}', \mathbf{y}) \cdot (\mathbf{y}' - \mathbf{y}) + \sum_{\mathbf{y}' \mid q(\mathbf{y}', \mathbf{y}) > q(\mathbf{y}, \mathbf{y}')} q(\mathbf{y}, \mathbf{y}') \cdot (\mathbf{y}' - \mathbf{y}),$$

2447 which gives effectively:

2448

$$\mathbb{E}_{p_{\theta,y}^{(1)}}[Y] \xrightarrow[t \rightarrow \infty]{\longrightarrow} \mathbf{y} + \sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{y})} \min[q(\mathbf{y}, \mathbf{y}'), q(\mathbf{y}', \mathbf{y})] \cdot (\mathbf{y}' - \mathbf{y}).$$

2449 \square

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483