LEARNING WITH LOCAL SEARCH MCMC LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Integrating combinatorial optimization layers into neural networks has recently
attracted significant research interest. However, many existing approaches lack
theoretical guarantees or fail to perform adequately when relying on inexact solvers.
This is a critical limitation, as many operations research problems are NP-hard,
often necessitating the use of neighborhood-based local search heuristics. In this pa-
per, we introduce a theoretically-principled approach for learning with such inexact
solvers. Inspired by the connection between simulated annealing and Metropolis-
Hastings, we propose to transform problem-specific neighborhood systems used
in local search heuristics into proposal distributions, implementing MCMC on the
combinatorial space of feasible solutions. This allows us to construct differentiable,
stochastic combinatorial layers and associated loss functions. Replacing an exact
solver by a local search strongly reduces the computational burden of learning on
many applications. We demonstrate our approach on a dynamic vehicle routing
problem with time windows, a multi-dimensional knapsack problem, and on binary
vector and k-subset prediction tasks.

1 INTRODUCTION

Models that combine neural networks and combinatorial optimization have recently attracted signifi-
cant attention (Sadana et al., 2024; Mandi et al., 2024; Donti et al., 2017; Berthet et al., 2020; Bengio
et al., 2020; Blondel and Roulet, 2024). They enrich combinatorial optimization algorithms with
context-dependent features, making decisions more resilient to uncertainty. An important subset of
this line of research integrates, within a neural network, a linear programming layer of the form:

6 — argmax (6,y) C argmax (6,y), (1
yey yeconv(Y)

where) is a finite set of feasible outputs. In the graphical models and structured prediction literature,
Eq. (1) is known as the maximum a posteriori (MAP) problem (Wainwright and Jordan, 2008).
Such layers enable the transformation of learned, continuous latent representations into structured,
discrete outputs, that satisfy complex constraints. This setting is known as decision-focused learning
(DFL), where a fixed solver is parameterized by 6, predicted from features «, in contrast to neural
combinatorial optimization (NCO), which aims to replace the solver entirely with ML-based heuristics.

The main challenge, however, lies in end-to-end training: as piecewise-constant functions, such layers
lack meaningful gradients. Many relaxations and loss functions have been proposed for this setting;
see Section 2 for a review. Table 1 contrasts them based on the type of oracle they assume access to.
Some rely on an oracle for a regularized version of Eq. (1), while others use a solver for the original
problem (i.e., a MAP oracle), performing multiple calls per instance for smoothing reasons. However,
theoretical guarantees for these approaches typically assume exact solutions.

Unfortunately, many problems in operations research are NP-hard in nature, making exact oracles
impractical. Instead, applications often rely on local search heuristics (e.g., simulated annealing),
which iteratively generate and then accept or reject a neighbor of the current solution. We aim to
provide a principled approach for learning with such inexact combinatorial solvers. This is crucial
for exploiting popular heuristics from the operations research literature as layers in neural networks.

To do so, we open the solver "black box", by bridging local search heuristics and Markov chain
Monte-Carlo (MCMC) methods. These lines of research have evolved quite separately, and their
links remain unexploited for designing principled combinatorial optimization layers.

Table 1: The proposed approach leverages the neighborhood systems used by local search heuristics
(inexact solvers) to obtain a differentiable combinatorial layer when usual oracles are not available.

Regularization Oracle Approach
Differentiable DP (2009; 2018) Entropy Exact marginal DP
SparseMAP (2018) Quadratic Exact MAP Frank-Wolfe
Barrier FW (2015) TRW Entropy Exact MAP Frank-Wolfe
IntOpt (2020) Log barrier Interior point solver Primal-Dual
Perturbed optimizers (2020) Implicit via noise Exact MAP Monte-Carlo
DYS-net (2024) Quadratic Projection oracles Davis-Yin Splitting

Blackbox solvers (2020) None Exact MAP Interpolation

Contrastive divergences (2000) Entropy Gibbs / Langevin sampler MCMC

Proposed Entropy Local search MCMC

‘We make the following contributions:

* We integrate local search heuristics as differentiable, stochastic layers in neural networks, by
converting their neighborhood systems to proposal distributions, turning the local search oracle
into a discrete MCMC sampler over the combinatorial set of solutions.

* We extend our framework to handle local search heuristics that leverage a diversity of neighbor-
hood systems, enabling this class of powerful solvers to be used as a unified MCMC sampler.

* We show that the proposed layer yields stochastic gradients of a Fenchel-Young loss (Blondel
et al., 2020) (even with a single MCMC iteration), leading to principled learning algorithms for
conditional and unconditional settings, for which we provide a convergence analysis.

» The proposed layer reduces the computational bottleneck, especially with few MCMC iterations,
enabling larger training instances and better generalization at scale (Parmentier, 2021; 2022).

* We demonstrate our approach on the EURO Meets NeurIPS 2022 challenge (Kool et al., 2023), a
large-scale dynamic vehicle routing problem with time windows, and on binary vector prediction
tasks. Abundant additional experiments are included in Section A of the appendix.

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM SETUP
In this paper, our goal is to learn models that incorporate optimization layers of the form:

Y : 0 — argmax (0, y) + o(y), @)
yey

where J C R is a finite but combinatorially-large set, and ¢ encodes structural costs or preferences
on outputs (e.g., routing distances, fixed costs) that do not depend on 8 (not to be confused with a
regularization term). This formulation therefore extends the standard linear objective in Eq. (1) by
allowing additional problem-specific structure.

We focus on settings where Eq. (2) is intractable and only heuristic algorithms are available to obtain
an approximate solution. Our goal is to integrate NP-hard problems arising in operations research
(e.g., routing, scheduling, network design), within a neural network. Unfortunately, many existing
approaches lack formal guarantees or simply do not work when used with inexact solvers.

We distinguish between two settings. In the unconditional setting, our goal will be to learn 8 € R?
from observations y1, ..., yny €). In the conditional setting, we will assume that 8 = gy (x) and
our goal will be to learn the parameters W from observation pairs (1, Y1), ..., (TN, YN)-

2.2 COMBINATORIAL OPTIMIZATION AS A LAYER

Since the layer defined in Eq. (1) is piecewise constant, a frequent strategy consists in introducing
regularization in the problem so as to obtain a continuous relaxation. In some cases, we may have
access to an oracle for directly solving the regularized problem. For instance, dynamic programming
solvers can handle entropic regularization through a change of semi-ring (Li and Eisner, 2009) or
algorithmic smoothing (Mensch and Blondel, 2018). As another example, interior point solvers can
be used to compute a logarithmic barrier regularized solution (Mandi and Guns, 2020). More recently,
McKenzie et al. (2024) handle quadratic regularization by leveraging projection oracles.

We focus on settings where only a MAP oracle is available for the original, unregularized optimization
problem. While prior work is often limited to the linear form in Eq. (1) for the latter, our framework
also handles the more general Eq. (2). Frank-Wolfe-like methods can be used to solve the regularized
problem using only MAP oracle calls (Niculae et al., 2018; Krishnan et al., 2015). Another strategy
consists in injecting noise perturbations (Berthet et al., 2020) in the oracle, which can be shown to
be implicitly using regularization. In both cases, a Fenchel-Young loss can be associated, enabling
principled learning. However, formal guarantees require an exact oracle, often called multiple times
during the forward pass. Our proposal enjoys guarantees even with inexact solvers and a single call.

Regarding differentiation, several strategies are possible. When the approach only needs to differ-
entiate through a (regularized) max, as is the case of Fenchel-Young losses, we can use Danskin’s
theorem (Danskin, 1966). When the approach needs to differentiate a (regularized) argmax, we can
either use autodiff on the unrolled solver iterations or implicit differentiation (Amos and Kolter, 2017,
Agrawal et al., 2019; Blondel et al., 2022). Differently, Vlastelica et al. (2020) propose to compute
gradients via continuous interpolation of the solver.

2.3 CONTRASTIVE DIVERGENCES

An alternative approach to learning in combinatorial spaces is to use energy-based models (EBMs)
(Lecun et al., 2006), which define a distribution over outputs via a parameterized energy function Fg:

Po(y) x exp(Ee(y)), with Velogpe(y) = VeFEe(y) — Eyp, [VaEe(Y)].
Therefore, we can perform maximum likelihood estimation (MLE) if we can sample from pg, but this
is hard both in continuous and combinatorial settings, due to its intractable normalization constant.
Contrastive divergences (Hinton, 2000; Carreira-Perpindn and Hinton, 2005; Song and Kingma,
2021) address this by using MCMC to obtain (biased) stochastic gradients. Originally developed for
restricted Boltzmann machines with) = {0, 1} and a Gibbs sampler, they have also been applied
in continuous domains via Langevin dynamics (Du and Mordatch, 2020; Du et al., 2021).

MCMC in discrete spaces. Contrastive divergences rely on MCMC to sample the model distribu-
tion. Unfortunately, designing MCMC samplers is often case-by-case, and discrete domains have
received less attention than continuous ones. Recent efforts adapt continuous techniques, such as
Langevin dynamics (Zhang et al., 2022; Sun et al., 2023a) or gradient-informed proposals (Grathwohl
etal., 2021; Rhodes and Gutmann, 2022), to discrete settings. However, these works often assume
simple state spaces (e.g., the hypercube or categorical codebooks), and do not handle complex
constraints ubiquitous in operations research. Sun et al. (2023b) allow structured spaces via relaxed
constraints in the energy function, yet ignore these structures in their proposal supports. Notably, we
emphasize that all these works focus on sampling, not on designing differentiable MCMC layers.

3 LOCAL SEARCH-BASED MCMC LAYERS

This section introduces our core contribution. We first connect local search heuristics and MCMC
methods, then use this link to define a stochastic layer based on a single neighborhood system
(Algorithm 1), and subsequently generalize it to leverage diverse neighborhood systems (Algorithm 2).

3.1 FROM LOCAL SEARCH TO MCMC

Local search and neighborhood systems. Local search heuristics (Gendreau et al., 2010) iteratively
generate a neighbor y’ € N (y*)) of the current solution y(*), and either accept it or reject it based
on an acceptance rule, that depends on the objective function, y*) and 4’. In this context, a
neighborhood system A defines, for each feasible solution y €), a set of neighbors A/ (y) C V.

Neighborhoods are problem-specific, and must respect the structure of the problem, i.e., must maintain
solution feasibility. They are typically defined implicitly via a set of allowed moves from y. For
instance, Table 2 lists example moves for a vehicle routing problem.

Formally, we denote the neighborhood graph by G == (), Enr), where edges are defined by /. We
assume the graph is undirected, i.e., ¥y’ € N (y) if and only if y € N (y’), and without self-loops —
i.e., y & N(y). A stochastic neighbor generating function is also provided, in the form of a proposal
distribution ¢(y , -) with support either equal to N (y) or N'(y) U {y}.

Algorithm 1 SA / MH as a layer Algorithm 2 Neighborhood mixture MCMC
Inputs: 0 cR?, yO c Y, (1), KEN, N, ¢ Inputs: 0 cR% yVe) t, KeN, (N,,q,)5_,
fork=0: K do fork =0: K do

Sample a neighbor in NV (y*)): Sample a neighborhood system:

Y ~qy™,) s ~UQY™M))

a(y(k), y') « 1(SA) or Sample a neighbor in Ns(y(k)):

’ (k) I (k) .

a(y™,y') % (MH) Y (qki(y/ 7)IQ(y“"'))\ (v y ™)

U ~U([0,1]) (Y™) < 56T ™)

AR (0, y") +o(y") — (0, ™) —p(y™) U ~U([0,1])

p®) — a(y™®, y) exp (A(k)/tk) AR (0, y")+o(y')—(0,y*)) —p(y ™)

If U < p®), accept move: y* 1) «— g P a (y®), y') exp (AW /1)

If U > p®), reject move: y*+1) « 4% If U < p®), accept move: y*) « ¢/
end for If U > p®), reject move: y*+1) ¢)
Output: i}(@) ~ y(K) (SAI)(OI' end for X
9:(0) =Er,, [Y] ~ % >4,y (MH) Output: 5,(0) = Er,, [Y] ~ 7 >0y y»

Link between simulated annealing and Metropolis-Hastings. A well-known example of local
search heuristic is simulated annealing (SA) (Kirkpatrick et al., 1983). It is intimately related to
Metropolis-Hastings (MH) (Hastings, 1970), an instance of a MCMC algorithm. We provide a unified
view of both in Algorithm 1.

The difference lies in the acceptance rule, which incorporates a proposal correction ratio for MH,
and in the choice of the sequence of temperatures (¢x)xen. In the case of SA, it is chosen to verify
tr — 0. In the case of MH, it is such that ¢;, = t. In this case, the iterates y(k) of Algorithm 1 follow
a time-homogenous Markov chain on), defined by the following transition kernel:

¢(y,y') min |1, Zgz’yy/g exp (<97y’>+so(y/)t—<0,y>—w(y))} ify € N(y),
Pos(y: ') = 31— eny) Potn (49" ify' =y, 3)
0 else.

In past work, the link between the two algorithms has primarily been used to show that SA converges
to the exact MAP solution in the limit of infinite iterations (Mitra et al., 1986; Faigle and Schrader,
1988). Under mild conditions — if the neighborhood graph G s is connected and the chain is aperiodic,
the iterates (y(k))keN of Algorithm 1 (MH case) converge in distribution to the Gibbs distribution
(see Section E.1 for a proof):

To,+(y) o< exp ([(0, y) + ¢(y)] /1) . “4)

Proposed layer. Algorithm 1 and this result motivate us to define the combinatorial MCMC layer
gt(a) =]Eﬂ'e,f, [Y]) (5)

where @ € R? are logits and ¢ > 0 is a temperature parameter, defaulting to ¢ = 1. Computing %;(8)
is known as the marginal inference problem in the graphical models literature. Naturally, the estimate
of y;(0) returned by Algorithm 1 (MH case) is biased, as the Markov chain cannot perfectly mix
in a finite number of iterations, except if it is initialized at g ;. In Section 4, we will show that this
does not hinder the convergence of the proposed learning algorithms. The next proposition, proved in
Section E.2, states some useful properties of the proposed layer.

Proposition 1. Let @ € R?. We have the following properties:

1
:(0) € relint(C), G:(6) —— 6 d 40 1] '
yt()e relin ()7 yt() - arg;n;% ,y>+<P(Z’J)’ an yt()—>t_>oo |y| yZy

Moreover, g is differentiable and its Jacobian matrix is given by Joy;(8) = 1 covr, , [Y].

3.2 MIXING NEIGHBORHOOD SYSTEMS

Central to local search algorithms in combinatorial optimization is the use of multiple neighborhood
systems to more effectively explore the solution space (Mladenovi¢ and Hansen, 1997; Blum and
Roli, 2003). In this section, we propose a tractable way to incorporate such diversity of neighborhood
systems into the combinatorial MCMC layer, while preserving the correct stationary distribution.

Definitions. Let (V. S)SS:1 be a set of different neighborhood systems. Typically, all neighborhood
systems are not defined on all solutions y € Y, so we note Q(y) C [1, 5] the set of neighborhood
systems defined on y (i.e., the set of allowed moves on y). Let (g) seq(y) be the corresponding

proposal distributions, such that the support of g5(y, -) is either N;(y) or Ns(y) U {y}. Let N be
the aggregate neighborhood system defined by V' : 4 — U g4 Ns (9)-

Computational challenge of neighborhood mixing. A standard way to combine these neighbor-
hood systems would be to use Algorithm 1 by defining an aggregated proposal ¢(y, -) as, e.g.:

’ 1 ’ . ’ Qy)| ZSEQ(?J') 4y, y)
=— s(y,vy'), giving: a(y,y)= : .
1Y) = {50 Se%(:y) a:(v.9). eving aly.y) =00 SRPXORT)
However, this leads to intractable updates. Indeed, computing the correction ratio a(y,y’) is
prohibitively expensive as it involves summing the forward proposal probabilities for all move types
in Q(y) and the reverse probabilities for all move types in Q(y’). The difficulty is that multiple,
distinct proposal types can generate the same solution ¢’ from y. For example, in our vehicle routing
application in Section 5.1, relocating a pair of clients before the first one in a route of three gives the
same solution y’ as relocating the first client at the last position (see the relocate and relocate
pair moves from Table 2). Identifying and calculating all these potential forward and reverse
pathways for every step is a significant computational hurdle.

Proposed efficient sampler. In contrast, the update we propose in Algorithm 2 circumvents this
summation entirely by sampling the move type s first. It only requires computing the single individual

ratio a5 (y, y') = ||3((;’,))‘| -k EZ/;{; for the unique move type s that was actually sampled.

Proposition 2. If each neighborhood graph Gy, is undirected and without self-loops, and
the aggregate neighborhood graph G 5 is connected, the iterations (y(’“))keN produced by
Algorithm 2 follow a Markov chain with unique stationary distribution g ;.

See Section E.3 for the proof. Importantly, our method is not an approximation: it targets the exact
same stationary distribution as the naive approach, but does so efficiently. Furthermore, only the
aggregate neighborhood graph G s is required to be connected. This enables combining neighborhood
systems N that could not connect) if used individually, and an irreducible Markov chain can be
obtained by mixing the proposal distributions of reducible ones. As a concrete example, the moves
used as proposals in our dynamic vehicle routing experiment (Section 5.1) are defined in Table 2.

4 LOSS FUNCTIONS AND THEORETICAL ANALYSIS

Building upon the differentiable MCMC layer developed in Section 3, this section constructs the
corresponding learning framework. We derive principled Fenchel-Young loss functions for our layer,
present practical stochastic gradient algorithms for both conditional and unconditional learning, and
provide theoretical convergence guarantees for these algorithms.

4.1 NEGATIVE LOG-LIKELIHOOD AND ASSOCIATED FENCHEL-YOUNG LOSS

We now show that the proposed layer y; (0) can be viewed as the solution of a regularized optimization
problem on C = conv(Y). Let A(8) =t -log>_, .y exp([(6, y) + (y)] /t) be the cumulant
function (Wainwright and Jordan, 2008) associated to g ¢, scaled by . We define the regularization
function €2 and the corresponding Fenchel-Young loss (Blondel et al., 2020) as:

Qu(p) = A (p) = §§H§d<“’ 0) — Ay(0), and £,(0;y) = ()" (0) + Qu(y) — (0, y).

Since ; = Aj is strictly convex on relint(C) (see Section E.4 for a proof) and 4;(0) = Vg A:(0),
the proposed layer is the solution of the regularized optimization problem

9:(0) = argmax {(6,) — u(p)}, (©)

the Fenchel-Young loss /; is differentiable, satisfies £;(0,y) = 0 < y:(0) = y, and has gradient
Vol:(0;y) = y:(0) — y (Blondel et al., 2020). It is therefore equivalent, up to a constant, to the
negative log-likelihood loss, as we have —Vg log 7 .(y) = (4:(0) — y)/t. Algorithms 1 and 2 can
thus be used to perform MLE, by returning a (biased) stochastic estimate of the gradient of /;.

4.2 EMPIRICAL RISK MINIMIZATION

In the conditional learning setting, we are given observations (x;, yl)fil € (R? x Y)™, and want
to fit a model gy : R? — R such that §; (gw (x;)) ~ ;. This is motivated by a generative model
where, for some weights Wy € R?, the data is generated with y; ~ g, (z,),+. We aim at minimizing
the empirical risk L, defined below along with its exact gradient:

N N
1 . 1 ~
Ly(W):= Nz b (gw (i) yi), with Vi Ly (W)= NZ Jw gw (@) (Ye(gw (i) —yi) -
=1 1=1
Doubly stochastic gradient estimator. In practice, we cannot compute the exact gradient above.
Using Algorithm 1 or 2 to get a MCMC estimate of y;(gw (;)), we propose the following estimator:

K
1 k
Vw Ly (W) ~ Jw gw (:) (K >y y) ,
k=1
where ygk) is the k-th iterate of the algorithm with maximization direction 8; = gw (x;) and
temperature ¢. This estimator is doubly stochastic, since we sample both data points and Markov
iterations, and can be seamlessly used with batches. The term Jy gw (x;) is computed via autodiff.

Markov chain initialization. Following the contrastive divergence literature (Hinton, 2000), in
the conditional setting, we initialize the Markov chains at the corresponding ground-truth, by setting

y§0> = y,. In the unconditional setting, we use a persistent initialization (Tieleman, 2008) instead.

4.3 ASSOCIATED FENCHEL-YOUNG LOSS WITH A SINGLE MCMUC ITERATION

To obtain an unbiased gradient estimator for the Fenchel-Young loss ¢; associated with 4;, the MCMC
sampler must be run until it reaches its stationary distribution 7g ;. This requirement makes any
practical estimator with a finite number of steps K inherently biased.

Although our convergence analysis in Section 4.4 shows that this bias does not hinder the convergence
of the proposed learning algorithms, we now demonstrate that when a single MCMC iteration is used
(K = 1), there exists another target-dependent Fenchel-Young loss such that the gradient estimator
is unbiased with respect to that loss. See Section E.7 for the construction of €2,, and the proof.

Proposition 3 (Existence of a Fenchel-Young loss when K = 1). Let pél)i, denote the distribu-

tion of the first iterate of the Markov chain defined by Eq. (3), with proposal distribution q and
initialized at ground-truth y € Y. There exists a target-dependent regularization function 1,
with the following properties: Qy is t [Eq(y, |[Y — y||3-strongly convex, it is such that:

Ep(n Y] = argmax {0, 1) — Qy(p)},
0y peconv(N (y)u{y})

and the Fenchel-Young loss lq, generated by Qb is Eqy ||Y — y|[3/t-smooth in its first
argument, and such that Velq, (0 ;y) = IEpa) Y] -v.
0,y

A similar result in the unconditional setting with data-based initialization is given in Proposition 6. In
contrast, Sutskever and Tieleman (2010) showed that the expected CD-1 update with Gibbs sampling
for restricted Boltzmann machines is not the gradient of any function, let alone a convex one.

Table 2: Local search moves used for creating neighborhoods in our vehicle routing experiments.

Name Description

relocate Removes a single request from its route and re-inserts it at a different position in
the solution.

relocate pair Removes a pair of consecutive requests from their route and re-inserts them at a
different position in the solution.

swap Exchanges the position of two requests in the solution.

swap pair Exchanges the positions of two pairs of consecutive requests in the solution.

2-opt Reverses a route segment.

serve request Inserts a currently unserved request into the solution.

remove request Removes a request from the solution.

4.4 CONVERGENCE ANALYSIS IN THE UNCONDITIONAL SETTING

In the unconditional setting, we are given observations (yi)f\;e)}N and want to fit a model g ;,
motivated by an underlying generative model such that y; ~ mg, ; for some true parameter 6.

We assume here that C = conv()) is of full dimension in R? (if not, the model is specified only
up to vectors p orthogonal to the affine subspace spanned by C, as mg4,,: = mg,+). We have the
corresponding empirical L and population Lg, Fenchel-Young losses:

N
1
Ly(Oiyi,....yn) = N E 6 (0;yi) . Le,(0) = E(yi)ﬁilw(ﬂeoyt)@w [Ln(6;y1,.--,yn)],
i=1

which are minimized for @ such that g () = Yy = + Zf;l Y, and for 0 such that 5, (0) = 4:(6y),
respectively. Let 8% as the minimizer of the empirical loss L. For it to be defined, we assume
that Yy € int(C) (which is always the case for N large enough, as mg, ; has dense support on))). A
slight variation on Proposition 4.1 in Berthet et al. (2020) gives the following asymptotic normality:

Proposition 4 (Convergence of the empirical loss minimizer to the true parameter).

VN — 0y) — 2 N (o, 12 Covn, [Y]’l) .
N—oo 0"

The proof is given in Section E.5. We now consider the sample size as fixed to N samples, and define
0,, as the n-th iterate of the following stochastic gradient algorithm:

Kpt1

k=1

én+1 — én + Yn+1 YN - Kn+1

where y(" 1) is the k-th iterate of Algorithm 1 with temperature ¢, maximization direction 6.,
and initialized at y("t11) = ¢("K=) This initialization corresponds to the persistent contrastive
divergences (PCD) algorithm (Tieleman, 2008), and is further discussed in Section B.3.

Proposition 5 (Convergence of the stochastic gradient estimate). Suppose the following hold
for the step sizes (Y)n>1, sample sizes (K,)n>1, and proposal distribution q:

@ v, = an~b withb € (%, 1} and a > 0.

(i) Kpi1 > [1+d exp(%”énH)J, with @’ > 0 and R¢ = maxycy ||y||.

1 1 "o—c Lo 7 _ b
(iii) T mgan ,witha” >0andc > 1 5

5> y' € N(y),
(v) q(y.y) =<1 - o =y whered(y) = |N(y)| and d* = maxyey d(y).
0, else,

Then the iterates 0,, defined by Eq. (7) converge almost surely: 0, = oy.

See Section E.6 for the proof. The assumptions on ¢ are used for obtaining a closed-form convergence
rate bound for the Markov chain, using graph-based geometric bounds (Ingrassia, 1994).

Ko © 5 @) O
] EQ%“ 10 %) 7
i 7
o Depot o © @)
= =
D -1 50
O O O . (T

</

System state Request prizes - Solution routes
_— _— _—
g Model gw p Optim. layer v

Figure 1: Overview of the vehicle routing pipeline, represented at request wave w.

5 NUMERICAL EXPERIMENTS
5.1 DYNAMIC VEHICLE ROUTING

We empirically validate our approach on the dynamic vehicle routing problem with time windows
(DVRPTW) from the EURO Meets NeurlPS 2022 Vehicle Routing Competition (Kool et al., 2023). A
detailed introduction to the challenge with precise notations is given in Section C.

Reduction to supervised learning. In this DVRPTW, requests arrive in delivery waves w, at the
start of which a dispatching and vehicle routing problem for the current set of requests R“ must
be solved, to get a feasible solution y* € Y (R*). Following Baty et al. (2023), we frame each
dispatching and routing problem as a prize-collecting (PC-)VRP, where a model gy predicts a "prize"
vector 6% for serving each request. This PC-VRP fits the general formulation of Eq. (2):

y(6*) = argmax (6, y) + ¢(y), ®)
yeY(RY)
where p(y) := —(c,y) is the negative routing cost. The overall pipeline is shown in Fig. 1. The

model is trained to imitate an anticipative oracle f*, i.e., we use its output as ground-truth for
supervised learning. We compute f* by solving a static VRPTW where all future information in the
instance is revealed from the start, turning dispatching waves into time windows.

Approach and baseline. The baseline Baty et al. (2023), winner of the competition, relies on a
perturbation-based method (Berthet et al., 2020) with the state-of-the-art PC-HGS heuristic y (Vidal,
2022) as a combinatorial optimization layer. Since ¥ is an inexact solver, the theoretical guarantees
granted by the framework of Berthet et al. (2020) no longer hold. Our approach instead uses a local
search MCMC layer to train gyy. We use a mixture of proposals (Algorithm 2) defined precisely
in Section C.5, derived from the local search moves used by the PC-HGS solver itself (which are
summarized in Table 2). At inference time, we follow the baseline, and use fyr = g o gw .

Results. We use the competition’s metric: the routing cost over full instances with multiple
dispatching waves, relative to the anticipative oracle f* In Fig. 2, initializing the Markov chain with
the ground-truth solution clearly outperforms a random start (even more so when refined by the fast
initialization heuristic used by), and performance increases with the MCMC iteration number K.

In Table 3, we compare training methods under a fixed time budget for the layer’s forward pass
(the main computational bottleneck). We observe that our approach significantly outperforms the
perturbation-based method in low time-limit regimes (1-100ms), thus enabling faster and more
efficient training. Full experimental details and additional results are in Section C.8.

Table 3: Best test relative cost (%) w.r.t. f* for different training methods and time limits.

Time limit (ms) 1 5 10 50 100 1000
Perturbed inexact oracle 65.2+58 13.1+£34 87+£19 6.5+1.1 6.3£076 55+£04
Proposed (y(o):y) 10.0+1.7 120+£26 11.84+28 9.1+1.7 84+1.7 7.7+1.1

Proposed (y(o):heuristic(y)) 78+£08 72£06 6.3+07 6.2+08 59+07 59+06

®
o

Initialization 80 K
—— Random 10° 10°
60 —— Ground-truth 60 = 10" 10!
—— Ground-truth + heuristic \M\ 10? | 10°

— 10° 4 10°
— 10* 10*
f— 105

10 §

40

10° 4
10°

N
o

20

Test Relative Cost (%)
B
o

o
o
o

10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

o

Figure 2: Test relative cost (%) w.r.t. f*. Left: varying initialization method. Center: varying
number of Markov iterations K, random initialization. Right: varying K, ground-truth initialization.

5.2 MULTI-DIMENSIONAL KNAPSACK PROBLEM

In this section, we evaluate our framework on the multi-dimensional knapsack problem (MKP)
(Martello and Toth, 1990; Kellerer et al., 2004), which is a resource allocation problem involving
subset selection under multiple constraints. We benchmark our method against a broader landscape
of differentiable optimization baselines provided by the PyEPO library (Tang and Khalil, 2023).
Experimental and methodological details are given in Section D.

Problem formulation. We consider the decision-focused learning setup where the goal is to select
a subset of items to maximize a total value while respecting M capacity constraints. The item values

0 are predicted from features «. Formally, the combinatorial optimization problem is defined as:
d

y(0) == argmax ZQiyi = argmax(0,y), 9
ye{0.1}¢ yeY

d
stV e [M],)) wi iy < Cj
=1

where 8 = gy (x) € R? are the item values, wj j > 01is the weight of item 4 in dimension j, and C; is
the capacity of dimension j. The feasible setis Y := {y € {0,1}% | Vj € [M], Z?zl w; ;Y < Cj}
We are given a training set (z;, y;) é\il (the SPO+ baseline also requires access to the true values ;).
At test time, given only «, the goal is to predict y with minimal regret compared to the ground-truth.

Proposed layer. For our Local Search-MCMC layer y,, we use Algorithm 2 with ground-truth ini-
tialization, temperature ¢ = 1.0, and a mixture of three proposal distributions, detailed in Section D.1.

Baselines. We compare against four established decision-focused learning methods from the PyEPO
library: smart predict-then-optimize (SPO+, Elmachtoub and Grigas (2020)), perturbed optimizers
using K = 5 Monte-Carlo samples (PFY, Berthet et al. (2020)), negative identity backpropagation
(NID, Sahoo et al. (2023)), and noise-contrastive estimation (NCE, Mulamba et al. (2021)).

Compute and performance benchmark. We generate a dataset (z;,y;)~._; using PyEPO with
N = 2000, d = 100 and J = 50 (we also give 0, to the SPO+ loss). Our approach achieves
competitive test relative regret (Fig. 3, left) while drastically reducing the computational burden
(Fig. 3, center). The variance of the LS-MCMC gradients remains consistently lower than that of
other methods (Fig. 3, right), showing that the proposed method provides a stable signal for learning.

31.15% 0.272s
9.
[28.68%

w
5
S
N
o
U

27.92%

N
o

N
o
-
=)
.
'
.
"

18.42%

=)
i
o

-
=)
o
o
=)
i
o

e
o
a

0.044s 0.042s

o)

Best Test Relative Regret (%)
G
Avg. (Fwd+Bwd) Time/Batch (s)
Avg. Gradient Covariance Trace

i
o
>

0.005s
0 0.00
LS-MCMC PFY SPO+ NID NCE LS-MCMC PFY SPO+ NID NCE Epochs: 5 10 15 20

Figure 3: Benchmark results on the MKP.

5.3 LEARNING TO PREDICT BINARY VECTORS

Setup. To further validate the proposed gradient estimators, we use a synthetic unconditional learn-
ing task with hypercube output space,) = {0, 1}%. This setting is ideal for controlled experiments
because the Gibbs distribution 7 ; is fully factorized, leading to trivial sampling and a tractable
closed-form expectation E, ,[Y] = c(6/t), where o is the logistic sigmoid function. This allows us
to both faithfully generate datasets from a known distribution g ; , and to minimize the population
Fenchel-Young loss Lg directly (see Section 4.4 for its definition). The latter lets us decouple the
noise from our MCMC estimator from the statistical noise inherent in finite datasets.

In all experiments, the goal is to recover a known “true” parameter vector 6y from independent
samples (y;)N.; ~ (mg,.+)®". We summarize our key findings in Fig. 4, which shows the distance
to 6y along a stochastic gradient trajectory, either minimizing Ly (left) or Lg, (center, right). Full
experimental and theoretical details are available in Section A, together with additional results on
both the hypercube and the top-x polytope.

Results. The results highlight three important aspects for effective learning. First, persistent
and data-based initializations for the MCMC chains are critical (see Section B.3 for a detailed
discussion), vastly outperforming random restarts, which introduce systematic bias in the gradient
estimation (Fig. 4, center). Second, a larger dataset size N provides a better approximation of the
population loss, leading to a more accurate parameter recovery (Fig. 4, left), in line with Proposition 4.
Finally (defining Hamming distance-based neighborhood systems (N,..)5_; by ¥y’ € N, (y) <
dy (y, y') = rs), using a mixture of proposals with Algorithm 2 (e.g., with s € {1,2, 3,6}) enables
more effective exploration, improving convergence compared to a single proposal type (Fig. 4, right).

10" 4 10! 4

10° 4

100 4
N

100
500

1073 1000
— 5000
— 10000

-1

107" 5 Initialization 10
Persistent

—— Data-based
107§ —— Random

T T T T
10° 1ot 10 10° 100 100 102 103 100 10! 102 10°
Gradient Steps Gradient Steps Gradient Steps

{rs¥o,
2] 48
— {1,2,3,6}

3 Distance to true parameter

(a) Varying initialization (b) Varying dataset size N (c) Varying neighborhoods

Figure 4: Squared distance ||@,, — 6o||3 to the true parameter over optimization steps.

6 CONCLUSION

In this paper, we introduced a principled framework for integrating NP-hard combinatorial optimiza-
tion layers into neural networks without relying on exact solvers. Our approach adapts neighborhood
systems from the metaheuristics community, to design structure-aware proposal distributions for
combinatorial MCMC. This leads to significant training speed-ups, enabling to tackle larger problem
instances, which is crucial in operations research, where scaling up leads to substantial value creation
by reducing marginal costs. In future work, we plan to extend our framework to large neighborhood
search algorithms, which are heuristics that leverage neighborhood-wise exact optimization oracles.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico Kolter.
Differentiable convex optimization layers, 2019. URL https://arxiv.org/abs/1910.
12430.

Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A gradient estimator
for k-subset sampling, 2024. URL http://arxiv.org/abs/2210.01941.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pages 136—-145. PMLR, 2017.

10

https://arxiv.org/abs/1910.12430
https://arxiv.org/abs/1910.12430
http://arxiv.org/abs/2210.01941

Léo Baty, Kai Jungel, Patrick S. Klein, Axel Parmentier, and Maximilian Schiffer. Combinatorial
optimization enriched machine learning to solve the dynamic vehicle routing problem with time
windows, 2023. URL http://arxiv.org/abs/2304.007809.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon, 2020. URL http://arxiv.org/abs/1811.06128.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable perturbed optimizers, 2020. URL http://arxiv.org/
abs/2002.08676.

Mathieu Blondel and Vincent Roulet. The Elements of Differentiable Programming. arXiv preprint
arXiv:2403.14606, 2024.

Mathieu Blondel, André F. T. Martins, and Vlad Niculae. Learning with fenchel-young losses, 2020.
URL http://arxiv.org/abs/1901.02324.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-Ldpez,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. Advances
in neural information processing systems, 35:5230-5242, 2022.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. 35(3):268-308, 2003. ISSN 0360-0300. doi: 10.1145/937503.937505.
URL https://doi.org/10.1145/937503.937505.

Miguel A Carreira-Perpifidn and Geoffrey Hinton. On contrastive divergence learning. In Infer-
national Workshop on Artificial Intelligence and Statistics, pages 33—-40. PMLR, 2005. URL
https://proceedings.mlr.press/r5/carreira-perpinan05a.html.

Bor-Liang Chen and Ko-Wei Lih. Hamiltonian uniform subset graphs. 42(3):257-263, 1987. ISSN
0095-8956. doi: 10.1016/0095-8956(87)90044-X. URL https://www.sciencedirect.
com/science/article/pii/009589568790044X.

John M. Danskin. The theory of max-min, with applications. 14(4):641-664, 1966. ISSN 0036-
1399. doi: 10.1137/0114053. URL https://epubs.siam.org/doi/abs/10.1137/
0114053.

Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochas-
tic optimization. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models, 2020.
URL https://arxiv.org/abs/1903.086809.

Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence
training of energy based models, 2021. URL https://arxiv.org/abs/2012.01316.

Adam N. Elmachtoub and Paul Grigas. Smart "Predict, then Optimize", November 2020. URL
http://arxiv.org/abs/1710.08005. arXiv:1710.08005 [math].

Ulrich Faigle and Rainer Schrader. On the convergence of stationary distributions in
simulated annealing algorithms. 27(4):189-194, 1988. ISSN 0020-0190. doi: 10.
1016/0020-0190(88)90024-5. URL https://www.sciencedirect.com/science/
article/pii/0020019088900245.

Ari Freedman. CONVERGENCE THEOREM FOR FINITE MARKOV
CHAINS. 2017. URL https://www.semanticscholar.org/paper/
CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS—-%E2%8B%82t/
65f7c092bd9c59¢cbbc88dd69266d39cd79840648.

Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer, 2010.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris J. Maddison. Oops
i took a gradient: Scalable sampling for discrete distributions, 2021. URL https://arxiv.
org/abs/2102.045009.

11

http://arxiv.org/abs/2304.00789
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/2002.08676
http://arxiv.org/abs/2002.08676
http://arxiv.org/abs/1901.02324
https://doi.org/10.1145/937503.937505
https://proceedings.mlr.press/r5/carreira-perpinan05a.html
https://www.sciencedirect.com/science/article/pii/009589568790044X
https://www.sciencedirect.com/science/article/pii/009589568790044X
https://epubs.siam.org/doi/abs/10.1137/0114053
https://epubs.siam.org/doi/abs/10.1137/0114053
https://arxiv.org/abs/1903.08689
https://arxiv.org/abs/2012.01316
http://arxiv.org/abs/1710.08005
https://www.sciencedirect.com/science/article/pii/0020019088900245
https://www.sciencedirect.com/science/article/pii/0020019088900245
https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://arxiv.org/abs/2102.04509
https://arxiv.org/abs/2102.04509

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97-109, 1970. ISSN 00063444, 14643510. URL http://www. jstor.
org/stable/2334940.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive
divergence. 2000. URL https://www.semanticscholar.org/
paper/Training-Products—-of-Experts—-by-Minimizing-Hinton/
9360e5ce9c98166bbl179ad479a9d2919££13d022.

Salvatore Ingrassia. On the rate of convergence of the metropolis algorithm and gibbs sampler by
geometric bounds. 4(2):347-389, 1994. ISSN 1050-5164. URL https://www. jstor.org/
stable/2245161.

Gareth A. Jones. Automorphisms and regular embeddings of merged johnson graphs. 26(3):
417-435, 2005. ISSN 0195-6698. doi: 10.1016/j.jc.2004.01.012. URL https://www.
sciencedirect.com/science/article/pii/S0195669804000630.

Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer, Berlin, Heidelberg,
2004. ISBN 978-3-642-07311-3 978-3-540-24777-7. doi: 10.1007/978-3-540-24777-7. URL
http://link.springer.com/10.1007/978-3-540-24777-1.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
http://arxiv.org/abs/1412.6980.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220
(4598):671-680, 1983. doi: 10.1126/science.220.4598.671. URL https://www.science.
org/doi/abs/10.1126/science.220.4598.671.

Wouter Kool, Laurens Bliek, Danilo Numeroso, Yingqgian Zhang, Tom Catshoek, Kevin Tierney,
Thibaut Vidal, and Joaquim Gromicho. The EURO meets NeurIPS 2022 vehicle routing competi-
tion. In Proceedings of the NeurIPS 2022 Competitions Track, pages 35-49. PMLR, 2023. URL
https://proceedings.mlr.press/v220/kool23a.html.

Rahul G. Krishnan, Simon Lacoste-Julien, and David Sontag. Barrier frank-wolfe for marginal
inference, 2015. URL https://arxiv.org/abs/1511.02124.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning, ICML 01, page 282-289, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558607781.

Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aurelio Ranzato, and Fu Jie Huang. A tutorial on
energy-based learning. MIT Press, 2006.

Zhifei Li and Jason Eisner. First- and second-order expectation semirings with applications
to minimum-risk training on translation forests. In Philipp Koehn and Rada Mihalcea, ed-
itors, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 40-51. Association for Computational Linguistics, August 2009. URL https:
//aclanthology.org/D09-1005/.

Neal Madras and Dana Randall. Markov chain decomposition for conver-
gence rate analysis. 12(2):581-606, 2002. ISSN 1050-5164, 2168-8737.
doi: 10.1214/a0ap/1026915617. URL https://projecteuclid.org/

journals/annals—of-applied-probability/volume—-12/issue-2/
Markov—-chain-decomposition-for—-convergence-rate—analysis/10.
1214/a0ap/1026915617.full.

Jayanta Mandi and Tias Guns. Interior point solving for LP-based prediction+optimisation, 2020.
URL http://arxiv.org/abs/2010.13943.

Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark and
future opportunities. 80:1623-1701, 2024. ISSN 1076-9757. doi: 10.1613/jair.1.15320. URL
http://arxiv.org/abs/2307.13565.

12

http://www.jstor.org/stable/2334940
http://www.jstor.org/stable/2334940
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.jstor.org/stable/2245161
https://www.jstor.org/stable/2245161
https://www.sciencedirect.com/science/article/pii/S0195669804000630
https://www.sciencedirect.com/science/article/pii/S0195669804000630
http://link.springer.com/10.1007/978-3-540-24777-7
http://arxiv.org/abs/1412.6980
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://proceedings.mlr.press/v220/kool23a.html
https://arxiv.org/abs/1511.02124
https://aclanthology.org/D09-1005/
https://aclanthology.org/D09-1005/
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
http://arxiv.org/abs/2010.13943
http://arxiv.org/abs/2307.13565

Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer implementations.
John Wiley & Sons, Inc., USA, October 1990. ISBN 978-0-471-92420-3.

Daniel McKenzie, Samy Wu Fung, and Howard Heaton. Differentiating Through Integer Linear
Programs with Quadratic Regularization and Davis-Yin Splitting, July 2024. URL http://
arxiv.org/abs/2301.13395. arXiv:2301.13395 [cs].

Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured prediction
and attention, 2018. URL https://arxiv.org/abs/1802.03676.

Debasis Mitra, Fabio Romeo, and Alberto Sangiovanni-Vincentelli. Convergence and finite-time
behavior of simulated annealing. Advances in Applied Probability, 18(3):747-771, 1986. ISSN
0001-8678. doi: 10.2307/1427186. URL https://www. jstor.org/stable/1427186.

Nenad Mladenovi¢ and Pierre Hansen. Variable neighborhood search. Computers & operations
research, 24(11):1097-1100, 1997.

Volodymyr Mnih, Hugo Larochelle, and Geoffrey E. Hinton. Conditional restricted boltzmann
machines for structured output prediction, 2012. URL http://arxiv.org/abs/1202.
3748.

Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, and
Tias Guns. Contrastive Losses and Solution Caching for Predict-and-Optimize, July 2021. URL
http://arxiv.org/abs/2011.05354. arXiv:2011.05354 [cs].

Vlad Niculae, André F. T. Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable
sparse structured inference, 2018. URL https://arxiv.org/abs/1802.04223.

Axel Parmentier. Learning structured approximations of combinatorial optimization problems. arXiv
preprint arXiv:2107.04323, 2021.

Axel Parmentier. Learning to approximate industrial problems by operations research classic problems.
Operations Research, 70(1):606-623, 2022.

Benjamin Rhodes and Michael Gutmann. Enhanced gradient-based MCMC in discrete spaces, 2022.
URL http://arxiv.org/abs/2208.00040.

Fred J. Rispoli. The graph of the hypersimplex, 2008. URL http://arxiv.org/abs/0811.
2981.

R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970. ISBN 9780691015866.
URL http://www. jstor.org/stable/j.cttl4bslff.

Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and Thibaut
Vidal. A survey of contextual optimization methods for decision making under uncertainty, 2024.
URL http://arxiv.org/abs/2306.10374.

Subham Sekhar Sahoo, Anselm Paulus, Marin Vlastelica, Vit Musil, Volodymyr Kuleshov, and Georg
Martius. Backpropagation through Combinatorial Algorithms: Identity with Projection Works,
March 2023. URL http://arxiv.org/abs/2205.15213. arXiv:2205.15213 [cs].

Yang Song and Diederik P. Kingma. How to train your energy-based models, 2021. URL https:
//arxiv.org/abs/2101.03288.

Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, and Dale Schuurmans. Discrete langevin sampler
via wasserstein gradient flow, 2023a. URL http://arxiv.org/abs/2206.14897.

Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
sampling for combinatorial optimization. In Proceedings of the 40th International Conference on
Machine Learning, pages 32859-32874. PMLR, 2023b. URL https://proceedings.mlr.
press/v202/sun23c.html.

13

http://arxiv.org/abs/2301.13395
http://arxiv.org/abs/2301.13395
https://arxiv.org/abs/1802.03676
https://www.jstor.org/stable/1427186
http://arxiv.org/abs/1202.3748
http://arxiv.org/abs/1202.3748
http://arxiv.org/abs/2011.05354
https://arxiv.org/abs/1802.04223
http://arxiv.org/abs/2208.00040
http://arxiv.org/abs/0811.2981
http://arxiv.org/abs/0811.2981
http://www.jstor.org/stable/j.ctt14bs1ff
http://arxiv.org/abs/2306.10374
http://arxiv.org/abs/2205.15213
https://arxiv.org/abs/2101.03288
https://arxiv.org/abs/2101.03288
http://arxiv.org/abs/2206.14897
https://proceedings.mlr.press/v202/sun23c.html
https://proceedings.mlr.press/v202/sun23c.html

Ilya Sutskever and Tijmen Tieleman. On the convergence properties of contrastive divergence. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics, pages 789-795. JMLR Workshop and Conference Proceedings, 2010. URL https:
//proceedings.mlr.press/v9/sutskeverlOa.html.

Bo Tang and Elias B. Khalil. PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library for
Linear and Integer Programming, April 2023. URL http://arxiv.org/abs/2206.14234.
arXiv:2206.14234 [math].

Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood
gradient. In Proceedings of the 25th international conference on Machine learning, ICML ’08,
pages 1064—1071. Association for Computing Machinery, 2008. ISBN 9781605582054. doi:
10.1145/1390156.1390290. URL https://doi.org/10.1145/1390156.1390290.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighbor-
hood. Computers & Operations Research, 140:105643, April 2022. ISSN 0305-0548. doi: 10.
1016/j.cor.2021.105643. URL http://dx.doi.org/10.1016/7.cor.2021.105643.

Marin Vlastelica, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differentiation of
blackbox combinatorial solvers, 2020. URL http://arxiv.org/abs/1912.02175.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational
inference. 1(1):1-305, 2008. ISSN 1935-8237, 1935-8245. doi: 10.1561/2200000001. URL
https://www.nowpublishers.com/article/Details/MAL-001.

Laurent Younes. Stochastic gradient estimation strategies for markov random
fields. In Bayesian Inference for Inverse Problems, volume 3459, pages
315-325. SPIE, 1998. doi: 10.1117/12.323811. URL https://www.

spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/
Stochastic—-gradient-estimation—-strategies-for-Markov—-random-fields/
10.1117/12.323811.full.

Rugqi Zhang, Xingchao Liu, and Qiang Liu. A langevin-like sampler for discrete distributions, 2022.
URL https://arxiv.org/abs/2206.09914.

14

https://proceedings.mlr.press/v9/sutskever10a.html
https://proceedings.mlr.press/v9/sutskever10a.html
http://arxiv.org/abs/2206.14234
https://doi.org/10.1145/1390156.1390290
http://dx.doi.org/10.1016/j.cor.2021.105643
http://arxiv.org/abs/1912.02175
https://www.nowpublishers.com/article/Details/MAL-001
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://arxiv.org/abs/2206.09914

NOTATION

Notation Description

(0,v) Euclidean inner product between two vectors 0,y € R?.
conv()) Convex hull of a set).
dom(2) Domain of a function : RY — R U {oo}, defined as {p € R? : Q(u) < oc}.

o Fenchel conjugate of 2, defined as 2*(6) := sup,,cpa (0, p) — Q).
vQ Gradient of ().
o0 Subgradient of (2.

Jof(x,y) Jacobian of a function f : X x ¥ — R? with X CR™ at point (x, y) w.rt. x,
viewed as a matrix J, f(x,y) € R"*9,

Ux) Uniform distribution on a set X

N(x,%) Normal distribution with mean € R and covariance ¥ € R4*<.

A EXPERIMENTS ON EMPIRICAL CONVERGENCE OF GRADIENTS AND
PARAMETERS

In this section, we evaluate the proposed approach on two discrete output spaces: sets and «-subsets.
These output spaces are for instance useful for multilabel classification. We focus on these output
spaces because the exact MAP and marginal inference oracles are available, allowing us to compare
our gradient estimators to exact gradients. We set ¢ = 0 in these experiments.

A.1 POLYTOPES AND CORRESPONDING ORACLES

The vertex set of the first polytope is the set of binary vectors in R%, which we denote Y := {0, 1}<,
and conv(Y?) = [0, 1]? is the “hypercube”. The vertex set of the second is the set of binary vectors
with exactly x ones and d — k zeros (with 0 < k < d),

Vi={ye{0,1}*: (y,1) =&},

and conv () is referred to as “top-x polytope” or “hypersimplex”. Although these polytopes would
not provide relevant use cases of the proposed approach in practice, since exact marginal inference
oracles are available (see below), they allow us to compare the Fenchel-Young loss value and gradient
estimated by our algorithm to their true value.

Marginal inference. For the hypercube, we have:

7 Yi P Yi
yeyd Zy’GW exp ((8,y)/1) ye{0,1}4 Zy’e{o,l}d exp (ijl ijé‘/t)
Z exp (Hiyi/t + D ijj/t)
Yi
yi€{0,1} y_;€{0,1}d~1 Zy;e{o,l} Zygie{o,l}dfl exp (9192/15 + Zj;ﬁi ij;/t)

exp (fiyi/t) S exp (Z#i O5yi/ t)
vty 2oy P (Giyi/t : yoie0.1}1 Dy {01341 OXP (Z#i ejyﬁ'/t)
exp (0;y;/t) ‘
Wiy Sureton o0 G/

~exp(0;/t)
~ 1+exp(6;/t)

(%)

exp ((6.9)/1) S (3o b /t)

15

which gives E., , [Y] =0 () where the logistic sigmoid function o is applied component-wise.
The cumulant function is also tractable, as we have

log Z exp ((0,y)/t) =log Z exp (Z Olyz/t>

yey ye{o 1}d

DI (Zezy /t)

y1—0 y2=0 ya=0

= log H Z exp (0iyi/t)

=1 Yi =0

= log H (exp(0) + exp (6;/1))

d

=log [J (1 + exp (6:/1))

i=1

g (1+ exp (6:/1)).

HM&

Another way to derive this is via the Fenchel conjugate.

For the top-« polytope, such closed-form formulas do not exist for the cumulant and its gradient.
However, we implement them with dynamic programming, by viewing the top-x MAP problem
as a 0/1-knapsack problem with constant item weights, and by changing the (max, +) semiring
into a (LSE, +) semiring. This returns the cumulant function, and we leverage PyTorch’s automatic
differentiation framework to compute its gradient. This simple implementation allows us to compute
true Fenchel-Young losses values and their gradients in O(dk) time and space complexity.

Sampling. For the hypercube, sampling from the Gibbs distribution on)¢ has closed form. Indeed,
the latter is fully factorized, and we can sample y ~ mg ; by sampling independently each component
with y; ~ Bern (o (6;/t)). Sampling from 7, is also possible on Y%, by sampling coordinates
iteratively using the dynamic programming table used to compute the cuamulant function (see, e.g.,
Algorithm 2 in Ahmed et al. (2024) for a detailed explanation).

A.2 NEIGHBORHOOD GRAPHS

Hypercube. On), we use a family of neighborhood systems N £ parameterized by a Hamming
distance radius r € [d — 1]. The graph is defined by:

Vyy eV Yy eNL(y) e 1<dy(y.y)<r

That is, two vertices are neighbors if their Hamming distance is at most . This graph is regular,
with degree |NVZ(y)| = S_7_, (¢). This graph is naturally connected, as any binary vector y’
can be reached from any other binary vector y in ||y’ — y||1 moves, by flipping each bit where
ys # v, iteratively. Indeed, this trajectory consists in moves between vertices with Hamming dis-
tance equal to 1, and are therefore along edges of the neighborhood graph, regardless of the value of r.

We also use a slight variation on this family of neighborhood systems, the graphs N, defined by:

Vyy eV y eNL(y) & du(y, y) =T

These graphs, on the contrary, are not always connected: indeed, if r is even, they contain two
connected components (binary vectors with an even sum, and binary vectors with an odd sum).
We only use such graphs when experimenting with neighborhood mixtures (see Algorithm 2), by
aggregating them into a connected graph.

16

Top-+ polytope. On)%, we use a family of neighborhoods systems A/® parameterized by a number
of “swaps” s € [1, min(x, d — k)]. The graph is defined by

Vyy €V y eNU(y) & dy (y, y') = 2s.

That is, two vertices are neighbors if one can be reached from the other by performing s “swaps”,
each swap corresponding to flipping a 1 to a 0 and vice-versa. This ensures that the resulting vector
is still in ¢, All s swaps must be performed on distinct components. The resulting graph is known
as the Generalized Johnson Graph J(d, k, k — s), or Uniform Subset Graph (Chen and Lih, 1987). It
is a regular graph, with degree |N*(y)| = () (d;”). It is proved to be connected in Jones (2005),

except if d = 2k and s = & (in this case, it consists in %(Z) disjoint edges).

When s = 1, the neighborhood graph is the Johnson Graph J(d,), which coincides with the graph
associated to the polytope conv(Y?) = Ay . (Rispoli, 2008).

A.3 CONVERGENCE TO EXACT GRADIENTS

In this section, we conduct experiments on the convergence of the MCMC estimators to the exact
corresponding expectation (that is, convergence of the stochastic gradient estimator to the true
gradient). The estimators are defined as

K
~ 1
yt(g) = Eﬂ'e,t [Y] ~ K — KO Z y(k)a
k=Ko+1

where y(*) is the k-th iterate of Algorithm 1 with maximization direction @, final temperature ¢,
and K is a number of burn-in (or warm-up) iterations. The obtained estimator is compared to the
exact expectation by performing marginal inference as described in Section A.1 (with a closed-form
formula in the case of V¢, and by dynamic programming in the case of Y¢).

Setup. For T' > Ko, let E(0,T) == 70

expectation at step 7. We proceed by first randomly generating ® € RM >4 with M being the
number of instances, by sampling @, ; ~ N(0, 1) independently. Then, we evaluate the impact of
the following hyperparameters on the estimation of Er¢, ¢ [Y], fori € [M]:

Z;‘:: Kot1 y*) be the stochastic estimate of the

1. Ky, the number of burn-in iterations,
2. t, the temperature parameter,

3. C, the number of parallel Markov chains.

Metric. The metric used is the squared Euclidean distance to the exact expectation, averaged on the
M instances

M
1 .
17 2 |[Ere [V] —E(©:, D3,
i=1
which we measure for T € [Ky + 1, K.

Polytopes. For the hypercube)¢ and its neighborhood system N Zoweused = 10and r = 1,
which gives 4| = 2'* and |NVZ (y)| = 10. For the top-~ polytope V¢ and its neighborhood system
N¢, weused = 10, Kk = 3 and s = 1, which gives | V4| = 120 and |[N*(y)| = 30. We also
use a larger scale for both polytopes in order to highlight the varying impact of the temperature
t depending on the combinatorial size of the problem, in the second experiment. For the large
scale, we use d = 1000 and r» = 10 for the hypercube, which give || = 21990 ~ 1030 and
|N£ (y)| ~ 2.7 x 10?2, and we use d = 1000, x = 50 and s = 10 for the top-# polytope, which give

|V4) = 9.5 x 108* and |N*(y)| =~ 1.6 x 1033.

17

Hyperparameters. For each experiment, we use K = 3000. We average over M = 1000 problem
instances for statistical significance. We use Ky = 0, except for the first experiment, where it varies.
We use a final temperature ¢ = 1, except for the second experiment, where it varies. We use an initial
temperature ty) = ¢t = 1 (leading to a constant temperature schedule), except for the first experiment,
where it depends on K. We use only one Markov chain and thus have C' = 1, except for the third
experiment, where it varies.

(1) Impact of burn-in. First, we evaluate the impact of K, the number of burn-in iterations.
We use a truncated geometric cooling schedule ¢, = max (¥ - to, t) with v = 0.995. The initial
temperature (is set to 1/(y%°), so that Yk > K¢ + 1, t;, = t = 1. The results are gathered in Fig. 5.

(2) Impact of temperature. We then evaluate the impact of the final temperature ¢ on the difficulty
of the estimation task (different temperatures lead to different target expectations). The results for the
small scale are gathered in Fig. 6, and the results for the large scale are gathered in Fig. 7.

(3) Impact of the number of parallel Markov chains. Finally, we evaluate the impact of the
number of parallel Markov chains C on the estimation. The results are gathered in Fig. 8.

100_ 100.

Ko Ky

8 0 I 0
8 10 & 1071 5 10
A 10714 50 A 50
— 100 — 100
— 200 — 200
— 300 1073 —— 300
10-2 4 —— 500 — 500

10° 161 162 163 10° 161 162 1(')3
Iteration Iteration
(a) Hypercube (b) Top-~ polytope

Figure 5: Convergence to exact expectation on the hypercube and the top-« polytope, for varying
number of burn-in iterations Ky. We conclude that burn-in is not beneficial to the estimation, and
taking Ky = 0 is the best option.

—
fe=)
>
L
—_
<
L

s
|
-
1l
—
=)
1
@

Distance
—
(=]
b
Distance
—
b
"

—_
(=3
|
NI
L
—
(=3
|

I —2 J
100 Y 100 \
10! 10!

,_.
1Sy
| o

1l

102 1077 4 102
i 10 —_—10?
107* 4
10° 10! 102 10° 10° 10! 10% 10°
Iteration Iteration
(a) Hypercube (b) Top-« polytope

Figure 6: Convergence to exact expectation on the hypercube and the top-~ polytope, for varying final
temperature ¢ (small scale experiment). We conclude that lower temperatures facilitate the estimation.

18

102_
[
t \ t
1
g 102 A 10-3 \ g 10 10-3
s 10-2 § 10-2
@ -1 @ -
a 10 a 107!
10° 10° - 100
10! 10*
102 10?
10! 4 —— 10% N — 10°
T T T 1071 T T T
10° 10t 10? 10% 10° 10* 10? 10%
Iteration Iteration
a) Hypercube b) Top-~ polytope
Yp p-~ polytop

Figure 7: Convergence to exact expectation on the hypercube and the top-« polytope, for varying
final temperature ¢ (large scale experiment). Contrary to the small scale case, larger temperatures are
beneficial to the estimation when the solution set is combinatorially large.

10° 5 10° 5

10—1 -
[0} [0

2 2 1072 5
8 8
b o

=) 0 1034

10—4 .

1077 4

10° 10! 10? 10% 100 10! 10% 108
Iteration lteration
(a) Hypercube (b) Top-« polytope

Figure 8: Convergence to exact expectation on the hypercube and the top-~ polytope, for varying
number of parallel Markov chains C. Running 10 times more chains in parallel provides roughly
the same benefit as extending each chain by 10 times more iterations, highlighting the advantage of
massively parallelized estimation.

19

A.4 CONVERGENCE TO EXACT PARAMETERS

In this section, we conduct experiments in the unconditional setting described in Section 4.4. As a
reminder, the empirical L x and population Lg, Fenchel-Young losses are given by:

N
1
Ly(6;y1,-- - yn) = > 4 (0; yi)
=1

= 440) + 5 D0 ului) — (0, T
=0(0; Yn) + 81 (Y), (10)

and

Lo, (0) = E(yi)fVZIN(MO)t)@N [Ln(6;y1,- .-, yn)]
= Ai(0) + Erp, [Q(Y)] = (8, 9:(60))
= £,(6; y:(60)) + C2(60), (1D

where the constants C(Y) = %Zf\ilﬂt(yz) —Q;(Yy) and C1(0y) = Ere, .. [Q:(Y)] = (y:(00))
do not depend on 6. As Jensen gaps, they are non-negative by convexity of €2;.

2D visualization. As an introductory example, we display stochastic gradient trajectories in Fig. 9.
The parameter @ € R? is updated following Eq. (7) to minimize the population loss Lg, defined
in Eq. (11), with 8y = (1/2, 1/2). The polytope used is the 2-dimensional hypercube)2, with
neighborhood graph A (neighbors are adjacent vertices of the square). We present trajectories
obtained using MCMC-sampled gradients, comparing results from both 1 and 100 Markov chain
iterations with Algorithm 1. For comparison, we include trajectories obtained using Monte Carlo-
sampled (i.e., unbiased) gradients, using 1 and 100 samples.

Simulated Annealing (Blue) vs. Monte-Carlo (Red)

i SA-1
—— SA-100
5 MC-1
— MC-100
21 b
1 -
0 -
—1 1
—92 4
—3 1
3 -2 0 1 2 3 1

Figure 9: Comparison of stochastic gradient trajectories for a SA / M-H oracle on)2 and unbiased
stochastic gradients obtained via Monte Carlo sampling. Increasing the number of Markov chain
iterations yields smoother trajectories, similar to the effect of using more Monte Carlo samples in the
case of perturbation-based methods (Berthet et al., 2020).

20

General setup. We proceed by first randomly generating true parameters @y € RM <9, with M
being a number of problem instances we average on (in order to reduce noise in our observations)
by sampling @, ; ~ N(0, 1) independently. The goal is to learn each parameter vector (®y); €
R?,i € [M], as M independent problems. The model is randomly initialized at @, and updated
Wlth Adam (Kingma and Ba, 2017) to minimize the loss. In order to better separate noise due to the
optimization process and noise due to the sampling process, we use the population loss L(g,), for
general experiments, and use the empirical loss L only when focusing on the impact of the dataset
size N. In this case, we create a dataset Y € RM*N*d with N being the number of samples, by
sampling independently Y; ; ~ m@,),, Vi € [M], ¥j € [N].

We study the impact of the following hyperparameters on learning:

1. K, the number of Markov chain iterations,
2. C, the number of parallel Markov chains,
3. the initialization method used for the chains (either random, persistent, or data-based),

4. N, the number of samples in the dataset.

Metrics. The first metric used is the objective function actually minimized, i.e., the population loss,
averaged on the M instances:

1 & .
M Z L(®o)7: ((en)l)J
i=1

where (©,,); is the n-th iterate of the optimization process for the problem instance i € [M]. We
measure this loss for n € [Ny, With 1y, the total number of gradient iterations. For the fourth
experiment, where we evaluate the impact of the number of samples IV, we measure instead the
empirical Fenchel-Young loss:

1

M ((é)a Zla"'Y;,N)

HM§

In both cases, the best loss value that can be reached is positive but cannot be computed: it
corresponds to the constants C; and C5 in Eq. (10) and Eq. (11). Thus, we also provide "stretched"
figures, where we plot the loss minus the best loss found during the optimization process.

The second metric used is the squared euclidean distance of the estimate to the true parameter, also
averaged on the M instances:

1 & -
M;II(@o)i — (©n)illz-

As the top-« polytope is of dimension d — 1, the model is only specified up to vectors orthogonal to
the direction of the smallest affine subspace it spans. Thus, in this case, we measure instead:

M
gj 1P ((©0):) = P ((©):) 13,

where P 1 is the orthogonal projector on the hyperplane D = {x € R%: (1,) = 0}, which is the
corresponding direction.

21

Polytopes. For the hypercube V¢ and its neighborhood system A2, we use d = 10 and r = 1,
except in the fifth experiment, where we use a mixture of N” neighborhoods (detailed below). For
the top-« polytope J¢ and its neighborhood system N®, we use d = 10, x = 3 and s = 1.

Hyperparameters. For each experiment, we perform 1000 gradient steps. We use Ky = 0, final
temperature ¢ = 1 and initial temperature ¢ty = t = 1 (leading to a constant temperature schedule).
We use K = 1000 Markov chain iterations, except in the first experiment, where it varies. We use
only one Markov chain and thus have C' = 1, except for the second experiment, where it varies. We
use a persistent initialization method for the Markov chains, except in the third experiment, where we
compare the three different methods. For statistical significance, we average over M/ = 100 problem
instances for each experiment, except in the third experiment, where we use M/ = 1000. We work in
the limit case N — oo, except in the fourth experiment, where N varies.

(1) Impact of the length of Markov chains. First, we evaluate the impact of K, the number of
inner iterations, i.e., the length of each Markov chain. The results are gathered in Fig. 10.

(2) Impact of the number of parallel Markov chains. We now evaluate the impact of the number
of Markov chains C run in parallel to perform each gradient estimation on the learning process. The
results are gathered in Fig. 11.

(3) Impact of the initialization method. Then, we evaluate the impact of the method to initialize
each Markov chain used for gradient estimation. The persistent method consists in setting y(*+1:0) =
y(™) the data-based method consists in setting y("*+0) = g, with i ~ U([N]), and the random
method consists in setting y("T1:0) ~ 1/())) (see Section B.3 and Table 4 for a detailed explanation).
The results are gathered in Fig. 12.

(4) Impact of the dataset size. We now evaluate the impact of the number of samples N from

g, (i.€., the size of the dataset (yi)ijil) on the estimation of the true parameter 8y. The results are
gathered in Fig. 13.

(5) Impact of neigborhood mixtures. Finally, we evaluate the impact of the use of neighborhood
mixtures. To do so, we use mixtures {N7s}5_,, once with {r,}5_; = {5} opposed to {r;}5_; =
{1,5}, and once with {r,}5_, = {6} (which gives a reducible Markov chain as 6 is even, so that the
individual neighborhood graph NS is not connected, and has to connected components) opposed to

{rs}5_; = {1,2,3,6}. The results are gathered in Fig. 14.

22

10" 4

100 H

10—1 4

3 Distance to true parameter

1072 5
10° 10! 10? 10?
Gradient Steps
(a) Distance to true parameter, hypercube
0

8 x 10 K
= 100
IS 200
2 300
8 — FOO
2 7x10° °
a — 1000
2
2 — 2000
S — 5000
>
[T

6 x 10° ~——

10° 10! 102 10%
Gradient Steps

(c) FY loss (up to constant), hypercube

100_ ——
1) \
8 101 4
@ K \\
[0}
8
S -2] 100
2 200 &:ﬁ
E 1073 300 o]
@ —— 500 \‘
o
S 1071 —— 1000 'M
w — 2000 'ﬂl
107" 4 —— 5000
10° 10" 10% 103
Gradient Steps

(e) FY loss minus best loss, hypercube

% Distance to true parameter (projected)

10°

10t

Gradient Steps

10%

10%

(b) Distance to true parameter, top-+ polytope

5 x 100

FY Loss (up to constant)

4 x10°

10°

K

100
200
300
500
1000
2000
5000

e —

10! 102

103

Gradient Steps

(d) FY loss (up to constant), top-~ polytope

—
100 o —
& 10-! \
8]
k7 K \\
81077 3 100
[%2]
3 200 \z:m
= 1073 4 ek
£ 300 \“:vw
& 111 — 500 v
. —— 1000 W
1 1075 4 —— 2000 |
— 5000 |
107 4 1
10° 10! 10? 10°
Gradient Steps

(f) FY loss minus best loss, top-x polytope

Figure 10: Convergence to the true parameter on the hypercube (left) and the top-x polytope (right),
for varying number of Markov chain iterations K. Longer chains improve learning.

23

1

5 10
©
§
;G 10() .
Qo
[0}
=
E 10-1 4
[0}
o
j =
©
B 10-2 4
a
=

1073 4

10° 10! 10% 10%
Gradient Steps
(a) Distance to true parameter, hypercube
8 x 10°
* c

= 1
= =
8 5
2 — 10
3 — 50
o 7x10°
a — 100
2
12}
173
o
-
>
[T

6 % 10° ~—

10° 10! 102 10%
Gradient Steps

(c) FY loss (up to constant), hypercube

100 B ——
A 10~ 4 \
o N
3 1072 N\
(2]
§ 104 4 5 s
-
— 10 W'
> 10754
i I 50 '|’
1076 - —— 100 I
10° 10! 102 103
Gradient Steps

(e) FY loss minus best loss, hypercube

=)

k)

8 104

o

e

& 1004

Q

1S

o

S 101 5

(]

=

s

> 10724

o

c

©

@)

a 1073 4

Qo T T

= 10° 10! 10? 10°
Gradient Steps

(b) Distance to true parameter, top-+ polytope

C

= 1

€ =

S 5

§ 5 x 10° 10

o —

o 50

% — 100

2

[2]

[%2]

o

—

>-

[T

4 x 10(] e ———————
10° 10t 10? 103
Gradient Steps
(d) FY loss (up to constant), top-~ polytope
100 _\‘

i N \

L_On 10 \

8 1024 \

o

%) \

gury ©

£ 1 v

g 104 5

S 05— 10

w — 50

1076 4 —— 100
10° 10! 10? 10°

Gradient Steps

(f) FY loss minus best loss, top-x polytope

Figure 11: Convergence to the true parameter on the hypercube (left) and the top-x polytope (right),
for varying number of parallel Markov chains C'. Adding Markov chains improves estimation.

24

10" 4

100 4

10—1 4

3 Distance to true parameter

Initialization
——— Persistent
—— Data-based
1072y —— Random
10° 10* 102 10%
Gradient Steps
(a) Distance to true parameter, hypercube
0

8> 10 Initialization
= —— Persistent
IS —— Data-based
2 —— Random
o
o
o 7x10°
o
2
(7]
1%
o
-
>-
[T

6 x 10° e —

T T
10° 10t 102 103
Gradient Steps

(c) FY loss (up to constant), hypercube

e ——

N

N

N —
N—

\

100

FY Loss minus best loss
-
o
I8
A

Initialization
01— Persistent \M
—— Data-based ”l
10-% 4 —— Random |
10° 10t 10% 103

Gradient Steps

(e) FY loss minus best loss, hypercube

=)

[0

©

S 10! 4

o

2

g

g 100 4

©

©

o

Q

2 10-1 P

= 107" 4 Initialization

*5 ——— Persistent

o

< —— Data-based

@ 10724 —— Random

a

W ' :
100 10! 102 103

Gradient Steps

(b) Distance to true parameter, top-+ polytope

Initialization
= —— Persistent
8 —— Data-based
g 5 % 100 —— Random
o
i<}

o

2

[72]

[%]

o

—

>-

[T

4 % 10° -
T T
10° 10! 10? 10°

Gradient Steps

(d) FY loss (up to constant), top-~ polytope

100 -\‘\
@\ —
4 1071 4 \
g 1072 3 \
e}
E \/_
£ 1073 4
€ :
0 4 PR
@ 107% 5 Initialization
5> .1 Persistent \M
o 10 —— Data-based mr
10-6 4 —— Random dl
100 10! 10? 10°
Gradient Steps

(f) FY loss minus best loss, top-x polytope

Figure 12: Convergence to the true parameter on the hypercube (left) and the top-~ polytope (right),
for varying Markov chain initialization method. The persistent and data-based initialization methods
significantly outperform the random initialization method.

25

101 4 10 4

(% Distance to true parameter

03 Distance to true parameter (projected)

10° 5 N
0
10 100
500
—— 1000
101 4§ —— 5000
10-1 4 —— 10000
10° 10t 102 103 10° 10* 10% 103
Gradient Steps Gradient Steps
(a) Distance to true parameter (b) Distance to true parameter
8 x 1001 R N N
= 100 = 100
& N\ 500 8 500
2 —— 1000 2 0 —— 1000
g 6 5 x 10
o 7% 100 — 5000 S —— 5000
o \ —— 10000 o —— 10000
2 \ 2
1] \ [72]
8 \ 8
— \ —
> >
o \ i
6% 10 S 4% 10° N\
10° 10! 102 103 10° 10! 10? 10°
Gradient Steps Gradient Steps
(c) FY loss (up to constant) (d) Fenchel-Young loss (up to constant)
10° 3 ~ 100 4
(2] (2]
2 10-1 4 \\ 2 10-1 4 -
k] ~ | k]
g 2
8 10724 o 10724
s N ! N
£ -3 4 £ _
£ 10 100 £ 107° 5 100
g)] 500 8 500
Z —— 1000 S0 000
> >
B j0-5 4 —— 5000 e 10-5 1 — 5000
—— 10000 —— 10000
1076 3 T T T T
10° 10! 102 103 10° 10! 10? 10°
Gradient Steps Gradient Steps
(e) FY loss minus best loss (f) Fenchel-Young loss minus best loss

Figure 13: Convergence to the true parameter on the hypercube (left) and the top-« polytope (right),
for varying number of samples IV in the dataset. As the dataset is different for each task, the empirical
Fenchel-Young loss L, which is the minimized objective function (contrary to other experiments,
where we minimize Lg,), also varies. Although empirical Fenchel-Young losses associated to smaller
datasets appear easier to minimize, increasing the dataset size reduces the bias and thus the distance
to 6y, as expected.

26

{Ts}le
s 10 ; 5 104
NI
] — {1,5} I
© []
Q. o
13 °
[0} (0]
g 2
Z 107! 3 107" 5
s} [a}
K £
10° 10! 10? 10? 10° 10! 102 10°
Gradient Steps Gradient Steps

(a) Distance to true parameter, 7s € {5} or {1,5} (b) Distance to true parameter, s € {6} or {1,2, 3,6}

8 x 10° 8 x 10°
{Ts}le {Ts}égzl

= {5} = — {6}
S - 5 — {1,2,3,6
s {1,5} 8 {1,2,3,6}
c c
8 8
o 7x10° 2 7x10°
o o
2 2
[} [}
172 [%2]
o o
- -
> >
[T [T

6 x 10° ~— 6 x 10° ~———

10° 101 10% 103 10° 10! 10% 103
Gradient Steps Gradient Steps

(c) FY loss (up to constant), s € {5} or {1,5} (d) FY loss (up to constant), s € {6} or {1,2,3,6}

T {rds, Tl —"
2] \ {5} 2 \
o 10 _ {1,5} © 107" 4 N
[72] (7]
8 1072 4 8 102 4 \
[%2] (2]
2 0] \ 2 N
E 10 é 10~3 4
S 10 IT' S 10744 {r }S \ L
> > she=1 I‘ l
b 1077 5 | sl T 8
6] — {1,2,3,6} |
10 T T ! T T
100 10t 102 103 10° 10! 10? 103
Gradient Steps Gradient Steps
(e) FY loss minus best loss, 7s € {5} or {1, 5} (f) FY loss minus best loss, 7s € {6} or {1,2,3,6}

Figure 14: Convergence to the true parameter on the hypercube, with different mixtures of neigh-
borhood systems {N7=}2_,: comparing r5 € {5} tor, € {1,5} (left), and comparing r; € {6} to
rs € {1,2,3,6} (right). Using more neighborhoods in the mixture improves learning.

27

B ADDITIONAL MATERIAL

B.1 FENCHEL-YOUNG LOSS FOR K = 1 IN THE UNCONDITIONAL SETTING

This proposition is analogous to Proposition 3, but in the unconditional setting, when using a data-
based initialization method — i.e., the original CD initialization scheme, without persistent Markov
chains. See Section B.3 for a detailed discussion about this.

Proposition 6. Let p(eli—,N denote the distribution of the first iterate of the Markov chain defined

by the Markov transition kernel given in Eq. (3), with proposal distribution q and initialized by
y O = y;, with i ~U([1, N]). There exists a dataset-dependent regularization Sy with the

following properties: Q. is tN/ ZZ]\LI Eq(ys,) ||Y — yil|3-strongly convex; it is such that:

Eo [Y]= argmax {(0.1) — Qy, (1)} 5
orN neconv(UN, {N (y:)U{yi}})

and the Fenchel-Young loss Loy, ~generated by Q. is = vazl Eq(ys, 1Y — yill3/t-smooth
in its first argument, and such that Vo Lo, | 0;y) = E o Y] —vy.
0.YNn

The proof is given in Section E.7.

B.2 PROPERTIES OF THE EXPECTED FIRST ITERATE
Proposition 7. Let@ € R%, y €). Let
Noeer(y) = {y" € N(y) 1 (0,9") +»(y') > (0,y) + »(y)}

denote the set of improving neighbors of y for the unregularized objective function. We have the
following properties:

E o [Y] € conv (N (y) U {y}),

E,o Y] ——y+ Y awy) W),

t—0+

Y’ ENberer (Y)
. / / /
and By Y] ——y+ Y minfoyy) a9 4 -y
v N W)

The proof is given in Section E.8. Thus, as the set Myeyer is defined according the value of the

original, unregularized objective function y — (6, y) + ¢(y), the low temperature behavior of

the regularized maximizer E) [Y] effectively reflects the fact that the regularization function €2,
2]

'Y
extends the influence of ¢ from the vertices N'(y) U {y} to their convex hull.

B.3 MARKOV CHAIN INITIALIZATION

In contrastive divergence (CD) learning, the intractable expectation in the log-likelihood gradient is
approximated by short-run MCMC, initialized at the data distribution (Hinton, 2000) (using a Gibbs
sampler in the setting of Restricted Boltzmann Machines).

Here, we note, at the n-th iteration of gradient descent:

K
. 1 1 n+1,
Vi Ly (W,) ~ B > Jway, () (sz§ 1K) y> ’

i€ By k=1

for theconditional setting, with B,, being the mini-batch (or full batch) used at iteration n, y; the
ground-truth structure associated to x; in the dataset, and ygnﬂ’ *) the k-th iterate of Algorithm 1,
(n+1,0) We also note:

%

with maximization direction g;;, (a;), and initialization point y

28

K
R 1 _
VoL (0n) ~ 2 Yyt — vy
k=1

for the unconditional setting, with y("*1:*) being the k-th iterate of Algorithm 1, with maximization
direction 0,,, and initialization point y(”H’ 0),

In CD learning of unconditional EBMs (i.e., in our unconditional setting), the Markov Chain is
initialized at the empirical data distribution (Hinton, 2000; Carreira-Perpifian and Hinton, 2005),
as explained earlier. Persistent Contrastive Divergence (PCD) learning (Tieleman, 2008) modifies
CD by maintaining a persistent Markov chain. Thus, instead of initializing the chain from the data
distribution in each iteration, the chain continues from its last state in the previous iteration, by setting
y(+10) — 4(n K) This approach aims to provide a better approximation of the model distribution
and to reduce the bias introduced by the initialization of the Markov chain in CD. These are two types
of informative initialization methods, which aim at reducing the mixing times of the Markov Chains.

However, neither of these can be applied to the conditional setting, as observed in (Mnih et al., 2012)
in the context of conditional Restricted Boltzmann Machines (which are a type of EBMs). Indeed,
on the one hand, PCD takes advantage of the fact that the parameter 6 does not change too much
from one iteration to the next, so that a Markov Chain that has reached equilibrium on én is not
far from equilibrium on én+1- This does not hold in the conditional setting, as each x; leads to a
different 6; = Gyir (). On the other hand, the data-based initialization method in CD would amount
to initialize the chains at the empirical marginal data distribution on)/, and would be irrelevant in a
conditional setting, since the distribution we want each Markov Chain to approximate is conditioned
on the input x;.

An option is to use persistent chains if training for multiple epochs, and to initialize the Markov
Chain associated to (x;, y;) for epoch j at the final state of the one associated to the same data point
(x;,vy;) at epoch j — 1. However, this method is relevant than PCD in the unconditional setting, as w

changes a lot more in a full epoch than 6 in just one gradient step in the unconditional setting. It
might be relevant, however, if each epoch consists in a single, full-batch gradient step. Nevertheless,
it would require to store a significant number of states yl(n K) (one for each point in the dataset).
The solution we propose, for both full-batch and mini-batch settings, is to initialize the chains at
the empirical data distribution conditioned on the input ;, which amounts to initialize them at the

ground-truth y;.

This discussion is summed up in Table 4.

Table 4: Possible Markov Chain Initialization Methods under each Learning Setting

Setting

. Unconditional Conditional, Batch Conditional,

Init. . s
Method Mini-Batch
Persistent y(H10) — 4 (n.K) l("“’O) — yi("’K) /
Data-Based y(n+1.0) — y;. with y§n+1,0) — y£n+1,o) =y,
J~U([1,N])
Random y (L) () y "t L) y"TO ()

29

Remark 1. The use of uniform distributions on) for the random initialization method can
naturally be replaced by any other different prior distribution.

C DETAILS ON THE DVRPTW

C.1 OVERVIEW OF THE CHALLENGE.

We evaluate the proposed approach on a large-scale, ML-enriched combinatorial optimization
problem: the EURO Meets NeurlPS 2022 Vehicle Routing Competition (Kool et al., 2023).
In this dynamic vehicle routing problem with time windows (DVRPTW), requests arrive con-
tinuously throughout a planning horizon, which is partitioned into a series of delivery waves
W = {[ro, 7], [11, 7]+ [Tpw—15 7w] -

At the start of each wave w, a dispatching and vehicle routing problem must be solved for the set of
requests R* specific to that wave (in which we include the depot D), encoded into the system state
x“. We note Y (x*) the set of feasible decisions associated to state *.

A feasible solution y* € Y(x“) must contain all requests that must be dispatched before 7, (the rest
are postponable), allow each of its routes to visit the requests they dispatch within their respective
time windows, and be such that the cumulative customer demand on each of its routes does not exceed
a given vehicle capacity. It is encoded thanks to a vector (y‘;’j)Z Jere where y;’; = 1 if the solution
contains the directed route segment from ¢ to j, and y;’; = 0 otherwise. The set of requests ReHL s
obtained by removing all requests dispatched by the chosen solution y* from R“ and adding all new
requests which arrived between 7, and 7,4 .

The aim of the challenge is to find an optimal policy f: X —) assigning decisions y* € Y(x*) to
system states £« € X. This can be cast as a reinforcement learning problem:

minE [ew(f)], with ew(f) = e(f(@)),
wew
where ¢ : Yy = 37, i ro cij Yy gives the routing cost of y* € Y* and where ¢; ; > 0 is the
routing cost from ¢ to j. The expectation is taken over full problem instances.

C.2 REDUCTION TO SUPERVISED LEARNING.

We follow the method of (Baty et al., 2023), which was the winning approach for the challenge.
Central to this approach is the concept of prize-collecting dynamic vehicle routing problem with time
windows (PC-VRPTW). In this setting, each request ¢ € R* is assigned an artificial prize 65 € R,
that reflects the benefit of serving it. The prize of the depot D is set to 6%, = 0. The objective is then
to identify a set of routes that maximizes the total prize collected while minimizing the associated

travel costs. The model gy predicts the prize vector 8 = gy (x*). Denoting ¢(y) = —(c, y), the
corresponding optimization problem can be written as:
y(6*) = argmax Z 0% vij — Z CijYi; = (0“,y) + p(y). (12)
YEV(®); jeRw ij ER®

The overall pipeline is summarized in Fig. 1. Following (Baty et al., 2023), we approximately solve
the problem in Eq. (12) using the prize-collecting HGS heuristic (PC-HGS), a variant of hybrid
genetic search (HGS) (Vidal, 2022). We denote this approximate solver 4 = y, so that their proposed
policy decomposes as fy := y o gy. The ground-truth routes are created by using an anticipative
strategy, i.e., by solving multiple instances where all future information is revealed from the start, and
the requests’ arrival times information is translated into time windows (thus removing the dynamic
aspect of the problem). This anticipative policy, which we note f* (which cannot be attained as it
needs unavailable information) is thus the target policy imitated by the model — see Section C.8 for
more details.

C.3 PERTURBATION-BASED BASELINE.

In (Baty et al., 2023), a perturbation-based method (Berthet et al., 2020) was used. This method is
based on injecting noise in the PC-HGS solver y. Similarly to our approach, the parameters W can

30

Name Description

relocate removes request ¢ from its route and re-inserts it before or after request j

relocate pair removes pair of requests (7, next(¢)) from their route and re-inserts them before
or after request j

swap exchanges the position of requests ¢ and j in the solution

swap pair exchanges the positions of the pairs (¢, next(¢)) and (j, next(j)) in the solution

2—-opt reverses the route segment between ¢ and j

serve request inserts currently undispatched request ¢ before or after request j

remove request removes currently dispatched request ¢ from the solution

Table 5: PC-VRPTW Local search moves

then be learned using a Fenchel-Young loss, since the loss is minimized when the perturbed solver
correctly predicts the ground truth. However, since ¥ is not an exact solver, all theoretical learning
guarantees associated with this method (e.g., correctness of the gradients) no longer hold.

C.4 PROPOSED APPROACH.

Our proposed approach instead uses the Fenchel-Young loss associated with the proposed layer, which
is minimized when the proposed layer correctly predicts the ground-truth. At inference time, however,
we use fiy = y o gw. We use a mixture of proposals, as defined in Algorithm 2. To design each
proposal ¢4, we build randomized versions of moves specifically designed for the prize-collecting
dynamic vehicle routing problem with time windows. More precisely, we base our proposals on
moves used in the local search part of the PC-HGS algorithm, which are summarized in Table 2. The
details of turning these moves into proposal distributions with tractable individual correction ratios
are given in Section C.5.

We evaluate three different initialization methods: (i) initialize y(*) by constructing routes dispatching
random requests, (ii) initialize (%) to the ground-truth solution, (iii) initialize y(°) by starting from
the dataset ground-truth and applying a heuristic initialization algorithm to improve it. This heuristic
initialization, similar to a short local search, is also used by the PC-HGS algorithm ¥, and is set to
take up to half the time allocated to the layer (a limit it does not reach in practice).

C.5 PROPOSAL DISTRIBUTION DESIGN

Original deterministic moves. The selected moves, designed for Local Search algorithms on
vehicle routing problems (specifically for the PC-VRPTW for serve request and remove
request), are given in Table 5.

All of these moves (except for remove request) involve selecting two clients ¢ and j from the
request set R* (for example, the relocate move relocates client ¢ after client j in the solution).

In the Local Search part of the PC-HGS algorithm from Vidal (2022), they are implemented as
deterministic functions used within a quadratic loop over clients, and are performed only if they
improve the solution’s objective value. The search is narrowed down to client pairs (¢, j) such that
d(i, j) is among the Niyox lowest values in {d(i, k) | k € R*\{D, i} }, where d is a problem-specific
heuristic distance measure between clients, based on spatial features and time windows, and Npox
is a hyperparameter. These distances are independent from the chosen solution routes (they are
computed once at the start of the algorithm, from the problem features), non-negative, and symmetric:

Randomization. In order to transform these deterministic moves into proposals, we first adapt the
choice of clients i and 7, by sampling i uniformly from V! (), which contains the set of valid choices
of client i for move s from solution y. Then, we sample j from V2 (y)[i] \ {i} using the following

. L exp|—d(i,j
softmax distribution: Ps(j | 1) = Zkew(y);[\{i}(ci;{f]d(iyk)/ﬁ]’

sampling temperature. The set V.2 (y)[i] contains all valid choices of client j for move s from solution
vy, and is precised along with V.!(y) in Table 6. We normalize the distance measures inside the
softmax, by dividing them by the maximum distance: d(i, -) < d(i,)/ maxgcy2(y)[i\ fi} 403, k).

where 5 > 0 is a neighborhood

31

Move Vi) 2l
relocate D(y) \ D1(y) D(y)
relocate pair D(y) \ {D2(y) UD™(y)} D(y) \ {next(¢)}
swap D(y) D(y)
swap pair D(y) \ D*'(y) D(y) \ {DP™'(y) U {prev(i), next(i)} }
2-opt D(y) \ D:2(y) D(y) \ D2(y)
serve request D(y) D(y) UZp(y)
Yy

remove request {D()\D1(y)} UZi(y)

Table 6: Sets of valid clients for each move. D(y) contains all dispatched clients in solution y. D1 (y)
contains all dispatched clients that are the only client in their route. D2 (y) contains all dispatched
clients that are in a route with 2 clients or less. D'*!(y) contains all dispatched clients that are the
last of their route. D(y) contains all non-dispatched clients. Zp(y) contains the depot of the first
empty route, if it exists (all routes may be non-empty), or else is the empty set. Z; (y) contains the
only client in the last non-empty route if it contains exactly one client, or else is the empty set.

Neighborhood graph symmetrization. Then, we ensure that each individual neighborhood graph
N is undirected. This is already the case for the moves swap, swap pair and 2-opt, as they
are actually involutions (applying the same move on the same couple (¢,) from y’ will result
in y). However, this is obviously not the case for serve request and remove request.
Indeed, if solution ¥’ is obtained from y by removing a dispatched client (respectively serving an
non-dispatched one), y cannot be obtained by removing another one (respectively, serving another
one). To fix this, we merge these two moves into a single one. First, it evaluates which of the two
moves are allowed (i.e., if they are such that V! (y) # (). Then, it samples one (the probability of
selecting "remove" is chosen to be equal to the number of removable clients divided by the number
of removable clients plus the number of servable clients) in the case where both are possible, or else
simply performs the only move allowed. Thus, the corresponding neighborhood graph is undirected as
it is always possible to perform the reverse operation (as when removing a client, it becomes unserved,
thus allowing the serve request move from y’, and vice-versa). We also allow the serve
request move to insert a client after the depot of the first empty route, to allow the creation of new
routes. In consequence, we allow the remove request move to remove the only client in the last
non-empty route if it contains exactly one client (to maintain symmetry of the neighborhood graph).

For the relocate and relocate pair moves, the non-reversibility comes from the fact that
they only relocate client 4 (or clients ¢ and next(%) in the pair case) after client j, so that if client 4
was the first in its route, relocating it back would be impossible (the depot, which is the start of the
route, cannot be selected as j). Thus, we allow insertions before clients too, and add a random choice
with probability (%, %) to determine if the relocated client(s) will be inserted before or after 7. We
also add this feature to the serve request move.

Correction ratio computation. Next, we implement the computation of the individual correction

ratio &;(y,y’) = Zigz,y?{g

for each proposal gs.

* In the case of swap and 2-opt, we have as(y,y’) = 1. Indeed, let ¢’ be the result of
applying one of these moves s on y when sampling i € V! (y) and j € V2(y)[i] \ {i}. We

then have:
N1 exp [—d(i,)/]
1y, y') = Vi) Zkevg(y)[i]\{i} exp [—d(i, k)/B]
. exp [~d(j,i)/8

+ : ,)
Vi (y)l ZkeVSQ(y)[j]\{j}eXp[_d(jvk)/B]

where the first term accounts for the probability of selecting ¢ then j and the second term
accounts for that of selecting j then ¢ (one can easily check that these two cases are the
only way of sampling y’ from y). Then, noticing that we have |V} (y’)| = |Vl (y)|, that
these moves are involutions (selecting (7, j) or (4, %) from gy’ is also the only way to sample
1), and that we have the equalities V2 (y)[i] = V2(y')[i] and V2(y)[j] = VZ(y')[j], we
actually have ¢5(y',y) = ¢s(y,y').

32

For swap pair, the same arguments hold (leading to the same form for ¢), except for the
equalities V2(y)[i] = V2(y")[i] and V2(y)[j] = V2(y’)[j]. Thus, we have the following
form for the correction ratio:

0y, y) 2keveaingy P =A@ R/ B+ 3 vz gy P =40 F)/F]
(YY) Dreveung &P (A k) /Bl + X peve iy e [—d(, k) /Bl

In the case of relocate, let j/ denote next(j) if the selected insertion type was "after",

and prev(j) if it was "before” — where next(j) € R denotes the request following j in
solution y, i.e., the only index k such that y; , = 1, and prev(j) is the one preceding it, i.e.,

the only k such that y;, ; = 1. We have:

L1 exp [d(i.)/)
“0:Y) =5 I ooy o0 A R/E
R exp [d(i. ')/ 5]

2 |[Vi(y)l Zkev2(y)[z]\{z} exp [—d(i, k)/p]

Indeed, if i was relocated affer j, the same solution y’ could have been obtained by relocating
i before j' = next(j). Similarly, if 4 was relocated before j, the same solution ¢’ could
have been obtained by relocatmg i after j' = prev(j). For the reverse move probability, the
way of obtaining y from v’ is either to select (¢, prev(i)) in the after-type insertion case,
or (4, next(7)) in the before-type insertion case (where prev and next are taken w.r.t. y, i.e.,
before applying the move). Thus, we have:

1 1 . exp [—d(i, prev(i) /5]
u.y) = 2 |Vsl(y/)| Zkevg(y/)[i]\{i} exp [—d(i, k) /5]
n 1 1 . exp [—d(i, next(i)) /0]

2 Vi) Zkevg(y/)[i]\{i} exp [—d(i, k)/B]

For the relocate pair move, the exact same reasoning and proposal probability form
hold for the forward move, but we have for the reverse direction:

L 11 expl=dlprev(i)/A)
LY =3 VI Sacvaty i 0 [—d(B)/F)
1 1 exp[—d(i,next(next(i)))/ 5]

2 Vi)l Zkevg(yf)[i]\{i} exp [—d(i, k) /8]’

as client next(¢) is also relocated.

For the serve request/remove request move, we have the forward probability:

{D(y)\ Di(y)} UL (y)| y 1
{D(y)\D1(y)} Ui (y)| + |D(y {D(y)\ Di(y)} ULi(y)|
1
~ [{D(y)\ Di(y)} ULi(y)| + ID(y)

4s(y,y') =

if the chosen move is remove request. The expression corresponds to the composition
of move choice sampling and uniform sampling over removable clients.

Still in the same case (remove request is chosen) and if the removed request ¢ was in
7, (y) (i.e., was the only client in the last non-empty route if the latter contained exactly one

33

client), we have the reverse move probability:

1
H{Dy)\Di(y)} ULi(y)| + ID(y")]
o en[-d@/d]
exp [—d(3)/B] + 2 rep(y) €xXP [—d(i, k) /5]
1
B {D(y)\ D1(y)} Ui (y)| + |D(y)|
exp [—d(i) /5]

" oxp [~d(0)/5] + Skepg o[-, K)/]

4y, y) =

The expression corresponds to the composition of move choice sampling and softmax
sampling of the depot of the first empty route (which was the route of the removed client
i, so that Zp(y') # 0 in this case). We use the average distance to dispatched clients
d(z) = 1y 3l 2 ken(y) A1, k) as distance to the depot.

In the case where the removed request ¢ was not in Z; (y), we have instead:

1

{D(y)\ Di(y')} ULi(’)|+\73(ol

% - exp [—d(i, prev(i))] —|— = - exp [—d(i, next(i))]
1{ID(y’)7é®} - €Xp [* ()/5] + ZkeD(y’) exp [—d(i, k) /]

1

" {PW)\Di(y)} UL ()| + D(y)]
1 - exp[—d(i,prev(i))] + 3 - exp [—d(i, next(i))]
Lz, (y)0y - exp [—d(i)/B]+Zkek2<iy> exp [—d(i, k)/ 8]

4y y) =

X

X

The right term corresponds to softmax sampling of the previous node with "after" insertion
type (which has probability 1/2) and of the next node with "before" insertion type. The
non-emptiness of Zp(y’) is not guaranteed anymore, as all routes might be non-empty
(indeed, we did not create an empty one by removing i, as i € D(y) \ D1 (y) in this case).

Similarly, if the chosen move is serve request, we have the forward probability:

D(y)|
H{D) \ Di(y)} Ui (y)| + [D(y)|
3 - exp[=d(i, j)] + 5 - exp [=d(i,)]
1{1,;(;,);&@} exp [—d(i)/B] + X ey exp [=d(i, k) /F]

if the selected insertion node j is not in Zp (y) (i.e., is not the depot of the first empty route
in y), where j' = prev(j) if the insertion type selected was "before" (which has probability
1/2), and j’ = next(j) if it was "after".

We have instead the forward probability:

4s(y,y') =

1
{D(y)\Di(y)} ULi(y)| + |D(y)|
) exp [~d(i)/8]
exp [~d(1)/B] + Y yep(y) exp [~d(i, k)/ 5]
if the selected insertion node j is in Zp (y) (i.e., is the depot of the first empty route in).

In every case, we have the reverse move probability:

1
{D)\ Di(y)} ULi(y)| + [D(y)|

4(y,y') =

4y, y) =

34

In each case, we set d(i, D) = oo to account for the fact that the depot can never be sampled during
the process (exceptin the serve request/remove request move, where we allow the depot
of the first empty route / last non-empty route to be selected, for which we use the average distance to
other requests as explained earlier) — in fact, the distance measure from a client to the depot is not
even defined in the original HGS implementation.

The second correction factor needed is |‘g((5'))l\ (see Algorithm 2). We compute it by checking if each

move is allowed, i.e., if there exists at least one i € V.}(y) such that V2(y)[i] \ {i} # (. This can be
determined in O(R*) for each move.

C.6 PERFORMANCE METRIC.

As the Fenchel-Young loss ¢; actually minimized is intractable to compute exactly, we only use the
challenge metric. More precisely, we measure the cost relative to that of the anticipative baseline,
%, which we average over a test dataset of unseen instances.

C.7 RESULTS.

In Fig. 2, we observe that the initialization method plays an important role, and the ground-truth-based
ones greatly outperform the random one.

We observe that the number of Markov iterations K is an important performance factor. Interestingly,
the ground-truth initialization significantly improves the learning process for small K.

In Table 3, we compare training methods with fixed compute time budget for the layer (perturbed
solver or proposed MCMC approach), which is by far the main computational bottleneck. This
parameter limits the time allowed for a single forward pass through the combinatorial optimization
layer (be it the perturbed inexact oracle or the proposed method). In both cases, the backward pass
through the layer is immediate, as a property of the expression of the gradient of Fenchel-Young
losses. The models are selected using a validation set and evaluated on the test set. We observe that
the proposed approach significantly outperforms the perturbation-based method (Berthet et al., 2020)
using y in low time limit regimes, thus allowing for faster and more efficient training.

Full experimental details and additional results on the impact of temperature are given in Section C.8.

C.8 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS FOR SECTION 5.1

Model, features, dataset, hyperparameters, compute. Following Baty et al. (2023), the differ-
entiable ML model gy is implemented as a sparse graph neural network. We also use the same
feature set, which represents the system state £ as a vector comprising request-level features, such
as coordinates, time windows, demands, travel time to the depot, and quantiles from the distribution
of the travel time to all other requests (named complete feature set, and described in the Table 4 of
their paper). We use the same training, validation, and testing datasets, which are created from 30, 15
and 25 problem instances respectively. The training set uses a sample size of 50 requests per wave,
while the rest use 100. The solutions in the training dataset, i.e., the examples from the anticipative
strategy f* imitated by the model, are obtained by solving the corresponding offline VRPTWs using
HGS (Vidal, 2022) with a time limit of 3600 seconds. During evaluation, the PC-HGS solver v is
used with a constant time limit of 60 seconds for all models. We use Adam (Kingma and Ba, 2017)
together with the proposed stochastic gradient estimators, with a learning rate of 5 - 10~3. Each
training is performed using only a single CPU worker. For Fig. 2, we use a temperature ¢t = 102. For
Table 3, we use 1 Monte-Carlo sample for the perturbation-based method and 1 Markov chain for
the proposed approach (in order to have a fair comparison: an equal number of oracle calls / equal
compute).

Statistical significance. Each training is performed 50 times with the same parameters and different
random seeds. Then, the learning curves are averaged, and plotted with a 95% confidence interval.
For the results in Table 3, we report the performance of the best model iteration (selected with respect
to the validation set) on the test set. This procedure is also averaged over 50 trainings, and reported
with 95% confidence intervals.

35

Additional results. In Fig. 15, we report model performance for varying temperature ¢. Inter-
estingly, lower temperatures perform better when using random initialization. In the ground-truth
initialization setting, a sweet spot is found at ¢+ = 102, but lower temperatures do not particularly
decrease performance.

1071
10°

10!

102
2.10? ‘
3.102 /|
5-10%
— 10°

Test Relative Cost (%)

0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 15: Test relative cost (%). Left: varying temperature ¢ with random initialization. Right:
varying temperature ¢ with ground-truth initialization.

D DETAILS ON THE MULTI-DIMENSIONAL KNAPSACK PROBLEM

First, we recall that the combinatorial optimization layer is defined as:

d

y(0) == argmax Zﬁiyi = argmax(0, y) , (13)
ye{0,1}¢ i Y

d
s.t. Vi € [M], Zwuyz <Cj
i—1

where @ = gy (x) € R4 are the item values, wj j > 01is the weight of item 4 in dimension j, and C is
the capacity of dimension j. The feasible setis) := {y € {0,1}? | ¥j € [M], Zle w; ;Y < Cj

D.1 PROPOSAL DISTRIBUTION DESIGN

In this experiment, defined in Section 5.2, we use Algorithm 2 with a mixture of three proposal
distributions ¢, g and q3 (S = 3).
Let y €) be a current feasible solution, and let I(y) = {i | y; = 1} and I(y) = {j | y; = 0}

denote the indices of selected and unselected items. Given a binary vector y € {0, 1} and an index
i € [d], we denote by y,, .4, the vector where the i-th bit is flipped, i.e.:

-y ifk=i,
(ny—H/L)k - {yz else.

Given two indices 4, j € [d], we denote by y;.,; € {0,1}% the vector where the i-th and j-th bits are
swapped, i.e.:

y; ifk=1i,
(Yiorj)e =y ifk=4,
yr else.

We use a sampling temperature 5 = 1.0 and define the following moves:

36

¢ Uniform swap (q;). The neighborhood Ni(y) consists of all feasible solutions obtained by
swapping an active item ¢ € I(y) with an inactive one j € I(y), i.e.:

M) ={y' €Y |3ieclly).jcly) ¥y =yio;}
The proposal is uniform over this neighborhood: Vy,,; € N1(y), ¢1(y, yicsj) = m
¢ Guided swap (g2). Using the same swap neighborhood N3 (y) = N7 (y), we bias the selection

using the predicted item values 6. We sample item ¢ € I(y) to drop with probability parop (i) o
e~%/8 and item j € I(y) to add with p,gq(j) o< e%/5.

The proposal distribution is therefore: Vy,,; € N1(y), ¢2(Y, Yics;) X exp (%)

¢ Guided flip (¢3). The neighborhood N3(y) consists of all feasible solutions obtained by flipping a
single bit 7, i.e.:

Na(y) ={y €V [Tield:y =yyun}

We sample index i with probability proportional to e~%/# if y; = 1 (favoring dropping low-value
items) and e?/# if yy; = 0 (favoring adding high-value items).

The proposal distribution is therefore: Vy,, .5 € N3(y), ¢3(Y, Yy, —g;) X €xp (W)

D.2 DATA GENERATION

For the benchmark experiment in Fig. 3, we generate a synthetic dataset of 5, 000 instances using
the PyEPO library (Tang and Khalil, 2023). We set the problem size to d = 100 items and J = 50
constraints. For each instance, we sample feature vectors € R%* and generate the item values
(cost vector) with a polynomial dependence on x of degree 4 and multiplicative noise € = 0.5. The
item weights w; ; are sampled uniformly, and the capacities C'; are generated using a capacity ratio
of 0.5.

To obtain the ground-truth labels y; for the conditional learning task, we solve each instance using
the Gurobi ILP solver with a time limit of 1000ms. The dataset is partitioned into training (80%),
validation (10%), and test (10%) sets. We use the validation set to select best model iterations (in
terms of relative regret on the validation set), before evaluating their test relative regret.

D.3 IMPLEMENTATION DETAILS

The predictive model gy is a Multi-Layer Perceptron (MLP) with two hidden layers of size 64
and ReL U activations. We train the model for 20 epochs using the Adam (Kingma and Ba, 2017)
optimizer with a learning rate of 5 x 10~2 and a batch size of 32.

For the benchmark experiment in Fig. 3, we use a time limit of 1.0ms for both the LS-MCMC layer
and the Gurobi ILP solver at training time (at this scale, the solver consistently finds optimal solutions
with this time budget).

E PROOFS

E.1 PROOF OF EQ. (4)

Proof. At fixed temperature t;, = ¢, the iterates of Algorithm 1 (MH case) follow a time-homogenous
Markov chain, defined by the following transition kernel Py ;:

q(y,y)min |1, ZEZ:;{% exp ((9,y'>+w(y')t*<9,y>*w(y))] ify € N(y),

Poi(y:¥) = 41= eny Por(w.y") ify' =y,
0 else.

Irreducibility. As we assumed the neighborhood graph G Ar to be connected and undirected, the
Markov Chain is irreducible as we have Yy € V,Vy' € N(y), Po.+(y,y’) > 0.

37

Aperiodicity. For simplicity, we directly assumed aperiodicity in the main text. Here, we show
that this is a mild condition, which is verified for instance if there is a solution y €) such that
q(y,y) > 0. Indeed, we then have:

Pou(y,y)=1-Y_ Pos(y,y)

VN (y)
’ [’ ’ "N _ (0 -

RS q(y,y’)min[l,qu’?fiexpc ,y>+<p(y)t (0. y) w(y))]

T a(y.y
>1- Y qv)

VN (v)
> q(y,y)
> 0.

Thus, we have Py .(y,y) > 0, which implies that the chain is aperiodic. As an irreducible and
aperiodic Markov Chain on a finite state space, it converges to its stationary distribution and the
latter is unique (Freedman, 2017). Finally, one can easily check that the detailed balance equation is
satisfied for mg ¢, i.e.:

Vy,y' €V, m0.4(y)Po(y,y') = 7o, (¥) Por(y', y),

giving that g ; is indeed the stationary distribution of the chain, which concludes the proof. O
E.2 PROOF OF PROPOSITION 1

Proof. Let @ € R% and ¢t > 0. The fact that () € relint(C) = relint(conv()))) follows directly
from the fact that y;(0) is a convex combination of the elements of) with positive coefficients, as
Yy € Y, mo(y) > 0.

Low temperature limit. Let y* := argmax, .y (6,y) + ¢(y). The argmax is assumed to be
single-valued. Lety € Y \ {y*}. We have:

exp ((9,y>:r<p(y))
71—9,t(y) =)

07 ’ /
ey OXP ((y);rw(y)
(6,y)+¢(y)
) exp (y : oy)
exp ((&y >;rsa(y))

((0,y) + o(y)) — ((8,y") + »(y"))
gexp(y) + oy :)

— 0,

t—0t

as (0,y) + ¢(y) < (0,y*) + ©(y*) by definition of y*. Thus, we have:

T (Y) =1— > mo.(y) o b
yeN\ (v} -
Thus, the expectation of mg ; converges to y*. Naturally, if the argmax is not unique, the distribution
converges to a uniform distribution on the maximizing structures.

High temperature limit. For all y €), we have:

exp ((97y):rw(y))

> ey OXP ((9,y’>:rw(y’)>
1
t—o0 D}‘ ’

mo,t(Y) =

38

as exp(z/t) t—) 1 for all 2 € R. Thus, 7, converges to the uniform distribution on Y, and its
— 00

expectation converges to the average of all structures.

Expression of the Jacobian. Let A; : 6 ~— ¢ -log ", _y,exp ((0,y) + ¢(y)) be the cumulant
function of the exponential family defined by 7g ¢, scaled by ¢. One can easily check that we have
Vo A:(0) = 3;(0). Thus, we have Jog;(0) = Vi A:(0). However, we also have that the hessian
matrix of the cumulant function 8 — %At (0) is equal to the covariance matrix of the random vector
% under g ; (Wainwright and Jordan, 2008). Thus, we have:

Jg@t(B) = V%At(B)
=t Vg (114,5(9))

Y
=1-COVpy, n

1
= 5 COVro, [Y].

E.3 PROOF OF PROPOSITION 2

Proof. Let Kg ; be the Markov transition kernel associated to Algorithm 2, which can be written as:

1 g Q@) . as(¥ ¥)mo.(y) P
2 Loeaw) Qg 95 (¥, ¥') min (17 Q)] qs(y,y'm,xy)) ify" € N(y),
K n_ st qs(y,y)
B,t(ya y') 1— Zy”e}_/(y) Koy, y") ify =y,
0 else.

AsVy € Y, Vy' € N(y), Ko ..(y,y') > 0, the irreducibility of the chain on) is directly implied by
the connectedness of G xr.
Thus, we only have to check that the detailed balance equation
70,t(Y) Kot (y,y') = 70,4 (y') Ko.t(y', y)
is satisfied for all y’ € N (y). We have:

45 (¥, Ym0 (y) (1 QW 4s(y"y)7mo.:(y')
2 { 1Q(y)| (1’ 1Q(y)] qs(y,y’)m,t(y)ﬂ'

70,1 (Y) Ko (y,y') =

s€Q(y)
st gs(y,y")>0

The main point consists in noticing that the undirectedness assumption for each individual neighbor-
hood graph G, implies:

{s€Q) ¢y, y) >0} ={s€QY): ¢y, y) > 0}.

Thus, a simple case analysis on how |Q(y)|gs (¥, ¥)me.+(y') and |Q(y)|¢s(y, y')me +(y) compare
allows us to observe that the expression of 7g ;(y)Ke +(y,y’) is symmetric in y and y’, which
concludes the proof. O

E.4 PROOF OF STRICT CONVEXITY

Proof. As A is a differentiable convex function on R? (as the log-sum-exp of such functions), it is
an essentially smooth closed proper convex function. Thus, it is such that

relint (dom((4;)*)) € VA;(R?) C dom((A;)*),
and we have that the restriction of (A;)* to V A;(R?) is strictly convex on every convex subset of

VA (RY) (corollary 26.4.1 in Rockafellar (1970)). As the range of the gradient of the cumulant

39

function @ — A,(0)/t is exactly the relative interior of the marginal polytope conv ({y/t,y € V})
(see appendix B.1 in Wainwright and Jordan (2008)), and (A;)* =: 2, we actually have that

relint (dom(€2;)) C relint(C) C dom(€2;),

and that Q; is stricly convex on every convex subset of relint(C), i.e., strictly convex on relint(C) (as
relint(C) is itself convex).

As Ay is closed proper convex, it is equal to its biconjugate by the Fenchel-Moreau theorem. Thus,

we have:
A4(0) = sup {(0,) — (A)" (1)} = sup {(0, p) — ()}
peER? pERE
Moreover, as VA;(R?) = relint(C), we have |[VA.(0)|| < Rc = max,cc ||p||, which gives
dom(€2;) C B(0, R¢). Thus we can actually write:

Ai(0) = EEI(JOPR){<9,u> — Qi ()},

and now apply Danksin’s theorem as B(0, R¢) is compact, which further gives:

DA(0) = argmax {(0,) — Qu(w)},
HEB(0,Rc)

and the fact that A, is differentiable gives that both sides are single-valued. Moreover, as VA;(R?) =
relint(C), we know that the right hand side is maximized in C, and we can actually write:

VA(0) = argrencax{<07u> = Qi(p)}-

We end this proof by noting that a simple calculation yields VA,(6) = Er, , [Y] = 9:(0). The
expression of V/,(0 ;y) follows. O

Remark 2. The proposed Fenchel-Young loss can also be obtained via distribution-space
regularization. Let sg = ((0, Y) + ©(Y)),cy € RPI be a vector containing the score of

all structures, and L_,z : RIY!I x APl — R be the Fenchel-Young loss generated by
—tH, where H is the Shannon entropy. We have Vs, ,(—tH)*(sg) = mg+. The chain rule
further gives Vo(—tH)*(sg) = Er, , [Y]. Thus, we have VoL _;r(s0;py) = Vali(0;y),
where p,, is the Dirac distribution on y. In the case where ¢ = 0 and t = 1, we have
Qi (p) = — (maxpepy) H¥(p) s.t. Ep [Y] = p), with H* the Shannon entropy (Blondel et al.,
2020), and ¢y is known as the CRF loss (Lafferty et al., 2001).

E.5 PROOF OF PROPOSITION 4

Proof. The proof is exactly the proof of Proposition 4.1 in Berthet et al. (2020), in which the setting is
similar, and all the same arguments hold (we also have that 7g, is dense on), giving Yy € relint(C)
for N large enough). The only difference is the choice of regularization function, and we have to
prove that it is also convex and smooth in our case. While the convexity of €); is directly implied by
its definition as a Fenchel conjugate, the fact that is is smooth is due to Theorem 26.3 in Rockafellar
(1970) and the essential strict convexity of A; (which is itself closed proper convex). The latter relies
on the fact that C is assumed to be of full-dimension (otherwise A; would be linear when restricted to
any affine subspace of direction equal to the subspace orthogonal to the direction of the smallest affine
subspace spanned by C), which in turn implies that A, is strictly convex on R%. Thus, Proposition 4.1
in Berthet et al. (2020) gives the asymptotic normality:

VN (O} — 80) —— N (0, (V3A1(80)) " covy,., [Y](V3A(60))).

Moreover, we already derived V3 A;(6) = 1 COVrg , [Y] in Section E.2, leading to the simplified
asymptotic normality given in the proposition.

O

40

E.6 PROOF OF PROPOSITION 5

Proof. The proof consists in bounding the convergence rate of the Markov chain (y(k)) kEN (which

has transition kernel Py ;) for all €, in order to apply Theorem 4.1 in Younes (1998). It is defined as
the smallest constant g such that:

JA>0: Yy eV, [Py™ =y) — mo.(y)] < AN

More precisely, we must find a constant D such that 3B > 0 : \g < 1 — Be POl in order to
impose K,, 11 > Ll + ad’ exp (2D||é7,\|)J

A known result gives A\g < p(8) with p(0) = maxcg,\ 1} |A| (Madras and Randall, 2002), where
Se is the spectrum of the transition kernel P ; (in this context, 1 — p(8) is known as the spectral
gap of the Markov chain). To bound p(0), we use the results of Ingrassia (1994), which study the

Markov chain with transition kernel Py ;, such that Py ; = % (I + Pé7t>. It corresponds to the same
algorithm, but with a proposal distribution ¢’ defined as:

+ ify € N(y),
¢ (yy) =512 ity =y,
0 else.

As P, + 1s arow-stochastic matrix, Gershgorin’s circle theorem gives that its spectrum is included
in the complex unit disc. Moreover, one can easily check that the associated Markov chain is also
reversible with respect to 7g 4, and the corresponding detailed balance equation gives:

Vy,y' €, mo.4(y) P (y,y') = 70, (¥') Po (¥, y),

which is equivalent to:

We,t(y) / N 7r9’t(y’)
7o,t(y') 0:(v:¥) 7o, (Y)

as g, has full support on Y, which can be further written in matrix form as:

vy,y' €, Py (y',y)

12, —

where Iy = diag(mg.;). Thus, the matrix Hl/ QP;) ,H 1/2 is symmetric, and the spectral theorem
ensures its eigenvalues are real. As it is 51m11ar to the transition kernel P, , (with change of basis

matrix H_l/ 2) they share the same spectrum Sy, and we have Sp C [—1,1]. Let us order Sy as
1SN < <A SN, =1 As Poy = %(IJFPG’,J), we clearly have p(0) = 22,

Thus, we can use Theorem 4.1 of Ingrassia (1994), which gives \; <1 — G - Z(0) exp(—m (0))
(we keep their notations for Z and m, and add the dependency in 0 for clarity), where G is a constant
depending only on the graph G s, and with:

ZeXp< ' Y) +<p(y) - ma [(97 y’>t+<P(y’)D

yey
1
> |V|exp ({min(G, y) + min o(y) — max(0, y') — max oy’)])
y'ey y'ey
2R 2R
> [Vlexp (- 25 ol -) 7

41

and:

+¢(y)

m(0) < max{max

[(07 y') + s@(y’)} 0,y + w(y)}

-2 min{ max

yey |y'ey t t yey |y’ ey t
! !
max{<0,y>+<p(y)} min[<0, y>+<p(y)}
y' ey t yey t
1
< - | max(0, y') + ma ") — min(0,
<7 (gl >y<< y') H}€§¢(y) gg;& y) — rynelgw(y)
2Rg 2R,
< —le[l+ —+

where R¢ = maxycy HyH and R, = maxycy |¢(y)|. Thus, we have:

4 4
Ny <1—G|Y|exp (—?) exp(RC|9||)
and finally:

G|Y|exp (—=2 4
Ao <1— (t)exp(RC||9|)

so taking D = 4R/t concludes the proof.
O
Remark 3. The stationary distribution in Ingrassia (1994) is defined as proportional to

exp (—H (y)), with the assumption that the function H is such that minycy H(y) = 0. Thus,
we apply their results with

N {(0 y>+<p(y)} _(8,y) +o(y)
y t t

(which gives correct distribution g ; and respects this assumption), hence the obtained forms
for Z(0) and the upper bound on m(0).

E.7 PROOFS OF PROPOSITION 3 AND PROPOSITION 6

Proposition 3. The distribution of the first iterate of the Markov chain with transition kernel defined
in Eq. (3) and initialized at the ground-truth structure y is given by:

Py (W) = Pas(y.9)

g(y,y') min |1, 288 exp (0,5’ — y) + o(y') — o(y)] /t)] ify’ € N(y).

1 .
=91= S eniy @) (") ify' =y,

0 else.

Let ay(0,y') == Zg,yz{; exp ([(0,y" — y) + ©(y') — ¢(y)] /t). Define also the following sets:

Ny (0)={y eN(y) [ay(8,9') <1}, Ny (8) ={y € N(y)| ay(6,9') > 1}.

The expectation of the first iterate is then given by:

Eo Y= > me)W) v+ (1= o)) | v

0,y
y' eN(y) y"eN(y)
=y+ > Py —y)
Yy’ eN(y)

[<07 y')+ w(y’)} _(0,y)

t

=y+ > a wexp (0,9 —v)+o)—e@] /)W —y) + > ady.y) W —y).

y'ENy (6) Y'ENY (0)

42

|

Letnow f, : RY x N(y) — R be defined as:

o (0:9) t-q(y’,y)exp ([(0.y —y) + (') — o(y)] /1) if ay(0,9') < 1,
v 95y t-q(y,y’) ([(9,y/—y>+<ﬁ(yl) —o(y)] /t+1—log quyg) if ay(0,y') > 1.

Let Fy 1 0 = (0,y) +3_, cnr(y) fy(6:Y'). We define the target-dependent regularization function
(1, and the corresponding Fenchel-Young loss as:

Qu:p— (Fy)" (1), Le,(0:;y) = (y)"(0) + Qy(y) — (0,9).

« Qyist/Eyy, |[Y — y|[3-strongly convex:

One can easily check that fy(-;vy’) is continuous for all y’ € N (y), as it is defined piecewise as
continuous functions that match on the junction affine hyperplane defined by:

vy
(0B ay0:0) =1} = {0 e = (0.0 9y = t10e 28V o) — o)}
Moreover, we have that f,,(-;y’) is actually differentiable everywhere as its gradient can be continu-
ously extended to the junctlon affine hyperplane with constant value equal to ¢(y, y')(y" — y). We
now show that fy, (-;y’) i is 1q(y,y') - ||y’ — y|[*-smooth. Indeed, it is defined as the composition of
the linear form 6 — (6, y’ — y) and the function g : R — R given by:

t-q(y' y)exp ([z + oY) — e(y)] /t) if z < tlog qu x 3 +
)

LT =
! tq(y.y) ([xw(y')—so(y)]/m log {{a23) i > tlog {u +

¥
¥

We begin by showing that g is + (y, y')-smooth. We have:

oy [I e (o) —e(u)] /1) ife < tlog G5 + o(y) - 0¥,
' 4(y,y) if & > tlog qu Y+ ply) - oly).

Thus, ¢’ is continuous, and differentiable everywhere except in g := t log Zgg/y;; +o(y) —o(y').

Its derivative is given by:

BTSN {1q(y’,y) exp ([z+ (') — p(y)] /t) iz < tlog LELL 4 o(y) — p(y),
0

if 2 > tlog 2UY3 + o(y) — o(y).

e For x1, x5 < x9, we have:

19/ (x1) = ¢'(x2)| < w1 — 22| sup |g" ()]
TE€]—00,x0]

|21 — 2| lim [g"(2)|
r<zxo

1
= ;q(y,y’) | — @

* For z1,29 > x0, we trivially have |¢'(z1) — ¢'(x2)| = 0.

e For x1 < 29 < o, we have:

l9'(x1) — ¢’ (z2)| = (¢’ (1) — ¢'(w0)) — (9" (22) — ¢'(x0))]
< |g'(z1) = g'(x0)| + |9 (x2) — ¢’ (20)]
< L4y, y) - o1 — w0l
=14
S% (y,9) - |1 — x2].

43

Thus, we have:

Vzi, 20 € R, |g (1)

and g is %q(y7 y')-smooth. Nevertheless, we have fy (-, y’)

01, 0, € R¢:

||Vefy(91,y') - Vefy(em

and fy (-, y)is ta(y,y) - ||y

IN

N

t
1
;q(y,y’) ly’

Fy:0— (0,y)+

we have that F is Zy’é/\/(y) %Q(’y, y') -y
)y = (Fy)*, Fenchel duality theory gives that €2y, is t/Eq(,,. .)|[Y — y| |2-strongly convex.

* E o [Y] = argmax,ceonm(v(yufyy) {(0: 1) —

6,y

Yl =119 (61,9 —)y —y)
lg'((01,9" —y))

—q(y, ") - (01,9 —y) —

Z f4(0:9),

y'eN(y)

1
— g (z2)] < gq(y,y’) @y — 2],

—yl|*- (|61 — 62|,

(02,9 —)| - ly' — vl

— y||?>-smooth. Thus, recalling that F, is defined as

=g((-,y’ —y)). Thus, we have, for

-4 (62,9 —)W —)l
-9 (62,9 —)| - Iy — vl

—y|[* = Ey(y, H|[Y — yl|3/t-smooth. Finally, as

Qy(p)}:

Noticing that g is continuous on R, convex on]—oo,tlog

9(y,y")
a(y',y)

+(y) -

»(y’')| and on

tlog 2 a(v.y’) | o(y) — oY), +oo [, and with matching derivatives on the junction:

q(y’ y)

t—tlog

aly,y’)
a(v’,y)

+o(y)—e(y")

t<tlog LY 1o (y)—p(y)

(v, y'),

t—tlog

a(y,y’)
a(y’,y)

+o(y)—e(y")

g'(t)

t>tlog LY 1o (y)—p(y')

q(y,y'),

gives that g is convex on R. Thus, f,(-;¥’) is convex on R? by composition. Thus,

Z fyoy

Y'EN (y)

Fy:0—(0,y)+

is closed proper convex as the sum of such functions. The Fenchel-Moreau theorem then gives that it
is equal to its biconjugate. Thus, we have:

Fy(8) = sup {(0,n) —

pERT

Nonetheless, the gradient of Fy, is given by:

VeFy(0) =y +

q(y',y) exp ([0, — y) + »(y

Yy ENy (6)

=B, V1

Thus, we have VF, (R?) C conv (N(y) U {y}), which gives:

VO € R, ||[VFy(0)|| < Ryy) =

so that we have dom(2

Fy(e) =

sup

KEB(0,Ry(y))

44

(Fy)" (1)} = sup {(6,)

pERT

/)_

—Qy(p)}-

e/t —y) + >

max
peconv(N (y)u{y})

y) C B(0, Ry (y)). Thus we can actually write:

{(0, 1) = (1)},

Ireie

y' EN (6)

q(y,y') - (¥ —y)

and now apply Danksin’s theorem as B(0, R () is compact, which further gives:

OFy(0) = argmax {(0,u) — Qy(p)},
HGB(O,RN(y))

and the fact that F}, is differentiable gives that both sides are single-valued. Moreover, as V F, (R?) C
conv (M (y) U{y}), we know that the right hand side is maximized in conv (N (y) U {y}), and we
can actually write:

E o [V]=VE,0) = argmax {(6,4) -y (n)}.
6w peconv(N (y)u{y})

* Smoothness of Lo, (-;y) and expression of its gradient:

Based on the above, we have:
LQy(o 5 y) = Fy(e) + Qy(y) - <07y>'

Thus, the E,(,, .)|[Y — y||3/t-smoothness of Lg, (- ;y) follows directly from the previously estab-
lished Ey(,,, .)||Y" — y||3/t-smoothness of F,. Similarly, the expression of Vg Lg, (6 ;y) follows
from the previously established expression of Vg F,,(0), and we have:

VoL, (0;y) =VeFy(0) —y=E o [Y] -y
O

Proposition 6. In the unconditional setting, given a dataset (y;)2, , the distribution of the first iterate

of the Markov chain with transition kernel defined in Eq. (3) and initialized by y(*©) = y;, with
i ~U([1, N]), is given by:

1
(Pyr)W) = (
y'ey \i=1
N
1 1
= <Z Tyi=yy - N> P((a,;' (y)
y' ey \i=1

Thus, keeping the same notations as in the previous proof, previous calculations give:

Po,vy Peo,y,

1 N
E o [Y]= NZE w [Y]
i=1
1 N
=¥ Y Vel (0)
=1

1 N
=1

Let Fy, = % Zf\;l Fy, Then, the exact same arguments as in the conditional case hold, and
the results of Proposition 6 are obtained by replacing Fy, by Fy, in the proof of Proposition 3,

and noticing that the previously shown E,,, .)||Y — y;||3/t-smoothness of F},, gives that Fy is
+ >N Eq(y;,)||Y — yi|[3/t-smooth. Similar arguments also hold for the regularized optimization

formulation, by noting that this time we have VFy. (R%) C conv (Ufil {N(y:) U {yz}}> O

45

E.8 PROOF OF PROPOSITION 7

Proof. The first point is directly given by the fact that IEpm [Y] is the expectation of a distribution
6,y
over NV (y) U {y}. For the second and third points, as derived in Section E.7, we have:
B V=y+ > a@ wep Oy -y +e) -]/ -y + > avy) @ -y).
’ y' €Ny (0) Y €N (0)
Define then:
Noewer(y) = {y' € N(y) [(0,y) +¢(y') > (0,y) + ¢(y)} .
Noose () = {y' € N(y) | (0,9) + 0(¥') < (0,y) + ()}
as the sets of improving and worsening neighbors of y respectively (assuming no neighbor of y has
exactly equal objective value for simplicity, which is true almost everywhere w.r.t. 8 € R9).
Low temperature limit. We have:

N;(B) m Afbetter(y)a and Ny_ (9) —_— Nworse(y)'

t—0t

Then, as < 0 = exp(z/t) — 0, we have effectively
t—0

EowlY]—y+ > ayy) @ -y

o =07 y,eMsl(er(y)
High temperature limit. AsVz € R, exp(xz/t) == 1, we have:
L o0
Ny (0) — {y e N() | ey y) > aly.y)}, and N, (0) ——{y' e N(y) [a('.y) < (.4}

Thus, we have:

/ ! ! !
EoM——y+ > awy)@ -+ Y awy) W),
Yy la(v',y)<(y,y’) y'la(y’y)>(y,y')

which gives effectively:

. / / /
B V] oyt D minle(yy)aw,y)] o - y).
Y EN(y)

46

	Introduction
	Background and Related Work
	Problem setup
	Combinatorial optimization as a layer
	Contrastive divergences

	Local search-based MCMC layers
	From local search to MCMC
	Mixing neighborhood systems

	Loss functions and theoretical analysis
	Negative log-likelihood and associated Fenchel-Young loss
	Empirical risk minimization
	Associated Fenchel-Young loss with a single MCMC iteration
	Convergence analysis in the unconditional setting

	Numerical experiments
	Dynamic vehicle routing
	Multi-dimensional knapsack problem
	Learning to predict binary vectors

	Conclusion
	Experiments on empirical convergence of gradients and parameters
	Polytopes and corresponding oracles
	Neighborhood graphs
	Convergence to exact gradients
	Convergence to exact parameters

	Additional material
	Fenchel-Young loss for K=1 in the unconditional setting
	Properties of the expected first iterate
	Markov chain initialization

	Details on the DVRPTW
	Overview of the challenge.
	Reduction to supervised learning.
	Perturbation-based baseline.
	Proposed approach.
	Proposal distribution design
	Performance metric.
	Results.
	Additional experimental details and results for sec:dvrptw

	Details on the multi-dimensional knapsack problem
	Proposal distribution design
	Data generation
	Implementation details

	Proofs
	Proof of eq:stationarygibbs
	Proof of prop:layerproperties
	Proof of prop:mixturesa
	Proof of strict convexity
	Proof of prop:asympnormality
	Proof of prop:stochasticgradientestimate
	Proofs of prop:1stepfylsup and prop:1stepfylunsup
	Proof of prop:onestepproperties

