
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DECENTRALIZED MANUFACTURING MANAGEMENT
BASED ON FEDERATED LEARNING WITH STACKING
ENSEMBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a new intelligent management system to overcome the limitations of
privacy, security, communication efficiency, and real-time analysis of data gener-
ated in smart manufacturing environments. As the digital transformation of the
manufacturing industry accelerates, the importance of data utilization has grown,
but the existing centralized approach involves data leakage risk and network load
issues. To overcome these limitations, we propose a three-layer federated learning
architecture consisting of cloud–anchor–edge. In particular, the anchor layer ap-
plies a stacking ensemble technique that combines predictions from multiple mod-
els to accurately identify complex anomaly patterns that are difficult to detect with
a single model and maximize the robustness of model predictions. Compared to
the accuracy of 0.5585 achieved by a single 1D-CNN model, the model applying
stacking to federated learning significantly improved performance to an accuracy
of 0.7438. Furthermore, to address the continuously changing data distributions in
manufacturing environments, we propose a data distribution change detection and
edge reallocation mechanism to enhance system flexibility and adaptability. The
proposed system demonstrates significantly faster inference times than centralized
learning models, presenting it a a powerful alternative that ensures data privacy.

1 INTRODUCTION

Recently, the global manufacturing industry has accelerated its transition to smart factories, making
the efficient collection, analysis, and utilization of real-time data a key factor in corporate competi-
tion. This data, which goes beyond simple production records, forms the foundation for innovations
like quality control, predictive maintenance, and process optimization. For example, real-time anal-
ysis of equipment sensor signals can enable early detection of anomalies, while data-driven redesign
of production flows can maximize efficiency and reduce defect rates (Abdullahi et al., 2024). How-
ever, this valuable data is also highly sensitive, containing proprietary information such as unique
manufacturing processes, core technologies, and supply chain patterns (Lee et al., 2024a). This re-
quires robust privacy and security measures, especially with the rise of international data protection
regulations like GDPR and the increasing threat of industrial espionage (Campanile et al., 2021).

Traditional centralized data processing methods, while simple in management and analysis, face
significant structural limitations (Oh et al., 2024). They create a single point of failure where the
concentration of all data makes them highly vulnerable to security breaches (Menegatti et al., 2023).
Furthermore, the transmission of large volumes of data from numerous edge devices to a central
server increases network load and reduces real-time performance, which is a major drawback for
time-sensitive manufacturing operations (Ahn et al., 2023; Li & et al., 2022). These limitations
indicate a critical need for a new data processing paradigm that can safely and efficiently utilize
distributed data resources without exposing sensitive information (Daza et al., 2023). The manufac-
turing sector has seen increased interest in technologies like federated learning, distributed artificial
intelligence, and privacy-preserving learning to address these issues.

C1. How can we ensure data privacy and real-time performance while managing large-scale,
distributed manufacturing data? Traditional centralized methods are not equipped to handle the
balance between data utility and security. Transmitting sensitive raw data to a central server creates

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

significant privacy risks and incurs high communication costs, which limits scalability and real-time
responsiveness.

C2. How can a model adapt to continuously changing data distributions and complex anomaly
patterns in a dynamic manufacturing environment? Manufacturing data is highly dynamic, and
factors like equipment maintenance can cause a sharp decline in model performance over time.
Moreover, the coexistence of diverse defect types and rare anomalies makes it challenging for a
single global model to achieve high detection accuracy.

Solution to C1. A Hierarchical Federated Learning Architecture. We propose a novel Decentral-
ized Manufacturing Management System (DMMS) built on a three-layer FL architecture consisting
of cloud, anchor, and edge layers. This structure allows the edge layer to perform local model train-
ing on-site without exposing sensitive raw data, thereby ensuring data privacy. The anchor layer then
efficiently aggregates model weights from multiple edges, improving communication efficiency and
enabling flexible scalability.

Solution to C2. Ensemble Learning and Adaptive Mechanisms. To address complex anomaly
patterns, our anchor layer applies a stacking ensemble technique that integrates predictions from
multiple models. This approach significantly enhances defect detection accuracy and generalization
performance. Furthermore, we introduce a lightweight adaptation mechanism that detects changes
in edge data distribution using the Wasserstein distance and reallocates the edge to the most suitable
anchor. This mechanism minimizes performance degradation and ensures long-term stability.

In summary, this study proposes an Decentralized Manufacturing Management System (DMMS)
that addresses the limitations of traditional federated learning (FL) in dynamic manufacturing en-
vironments. The system uses a novel three-layer FL architecture consisting of cloud, anchor, and
edge layers. The edge layer ensures data privacy by training models locally on sensitive data, while
the anchor layer efficiently aggregates these models and adapts to changes. A key innovation is the
stacking ensemble technique, which improves anomaly detection accuracy by combining predictions
from multiple anchor models, making it possible to identify complex and rare defects. Additionally,
the system features an adaptation mechanism that detects data distribution shifts and reallocates
edge devices to optimal anchors, ensuring long-term model stability and performance. The pro-
posed IMMS simultaneously achieves three key objectives: data privacy, high-precision anomaly
detection, and adaptability, providing a robust solution for a wide range of manufacturing sites.

The main contributions of our work are summarized as follows:

• We demonstrate that applying a stacking ensemble to an FL framework significantly im-
proves anomaly detection accuracy, achieving 0.7438, a 33% improvement over the stan-
dard 1D-CNN FL method (0.5585).

• Our proposed system shows a substantial reduction in inference time, with the stacking
model being approximately 6.3 times faster than a centralized random forest model (2.3882
ms vs. 15.1691 ms), highlighting its suitability for real-time applications.

• We propose a hierarchical FL structure that ensures data privacy and an adaptive mecha-
nism for continuous, stable operation in dynamic environments. To enhance adaptability,
we propose a mechanism that uses the Wasserstein distance to detect changes in data dis-
tribution and reallocates edges to the optimal anchor using SYN, SYN-ACK, and ACK
protocols.

2 RELATED WORK

The retrieval and discovery of related work were facilitated using the Gemini large language model
to search for academic papers and relevant literature based on specific keywords.

2.1 MANUFACTURING MANAGEMENT SYSTEM

A manufacturing management system (MMS) is an information system that manages core tasks
across all aspects of manufacturing, including production planning, materials and inventory man-
agement, quality control, and equipment maintenance (Dey Sarkar et al., 2024). An MMS collects
and analyzes various data generated on the production floor in real time, optimizing production

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

process flows, reducing unnecessary waste, and improving quality to enhance a company’s compet-
itiveness and profitability (Qi & Tao, 2019). Such systems support the effective resolution of vari-
ous challenges faced by manufacturers, including production schedule automation, work instruction
standardization, inventory level optimization, equipment utilization rate maximization, and rapid re-
sponse to quality issues (Kong et al., 2022). The introduction of MMS increases visibility and trans-
parency in manufacturing sites, promotes standardization and automation of business processes, and
leads to various results such as company-wide cost reduction, quality innovation, and improved de-
livery compliance rates (Mahfoud et al., 2024). In particular, in smart manufacturing environments,
various tasks such as production planning and control, quality innovation, energy efficiency, and
resource optimization are required simultaneously, necessitating the adoption of integrated manage-
ment systems based on digital twins, artificial intelligence, IoT, and simulation (Zhu et al., 2024).
These changes are expected to strengthen the competitiveness of the manufacturing industry and
achieve sustainable growth (Quy et al., 2022).

2.2 FEDERATED LEARNING

FL is a distributed machine learning paradigm in which multiple institutions or nodes collaborate
to train artificial intelligence models while ensuring data privacy and security (Lee et al., 2024b;
Quan & et al., 2025). Each participant trains the model locally without transmitting the original
data externally and then shares only the parameters or updates with the central server to improve
the overall model performance (Wu et al., 2024). Such FL is categorized into horizontal federated
learning (HFL) and vertical federated learning (VFL) based on the data partitioning method (Zheng
et al., 2025). The HFL method is applied when multiple institutions share the same feature space
but possess different samples (Sah et al., 2025). This approach can ensure data privacy in large-scale
distributed environments while improving the generalization performance of the model (Guan et al.,
2024). On the other hand, VFL is used when multiple institutions hold data on the same sample
but with different characteristics (Leng et al., 2025). In VFL, the involved institutions combine their
different characteristics to jointly train the model, while the original data are not shared externally.
In this process, the roles are divided between the institution that holds the label information and the
institution that provides additional characteristic information. Each institution trains a partial model
and exchanges only the intermediate results to complete the model.

2.3 STACKING ENSEMBLE METHOD

Stacking is a two-stage learning structure in which multiple base learners independently learn and
predict the same input data, and their prediction results are combined to create new data features to
be used by a meta-learner to perform the final prediction. The key point here is that the meta-learners
treat the predictions of the base learners as a single “input dataset” and comprehensively learn from
it to derive the optimal prediction results (Wolpert, 1992; Breiman, 1996). The base learners use
different algorithms or model structures to capture various patterns and features of the data (Mienye
& Sun, 2022). In other words, they do not simply sum the predictions of the base learners but
determine which base learner is more reliable for a specific input or which combination produces the
optimal result. This enables stacking to effectively model complex nonlinear dependencies and high-
dimensional interactions (Büyükçakir et al., 2018; Mienye & Sun, 2022). Among model ensembles,
stacking differs from traditional bagging and boosting in that it refers to a “learned combination.”
Bagging creates multiple basic learning models in parallel and averages them, while boosting is
a sequential learning structure that compensates for the errors of the previous model. In contrast,
stacking re-trains the predictions obtained from multiple models using a separate learning model to
discover the optimal combination method.

3 METHODOLOGY

In the manufacturing industry, the ability to quickly analyze and utilize the vast amounts of data
generated by sensors and IoT devices in real time has emerged as a key competitive advantage.
These data are essential for smart manufacturing innovations such as quality control, predictive
maintenance, and process optimization. At the same time, such information is a valuable asset and
can be sensitive for companies, resulting in need for data privacy and security requirements. In this
environment, traditional centralized data processing methods have exposed several limitations, in-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

cluding risks of data privacy breaches, significant network traffic burdens, and a lack of flexibility
in adapting to the diverse and ever-changing manufacturing environment. Therefore, we propose
a hierarchical manufacturing management system based on FL utilizing a three-tiered structure of
cloud–anchor–edge to safely protect on-site data while efficiently leveraging distributed data re-
sources for learning.

3.1 OVERALL ARCHITECTURE

Fig. 1 shows the overall architecture of the proposed DMMS. This system adopts a hierarchical
structure based on FL and applies the stacking ensemble technique to enable efficient utilization
of the vast amount of data generated in manufacturing sites while ensuring privacy. Each layer is
categorized into cloud, anchor, or edge.

• Edge: The edge layer is located at the far end of the system and is the location of data
collection directly from sensors and equipment on the manufacturing floor. In accordance
with FL principles, the edge layer updates models using local data and evaluates their per-
formance independently. It also detects changes in data distribution and notifies the anchor
for transfer to the appropriate location. The edge transmits only the model weights to the
upper anchor layer, ensuring strict data privacy.

• Anchor: The anchor layer acts as an intermediate hub that aggregates model weights trans-
mitted from multiple edge devices and performs additional learning. Each anchor updates
its own model by integrating parameters collected from multiple edges and communicates
with other anchors as needed to continuously improve model performance. This layer is
flexibly responds to system expansion, such as client relocation or addition of new an-
chors, in accordance with changes in data distribution. Finally, the stacking ensemble tech-
nique, which uses the prediction results of multiple anchor models as input, performs final
anomaly detection and classification to maximize prediction accuracy.

• Cloud: The cloud layer acts as an auxiliary management server for the entire system, focus-
ing on coordinating the flow of information between anchors and edges and monitoring the
overall status of the system rather than direct model training. The cloud minimizes central-
ized control and maximizes the efficiency and scalability of distributed learning by granting
autonomy to the anchor and edge layers.

The greatest strength of this hierarchical structure lies in data privacy preservation. Raw data are
contained at each edge, and only model parameters are shared with the anchor, strengthening the se-
curity of sensitive manufacturing data and facilitating regulatory compliance. Through intermediate
aggregation and specialized learning via the anchor layer, various abnormal states can be classi-
fied more accurately, and each anchor, specialized by specific defect types, can effectively identify
subtle pattern differences that are difficult to capture with a single model. The system also offers
excellent scalability and adaptability, allowing easy expansion by adding anchors or reconfiguring
existing models when new defect types emerge. Additionally, the hierarchical structure enables ef-
ficient communication patterns through the anchor without direct communication between the edge
and the cloud, significantly improving overall communication efficiency.

3.2 MODEL TRAINING WITH STACKING ENSEMBLE

Algorithm 1 represents the model training and classification process. First, the algorithm repeatedly
performs the FL process to integrate the knowledge of distributed edge devices. In each training
round, all edges obtain the current model weights from the anchor. The edge trains this model us-
ing its local dataset and calculates the updated local weights. In this process, the raw data does not
leave the edge, and only the updated weights are uploaded to the upper anchor layer. Subsequently,
each anchor aggregates the weight updates received from all edges and updates the anchor model
weights using FL algorithms such as FedAvg and Scaffold, reflecting the contributions of all edges
to improve the model generalization performance. Once FL is complete over a total of T rounds,
a stacking ensemble is constructed using the trained anchor models. This step involves combining
the prediction results of the models to perform the final anomaly classification. First, the predic-
tion probabilities of all anchor models are calculated for each sample in the validation dataset, and
these probabilities are collected to generate meta features for use as input for meta models such as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

XGBoost and are trained. Finally, the trained meta model performs the final anomaly classification
prediction based on the meta features of the test dataset. By combining the predictions of multi-
ple anchor models using the stacking ensemble technique, it is possible to accurately identify even
complex patterns that are difficult to detect with a single model, maximizing the overall prediction
accuracy of the system.

In addition, the system uses a 1D-CNN model for learning, as most sensor data generated in manu-
facturing sites are in time-series form. This model is optimized to process such time-series data and
was selected as the local edge model for the proposed system. 1D-CNN automatically learns impor-
tant features of time-series data using filters, enabling it to identify recurring patterns or anomalies in
the temporal data flow without requiring manual feature design. The 1D-CNN model has a relatively
simple structure, resulting in lower computational requirements that are advantageous for efficiently
training models on edge devices with low power and limited computing resources. Sensor data from
manufacturing sites contain ample noise. The convolution operation of 1D-CNN summarizes the lo-
cal features of the entire data set and is less affected by noise, allowing clear detection of anomalies.

Algorithm 1 Training and Classification with Stacking

1: Initialization
2: Initialize Manchors anchor models {Wj}Manchors

j=1 .

3: Federated Learning
4: for t = 1 to T rounds do
5: Each client i = 1 . . . Nclients downloads the anchor model W (t−1)

j .
6: Each client trains a local model on its local dataset Ci:
7: w

(t)
i,j ← LocalTrain(W (t−1)

j , Ci)

8: Each client computes and uploads a weight update ∆w
(t)
i,j to anchor j.

9: Anchor j aggregates updates from all clients and updates its model:
10: W

(t)
j ←W

(t−1)
j + ηagg

∑Nclients

i=1
|Ci|
|C| ∆w

(t)
i,j

11: end for

12: Stacking
13: Generate meta-features from predictions of the final trained anchor models {W (T)

j }Manchors
j=1 .

14: P (x)← [Prob(W (T)
1 , x), . . . , Prob(W (T)

Manchors
, x)]

15: Train the stacking meta-model S using the meta-features P (x).
16: Perform final prediction using the trained meta-model S.
17: Prediction← S(P (x)).

3.3 TIME SERIES DATA DISTRIBUTION SHIFTS

The proposed Algorithm 2 detects changes in the data distribution of edge devices in a FL envi-
ronment and maintains the frozen encoder in the latest state through cooperation between multiple
anchors. When a learning round begins, each anchor server broadcasts the model weights for the
current round to all connected edge devices. Each edge then estimates the current data distribution
from the latest local dataset and compares it with the previous data distribution stored at the previous
round. The difference between the two distributions is calculated using the Wasserstein distance, and
if this value exceeds the predefined threshold of 0.1, a significant change is noted in the data environ-
ment. When a distribution change is detected, the edge notifies its anchor that migration to another
anchor is necessary. Upon receiving this signal, the anchor communicates with other anchors within
the network, comparing the representative data distributions with the latest distribution of the edge
in question. Based on the comparison results, the anchor with the smallest distribution distance is
selected as the target, and the SYN stage is initiated. The latest local model weights for the edge
and, if necessary, some local data or statistics are transmitted to execute the actual migration. The
SYN-ACK phase follows, where the target anchor combines the received model weights with its
own model weights to create a new frozen encoder to return to the original anchor. Finally, in the
ACK phase, the received encoder and the anchor encoder are updated to frozen encoders as a core

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Proposed Decentralized Manufacturing Management System.

component for feature extraction of future edge data. These data are updated when the distribution
changes or when the final round ends.

Algorithm 2 Anchor-Based Frozen Encoder Update with Distribution Shift

1: procedure FEDERATEDLEARNINGROUND
1. Edge-level Training and Distribution Check

2: for each edge client Ej do
3: Train local model and compute a weight update.
4: Compute current data distribution Pcurrent and load previous distribution Pprev.
5: if Wasserstein distance W1(Pcurrent, Pprev) > τ then
6: SYN: Send local model weights to a new target anchor.
7: end if
8: end for

2. Anchor-level Frozen Encoder Update
9: for each anchor Atarget that receives a model from an edge do

10: SYN-ACK: Merge the received edge model with its own model.
11: ACK: Update its frozen encoder with the merged model’s knowledge.
12: Propagate the updated frozen encoder to the edge’s original anchor.
13: end for
14: end procedure

3.4 NEW TIME SERIES DATA INPUT

This system utilizes a pre-trained frozen encoder with fixed weights to extract key features from
input data, compares these features with predefined representative features of normal data, and eval-
uates relative similarity to determine anomalies. After determination, normal data are discarded or
stored locally, while anomalous data are transmitted to the most suitable anchor for subsequent learn-
ing and analysis. When new data are received, windowing is performed to standardize the length
and structure. In this process, continuously collected sensor signals are divided into fixed-length
sequences and converted into a standardized form suitable for model input. The preprocessed data
are passed to a frozen encoder consisting of a 1D convolutional layer, batch normalization, ReLU
activation, global average pooling, and a fully connected layer. All parameters are fixed, enabling
the encoder to reliably produce feature vectors for new data without further training. In the similarity
evaluation stage, the extracted feature vectors are compared with the pre-calculated average feature

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

vectors for each anchor. The similarity between the input data and each anchor is quantified, and
abnormality is determined based on relative similarity rather than an absolute distance threshold.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTING

In this study, we conduct two experiments to comprehensively verify the efficiency and performance
of the proposed FL-based anomaly detection system using the stacking technique. The first exper-
iment compares ensemble models. Here, various ensemble methods and regression-based models,
such as XG-Boost, LightGBM, RandomForest, CatBoost, and Logistic Regression, are applied to
evaluate prediction performance. The second experiment compares performance based on model
structure in centralized learning and FL environments. The centralized learning environment in-
cludes traditional machine learning models such as Random Forest and XGBoost, while the FL
environment independently applies various deep learning architectures such as CNN, GRU, LSTM,
TCN, Transformer, and 1D-CNN. This allows analysis of inference time and classification accuracy.
In comparison of FL algorithms, all use 100 learning rounds.

The dataset is partial discharge data for electrical fire accident prevention in industrial equipment,
provided by AI-Hub. We used only csv files from multimodal data. The main purpose of the data
was to predict and diagnose partial discharge, which is a major cause of electrical fires in industrial
equipment. The data originate from nine power facilities (TFR-CV, CNCV-W, ACSR-OC, single-
phase/power/instrumentation input transformers, 7.2kV/22.9kV switchgear, and 25.8kV GIS) corre-
sponding to solid, liquid, and gas insulators and are categorized into normal, noise, surface discharge,
corona discharge, and void discharge. The training data account for 80% of the set, the validation
data for 10%, and the test data for 10%. The original data consist of 7,680 time series data points
from 20 channels for a single partial discharge event. To improve the efficiency of model training,
a method was applied to extract statistical characteristics of mean, standard deviation, maximum
value, minimum value, skewness, and kurtosis from the time series data of each channel. That is,
there are 5 anchors and 9 edges. Prior to the experiment, comparative experiments were conducted
on various federated learning algorithms to select the optimal one. The algorithms compared were
FedAdam, FedAvg, FedNova, FedProx, FedYogi, and Scaffold. FedProx(mu=0.01) achieved a high
macro F1 score of 0.74. As a consequence, the federated learning algorithm used FedProx(mu=0.01)
for the two experiments being performed. An ensemble technique was used with Xgboost.

4.2 COMPARISON OF ENSEMBLE MODELS

We compared and analyzed the performance of various ensemble models, which aim to overcome
the limitations of a single model by combining the predictions of multiple models. TABLE 1 com-
pares the overall F1 scores of the ensemble models. The LightGBM, random forest, and XGBoost
models achieved the best performance, with a Macro F1 score of 0.75, which is higher than those of
CatBoost and logistic regression. These results show that tree-based ensemble models learned more
effectively than simple models such as logistic regression, considering the complex patterns.

Fig. 2 is a confusion matrix showing the classification results of each ensemble model. LightGBM,
random forest, and XGBoost models clearly classify major classes of normal, noise, corona, surface,
and void. The confusion matrices of these models have high values concentrated on the diagonal,
suggesting a low misclassification rate.

Table 1: F1 Scores for Each Ensemble Model.

Model Accuracy Macro F1 Weighted F1
CatBoost 0.71 0.70 0.70

LightGBM 0.75 0.75 0.75
Logistic Regression 0.63 0.63 0.62

Random Forest 0.76 0.75 0.75
XGBoost 0.75 0.75 0.75

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) CatBoost (b) LightGBM (c) Logistic Regression

(d) Random Forest (e) XGBoost

Figure 2: Confusion Matrices for Each Ensemble Model.

4.3 COMPARISON OF CENTRALIZED TRAINING AND TYPICAL FEDERATED LEARNING

We compared and analyzed the performance of centralized learning, general FL, and FL models
applying model stacking. TABLE 2 shows the comprehensive performance metrics of various mod-
els. Centralized learning demonstrated high performance because it utilizes all data. In particular, the
LightGBM model performed excellently, recording an accuracy of 0.8618 and a Macro F1 of 0.8614.
However, centralized learning has a clear limitation in that it requires access to all data, preventing
the guarantee of data privacy. The FL+stacking model achieved an accuracy of 0.7438 and a Macro
F1 score of 0.7424. This is significantly higher than the scores of individual models of standard FL
and is close to the performance of centralized learning. The inference time was 2.3882 ms, which
is longer than standard FL but significantly faster than centralized models. Standard FL recorded
relatively lower performance compared to centralized models. Among these, the transformer model
performed the best, with an accuracy of 0.6525 and a Macro F1 of 0.6516. This hinders FL, which
learns locally across multiple edges, from achieving the same performance as centralized models.
However, in terms of inference time, all models in standard FL were much more efficient than the
centralized model.

TABLE 3 compares the F1 scores by anchor. The LightGBM model of centralized learning showed
high performance in major anchors such as normal and noise but relatively low scores in the surface
and corona anchors. The Transformer model in standard FL recorded high F1 scores in the normal
and noise anchors. However, its performance was low in anchors of surface and void, suggesting that
correction is needed for anchor imbalance. The FL+stacking model achieved high F1 scores in major
anchors such as normal and noise. It also demonstrated much more stable and higher performance
than the individual models of standard FL in the surface, corona, and void anchors.

TABLE 4 shows the performance by edge. The nine edge devices, from Edge 0 to 8, are comprised
of the following equipment: TFR-CV, CNCV-W, ACSR-OC, single-phase/power/instrumentation in-
put transformers, 7.2kV/22.9kV switchgear, and 25.8kV GIS. Centralized learning maintained high
performance overall, but due to differences in data distribution by edge, there were cases of perfor-
mance similar to or lower than other models in some edges. In the edge-specific performance, the
transformer model of standard FL recorded a high F1 score of 0.6492 on Edge 3, but its performance
was low on some edges such as Edge 1, indicating that it is affected by edge-specific data hetero-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

geneity. The edge-specific performance also demonstrates the robustness of the FL+stacking model.
Edge 7 recorded a very high F1 score of 0.9371, achieving results comparable to those of central-
ized learning. This demonstrates that stacking-based FL is effective in overcoming edge-specific
data heterogeneity and stably improving overall performance.

Table 2: Accuracy and Inference Time Comparison: Centralized, Standard FL, and Stacking-based
FL.

Metrics Centralized Learning Standard Federated Learning
Federated
Learning
+Stacking

Random Forest XGBoost LightGBM CatBoost CNN GRU LSTM TCN Transformer 1D-CNN 1D-CNN
+Stacking

Accuracy 0.8707 0.873 0.8618 0.8548 0.5236 0.5896 0.6819 0.5741 0.6525 0.5585 0.7438
Macro F1 0.8702 0.8727 0.8614 0.8536 0.4645 0.5813 0.6764 0.5356 0.6516 0.5126 0.7424

Weighted F1 0.8702 0.8727 0.8614 0.8536 0.4645 0.5813 0.6764 0.5356 0.6516 0.5126 0.7424
Inference Time (ms) 14.9524 0.266 0.913 0.464 0.231 0.1206 0.118 0.581 0.4192 0.242 2.3882

Table 3: Per-Anchor Performance Comparison: Centralized, Standard FL, and Stacking-based FL.

Anchor Centralized Learning Standard Federated Learning
Federated
Learning
+Stacking

Random Forest XGBoost LightGBM CatBoost CNN GRU LSTM TCN Transformer 1D-CNN 1D-CNN
+Stacking

Normal 0.9679 0.9649 0.966 0.951 0.6784 0.7459 0.8653 0.8557 0.8324 0.7945 0.9437
Noise 0.9434 0.9467 0.9454 0.9299 0.7901 0.8785 0.9138 0.7249 0.9459 0.8174 0.9216

Surface 0.8119 0.8088 0.7933 0.7786 0.529 0.3906 0.5048 0.5843 0.4959 0.5346 0.6188
Corona 0.813 0.8286 0.8104 0.8229 0.3142 0.3583 0.6426 0.2713 0.5206 0.3249 0.6885

Void 0.8151 0.8146 0.792 0.7854 0.0109 0.5333 0.4555 0.242 0.4633 0.0915 0.5395

Table 4: Per-Edge Performance Comparison: Centralized, Standard FL, and Stacking-based FL.

Edge Centralized Learning Standard Federated Learning
Federated
Learning
+Stacking

Random Forest XGBoost LightGBM CatBoost CNN GRU LSTM TCN Transformer 1D-CNN 1D-CNN
+Stacking

Edge 0 0.7465 0.771 0.7678 0.6862 0.6261 0.757 0.7094 0.5891 0.7317 0.6073 0.5323
Edge 1 0.8568 0.7975 0.7827 0.7792 0.2818 0.3752 0.3329 0.2311 0.6843 0.2235 0.2302
Edge 2 0.7911 0.7629 0.7528 0.7677 0.4924 0.6565 0.6499 0.4282 0.7124 0.4474 0.44
Edge 3 0.8291 0.8493 0.8443 0.8634 0.3559 0.6754 0.7822 0.6663 0.6492 0.6642 0.7705
Edge 4 0.7499 0.7891 0.7358 0.8088 0.3109 0.2779 0.4536 0.5486 0.3288 0.4353 0.4701
Edge 5 0.9736 0.9684 0.9526 0.9672 0.4985 0.5142 0.7301 0.6093 0.7076 0.4951 0.54
Edge 6 0.99 0.9868 0.9776 0.8877 0.7269 0.7726 0.9203 0.7046 0.7487 0.7172 0.8369
Edge 7 0.9552 0.9964 0.9968 0.9976 0.6994 0.7251 0.7852 0.5492 0.7833 0.7139 0.9371
Edge 8 0.9212 0.9226 0.9245 0.8748 0.2221 0.3499 0.5683 0.4178 0.4224 0.3664 0.4568

5 CONCLUSION

This study proposes an DMMS based on federated learning using a three-layer structure of
cloud–anchor–edge to overcome the limitations of data privacy, communication efficiency, and real-
time analysis in manufacturing sites. In this structure, the edge protects raw data locally and performs
learning, while the anchor aggregates models received from multiple edges and trains specialized
models. Sensitive data are not shared externally, and each layer has a specified role, resulting in both
scalability and security. To accurately identify complex anomalies that are difficult to capture with
a single model, we applied a stacking ensemble technique that combines the prediction results of
multiple anchor models trained through FL. Each anchor learns a model specialized for a specific
type of anomaly, and the meta model re-learns their predictions to derive a final conclusion, enabling
higher prediction accuracy and robustness.

Based on the results of this study, future research is needed in several areas. First, we plan to
strengthen the generalization performance of the proposed system by applying and verifying the
experiments using various datasets such as those of vibration, temperature, and pressure generated
in actual manufacturing processes. Additionally, considering the limited computing resources of
edge devices, we plan to maximize efficiency by applying additional lightweight models with the
1D-CNN model or introducing on-device learning optimization techniques such as quantization and
pruning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

I. Abdullahi, S. Longo, and M. Samie. Towards a distributed digital twin framework for pre-
dictive maintenance in industrial internet of things (iiot). Sensors, 24:2663, 2024. doi:
10.3390/s24082663.

J. Ahn, Y. Lee, N. Kim, C. Park, and J. Jeong. Federated learning for predictive maintenance and
anomaly detection using time series data distribution shifts in manufacturing processes. Sensors,
23:7331, 2023. doi: 10.3390/s23177331.

S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. ICLR, 2018. doi: 10.48550/arXiv.1803.01271.

L. Breiman. Stacked regressions. Mach Learn, 24:49–64, 1996. doi: 10.1007/BF00117832.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi: 10.1023/A:
1010933404324.

A. Büyükçakir, H. Bonab, and F. Can. A novel online stacked ensemble for multi-label stream
classification. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, pp. 1239–1248, 2018. doi: https://doi.org/10.48550/arXiv.1809.09994.

L. Campanile, M. Iacono, F. Marulli, and M. Mastroianni. Designing a gdpr compliant blockchain-
based iov distributed information tracking system. Information Processing & Management, 58
(3):102511, 2021. doi: 10.1016/j.ipm.2021.102511.

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. KDD, 2016. doi: 10.1145/
2939672.2939785.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using rnn encoder-decoder for statistical machine translation.
EMNLP, 2014. doi: 10.48550/arXiv.1406.1078.

A. Daza, J. Arroyo-Paz, J. Bobadilla, O. Apaza, and J. Pinto. Stacking ensemble learning model
for predict anxiety level in university students using balancing methods. Informatics in Medicine
Unlocked, 42:101340, 2023. doi: 10.1016/j.imu.2023.101340.

B. Dey Sarkar, V. Shardeo, A. Dwivedi, and D. Pamucar. Digital transition from industry 4.0 to
industry 5.0 in smart manufacturing: A framework for sustainable future. Technology in Society,
78:102649, 2024. doi: 10.1016/j.techsoc.2024.102649.

A. V. Dorogush, V. Ershov, and A. Gulin. Catboost: gradient boosting with categorical features
support. NeurIPS, 2018. doi: 10.48550/arXiv.1810.11363.

H. Guan, P.-T. Yap, A. Bozoki, and M. Liu. Federated learning for medical image analysis: A survey.
Pattern Recognition, 151:110424, 2024. doi: 10.1016/j.patcog.2024.110424.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997. doi: 10.1162/neco.1997.9.8.1735.

S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Scaffold: Stochastic
controlled averaging for federated learning. ICML, 2020. doi: 10.48550/arXiv.1910.06378.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.Y. Liu. Lightgbm: a highly
efficient gradient boosting decision tree. NeurIPS, 2017. doi: 10.5555/3294996.3295074.

S. Kiranyaz, T. Ince, and M. Gabbouj. Real-time patient-specific ecg classification by 1-d convo-
lutional neural networks. IEEE Transactions on Biomedical Engineering, 63(3):664–675, 2016.
doi: 10.1109/TBME.2015.2468589.

X. Kong, Y. Wu, H. Wang, and F. Xia. Edge computing for internet of everything: A survey. IEEE
Internet of Things Journal, 9(23):23472–23485, 2022. doi: 10.1109/JIOT.2022.3200431.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

H. Lee, D. Finke, and H. Yang. Privacy-preserving neural networks for smart manufacturing. Journal
of Computing and Information Science in Engineering, 24(7):071002, 2024a. doi: 10.1115/1.
4063728.

J. Lee, J. Kang, C.-S. Park, and J. Jeong. Distributed fire classification and localization model based
on federated learning with image clustering. Applied Sciences, 14:9162, 2024b. doi: 10.3390/
app14209162.

J. Leng, R. Li, J. Xie, X. Zhou, X. Li, Q. Liu, X. Chen, W. Shen, and L. Wang. Federated learning-
empowered smart manufacturing and product lifecycle management: A review. Advanced Engi-
neering Informatics, 65:103179, 2025. doi: 10.1016/j.aei.2025.103179.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2020. doi: 10.48550/arXiv.1806.00582.

Z. Li and et al. Data heterogeneity-robust federated learning via group client selection in industrial
iot. IEEE Internet of Things Journal, 9(18):17844–17857, 2022. doi: https://doi.org/10.48550/
arXiv.2202.01512.

H. Mahfoud, O. Moutaoukil, M. Toum Benchekroun, and A. Latif. Real-time predictive
maintenance-based process parameters: Towards an industrial sustainability improvement.
In International Conference on Advanced Intelligent Systems for Sustainable Development
(AI2SD’2023), volume 931 of Lecture Notes in Networks and Systems, pp. 23–34, 2024. doi:
10.1007/978-3-031-54288-6 3.

H. B. McMahan, E. Moore, D. Ramage, and S. Hampson. Communication-efficient learning of deep
networks from decentralized data. AISTATS, 54, 2017. doi: 10.48550/arXiv.1602.05629.

D. Menegatti, S. Manfredi, A. Pietrabissa, C. Poli, and A. Giuseppi. Hierarchical federated learning
for edge intelligence through average consensus. IFAC-PapersOnLine, 56(2):862–868, 2023. doi:
10.1016/j.ifacol.2023.10.1673.

I. D. Mienye and Y. Sun. A survey of ensemble learning: Concepts, algorithms, applications, and
prospects. IEEE Access, 10:99129–99149, 2022. doi: 10.1109/ACCESS.2022.3207287.

J. Oh, D. Lee, D. Won, W. Noh, and S. Cho. Communication-efficient federated learning over-the-
air with sparse one-bit quantization. IEEE Transactions on Wireless Communications, 23(10):
15673–15689, 2024. doi: 10.1109/TWC.2024.3432758.

Q. Qi and F. Tao. A smart manufacturing service system based on edge computing, fog comput-
ing, and cloud computing. IEEE Access, 7:86769–86777, 2019. doi: 10.1109/ACCESS.2019.
2923610.

M. K. Quan and et al. Federated learning for cyber physical systems: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 2025. doi: 10.1109/COMST.2025.3570288.

V. K. Quy et al. Iot-enabled smart agriculture: Architecture, applications, and challenges. In Applied
Sciences, volume 12, pp. 3396, 2022. doi: 10.3390/app12073396.

S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný, S. Kumar, and H. B. McMahan.
Adaptive federated optimization. International Conference on Learning Representations, 2021.
doi: 10.48550/arXiv.2003.00295.

D. K. Sah, M. Vahabi, and H. Fotouhi. Federated learning at the edge in industrial internet of things:
A review. Sustainable Computing: Informatics and Systems, 46:101087, 2025. doi: 10.1016/j.
suscom.2025.101087.

F. Sattler, S. Wiedemann, K. Müller, and W. Samek. Robust and communication-efficient federated
learning from non-iid data. International Conference on Learning Representations (ICLR), 2020.
doi: 10.48550/arXiv.1903.02891.

J. C. Stoltzfus. Logistic regression: a brief primer. Academic Emergency Medicine, 18(10):1099–
1104, 2011. doi: 10.1111/j.1553-2712.2011.01185.x.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. NeurIPS, 2017. doi: 10.48550/arXiv.1706.03762.

J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the objective inconsistency problem
in heterogeneous federated optimization. NeurIPS, 2020. doi: 10.48550/arXiv.2007.07481.

D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992. doi: 10.1016/
S0893-6080(05)80023-1.

J. Wu, F. Dong, H. Leung, Z. Zhu, J. Zhou, and S. Drew. Topology-aware federated learning in
edge computing: A comprehensive survey. ACM Computing Surveys, 56(10), 2024. doi: 10.1145/
3659205.

H. Zheng, Z. Hu, L. Yang, M. Zheng, A. Xu, and B. Wang. Confree: Conflict-free client update ag-
gregation for personalized federated learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 22875–22883, 2025. doi: 10.1609/aaai.v39i21.34449.

T. Zhu, Y. Ran, X. Zhou, and Y. Wen. A survey of predictive maintenance: Systems, purposes and
approaches, 2024. URL https://arxiv.org/abs/1912.07383.

A DATASET AND PREPROCESSING

TABLE 5 is a summary of the partial discharge types, insulator types, and power equipment names.

Table 5: Classification of partial discharge types by power equipment insulator.

Partial discharge type Insulator type Power equipment name
Normal
Noise
Surface discharge
Corona discharge
Void discharge

Solid
TFR-CV
CNCV-W
ACSR-OC

Liquid
Single-phase oil-filled transformer

Power oil-filled transformer
Instrument transformer

Gas
7.2kV switchgear
22.9kV switchgear

25.8kVGIS

The original data consist of 7,680 time series data points from 20 channels for a single partial dis-
charge event. To improve the efficiency of model training, a method was applied to extract statistical
characteristics of mean, standard deviation, maximum value, minimum value, skewness, and kur-
tosis from the time series data of each channel. These statistical features effectively summarize the
core distribution and shape information of the data, enabling distinction of partial discharge types. To
maximize the efficiency of processing numerous CSV files, we introduced a parallel processing tech-
nique based on multiprocessing. We divided the entire data file into multiple chunks and assigned
them to multiple CPU cores for simultaneous processing, greatly reducing the data preprocessing
time. The feature data and label information extracted from each chunk are stored in temporary files
and then merged into a single integrated dataset. Through this process, the one-dimensional time
series data are converted into a two-dimensional feature array in the form of (20, 6), and this dataset
is used as input for model training. After preprocessing, Edge 0 has 21,332 samples, Edge 1 has
21,373 samples, Edge 2 has 21,322 samples, Edge 3 has 21,332 samples, Edge 4 has 21,309 sam-
ples, Edge 5 has 21,341 samples, Edge 6 has 15,994 samples, Edge 7 has 16,063 samples, and Edge
8 has 31,918 samples.

B SUPPLEMENTARY EXPERIMENTS

The experimental environment used in this study is as follows. The main hardware and software
specifications are summarized in TABLE 6. The CPU used is the Intel Core i7-13700F, a high-
performance multi-core processor suitable for complex computations and data processing. The GPU

12

https://arxiv.org/abs/1912.07383

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

is an NVIDIA GeForce RTX 5060 Ti, which enables fast training and inference of deep learning
models. The memory comprises 64GB of RAM, which supports largescale data processing and
complex algorithm execution. The operating system is Windows 10 Pro, and the experiments were
conducted in a Python 3.12.10 environment. Pytorch 2.7.1 was used for model development and
learning optimization, and experiments were performed using CUDA version 12.8.

Table 6: Experimental environment hardware and software.

Hardware Environment Software Environment
CPU : Intel Core i7-13700F OS : Windows 10 Pro

GPU : NVIDIA GeForce RTX 5060 Ti Python : 3.12.10
RAM : 64GB PyTorch : 2.7.1

CUDA : 12.8

In this study, we conduct four experiments to comprehensively verify the efficiency and performance
of the proposed FL-based anomaly detection system using the stacking technique. The first exper-
iment compares the anomaly detection performance of six representative FL algorithms—FedAvg,
FedProx, Scaffold, FedNova, FedAdam, and FedYogi—under the same dataset and conditions. The
convergence characteristics and accuracy changes of each algorithm are analyzed under data distri-
bution imbalance and client communication delay. FedProx and Scaffold demonstrate imbalance
mitigation effects, FedNova shows correction performance with partial client participation, and
FedAdam and FedYogi compare the effects of adaptive optimizers. The second experiment compares
performance based on model structure in centralized learning and FL environments. The centralized
learning environment includes traditional machine learning models such as Random Forest and XG-
Boost, while the FL environment independently applies various deep learning architectures such as
CNN, GRU, LSTM, TCN, Transformer, and 1D-CNN. This allows analysis of inference time and
classification accuracy. The third experiment compares ensemble models. Here, various ensemble
methods and regression-based models, such as XG-Boost, LightGBM, RandomForest, CatBoost,
and Logistic Regression, are applied to evaluate prediction performance. This allows analysis of
model effectiveness for improving anomaly detection accuracy within the FL framework and de-
termination of the most advantageous model depending on the data characteristics. The fourth ex-
periment compares frozen encoder-based feature similarity metrics of Euclidean distance, cosine
similarity, Pearson correlation coefficient, Minkowski distance, Chebyshev distance, Jaccard simi-
larity, and Manhattan distance by calculating the distance between feature vectors extracted through
the frozen encoder. We analyze the classification boundary characteristics and performance differ-
ences by metric in anomaly detection and identify the metric that has the highest correlation with the
feature representation generated by the frozen encoder. These results serve as a basis for deciding
the similarity metric to apply in future systems.

In this study’s comparison of federated learning algorithms, all algorithms use 100 learning rounds,
1 local epoch, a batch size of 64, a learning rate of 1e-5, and the Adam optimizer. To analyze the
performance of the FedProx federated learning algorithm, three values of µ were used: 0.01, 0.1,
and 1. This µ value serves as a penalty coefficient to prevent the local model updates of each client
from deviating significantly from the global model. The larger the value, the stronger the restriction
on local updates, thereby enhancing model stability. The appropriate choice of µ depends on the
characteristics of the data distribution and the system environment. In this study, we experimented
with three values to evaluate their impact on algorithm performance. However, unlike other algo-
rithms, the Scaffold algorithm sets the learning rate to 0.1 and uses SGD as the optimization method.
The FedAdam and FedYogi algorithms set the server-side learning rate to 0.01 or 0.005, with β1 set
to 0.9, β2 was set to 0.999, and epsilon was set to 1e-8. These settings allowed us to compare the
learning efficiency and anomaly detection performance of each algorithm under the same data dis-
tribution and environment. In the ensemble model comparison, the following hyperparameters were
set for each model. XGBoost was set to use label encoder=False, eval metric=’mlogloss’, objec-
tive=’multi:softprob’, with the number of classes set to the same as the number of classes in the
dataset, and random state=42 fixed. LightGBM was set to objective=’multiclass’, num class was
set to the same value, the learning rate was set to 0.1, n estimators=100, and random state=42
was used. RandomForest was set to random state=42, n estimators=100, and the maximum depth
(max depth) was not limited. CatBoost was set with loss function=’MultiClass’, iterations=100,
learning rate=0.1, depth=6, random state=42, and verbose=False to suppress logging during train-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

ing. Logistic Regression was set with max iter=1000 and random state=42. These fixed hyperpa-
rameters were used to control the training process of each ensemble model and enable performance
comparison under the same conditions.

C TECHNICAL DETAILS

C.1 FEDERATED LEARNING ALGORITHM

• FedAvg: FedAvg is the most fundamental algorithm in federated learning. Each client trains
a model using local data, then transmits the model’s weights to a central server. The server
creates a new global model by taking the simple average of all weights sent by clients, and
redistributes this to the clients (Reddi et al., 2021).

• FedAdam: FedAdam is an algorithm that applies the principles of the Adam optimizer when
aggregating model updates on the server. Unlike FedAvg, which uses simple averaging,
FedAdam applies momentum and adaptive learning rates to each client’s update, improving
the model’s convergence speed and enhancing stability (McMahan et al., 2017).

• FedNova: FedNova is an algorithm designed to address client drift issues arising from data
heterogeneity. Before aggregating each client’s local updates, it normalizes the update norm
to reduce bias caused by differences in learning rates or training iterations across clients,
thereby promoting stable convergence (Wang et al., 2020).

• FedProx: FedProx is an algorithm for handling data heterogeneity. It adds a proximal reg-
ularization term to the loss function during local learning. This regularization term forces
the client’s local model to stay close to the global model, effectively mitigating client drift
during training (Li et al., 2020).

• Fedyogi: Fedyogi is an algorithm that applies the Yogi optimizer, a variant of the Adam op-
timizer, to federated learning. Similar to FedAdam, it uses an adaptive optimization scheme
when aggregating client model updates on the server. However, it induces more stable con-
vergence by controlling the mean squared error of updates—a unique feature of Yogi—to
prevent unstable updates. It particularly effectively prevents model divergence during train-
ing in heterogeneous data environments (Sattler et al., 2020).

• SCAFFOLD: SCAFFOLD is an algorithm that addresses client drift by introducing the
concept of a control variable. When each client updates its local model, it uses a correc-
tion term to adjust for the difference between the local data and the global model. This
guides each client’s update direction to better align with the global optimization goal, sig-
nificantly improving convergence speed and accuracy in heterogeneous data environments
(Karimireddy et al., 2020).
Translated with DeepL.com (free version)

C.2 AI MODEL

• CatBoost: CatBoost is a gradient descent-based decision tree model developed by Russia’s
Yandex. Its most significant feature is its ability to efficiently handle categorical variables
internally. Unlike existing models that required complex preprocessing to handle categori-
cal variables, CatBoost automatically resolves this during training using a unique method
called Ordered Boosting. This allows it to be applied directly to the data without separate
transformations and also helps effectively prevent overfitting (Dorogush et al., 2018).

• LightGBM: LightGBM is a lightweight gradient descent boosting model developed by Mi-
crosoft. Instead of the level-based approach where trees grow horizontally, as in traditional
boosting models, this model uses a leaf-based approach that prioritizes growing the leaf
that maximizes loss reduction. This approach enables faster construction of more complex
model structures. Additionally, it employs various optimization techniques, such as data
parallelism and feature parallelism, resulting in a major advantage: extremely fast learning
speeds even with large datasets (Ke et al., 2017).

• XGBoost: XGBoost is currently one of the most widely used gradient descent boosting
models. It excels not only in performance but also in stability. It effectively controls model
overfitting by inherently incorporating L1 and L2 regularization techniques. Additionally,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

its built-in handling of missing values and support for various parallel processing tech-
niques make it highly useful and scalable for managing complex real-world industrial data
(Chen & Guestrin, 2016).

• LogisticRegression: Logistic Regression is the most fundamental statistical model used for
classification problems. This model is based on a linear combination of the data, which
is then passed through a sigmoid function to ultimately convert it into a probability value
between 0 and 1. It predicts the likelihood of belonging to a specific category based on
this probability value. Thanks to its simplicity and interpretability, it is frequently used as
a baseline model to try first before applying more complex models (Stoltzfus, 2011).

• RandomForest: RandomForest is a representative ensemble model that combines multiple
decision trees for prediction. This model uses a method where each tree is built by randomly
sampling a portion of the data and randomly selecting features. It synthesizes the prediction
results from these multiple trees to derive the final outcome. This approach effectively
addresses the overfitting weakness inherent in a single decision tree, offering the advantage
of more stable prediction performance (Breiman, 2001).

• CNN: CNN is a neural network optimized for processing two-dimensional or three-
dimensional data such as images and videos. The core of this model is the Convolution
layer, which extracts local features from the data. Filters scan the data to recognize features,
generating feature maps based on them. Subsequently, the data size is reduced through
pooling layers, and finally, a fully connected layer is used to perform the final classification
or prediction (LeCun et al., 1998).

• GRU: GRU is a type of recurrent neural network used for processing time-series data. It
was developed to overcome the limitation of traditional RNNs forgetting past information
due to the vanishing gradient problem in long sequence data. GRU uses two gates—an
update gate and a reset gate—to autonomously decide which information to retain and
which to discard. It features a simpler structure than LSTM while delivering comparable
performance, making it efficient for use in environments with relatively limited data or
computational resources (Cho et al., 2014).

• LSTM: Alongside GRU, LSTM is the most representative model for solving the long-
term dependency problem in recurrent neural networks. It manipulates data through three
gates—a more complex input gate, a forget gate, and an output gate—along with an internal
cell state. This complex structure enables it to effectively remember and utilize important
past information, even in very long sequence data, demonstrating outstanding performance
(Hochreiter & Schmidhuber, 1997).

• TCN: TCN is a model that processes sequence data using only convolution operations,
abandoning the recursive structure of recurrent neural networks. This model employs causal
convolution and dilated convolution to secure a wide receptive field, enabling it to view a
broad range of input data at once while referencing only past information. Unlike RNNs,
this allows for parallel processing, resulting in extremely fast learning speeds (Bai et al.,
2018).

• Transformer: The Transformer is a model that processes sequence data using only the At-
tention mechanism, without the recursive/convolution structures of RNNs or CNNs. Its core
component, Self-Attention, calculates the relationships between all elements within the in-
put sequence, allowing each element to determine its own importance relative to others.
This capability allows it to fully understand context, driving innovation in the NLP field
and making it one of the most widely used models today (Vaswani et al., 2017).

• 1D-CNN: 1D-CNN is a convolutional neural network specialized for one-dimensional data
like time series or text. Similar to how 2D CNNs move across images, the filters in a 1D-
CNN move only in one direction, extracting local patterns from the data. For example, in
time-series data, it effectively recognizes patterns of signal sequences of a specific length,
while in text, it identifies patterns of word groups within sentences (Kiranyaz et al., 2016).

C.3 SIMILARITY EVALUATION

• Manhattan Distance: Also known as the L1 norm, the Manhattan distance is a metric that
measures the distance between two points when traveling only along grid paths. It is named

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

as such because it resembles moving only east, west, south, and north along city blocks.
This distance is calculated by summing the absolute differences in each dimension. Un-
like Euclidean distance, it possesses useful characteristics for creating models that are less
sensitive to environments with many obstacles or outliers.

• Minkowski Distance: Minkowski distance is an Lp norm, a generalized distance measure-
ment method that encompasses both Manhattan and Euclidean distances. The calculation
method varies depending on the value of the parameter p. When p = 1, it is equivalent to
the Manhattan distance; when p = 2, it is equivalent to the Euclidean distance. Setting p
to infinity yields the Chebyshev distance. Because it encompasses various distance metrics
with a single formula, it is used when one wishes to flexibly define distance according to
the characteristics of the data.

• Euclidean Distance: Also known as the L2 norm, Euclidean distance is the most common
method for measuring the shortest straight-line distance between two points. It is a multidi-
mensional extension of the Pythagorean theorem in a two-dimensional plane, calculated by
squaring the difference in each dimension, summing them, and taking the square root. This
metric is widely used in many machine learning algorithms, such as K-Means Clustering
and K-NN, to measure similarity between data points.

• Chebyshev Distance: Chebyshev distance defines the distance as the maximum absolute
difference among multiple differences between two points. It is equivalent to the maxi-
mum distance a king can move in a single turn in chess, whether horizontally, vertically, or
diagonally. In parallel computing, when waiting for all tasks of multiple processes to com-
plete, the time taken by the slowest task equals the total time, making this metric useful for
modeling such scenarios.

• Jaccard Similarity: Jaccard similarity is a metric expressing the similarity between two sets
as a percentage. It is calculated as the size of the intersection divided by the size of the
union. For example, it is used to calculate the percentage of items purchased in common by
two users or to measure the percentage of words shared between two documents to deter-
mine similarity. This metric is unaffected by the size of the two sets, making it particularly
useful when the presence or absence of data is critical.

• Cosine Similarity: Cosine similarity measures how closely two vectors point in the same di-
rection. It ignores the magnitude of the vectors and considers only the angle between them.
This makes it highly effective for high-dimensional data, such as documents where word
frequencies are represented as vectors. Even if document lengths differ, similar relative
word importance or usage patterns result in high similarity.

• Pearson Correlation: The Pearson correlation coefficient is a measure of the strength and
direction of a linear relationship between two variables. This value always ranges between
-1 and 1, where 1 indicates a perfect positive linear relationship, -1 indicates a perfect
negative linear relationship, and 0 indicates no linear relationship. Since it is unaffected by
changes in the data’s scale or mean, it is very useful for determining how closely the trends
of two variables align.

D DETAILED EXPERIMENTAL RESULTS

D.1 COMPARISON OF FEDERATED LEARNING ALGORITHMS

In this study, we compared the performance of various FL aggregation algorithms using data. TA-
BLE 7 shows the F1 scores for each aggregation algorithm. Based on the F1 score, the algorithm
with the best performance was FedYogi, which recorded a high F1 score of 0.78 in both cases. Next,
FedAdam (learning rate 0.01) showed decent performance with a score of 0.77. On the other hand,
FedNova and Scaffold showed relatively low F1 scores, which may be due to the non-homogeneity
(non-IID) of the data and instability during the model convergence process. Despite these results, this
study selected FedProx (µ=0.01) as the final model, with an F1 score of 0.75, equivalent to FedAvg,
showing a respectable result that was not significantly different from that of the best-performing
model. The FedProx algorithm focuses on mitigating data heterogeneity issues by adding a regular-
ization term to local updates. Fig. 3 is a graph comparing the accuracy, loss, and F1-score of each
aggregation algorithm over 100 rounds. FedProx (µ=0.01) showed a very stable convergence curve

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

during the learning process. The legend shows the various FL algorithms compared in this study
and the main hyperparameter settings for each model. FedProx 1, FedProx 0.1, FedProx 0.01 refer
to cases where the proximal term coefficient µ in the FedProx algorithm is set to 1, 0.1, and 0.01,
respectively; FedAdam 0.005 and FedAdam 0.01 represent cases with a server learning rate in the
FedAdam algorithm set to 0.005 and 0.01, respectively. FedYogi 0.01 and FedYogi 0.005 refer to
cases where the server learning rate of the FedYogi algorithm is 0.01 or 0.005, respectively. FedAvg,
FedNova, and Scaffold are models that apply the standard settings for each algorithm.

The F1 score curve shows slightly lower final performance compared to FedYogi or FedAdam, but
it did not exhibit the unstable variability seen in FedNova or Scaffold. TABLE 8 shows the perfor-
mance of each algorithm by edge node. Each facility was sequentially assigned edge numbers from
0 to 8. Edge 0 represents TFR-CV; Edge 1 represents CNCV-W; Edge 2 represents ACSR-OC; and
Edges 3, 4, and 5 represent single-phase incoming transformers, power-use incoming transformers,
and meter-use incoming transformers, respectively. Edges 6 and 7 are 7.2kV and 22.9kV distribution
panels, respectively; and Edge 8 is a 25.8 kV GIS facility. FedYogi and FedAdam show relatively
small performance variations between edge nodes, indicating that all clients participated stably in
learning. On the other hand, FedProx showed relatively large performance variations, with high
performance on some edge nodes and low performance on others.

(a) (b) (c) (d)

Figure 3: Comparison of Accuracy, Loss, and F1 Score by the Aggregation Algorithm over 100
Rounds: (a) accuracy, (b) loss, (c) F1-score, and (d) legend.

Table 7: F1 Scores for Each Aggregation Algorithm.

Algorithm F1 Macro F1 Weighted F1
Fedadam 0.01 0.77 0.76 0.76
Fedadam 0.005 0.76 0.76 0.76

Fedavg 0.75 0.75 0.75
Fednova 0.63 0.63 0.63

Fedprox 0.01 0.75 0.75 0.75
Fedprox 0.1 0.74 0.74 0.74
Fedprox 1 0.74 0.74 0.74

Fedyogi 0.01 0.78 0.78 0.78
Fedyogi 0.005 0.78 0.78 0.78

Scaffold 0.73 0.73 0.72

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Performance Comparison of Federated Learning Algorithms by Edge Node.

Algorithm Edge 0 Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 Edge 7 Edge 8
Fedadam 0.01 0.1073 0.0667 0.0667 0.0669 0.0672 0.0667 0.1166 0.0855 0.1393
Fedadam 0.005 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667
Fedavg 0.524 0.1841 0.4401 0.8279 0.5136 0.5628 0.9361 0.957 0.3111
Fednova 0.1886 0.1077 0.0989 0.2066 0.2445 0.1895 0.1249 0.1622 0.0749
Fedprox 0.01 0.5486 0.2617 0.4755 0.7644 0.5201 0.5666 0.8241 0.9856 0.3528
Fedprox 0.1 0.5087 0.2272 0.4269 0.7066 0.4949 0.555 0.9013 0.9792 0.3593
Fedprox 1 0.5302 0.1824 0.5066 0.8129 0.5924 0.5291 0.9342 0.8656 0.3247
Fedyogi 0.01 0.1444 0.068 0.1396 0.0739 0.0696 0.0664 0.1005 0.0684 0.0667
Fedyogi 0.005 0.0697 0.0667 0.2678 0.1791 0.0786 0.0 0.5409 0.433 0.0667
Scaffold 0.4292 0.1884 0.3423 0.7235 0.494 0.7102 0.7807 0.676 0.4277

D.2 ENSEMBLE MODEL PERFORMANCE

(a) (b) (c) (d)

Figure 4: Comparison of Accuracy, Loss, and F1 Score by Ensemble Model over 100 Rounds: (a)
accuracy, (b) loss, (c) F1-Score, and (d) legend.

Table 9: Macro F1 Score by Edge for Each Ensemble Model.

Model Edge 0 Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 Edge 7 Edge 8
CatBoost 0.5765 0.2013 0.4890 0.7454 0.5254 0.4764 0.8709 0.9884 0.2503

LightGBM 0.5143 0.2438 0.4154 0.7824 0.4963 0.5089 0.8496 0.9558 0.3359
Logistic Regression 0.5896 0.2320 0.4745 0.8065 0.5122 0.4998 0.8456 0.9511 0.3644

Random Forest 0.5630 0.1993 0.4654 0.7927 0.5538 0.5630 0.9113 0.9972 0.3456
XGBoost 0.6239 0.2652 0.4277 0.8278 0.5275 0.6181 0.7958 0.9647 0.3220

The models included in the comparison were CatBoost, LightGBM, logistic regression, random for-
est, and XGBoost. Fig. 4 shows the changes in accuracy, loss, and F1 score for each ensemble model
at each learning round. TABLE 9 is the Macro F1 scores recorded by ensemble model for each edge.
Fig. 4 shows the learning stability and convergence trends of the ensemble models. LightGBM, ran-
dom forest, and XGBoost showed rapid performance improvement in the early stages of learning
and then converged stably while maintaining the highest accuracy and F1 scores for 100 rounds. In
contrast, logistic regression and CatBoost showed relatively lower performance curves compared to
these models. CatBoost showed a trend of steady performance improvement as learning progressed,
despite its low initial performance. TABLE 9 is an important indicator showing the results of en-
semble models with data heterogeneity for each edge. Performance varied by edge, but the patterns
differed by model.

D.3 SIMILARITY EVALUATION RESULTS

We compared various similarity evaluation metrics and analyzed the characteristics and limitations
of each metric. Predictions were based on the first sample of five randomly selected test samples,
and the results are shown in TABLE 10. Fig. 5 shows the t-SNE results, where the data points for
each class do not form distinct clusters but are mixed together. This suggests ambiguous boundaries
between classes and a complex data distribution, complicating accurate determination of similar-
ity using a single metric. TABLE 10 shows the similarity evaluation results. The cosine similarity

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

metric evaluated the similarity to the predicted class as high (0.9391), while the similarity to the
correct class was evaluated as low (0.5093). This indicates that cosine similarity, which measures
similarity of vector direction, cannot clearly distinguish prediction errors in this dataset. On the
other hand, Euclidean distance measured the difference from the predicted class as 3.2969 and the
difference from the correct class as 7.1019, reflecting the prediction error. The Pearson correlation
coefficient showed a positive correlation with the predicted class and a negative correlation with the
correct class, effectively identifying the prediction error. This result suggests that Euclidean distance
or Pearson correlation coefficient may provide more meaningful prediction error information than
cosine similarity in cases where the boundaries between classes are ambiguous.

Table 10: Similarity Evaluation Metrics.

Metric True Label Predicted Label Normal Noise Surface Corona Void
Manhattan Distance Corona Normal 24.3757 66.4178 61.2881 63.0805 63.3553
Minkowski Distance Corona Normal 1.8861 3.7431 3.7764 3.9643 3.6184
Euclidean Distance Corona Normal 3.2969 7.3216 7.1019 7.3983 6.9915
Jaccard Similarity Corona Normal 0.5859 0.5859 0.5859 0.5859 0.5859
Cosine Similarity Corona Normal 0.9391 0.5271 0.5772 0.5093 0.5847

Chebyshev Distance Corona Normal 1.1359 1.6274 1.7437 1.8426 1.4422
Pearson Correlation Corona Normal 0.8946 0.0264 0.0514 -0.0181 0.0713

Figure 5: t-SNE Visualization of the AI-Hub Dataset.

19

	Introduction
	Related Work
	Manufacturing Management System
	Federated Learning
	Stacking Ensemble Method

	METHODOLOGY
	Overall Architecture
	Model Training with Stacking Ensemble
	Time Series Data Distribution Shifts
	New Time Series Data Input

	Experimental results
	Experimental Setting
	Comparison of ensemble models
	Comparison of centralized training and typical federated learning

	Conclusion
	Dataset and Preprocessing
	Supplementary Experiments
	Technical Details
	Federated Learning Algorithm
	AI Model
	Similarity Evaluation

	Detailed Experimental Results
	Comparison of Federated Learning Algorithms
	Ensemble Model Performance
	Similarity Evaluation Results

