Under review as a conference paper at ICLR 2026

HYPERDIMENSIONAL PROBE: DECODING LLLM REP-
RESENTATIONS VIA VECTOR SYMBOLIC ARCHITEC-
TURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their capabilities, Large Language Models (LLMs) remain opaque with
limited understanding of their internal representations. Current interpretability
methods, such as direct logit attribution (DLA) and sparse autoencoders (SAEs),
provide restricted insight due to limitations such as the model’s output vocabulary
or unclear feature names. This work introduces Hyperdimensional Probe, a novel
paradigm for decoding information from the LLM vector space. It combines ideas
from symbolic representations and neural probing to project the model’s resid-
ual stream into interpretable concepts via Vector Symbolic Architectures (VSAs).
This probe combines the strengths of SAEs and conventional probes while over-
coming their key limitations. We validate our decoding paradigm with controlled
input—completion tasks, probing the model’s final state before next-token predic-
tion on inputs spanning syntactic pattern recognition, key—value associations, and
abstract inference. We further assess it in a question-answering setting, examining
the state of the model both before and after text generation. Our experiments show
that our probe reliably extracts meaningful concepts across varied LLMs, embed-
ding sizes, and input domains, also helping identify LLM failures. Our work
advances information decoding in LLM vector space, enabling extracting more
informative, interpretable, and structured features from neural representations.

1 INTRODUCTION

Although LLMs excel across tasks, their black-box nature limits interpretability. Recent work has
focused on decoding human-interpretable concepts from LLM latent representations (Gurnee &
Tegmark, 2023; Park et al., 2023; Zhang et al., 2024). Three main paradigms (Ferrando et al., 2024;
Elhage et al., 2021) are currently proposed to inspect model’s residual stream: Supervised Probes,
Direct Logit Attribution (DLA), and Sparse Autoencoders (SAEs). Probes are supervised models for
task-specific probing objectives that map a model’s vector space to meaningful features (Gurnee &
Tegmark, 2023; Marks & Tegmark, 2023; Diego Simon et al., 2024), though their decoding capabil-
ities have been debated (Hewitt & Liang, 2019). DLA projects representations on the LLM’s output
vocabulary (Belrose et al., 2023), but this constrains the abstraction to the level of LLM tokens.
SAE:s learn a sparse proxy representation (Bricken et al., 2023; Lieberum et al., 2024; Kissane et al.,
2024), but naming triggered features often suffers from vagueness, verbosity, and data dependence.

Vector Symbolic Architectures (VSAs) are a computational framework (Schlegel et al., 2022;
Gayler, 1998) inspired by cognitive science (Hawkins, 2021; Piantadosi et al., 2024), increasingly
used to map neural representations to human-readable symbols. It has been used for tasks rang-
ing from visual problems such as multi-attribute digit recognition (Frady et al., 2020) and Raven’s
progressive matrices (Hersche et al., 2023) to mechanistic interpretability (Knittel et al., 2024).

This work introduces a novel paradigm for decoding information from LLM vector spaces by in-
tegrating ideas from symbolic representations and neural probing. We propose Hyperdimensional
Probe, a novel approach for decoding human-interpretable information from latent representations
of LLMs using VSAs and hypervector operations. We design a supervised and shallow neural net-
work (encoder) to map the LLM’s residual stream into a controlled vector space structured by VSA
encodings, projecting its internal activations into human-interpretable and context-relevant concepts.
Functioning as a hybrid supervised probe, it harnesses the orthogonality property of VSAs to com-
bine the SAEs’ ability to uncouple superposed subspaces with the interpretability advantages offered



Under review as a conference paper at ICLR 2026

Preprocessing F' Hyperdimensional Probe @ B Explainability
IAformation decoding from LLM vector space via VSAS : )
Text to compressed ' LLM's ansyvers
LLM embeddings : explanation
e Codebook creation p N\ e ~
(A) Textual input § B — 61, ¢ (A) Create VSA encodings 1 Further investigation of latent errors

i -

(B) LLM's hidden layers L w : LLM(s)
Tralnmg T (B) Neural translator H T @
Embeddings Mes) = ys : next token 7 "daughter” ™

to VSA encodings MR {~1,1}P

(C) K-means clustering : @

&

Pdaughter € M(F(s)) a

Hyperdimensional probe

I

13

é (A) Inference on a different template

E , F("king is to queen as

e 1 son isto") < e

% (NS CBERITED inference I (B) Probe and extract

4 Y *

LIRS
encodings

Figure 1: We first compress neural representations of the LLM’s next-token task (F, blue). Next,
we train a neural VSA encoder to map these neural embeddings into a proxy space, VSA encod-
ings structured with input-related concepts (7, orange). We then probe the LLM’s embeddings by
extracting concepts from VSA encodings using hypervector algebra (I, green). This process of con-
cept extraction ultimately enables deeper analysis of the model’s erroneous answers (red).

by traditional probes. Our method addresses several limitations of prior approaches by: (i) avoiding
dependence on the model’s output vocabulary used in DLA, (ii) mitigating the potential confounding
effects of task performance in conventional probes, and (iii) eliminating the need for explicit feature
naming of SAEs. Section 4 describes our novel decoding paradigm, and Section 5 validates it in
a controlled setting, also demonstrating its effectiveness in debugging LLM failures. Appendix G
contrasts our VSA-based results with DLA. Section 5.3 applies our methodology to the Stanford
Question Answering Dataset (Rajpurkar et al., 2016), validating it in a question-answering setting.

Figure 1 shows our framework, from LLM token mbedding processing, and neural VSA encoder
training, to LLM answer explanation. The primary methodological contributions of this work are:

* Hyperdimensional probe: a novel paradigm for information decoding in LLMs via VSAs;

* Effective compression of LLM embeddings to probe a wide range of model’s residual stream
while reducing the overall computational cost of probing;

* Enhanced interpretability of neural representations and LLM’s erroneous outputs.

2 RELATED WORK

The latent representations of transformers, also known as residual stream, is a high-dimensional
linear vector space that aggregates the outputs of all hidden layers (Elhage et al., 2021).Probing
this additive space requires the identification of human-interpretable features across different lay-
ers (Ferrando et al., 2024). This investigation is grounded in the linear representation hypothesis,
which posits that latent features can be encoded as linear subspaces (Engels et al., 2024), formed and
accessed during the forward pass (Park et al., 2023). In recent years, three main paradigms (Ferrando
et al., 2024) have been proposed to extract information from this vector space.

Supervised Probes is a generic mapping paradigm that maps the model’s residual stream to task-
relevant features, measuring how much information about them is embedded (Tenney et al., 2019).
Previous works have shown that several features are linearly encoded in transformers, from syntac-
tical information (Herndndez Lépez et al., 2023; Diego Simon et al., 2024), to complex concepts
such as space-time coordinates (Gurnee & Tegmark, 2023) and truthfulness (Marks & Tegmark,
2023). However, their probing effectiveness is debated due to difficulties in separating information
decoding from probe learning (Ferrando et al., 2024; Hewitt & Liang, 2019).

Direct Logit Attribution (DLA) projects latent representations onto its output vocabulary through
the unbundling layer (Geva et al., 2022). This method, also known as Logit Lens (Belrose et al.,
2023), interprets outputs as predicted logits at a given point in the forward pass. DLA reveals
next-token predictions, assuming that all subsequent layers are bypassed and providing insight into
prediction dynamics (Jastrzebski et al., 2017). However, this approach faces key limitations in
uncovering features in the LLM vector space, as it relies solely on the next-token representation and
is constrained by the model’s token vocabulary. Thus, abstraction is limited, while additional vector
transformations might also be necessary (Belrose et al., 2023; Sakarvadia et al., 2023).



Under review as a conference paper at ICLR 2026

Sparse AutoEncoders (SAEs) use sparse dictionary learning (Olshausen & Field, 1997) to disen-
tangle overlapping subspaces created by superposition (Cunningham et al., 2023). An autoencoder
reconstructs the residual stream in an unsupervised fashion, enforcing sparsity in its learned rep-
resentations. Once trained, these serve as a proxy layer for analysis. SAE activated neurons are
interpreted via two strategies: identify representative tokens via DLA (Kissane et al., 2024; Dunef-
sky et al., 2024); clustering inputs by shared SAE neurons, followed by manual (Jing et al., 2025) or
automatic (Bricken et al., 2023; Lieberum et al., 2024) feature naming. While SAEs help address-
ing superposition, interpreting the resulting features is challenging. Feature naming plays a crucial
role in SAE-based analyses but remains problematic: DLA approaches restrict feature abstraction to
LLM tokens, whereas example-based approaches can be overly broad and heavily data-dependent.

Our Hyperdimensional Probe functions as a hybrid supervised probe, taking advantage of the or-
thogonality property of VSAs to combine SAEs’ ability to uncouple superposed subspaces with the
interpretability advantages offered by conventional probes. Our controlled vector space mimics the
proxy layer of SAEs without requiring a subsequent feature-naming step. Moreover, learning a vec-
tor transformation, rather than directly performing a downstream task, as in traditional probes, may
better isolate encoded information by reducing task performance confounds. Finally, our method
overcomes the key limitation of DLA-based analysis, its dependence on the model’s output vocab-
ulary, by supporting concept sets with unrestricted levels of abstraction, cardinality, and data types.
A recent study (Knittel et al., 2024) uses VSAs for the mechanistic interpretability of transformers
(GPT-2), showing layer-wise dynamics of neural weights can be seen as VSA-related circuits of
word embeddings, attention, and MLP outputs. In contrast, our work decodes the semantics of the
residual stream instead of examining the contributions of the model components to its construction.

3 BACKGROUND

Vector Symbolic Architectures (VSAs), also known as Hyperdimensional Computing, assume en-
tities or data structures can be represented as random points in a high-dimensional space. Owing
to the concentration of measure phenomenon (Ledoux, 2001; Kanerva, 2009), exponentially many
distinct concepts can be encoded as nearly orthogonal random vectors. A codebook ® maps a prede-
fined set IV of concepts to their hypervectors, while orthogonality and simple hypervector operations
allow composition into more complex concepts.

VSA codebook. We adopt the Multiply-Add-Permute architecture (MAP-Bipolar, MAP-B) from
VSAs (Schlegel et al., 2022; Gayler, 1998), using bipolar hypervectors in —1,1”. Dimensional-
ity D, typically 102-10%, depends on the number of concepts (Kanerva, 1988) and representation
complexity. MAP-B can theoretically encode 27 orthogonal, independent elements (Schlegel et al.,
2022). Its codebook ® € —1,1"<* P stores n. atomic concepts as bipolar random vectors, generated
deterministically from seeds to ensure orthogonality and independence. Each vector is associated
with a concept, and ® enables evaluation of representations by comparing them with known vectors.
Since MAP-B operates in the bipolar domain, cosine similarity is used (Schlegel et al., 2022).

Hypervector algebra. The hypervector algebra (Kanerva, 2009) relies on two operations: binding
and bundling, which support representing complex cognitive structures, such as textual propositions,
in a distributed, noise-tolerant manner (Gayler, 1998; Kanerva, 2009). Binding operation (®) en-
codes input features with their associated values. For example, it can associate concepts with con-
textual information, such as (USA ® dollar). The bundling operation (+), or superposition, creates
set of (contextualized) concepts by combining multiple concepts into one, such as (USA + Mexico).
The resulting bundled vector is by design similar to each of its constituents, enabling retrieval.
Binding is obtained via Hadamard product (element-wise) while bundling is element-wise sum. Po-
larization (sign) is typically required after bundling (Kleyko et al., 2020) to maintain the bipolar
domain. This process irreversibly blends the parts, diminishing their similarity to the originals in
proportion to their number. Conversely, unbinding (©) in VSAs recovers elemental vectors from a
binding operation by factoring out one vector via multiplication with its inverse (itself in MAP-B).

»
4 HYPERDIMENSIONAL PROBE A

This section presents our VSA-based paradigm for extracting human-interpretable information from
LLM latent representations. In Section 4.1, we introduce a synthetic corpus of diverse analogies,
providing a simple and controlled environment to validate our decoding method. Section 5.3 applies
our methodology in a QA setting, while Appendix H discusses other settings. Section 4.2 then
presents the construction of input representations using the hypervector algebra. We then illustrate



Under review as a conference paper at ICLR 2026

our three-stage pipeline: (a) processing LLM embeddings (Section 4.3, F' in Figure 1); (2) the neural
VSA encoder that maps embeddings onto our controlled proxy space, yielding VSA encodings
(Section 4.4, T'); and (3) the extraction of concepts from this proxy space (Section 4.5, I).

4.1 SYNTHETIC CORPUS

We build a textual dataset to evaluate the key components of our decoding paradigm in a simple,
controlled, and interpretable testbed. Using controlled input-completion tasks also allows us to focus
LLMs on concepts and their relationships, while testing inputs demanding diverse reasoning from
syntactical pattern recognition and key-value association to abstract inference.

Knowledge bases. This work focuses on analogies, textual inputs representing pairs of concepts
connected by the same type of factual, syntactic, or semantic relationship. We collect pairs of
analogies from two knowledge bases: Google analogy test set (Mikolov, 2013), and the Bigger
Analogy Test Set (BATS, (Gladkova et al., 2016)). These span 44 domains across five distinct
categories, covering a wide range of factual and linguistic relationships, including analogies related
to factual knowledge (e.g., a country’s currency), semantic relations (e.g., grammatical gender), and
morphological modifiers (e.g., verb+men). We also design mathematical analogies using three-digit
integers and basic operations such as doubling, cubing, division, and extraction of roots.

Textual analogies. After collecting these pairs, we generate 114,099 distinct textual examples,
denoted as S, by combining all possible domain pairings. Each training example is formatted as:
a; dp; = b]_ : b2 (1)
where a; and b; represent the keys of the two pairs, and a, and b, are their corresponding
values. For example, Denmark:krone = Mexico:peso for the countries currencies, and
queen:king = mother:father for the grammatical gender. Table 11 and Table 12 in Ap-
pendix M show the domains grouped by knowledge base and category, respectively. Some concepts
span multiple domains, such as Australia links to Canberra, English, and Australian.
These overlaps can help mitigate the confounding effect of memorizing key-value pairs. For our ex-
periments in Section 5, we further limit confounding effects by using the same pairs but generating
a set of textual inputs (S) with a verbose template: a; is to a, as b; is to b,. Con-
versely, for training (Section 4.4), we apply data augmentation strategies on S, such as key-value
swapping, effectively tripling the corpus size which results in 395,944 training inputs (Appendix M).

4.2 INPUT REPRESENTATIONS

This section describes the process of constructing VSA encodings for training. This procedure,
illustrated with our textual templates (Equation 1), generalizes to other templates (e.g., question-
answer in Section 5.3) or tasks (e.g., toxicity detection; Appendix H) since VSAs and hypervector
algebra can encode complex structures across diverse inputs.

Codebook construction. The codebook defines the set of all input features; in our case, the con-
textually relevant concept, and is later used to construct and query VSA encodings. In our controlled
setting, the codebook & (feature set) is constructed directly using all unique words included in the
corpus, such as: mexico — Qmerico € P, and krone — @grone € . Thus, we create a matrix
® € {—1,1}"*P using the torch-hd library (Heddes et al., 2023), where D is the VSA dimen-
sion and n. = 2,996 is the number of concepts/features. We set D = 4096 as an adequate hidden
dimension, given the cardinality of our codebook (= 10?), which remains well below the theoretical
capacity limit of the MAP-B architecture (Section 3). The average pairwise cosine similarity of the
concepts in the codebook is 0 = 0.02, confirming orthogonality (full distribution in Appendix J).

VSA encodings. With well-structured textual inputs, extracting input features and building their
VSA-based representation is straightforward. Scalability to other input types is addressed in Ap-
pendix H.1. For each training input s € S, we generate its encoding by exploiting its constructive
words (Equation 1), retrieving their corresponding hypervectors: {@q, , ®ays Py, Db, t C . To en-
code an input sentence, we then exploit hypervector operations: binding and bundling (Section 3).
Given that the input template represents two conceptual key—value pairs, we first bind each key to
its corresponding value, such as linking each country to its currency in Equation 2. The full text is
then encoded through bundling, producing a superposed set of contextualized concepts represented
as key—value associations. Ultimately, we polarize it, with the sign function, to maintain the bipolar
domain. The input encoding in VSA for a given sentence is then computed as:

Ys = (d)key O] (bvalue) + ((bkey O] ¢value) +...= <¢a1 ® ¢a2) + (¢b1 O) ¢b2) (2)
“_Denmark.:._krone.=.Mexico.:._peso” — ((bdenmark O] Qbkrone) + (Qbmexico O) ¢peso)

4



Under review as a conference paper at ICLR 2026

4.3 PROCESSING LLM EMBEDDINGS F'

The first stage of our pipeline involves feeding textual inputs to an autoregressive transformer model,
followed by obtaining and preprocessing its residual stream (£ in Figure 1). Using our corpus, we
prompt an LLM with an input sentence s € S, LLM (s). For each textual input, its final word (b2)
is removed beforehand as it represents the value of the second analogy, our target concept.

Caching token embeddings. Our probing goal is to inspect the complete internal state of a lan-
guage model prior to its next-token prediction, capturing all encoded concepts without assuming
beforehand the type of relationship with its prediction. To this end, we examine the residual stream
in the final token representation, focusing on the middle to last layers. Emerging evidence shows
that transformers encode next-token information in the final token due to their autoregressive na-
ture (Elhage et al., 2021; Olsson et al., 2022), refining it in later residual stream layers (Belrose
et al., 2023; Hernandez et al., 2023). Specifically, for an autoregressive language model with L
hidden layers, we consider the embeddings (with size d) of the last token (“:”) in the latter half, for
alll € [L/2,..., L], yielding a matrix in RZ/2%4,

However, considering such a wide range of layers presents a computational challenge, as prob-
ing a high-dimensional matrix can significantly increase the computational footprint of the prob-
ing pipeline. Further, adjacent layer-wise embeddings are highly correlated (0.9) as shown in Ap-
pendix O.1, likely encoding redundant numerical patterns, and thus similar information. Here, we
define representation redundancy as the approximate linear dependence among LLLM hidden layer
embeddings. Appendix O.2 shows that the LLM embedding space is roughly low-rank, with only a
few rows/layers (or their combinations) contribute meaningful structure.

Dimensionality reduction. To reduce the computational cost of our approach, we lower the input
dimensionality for our encoder by introducing two dimensionality-reduction steps: k-means cluster-
ing (Jain & Dubes, 1988), and sum pooling. Clustering reduces representation redundancy by group-
ing similar vector regions in LLM embedding space and computing centroids, accomplishing knowl-
edge distillation. To determine the optimal range for k, we adopt the silhouette score (Rousseeuw,
1987). A trade-off between reduction, granularity, and model variability emerges with 3—7 clusters
(Appendix O.3). We set £ = 5 to maintain the essential data structure while supporting effective
dimensionality reduction." We then apply sum pooling, which consists of summing all centroid
embeddings;”> merging group representatives (k-dimensional matrix) into a vector exploiting the ad-
ditivity property of LLM embeddings demonstrated in previous work (Bronzini et al., 2024). For
example, these reduction steps allows us to downsize the probed embedding space of OLMo-2:

33x5120 5120
R — R

Appendix O.5 presents an ablation showing that skipping these two compression steps increases the
encoder’s trainable parameters tenfold. In summary, the neural representation of a textual input from
a language model is processed through the ingestion procedure F', as summarized in Algorithm 1.

4.4 NEURAL VSA ENCODER T’

We train a supervised model to map token embeddings from an autoregressive transformer into VSA
encodings with a known representation (7" in Figure 1). We define a supervised regression model
M, a shallow feedforward neural network, to map the LLM vector space to bipolar hypervectors.
The model M is trained on the LLM-VSA dataset generated using the corpus S (Section 4.1), which
consists of paired LLM embeddings (es in Algorithm 1) and their corresponding VSA representa-
tions (ys in Equation 2). The model infers latent features from the unknown LLM vector space to
translate the encoded semantics into VSA representations with explicit and interpretable semantics.
We define the neural VSA encoder model M as a three-layer MLP with S55SM—71M parameters (de-
pending on the input embedding size d; see Appendix C), performing a non-linear transformation:

MRS {1, 13, e, =y, (3)

We use the hyperbolic tangent function (tanh) in the output layer for bipolar outputs and incor-
porate residual connections to enhance training stability and convergence. The training process
minimizes the Binary Cross-Entropy (BCE) error between the bipolar target hypervectors and the

! Appendix 0.4 shows that the clusters consistently group adjacent layers.
*Preliminary evidence suggests that directly summing all layers (up to 32) results in a noisier representation.



Under review as a conference paper at ICLR 2026

predictions. To ensure compatibility with such binary loss function, targets are temporarily con-
verted to binary based on their sign; and predictions are smoothly mapped to the range [0, 1] using
the sigmoid function. A Mean Squared Error (MSE) regularization term is added to the loss, with a
coefficient of 0.1.* Implementation details for the training process are reported in Appendix D.1.

Language models. We valide our methodology on embeddings from popular open-weight LLMs
available on the Hugging Face platform with 355M-109B parameters, experimenting with different
embedding sizes and layer counts. In particular, we test the latest Meta AI's Llama 4 Scout, (Al,
2025) a multi-modal mixture of 16 experts (MoE), Llama 3.1-8B (Grattafiori et al., 2024), Mi-
crosoft’s Phi-4 (Abdin et al., 2024), EleutherAI’s Pythia-1.4b (Biderman et al., 2023), AllenAI’s
OLMo-2-32B (OLMo et al., 2024), and OpenAl’s legacy GPT-2-medium (Radford et al., 2019).

Performance. The LLM-VSA dataset uses a random 70-15-15 split of S for training, validation,
and test sets. Since our setting can be interpreted both as a vector-based regression task and a multi-
label classification problem,* we evaluate our approach using two distinct metrics: cosine similarity
and multi-label binary accuracy. For binary accuracy, targets and predictions are binarized based
on sign. First, evaluating the cosine similarity between the predicted and target VSA encodings
yields a test-set average score of 0.89 (best LLM in Appendix D, Llama 3.1-8B), indicating strong
numerical alignment between our encoder’s outputs and the target encodings. Second, we obtain an
average binary accuracy of 0.94, which indicates robust classification accuracy after polarizing the
predictions with the sign function. This means that on average, the VSA encodings produced by
our trained model deviated from the targets by only 6% of the vector elements, a negligible error
given VSA’s large tolerance to noise. All tested models exhibit consistent performance;’ layer count
has no effect, whereas reducing the embedding dimension is found to be slightly detrimental. This
empirical evidence supports the effectiveness of our proposed methodology and the hypothesis that
LLM embeddings can be represented using fully distributed encodings such as MAP-B in VSAs.

4.5 PROBING VSA ENCODINGS [/

In the third, and experimental stage of our work (I in Figure 1, Section 5), we examine the VSA
encodings produced by our trained neural VSA encoder M, extracting the embedded concepts.
To retrieve the embedded atomic concepts, we use the unbinding operation from VSA algebra (@,
Section 3). This vector operation reverses binding, which in our case links a pair’s key with its
corresponding value, enabling one vector to be extracted from another. Since the generated VSA
encoding may encode either no or several concepts, we attempt to extract the target concept (b2) by
dynamically testing the unbinding operation with various candidates.

This concept-related flexibility represents the novelty and added value of VSA-based probing, al-
lowing us to query our proxy space without prior assumptions on the number of concepts. Conse-
quently, we distinguish between two scenarios: in the first, no unbinding operations are required
when the model encodes none or a single concept; in the second scenario, when multiple concepts
are embedded, we test the unbinding operation with different concepts to isolate a single one. For
example, unbinding a VSA encoding with the concept of Mexico and obtaining Peso suggests
that the probed encoding originally incorporated both the key and value of the target analogy pair:

LET s:=“Denmark:krone=Mexico:” +— “peso”
COMPUTE y, = M(F(s)) 4)
QUERY  ys @ Pmexico = (bpeso + noise
THEN y, =~ ((bmexico © ¢peso)

When probing an encoding (y, in Equation 4), we pick in-context concepts (@denmark> Pkrone> and
®mexico)>» and their combinations, as candidates for unbinding. The best candidate was chosen
by benchmarking the resulting concept after unbinding, against the in-context and target concepts
through cosine similarity. If no relevant match was found (si¢m < 0.1), no operation was applied.
In the experiments reported in Section 5, 80% of unbinding operations, averaged across all mod-
els, relied on the key of the target pair. In contrast, no operation was applied in 12% of the cases.
Appendix E shows the proportions of other candidates and highlights the variations among models.

3Empirical results demonstrated better performance than other coefficients tested, ranging from 0.01 to 1.
*VSA encodings can be viewed as vectors with D distinct labels, each assuming one of two possible values.
> Appendix D reports the training performance of our neural VSA encoder M for all of the six models.



Under review as a conference paper at ICLR 2026

5 EXPERIMENTS AND RESULTS

This section presents insights into experiments with our trained encoders. We first outline the exper-
imental setup in Section 5.1. We then report findings on LLM performance and concept extraction
using our hyperdimensional probe in Section 5.2. Appendix G contrasts our results with DLA,
showing inferior probing capabilities, likely due to its reliance on the next-token representation, and
thus surface-level features. Lastly, Section 5.3 extends our approach to the question-answering task.

5.1 EXPERIMENTAL SETUP

Data. We test our trained neural VSA encoders M on the set of textual inputs formatted using the
verbose template (S, Section 4.1). Thus, we validate our methodology using inputs with syntactic
structures that differ from those seen during the training stage. Therefore, we perform information
decoding from the vector representation of a different token, shifting from the colon token of the
training template (Equation 1) to the token to. This aims to further mitigate confounding effects
from probe’s task performance in relation to information decoding.

Metrics. Our experimental evaluation has a two-fold objective (Equation 4): we assess the per-
formance of LLMs in the next-token prediction, and our VSA-based probing method for retrieving
targets from their latent representations using precision@k. We measure the LLM’s performance
via: binary precision on the next-token prediction against the target word; softmax score of the most
likely next token and the target one; and rank of the target token on the ordered softmax scores. We
compute the precision of LLM predictions by considering the most likely next token based on soft-
max scores (next-token@ 1), and the top-5 most likely ones (next-token@5). To address scenarios
where the token generated by the LLM includes the initial part of the target word due to tokenization,
we introduce a value of 0.5 in the LLM’s precision metrics (see also Appendix A). For example, this
value is assigned if the model predicts the next token as ack for the target word acknowledge.
To evaluate the performance of our VSA-based probing approach, we assess the binary precision of
retrieving the target VSA concept from LLM latent representations via probing @ I, and probing@35.

5.2 EXTRACTING NEXT-TOKEN CONCEPTS

Figure 2 shows VSA-based probing for target concept retrieval, and LLM performance to complete
analogies with targets.

High variability in LLM performance. In an unexpected contrast, the largest model evaluated
(109B; Llama 4, Scout) exhibited the lowest precision@1 in the next-token prediction task (8%,
Figure 2), even underperforming the legacy GPT-2. Yet, its next-token@5 was comparable to others
(still the lowest), but ranked among the best in probing@1. Strong probing performance suggests
the final state encodes the target concept, but the model often fails to output it. This might be
caused by exogenous (e.g., prompt design) and endogenous factors (e.g., tokenization). As shown
in Appendix F.3, the model frequently predicted a space instead of the correct word, which still
often appeared in its top five predictions. This emphasizes variability introduced by tokenization
and prompt design, which might have greater impact on token-based probing methods such as DLA.

LLM Next Token VSA Probing
100%
e

89%
A
80% ‘B — — —
68% 69% 70%
¥ A v v LLMs
(g) 60% Llama 4
) GTP-2
i 48% 46% Pythia
O 20% v Llama 3.1
8 ’ Phi-4
e — OLMo-2
20%
8%
v
0%
Pr@l Pr@5 Pr@l Pr@5

Figure 2: LLM performance in completing the analogies with target words (left), and the effective-
ness of our decoding method in extracting the targets from LLM latent representations (right).

8 Appendix F displays the same results in a table, with statistical variability and two control tests.



Under review as a conference paper at ICLR 2026

Table 1: Concepts extracted by hyperdimensional probe. Key|Target indicates extraction of
the key (b1) and value (b2) of the target analogy; Key for only b;. Example refers to a; and ao, the
in-context example’s concepts; Context|Target for all concepts. Key Values shows concepts
linked in a different domain, Out-of—-context for those unrelated to input. NONE means no
concepts. On average, our probe captures concept—target combinations in about 80% of cases.
Extracted Concepts (%) GPT-2 Pythia Llama3.1 Phi-4 OLMo-2 Llama4, Scout AVERAGE

Key | Target 60.0 66.9 85.4 84.8 80.1 79.0 76.0 +9.4

NONE 21.9 16.7 6.9 7.6 8.5 11.5 122+54

Key 45 6.1 0.6 1.0 1.8 34 2920

Example 5.8 2.4 1.5 1.3 2.0 0.8 23+1.6

Context | Target 1.1 1.9 1.5 1.2 44 2.4 21+1.1

Key | Key Values 1.3 1.4 1.8 1.5 1.1 0.8 1.3+£03
Out-of-context 1.6 1.2 0.5 0.7 0.8 1.1 1.0+04
Example Value | Key Values 1.5 1.3 0.3 0.0 0.2 0.1 0.6 £0.6
Key Values | Target 0.4 0.1 0.3 0.4 0.1 0.1 02+0.1
Target 0.1 0.1 0.1 0.2 0.1 0.1 0.1+0.0

VSA probing exposes varying conceptual richness. Regarding the concepts extracted by our
hyperdimensional probe, we achieve an average probing@1 across all models equal to 83% (right
side of Figure 2, Appendix F), extracting the target concept with its key for most cases (60% for
GPT-2, 85% for Llama 3.1, Table 1). Notably, GPT-2 shows the highest percentage of cases where
no concepts are extracted (22%) and only the concepts from the in-context example (6%), ranking
second in extracting only the keys of the target concept (5%). This underscores its struggle with the
NLP task of completing analogies, even when it appears to grasp the context. On the other hand,
OLMo-2 has the highest proportion of instances in which our probing approach retrieves the target
concept alongside all in-context concepts (Context | Target, 4%), indicating its richer representation
in its final state for both the input context and next word. This latent richness is then reflected in its
performance on next-token prediction, achieving the highest next token@ 1 equal to 48% (Figure 2).
In cases where the target word was not among the top five predictions of Llama 4, nearly 50% of
the instances (Appendix L.1; 28% for OLMo-2 in Appendix L.2),” our probing method success-
fully extracted the target concept and its associated key in 70% of instances, while no concept was
retrieved in 18% of cases (26% for OLMo-2). Although the first outcome supports previous obser-
vations, the absence of extracted concepts merits a more granular analysis across analogy categories
(Table 12 in Appendix M). Our probe most frequently encounters conceptually-empty representa-
tions in mathematical analogies (88%, Appendix F.2, also for OLMo-2 comparison), followed by
semantic hierarchies (39%). Factual and morphological analogies show much lower rates, at 5.5%
and 1.1%, respectively. As elaborated in Appendix F.2, these differences likely stem from the type
of reasoning involved: linguistic analogies depend on syntactical patterns, factual and semantic re-
lations on key—value associations, and hierarchies or mathematical analogies on abstract inference.

5.3 FROM INPUT-COMPLETION TASKS TO QUESTION-ANSWERING

To further validate our proposed approach in real-world scenarios and beyond the controlled analogy
task explored previously, we apply our methodology to a question answering task, using the popular
SQuAD dataset (Rajpurkar et al., 2016).

This dataset evaluates extractive question answering —i.e. each answer is a text span within the input
context — through questions generated by crowdworkers over Wikipedia articles. It fits our concept-
focused probing objective, as its questions/answers map to concepts presented in the given context.
This elicits the language model to focus on those concepts, allowing us to benchmark the extracted
concepts against features derived from both questions and answers. We extract input features based
on lexical semantics, exploiting WordNet (Miller, 1995) and DBpedia (Lehmann et al., 2015) as
knowledge bases. The input representations (Section 4.2) are then created using bundling, such as:

“What was the name of the ship that Napoleon sent to the Black Sea? &)
Charlemagne” — (¢name + (bship + (bnapoleon + Gsend + ¢theBlackSea) + ¢chaxlemagne
We generate 693,886 training inputs Q by incrementally considering questions with their corre-
sponding features (see also Appendix I). Our trained encoder (Section 4.4) achieves a test-set cosine

similarity of 0.44, and a binary accuracy of 0.70 with Llama3.1. For our experiments, we consider
10,000 sampled questions Q, each now prefixed with its contextual text. We then probe the model’s

"We report the target word is absent from next token @k, including also tokens that represent its beginning.



Under review as a conference paper at ICLR 2026

% FEATURES OF THE QUESTION FEATURES OF THE ANSWER

B [ALL] l—_—@ [ALLI cm@-—_noo
i [WRONGH »—é—_—« wroNG]{  ——— I esssse00 ©
= :

i TALLI >+_—<E [ALLI r@-—— a0
£ wronGl{ ——— N ——— WRONG]{ e oo
w 00 02 04 06 08 1.0 g All data 00 02 04 06 08 10

Semantic similarity score I LLM error Semantic similarity score

subset (32%)

Figure 3: Concepts extracted before and after the LLM’s text generation, with respect to question
and answer features. Red denotes the subset of failure instances, while green the full sample O.

final state before and after the autoregressive text generation, and extract concepts encoded in VSA
encodings (Section 4.5) by comparing them directly with the codebook ®, as binding is not involved.
LLM performance on Q shows an average F1 score of 0.69 £ 0.38, exact match of 0.52 + 0.5, with
68% of outputs mentioning the target answers. On average, our probe extracts three concepts both
before and after the model’s text generation.

Observing concept drift. We evaluate semantic-based concept relevance by computing cosine
similarity between concept embeddings and question-answer features. The average similarity of
extracted concepts related to the question decreases after text generation: by 4.8% for the entire
sample and by 8.0% in the LLM error subset (32% of the sample), while no significant differ-
ences are observed prior to generation (Figure 3; left). For answer-related concepts, overall no
change is observed before and after text generation, but the LLM error subset shows a slight in-
crease (+3.2-3.5%; Figure 3, right). This suggests that LLM failures may stem from losing focus on
the question rather than from a lack of answer-related knowledge. This hypothesis is supported by a
weak positive Spearman correlation (0.2 with a p-value of 1e~%?; Appendix K) between LLM’s F1
score and the proportion of question-related concepts extracted after text generation. For example,
for the SQuAD query “What do laboratories try to produce hydrogen from?” (target answer: “solar
energy and water’), the model erroneously outputs “water and heat” (F1 = 0.57). Before the model’s
text generation, our proposed approach extracts the concepts ¢y, @produces Phydrogen (question) and
@solar> Pwater (answer); after generation, the question-related concept set reduced to @produce and the
answer set gained the concept @energy. While answer-related concepts refined, the model lost focus
on the subject hydrogen, drifting toward a generic notion of production and ultimately an error.

6 CONCLUSIONS

This work offers empirical evidence supporting the hypothesis that LLM embeddings can be ac-
curately represented using Vector Symbolic Architectures (VSAs), combining ideas from symbolic
representations and neural probing. Our Hyperdimensional probe is found to effectively extract
human-interpretable information from latent representations of LLLMs, as reported in Section 5.

Our novel decoding paradigm combines SAEs’ ability to disentangle superposed subspaces with
the interpretability of conventional probes, overcoming DLA’s vocabulary dependence and feature-
naming of SAE-based analysis. Although illustrated within a controlled testbed for input-
competition tasks, our approach readily extends to other experimental settings, such as the question-
answering scenario described in Section 5.3. Appendix H discusses further applications, including
bias and toxicity detection. Our probe reveals non-trivial insights into LLM representations, from
GPT-2’s context-related richness to the richer embeddings for linguistic analogies. Our VSA-based
probing paradigm is computationally efficient, with a lightweight probe that inspects a wide range
of the model’s residual stream at minimal memory cost (see also Appendix Q). It applies to any
autoregressive transformer, and its implementation works with any Hugging Face language models.

Additionally, the absence of theoretical limits in VSAs regarding the types of data, with the poten-
tiality of hyperdimensional algebra, enables decoding multimodal latent features from LLM vector
space. For example, the proof of concept in Appendix P shows VSA-based probing for a MNIST-
based mathematical analogy (LeCun et al., 2010) and a VSA encoding for a multimodal input from
the COCO dataset (Lin et al., 2014).

Limitations. The main limitation of our work (Appendix A) is its reliance on a predefined set of
concepts. While we applied several strategies to mitigate confounding effects in probe learning, such
as testing on syntactically different inputs, we could not measure their effectiveness. Appendix F.1
presents two control tests (Hewitt & Liang, 2019) to evaluate confounding effects on decoding.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The submission includes both the source code and our synthetic corpus, which will be made pub-
licly available upon acceptance. A README.md file is provided with the code, containing detailed
instructions to reproduce our methodology (Section 4) and experimental results (Section 5).

Section 4 presents our methodology, covering the entire pipeline from data creation (Section 4.1 and
Section 4.2) to the training process of our proposed method (Section 4.3 and Section 4.4). Additional
details of the training procedure are provided in Appendix D.1, while the overall model architecture
is shown in Appendix C. The ingestion algorithm for LLM embeddings described in Section 4.3 is
further illustrated in Appendix B. Finally, Appendix D.3 provides the Hugging Face links for all the
LLMs used in our work, and Appendix Q reports the computational workload of our methodology.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Meta AL. The Llama 4 herd: The beginning of a new era of natively multimodal Al innovation.
https://ai.meta.com/blog/llama-4-multimodal-intelligence, 2025.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens. arXiv preprint arXiv:2303.08112, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decom-
posing language models with dictionary learning. Transformer Circuits Thread, pp. 2, 2023.

Marco Bronzini, Carlo Nicolini, Bruno Lepri, Jacopo Staiano, and Andrea Passerini. Unveiling llms:
The evolution of latent representations in a dynamic knowledge graph. In First Conference on
Language Modeling,2024. URL https://openreview.net/forum?id=dWYRJT501w.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Pablo J Diego Simon, Stéphane d’ Ascoli, Emmanuel Chemla, Yair Lakretz, and Jean-Rémi King. A
polar coordinate system represents syntax in large language models. Advances in Neural Infor-
mation Processing Systems, 37:105375-105396, 2024.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable 1lm feature
circuits. arXiv preprint arXiv:2406.11944, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Joshua Engels, Isaac Liao, Eric ] Michaud, Wes Gurnee, and Max Tegmark. Not all language model
features are linear. arXiv e-prints, pp. arXiv—2405, 2024.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-Jussa. A primer on the inner
workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

10


https://openreview.net/forum?id=dWYRjT501w

Under review as a conference paper at ICLR 2026

E Paxon Frady, Spencer J Kent, Bruno A Olshausen, and Friedrich T Sommer. Resonator networks,
1: An efficient solution for factoring high-dimensional, distributed representations of data struc-
tures. Neural computation, 32(12):2311-2331, 2020.

R. W. Gayler. Multiplicative binding, representation operators & analogy. In D. Gentner, K. J.
Holyoak, and B. N. Kokinov (eds.), Advances in Analogy Research: Integration of Theory and
Data from the Cognitive, Computational, and Neural Sciences, pp. 1-4, 1998.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 30—45, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.3. URL
https://aclanthology.org/2022.emnlp-main.3/.

Anna Gladkova, Aleksandr Drozd, and Satoshi Matsuoka. Analogy-based detection of morphologi-
cal and semantic relations with word embeddings: what works and what doesn’t. In Proceedings
of the NAACL Student Research Workshop, pp. 8—15. ACL, 2016. doi: 10.18653/v1/N16-2002.

Gotelli, Nicholas J, and Werner Ulrich. Statistical challenges in null model analysis. Oikos, 121(2):
171-180, 2012.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint
arXiv:2310.02207, 2023.

Jeff Hawkins. A thousand brains: a new theory of intelligence. Basic Books, 2021.

Mike Heddes, Igor Nunes, Pere Vergés, Denis Kleyko, Danny Abraham, Tony Givargis, Alexandru
Nicolau, and Alexander Veidenbaum. Torchhd: An open source python library to support research

on hyperdimensional computing and vector symbolic architectures. Journal of Machine Learning
Research, 24(255):1-10, 2023.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas,
Yonatan Belinkov, and David Bau. Linearity of relation decoding in transformer language models.
arXiv preprint arXiv:2308.09124, 2023.

José Antonio Hernandez Lopez, Martin Weyssow, Jests Sanchez Cuadrado, and Houari Sahraoui.
Ast-probe: Recovering abstract syntax trees from hidden representations of pre-trained language
models. In Proceedings of the 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE *22, New York, NY, USA, 2023. Association for Computing Machin-
ery. ISBN 9781450394758. doi: 10.1145/3551349.3556900. URL https://doi.org/10.
1145/3551349.3556900.

Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebastian, and Abbas Rahimi. A neuro-vector-
symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence, 5

(4):363-375, 2023.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Kentaro
Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 2733-2743, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1275. URL
https://aclanthology.org/D19-1275/.

Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

Stanislaw Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. CoRR, abs/1710.04773, 2017. URL http:
//arxiv.org/abs/1710.04773.

11


https://aclanthology.org/2022.emnlp-main.3/
https://doi.org/10.1145/3551349.3556900
https://doi.org/10.1145/3551349.3556900
https://aclanthology.org/D19-1275/
http://arxiv.org/abs/1710.04773
http://arxiv.org/abs/1710.04773

Under review as a conference paper at ICLR 2026

Yi Jing, Zijun Yao, Lingxu Ran, Hongzhu Guo, Xiaozhi Wang, Lei Hou, and Juanzi Li. Sparse auto-
encoder interprets linguistic features in large language models. arXiv preprint arXiv:2502.20344,
2025.

Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed repre-
sentation with high-dimensional random vectors. Cognitive computation, 1:139-159, 2009.

Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda. In-
terpreting attention layer outputs with sparse autoencoders. arXiv preprint arXiv:2406.17759,
2024.

D. Kleyko, R. W. Gayler, and E. Osipov. Commentaries on “learning sensorimotor control with
neuromorphic sensors: Toward hyperdimensional active perception” [science robotics vol. 4 issue
30 (2019) 1-10]. arXiv:2003.11458, pp. 1-10, 2020.

Johannes Knittel, Tushaar Gangavarapu, Hendrik Strobelt, and Hanspeter Pfister. Gpt-2 through the
lens of vector symbolic architectures. arXiv preprint arXiv:2412.07947, 2024.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs, 2, 2010.

Michel Ledoux. The concentration of measure phenomenon. Number 89 in Mathematical Surveys
and Monographs. American Mathematical Soc., 2001.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Soren Auer, et al. Dbpedia—a large-
scale, multilingual knowledge base extracted from wikipedia. Semantic web, 6(2):167-195, 2015.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramdr, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
vision—ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, pro-
ceedings, part v 13, pp. 740-755. Springer, 2014.

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
model representations of true/false datasets. arXiv preprint arXiv:2310.06824, 2023.

Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 3781, 2013.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
3941, 1995.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311-3325, 1997.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Steven T Piantadosi, Dyana CY Muller, Joshua S Rule, Karthikeya Kaushik, Mark Gorenstein,
Elena R Leib, and Emily Sanford. Why concepts are (probably) vectors. Trends in Cognitive
Sciences, 2024.

12



Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
sis. Journal of computational and applied mathematics, 20:53-65, 1987.

Mansi Sakarvadia, Arham Khan, Aswathy Ajith, Daniel Grzenda, Nathaniel Hudson, André Bauer,
Kyle Chard, and Ian Foster. Attention lens: A tool for mechanistically interpreting the attention
head information retrieval mechanism. arXiv preprint arXiv:2310.16270, 2023.

K. Schlegel, P. Neubert, and P. Protzel. A comparison of vector symbolic architectures. Artificial
Intelligence Review, 55:4523-4555, 2022.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Liyi Zhang, Michael Y Li, and Thomas L Griffiths. What should embeddings embed? autoregressive
models represent latent generating distributions. arXiv preprint arXiv:2406.03707, 2024.

13



Under review as a conference paper at ICLR 2026

A LIMITATIONS

While we apply data augmentation and test on syntactically different inputs to mitigate confounding
on information decoding (Section 4.1 and Section 5.1), we could not measure the effectiveness of
these strategies.

Table 1, Table 8 and Table 9 report on the actual concepts identified by our probing method. The
label Key values denotes instances where the probe retrieves a key of an analogy pair with a
concept linked to it in a different domain (see Australia in Section 4.1). This outcome can be
viewed as an artifact of our probe, revealing the confounding influence of memorized key-value
associations. Nevertheless, such cases constitute only a small fraction, 2% of the 114,099 textual
inputs processed across all models, covering Key — Key Values, Example Value — Key Values,
and Key Values — Target shown in Table 1. To further investigate potential confounding effects
from probe learning, we introduce two control tests, as proposed in (Hewitt & Liang, 2019). Using
randomly-permuted input embeddings (es) as a null model (Gotelli et al., 2012), and applying the
unbinding operation on VSA encodings (ys) with concept pairs unrelated to inputs, respectively,
permuted and unrelated baseline in Appendix F.

In Section 5.1, we introduce the value of 0.5 in the precision metric for LLM’s next-token predic-
tion due to tokenization. While this approach is suitable for our needs, it may underestimate the
model’s performance, resulting in lower precision@k scores in next-token prediction. However, in
our experiments, only 8.6% of all instances fail in this scenario for the next token@ 1, considering
the averaged ratio across models (Llama 4: 0.7%, Pythia: 16.2%; see also Appendix L.1 and Ap-
pendix L.2). On the other hand, models’ tokenizers could introduce variability in language models
by themselves.

While our approach avoids dependence on the LLM’s vocabulary of DLA-based methods (Section 2)
due to the data-agnostic nature of VSAs, it still requires a predefined set of concepts. This set can
however be seen as an alphabet with no practical constraints on the cardinality, type and source of
its symbols.

B ALGORITHM TO PROCESS LLLM EMBEDDINGS AS DESCRIBED IN
SECTION 4.3

Algorithm 1: Ingestion procedure F'

Data: Textual sequence s € S
Result: Compressed model state for its next token prediction
begin

// Get the residual stream from the language model

H + LLM(s) € RLxTxd
// Retain embeddings of the last token from the bottom half of the layers
H* « H[L/2: L,—1];

// Bpply K-Means clustering

C « KMeansy_5(H*) € RExd;

// Sum pooling across the centroids
5 d.

es(—zk:lckER 5

return e,

14



Under review as a conference paper at ICLR 2026

C ARCHITECTURE OF OUR Hyperdimensional probe

Table 2: Configuration of the neural VSA encoder M for an input embedding dimension equal to d.

Component Input Dim Output Dim Note
Input Layer
Linear Layer d 4096 -
Normalization - - LayerNorm (4096)
Activation - - GELU
Residual Block 1
Linear Layer 4096 4096 GELU activation
Normalization - - LayerNorm (4096)
Dropout - - p=20.5
Residual Connection - - Identity
Residual Block 2
Linear Layer 4096 4096 GELU activation
Normalization - - LayerNorm (4096)
Dropout - - p=20.5
Residual Connection - - Identity
Output Layer
Normalization - - LayerNorm (4096)
Linear Layer 4096 4096 -
Activation - - Tanh
Trainable parameters with: d = 1024, 55M

d = 2048,59M

d = 4096, 67M

d=5120,71M

15



Under review as a conference paper at ICLR 2026

D TRAINING PERFORMANCE OF THE NEURAL VSA ENCODERS

Table 3: Training performance of our neural VSA encoder M on the test set. Order by model size.

Large Language Model

Cosine Binary
Name Parameters Er.nbed(!ing L.ayers from similarity accuracy
dimension residual stream

Llama 4, Scout, 17B-16E 109 B 5120 24 to 48 |25| 0.890 0.934
OLMo-2 32B 5120 32" to 64t |33 0.878 0.926
Phi 4 14 B 5120 20" to 40 |21] 0.881 0.930
Llama 3.1-8B 8B 4096 16" to 32n |17] 0.892 0.937
Pythia-1.4b 14B 2048 120 to 24 |13 0.861 0.916
GPT-2, medium 355 M 1024 12" to 24 |13 0.865 0.920
AVERAGE 0.878 0.927

+0.01 +0.01

D.1 TRAINING DETAILS

The neural VSA encoder M was trained for 421 epochs on average via PyTorch Lighting,® using
early stopping (patient set at 100 epochs) and a batch size of 32. The optimal learning rate was
automatically determined using the learning rate finder provided by the aforementioned library, and
was approximately set to 3e > on average. We use AdamW as the optimizer (weight decay of 1le=%),
applying a learning rate schedule based on Cosine Annealing with Warm Restarts, starting from the
100th epoch and doubling the restart period thereafter. To adapt the batch size after LR restarts, we
employed a Gradient Accumulation Scheduler: the effective batch size was doubled at the 110th
epoch, quadrupled at the 310th, and increased eightfold at the 410th epoch. During training, the
model’s outputs are dynamically binarized using the sigmoid function to ensure compatibility with
the loss function (Section 4.4). This approach demonstrated better empirical performance than linear
min-max normalization.

D.2 CONCEPT OF A NEURAL VSA ENCODER

_Textual inputs € S

! -
LLM

F(s) = es MR — {—1,1}P VSA encoding (ys)
Ingestion algorithm - T

Proxy space

Figure 4: The regression model that maps the neural representations into a controlled vector space.

D.3 HUGGING FACE REPOSITORIES FOR THE CONSIDERED LLMS

Meta AI's Llama 4, Scout, huggingface.co/meta-llama/Llama-4-Scout-17B-16E
Meta Al’s Llama 3.1, huggingface.co/meta-llama/L.lama-3.1-8B

Microsoft’s Phi-4, huggingface.co/microsoft/phi-4

EleutherAI’s Pythia, huggingface.co/eleutherai/pythia-1.4b

AllenAI’s OLMo-2, huggingface.co/allenai/OLMo-2-0325-32B

OpenAI’'s GPT-2, huggingface.co/openai-community/gpt2-medium

AN

8lightning.ai/docs/pytorch/stable

16


https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/microsoft/phi-4
https://huggingface.co/eleutherai/pythia-1.4b
https://huggingface.co/allenai/OLMo-2-0325-32B
https://huggingface.co/openai-community/gpt2-medium
https://lightning.ai/docs/pytorch/stable

Under review as a conference paper at ICLR 2026

E UNBINDING STAGE FROM SECTION 4.5

Table 4: Unbinding stage: Proportions of the best unbinding concepts used for extracting concepts
from VSA encodings across different models, with overall mean and standard deviation. Key refers
to cases where the candidate concept corresponds to the key of the target pair (b1), while NONE
indicates that no unbinding operations were applied to the probed VSA encoding. Example denotes
a concept where the key (a1) and value (as) from the in-context example were pre-bound. Lastly,
Context represents a scenario where the in-context example (a1, az) was pre-bound together with
the key of the target pair (b1). On the other hand, Greedy means using a concept candidate from the
vocabulary, rather than picking it among those of the input. The table has been trimmed to highlight
the relevant and common items across the models. We consider the first four strategies to be the
most relevant, as they account for 97% of all unbinding operations across models.

GPT-2 Pythia OLMo-2 Phi-4 Llama3.1 AVERAGE

Concept for unbinding (%) Llama 4, Scout

Key 65.9 744 83.2 83.2 874 87.9 80.3+7.8

NONE 22.0 16.9 11.6 8.6 7.7 7.0 123+£54
Example Key 6.0 2.6 1.0 2.1 1.5 1.7 25+1.7
Context 1.2 2.0 2.6 4.5 1.3 1.5 22+12
Greedy 2.1 1.9 1.3 0.9 1.2 0.9 1.4£0.5
Example Value 1.6 1.5 1.0 0.4 0.7 0.5 09+0.5
Cleaned Example Key 0.2 0.5 0.0 0.1 0.2 0.1 0.2+0.2
Cleaned Example Value 0.9 0.1 0.0 0.1 0.1 0.1 02+0.3
Cleaned Key 0.0 0.0 0.0 0.0 0.0 0.1 0.0+0.0
Cleaned Original 0.0 0.0 0.0 0.0 0.0 0.0 0.0+0.0
Example 0.0 0.0 0.0 0.0 0.0 0.0 0.0£0.0
Example Value & Key 0.0 0.0 0.0 0.0 0.0 0.0 0.0£0.0
Example Key & Key 0.0 0.0 0.0 0.0 0.0 0.0 0.0+0.0

F EXPERIMENTAL RESULTS

Table 5: Experimental results on the LLM’s next-token prediction, along with our probing method
for retrieving the target concept from model’s latent representations. The model are ordered based
on precision@1 for next-token prediction, and standard deviation is reported for each. To control
for randomness, we also introduce two control tests using Llama 3.1-8B: a comparison against a
null model with randomly-permuted input embeddings (e, permuted baseline), and extraction of
concept pairs unrelated to inputs (ys, unrelated baseline).

Next Token Prediction

VSA-based Probing

MODEL
Precison@1 Precison@5 Precison@1 Precison@5
Permuted baseline - - 0.080 +0.27 0.103 +0.30
Unrelated baseline - - 0.099 +£0.30 0.105 +0.31
Llama 4 Scout, 17B-16E  0.077 £ 0.26 0.463 +£0.48 0.866 &=0.34 0.875 +0.33
GPT-2, medium 0227 £039 0471 £046 0.692+046 0.702 £ 0.46
Pythia-1.4b 0288 =041 0.541+044 0.778 £0.42 0.790 +0.41
Llama 3.1-8B 0.309 =044 0490+ 047 0.891 £0.31 0.908 & 0.29
Phi 4 0478 £048 0.683 043 0.887 £0.32 0.904 £ 0.30
OLMo-2 0.482 048 0.656+0.44 0.879 +£0.33 0.890 4 0.31
AVERAGE 03104041 0.551+045 0.832+£0.35 0.845+0.33

F.1 VALIDATION STRATEGY

To assess the effectiveness of our probe, we conduct two control tests (see Table 5) as proposed in

“Designing and interpreting probes with control tasks” by Hewitt & Liang (2019):

1. Permuted Baseline: We compared our outputs against a null model by inputting the trained

probe with randomly permuted LLM embeddings;

17



Under review as a conference paper at ICLR 2026

2. Unrelated Baseline: We attempt to extract concepts that are unrelated to the input using
VSA-based probing.

Both tests yielded very low precision probing scores, reinforcing the effectiveness of our method.
These results show that:

* Applying our VSA-based probing (see Equation 4) using concepts irrelevant to input texts
results in meaningless outputs;

* Corrupted or nonsensical input embeddings also produce poor results.

That said, it is crucial to recognize a fundamental limitation of all probing approaches: by definition,
the human-interpretable information encoded in LLM embeddings is not explicitly known. Conse-
quently, no probing method can provide absolute certainty in decoding such information. To address
this, we further validated our method by evaluating the trained probes on textual inputs distinct from
those used during training, thereby reinforcing the reliability of our information decoding approach.

F.2 DISTRIBUTION OF INSTANCES WITH NO CONCEPTS EXTRACTED

We examine probe performance across different LLM input types, defining success and failure by
the presence or absence of concepts extracted by VSA probing. Table 6 displays the distribution
of instances with no concept extracted grouped by input categories. While we observe model-wise
variability, this preliminary analysis shows a common pattern in representation blankness.

1. Linguistic analogies yield the lowest rate of missing concept extraction (1-1.8%), suggest-
ing richer LLM representations, likely due to reliance on all concepts to capture implicit
syntactic patterns.

2. Factual knowledge and semantic relations show slightly higher but still low blank rates
(5.3-7%). Since these analogies rely on key—value associations, blanks may reflect missing
associations in the model.

3. Semantic hierarchies (34.8%) and mathematical analogies (89.5%) yield the highest
blank rates. Both require more abstract reasoning, but the large gap in mathematics likely
stems from the rarity of analogical tasks with numbers, compared to equation solving or
standard math problems more common in training data.

Table 6: Analogies by Area (%) for the subset of instances with no retrieved concepts for Llama
4 and OLMo2, mentioned in Section 5.2. OLMo-2 shows richer embeddings than Llama 4, with
lower proportions of instances with conceptually-blank representations for most of the areas. Llama
4 slightly outperform OLMo2 in mathematical and grammatical analogies.

Llama4  OLMo2

Area (docs, %) (docs, %) AVG Sample Domain
Mathematics 87.8 91.1 89.5 80 is to 160 as 98 is to math double
Semantic Hierarchies 38.8 30.8 348 limousine is to car as monorail is to hyponyms
Semantic Relations 10.0 39 70 Croatia is to Croatian as Switzerland is to nationality adjective
Factual Knowledge 5.5 5.1 53 euclid is to Greek as galilei is to name nationality
Verbal & Grammatical Forms 14 2.1 1.9 seeing is to saw as describing is to past tense
Morphological Modifiers 1.1 0.8 1.0 agree 1s to agreement as excite is to verb+ment

F.3 DIAGNOSING ERRONEOUS ANSWERS FROM LLAMA 4

Llama 4 most frequently generated a white space token for our corpus S, accounting for 76% of
its outputs, considerably higher than the 8% average observed in the other models (30% for Llama
3.1). Its next most common tokens were: ? (9%), what (6%) and x (0.7%). The target token
had a median rank of 5, with its SoftMax score trailing the top-1 token by a median difference of
0.85 (Appendix L.1), which starkly contrasts other models with 0.05. Thus, the model confidently
predicted a space, with the target word often within its top five predictions. These insights, and the
strong performance of our hyperdimensinal probe (probing@1 = 87%), suggest issues in handling
the syntactical structure of our corpus rather than lack of analogical reasoning. Possibly influenced
by its tokenizer (see space-token frequency in the other Llama), which emphasizes prompt engineer-
ing importance and variability caused by models’ tokenizers. This may be further worsened by the
model’s multimodality and the complexity of its MoE architecture.

18



Under review as a conference paper at ICLR 2026

G EXPERIMENTAL COMPARISON

We compare our VSA-based results to those yieled by the Direct Logit Attribution (DLA) technique;
because, unlike SAEs, it requires no extra steps such as feature-naming, making it the most direct
and unambiguous comparison for our approach.

Our neural VSA encoder (Section 4.4) does qualify as a supervised probe, as it is trained to
map LLM internal representations (i.e., residual stream activations) into interpretable, human-
understandable features (i.e., VSA encodings). Supervised probes are typically designed for specific
experimental goals or target features, ranging from syntactic structure, as in “A Polar Coordinate
System Represents Syntax in Large Language Models” (Diego Simon et al., 2024); to real-world
knowledge, as in “Language Models Represent Space and Time” (Gurnee & Tegmark, 2023); and
to abstract semantics, as in “The Geometry of Truth” (Marks & Tegmark, 2023). Our probe is
specifically designed around VSA principles, so direct comparisons with non-VSA probes would
require fundamentally different approaches not grounded in VSAs.

While our controlled vector space (VSA encodings) parallels the SAE proxy layer, our approach
uses a top-down strategy by querying it with predefined concepts (Equation 4), whereas SAEs rely
on a bottom-up process that names all triggered features post hoc. This bottom-up approach reveals
an unbounded set of latent features without relevance filtering, requiring exhaustive feature naming
and additional filtering to isolate those aligned with our bounded input-output concept framework.
In addition, while SAEs typically target a single layer, our probing approach examines nearly the
entire residual stream simultaneously, complicating direct and precise comparisons. This manual
intervention involved in SAE-based methods, from feature naming to filtering, prevent them from
being fully automated, and directly comparable to our supervised approach. By contrast, DLA out-
puts a single, unique and unambiguous feature (token) constrained by the model’s output vocabulary,
enabling a direct comparison through a fuzzy token-to-concept matching with our concept set.

In summary, DLA is the most direct comparison, as SAE comparisons require additional steps, mak-
ing them indirect and ambiguous, and supervised probes reflect only a generic mapping paradigm.

G.1 DLA-BASED EXPERIMENTAL RESULTS

To validate our results, we apply DLA to all models using S, as it allows direct baseline without
extra steps such as feature naming or filtering required in SAE analysis. See Appendix G for details.

We adopt simple, fuzzy token-to-concept matching approach with our concept set (e.g., pes —
peso), and consider projected next-token predictions (Appendix G.3) from the model’s middle to
last layers of the last token, as VSA probing. DLA produces no concepts in nearly 30% of analogies
on average (see NONE in Table 7; +17% compared to VSA, Table 1), while yielding the target with
its key in 26% of the cases (-50%). In instances without concepts from DLA, our VSA-based probe
extracts, on average, the key-target pair in 57% of all analogies (Table 8), while returning none
for 28%. For instance, for the analogy king is to queen as son is to+~— daughter,
using OLMo-2, our probe extracts the key-target concepts (son and daughter), while DLA pro-
duces no concepts. The model predicts the next token prediction as ? with a softmax score of
0.06, followed by father (0.05); the target word has a rank of 37. Focusing on next-token rep-
resentations, and thus capturing surface-level features, DLA exhibits inferior probing capabilities
compared to ours, which compromise subsequent interpretability analyses of LLM embeddings. On
the other hand, we observe substantial variance within this subset during VSA probing. Across mod-
els (Table 8), our probe fails to retrieve any concepts in 43% of cases for Llama 4, compared to only
14% for Llama 3.1. GPT-2 confirms greater representativeness for the in-context example. There is
also variation across analogy categories in this subset (Table 9): for OLMo-2, linguistic analogies
show the highest retrieval rates for Context | Target (7.4% and 4.4%), whereas mathematical
analogies shows nearly no concept retrieval (91%), confirming common blank representations. Ap-
pendix G.2 shows that, in cases where VSA fails, also DLA frequently yields no concepts rather
than other relevant concepts.

19



Under review as a conference paper at ICLR 2026

Table 7: Concepts extracted using the DLA probing technique on the full corpus S with all LLMs.
Likewise in our VSA-based probing, we focus on the same middle-to-bottom range of model’s
hidden layers of the last token. The table highlights the key common items across models, with the
first six cases covering over 95% of all extracted concepts.

Extracted Concepts (docs, %) GPT-2 Pythia Llama4, Scout OLMo-2 Phi-4 Llama3.1 AVERAGE A VSA

NONE 33.9 32.8 154 14.6 33.1 47.4 295+ 114 +17.3

Target 15.0 18.0 36.7 29.0 34.4 22.5 259 £ 8.1 +25.8

Key | Target 12.6 19.3 384 38.5 22.7 22.1 25.6 £9.7 -50.4

Key 9.7 10.4 6.3 104 6.0 4.5 79+24 +5.0

Example Value 12.8 5.7 0.3 0.7 0.9 0.5 35+4.6 +3.5
Example 9.0 5.3 0.3 1.7 1.0 0.5 3.0+32 +0.7
Example Value | Target 1.0 2.1 0.7 0.6 0.3 0.9 0.9 +£ 0.6 +0.9
Example Key 3.0 1.5 0.1 0.2 0.1 0.1 08+ 1.1 +0.7
Context | Target 0.6 0.3 0.5 1.5 0.3 0.4 0.6 +0.4 -1.5

Table 8: Concepts extracted though VSA-based probing when DLA yields no concepts. The

table highlights VSA can also capture model’s variability (e.g., in-context concepts, target concepts).

The table highlights key shared items across models, covering nearly 98% of all extracted concepts.
GPT-2 Pythia Llama3.1 Phi-4 OLMo-2 Llamad4,Scout AVERAGE

DLA failures (docs, %) 339 328 47.4 33.1 14.6 15.4 295+114
Concepts extracted by VSA (docs, %)

Key | Target 535 56.5 76.6 70.5 445 42.6 574+ 125
NONE 26.8 243 13.7 18.6 41.0 43.2 27.9+10.9

Example 6.8 3.0 2.1 2.1 34 2.0 32+1.7

Key 52 7.3 0.7 0.9 1.6 3.0 3.1+24

Out-of-context 2.0 1.8 1.1 1.9 3.8 4.5 25+12

Key | Pair Values 1.8 2.1 2.5 3.2 24 1.8 23+£05

Context | Target 0.7 1.2 1.1 0.7 1.9 1.4 12+04

Target 0.1 0.1 0.2 0.0 0.1 0.0 0.1£0.1

Table 9: Percentages of extracted factors by analogy category considering the subset of instances
when the DLA yields no concept for OLMo-2.

Extracted Morphological Verbal & Factual Semantic Semantic
concepts (docs, Modifi Grammatical Knowled Relati Mathematics . " e AVERAGE
%) odifiers Forms nowledge elations ierarchies
0
Key | Target 90.3 834 70.1 79.4 0.0 41.5 60.8 £ 30.3
NONE 1.6 2.7 14.3 1.7 91.1 21.1 22.1+£31.1
Example 0.7 0.7 4.7 8.5 0.0 15.0 49+5.1
Key 1.6 2.7 3.8 1.4 0.0 51 24+1.7
Key | Pair Values 1.3 0.9 0.0 5.1 0.0 11.6 32442
Context | Target 44 74 0.8 1.6 0.0 0.6 25+26
Out-of-Context 0.2 0.6 1.3 0.0 8.8 0.9 1.9+£29
Context 0.0 0.3 0.1 0.0 0.0 0.3 0.1£0.1

20



Under review as a conference paper at ICLR 2026

G.2 CONCEPTS EXTRACTED BY DLA WHEN VSA YIELDS NO CONCEPTS

Table 10: Concepts extracted though DLA-based probing when VSA yields no concepts. The table
highlights DLA also extract no concepts in the majority of the instances (59 4 15 %), highlighting
high variability among models.

Extracted concepts (docs,%) GPT-2 Pythia Llama3 Phi-4 OLMo-2 Llama4 | AVERAGE

None 40.9 46.5 83.1 72.7 559 539 58.8 £14.8
Target 8.1 9.0 53 15.7 14.3 23.3 12.6 + 6.4
Key 7.5 11.7 3.4 43 132 9.1 8.2+3.7
Key | Target 6.9 8.7 5.7 3.6 11.8 11.9 8.1+3.3
Example Value 17.9 11.1 1.3 1.0 1.3 0.6 5.5£6.7
Example 12.1 6.6 04 22 1.7 0.1 39+43
Example Key 33 2.7 0.1 0.1 0.2 0.2 1.1£1.2
Example Value | Target 1.0 1.7 0.1 0.0 0.2 0.2 0.5+0.7
Example Value | Key 1.0 0.6 0.1 0.0 0.4 0.3 0.4+04
Example Key | Key 0.3 0.4 0.1 0.0 0.1 0.1 0.2+£0.2
Example Value | Key | Target 0.3 0.3 0.0 0.0 0.3 0.2 0.2+0.1
Context | Target 0.3 0.2 0.3 0.2 0.4 0.1 0.3£0.1
Example Key | Target 0.2 0.1 0.0 0.0 0.0 0.0 0.1£0.1
Target | Example 0.1 0.1 0.0 0.0 0.1 0.0 0.1+0.1

G.3 RAW RESULTS OBTAINED THOUGH THE DL A PROBING TECHNIQUE

32 Jsmall kim ratio Twig personali ed opposite opposite
33 [small Graphic ratio Twig personali ed opposite opposite
34 Jsmall pte ratio synonym personali ed opp opposite
35 [small pte ratio synonym personali ed opposite opposite
36 Jsmall minded ratio object vs ed relaxed synonym
37 Jsmall pte ratio dood ism ed ridden glam
38 Jsmall aan ratio dood vs ed relaxed glam
39 fsmall mie ratio dood vs ed to hello
40 Jsmall SMALL ratio dood vs ed culturall Jas
41 Jsmall plevel ratio underst vs ed to synonym
42 Jsmall plevel ratio ratio ism ed to /=
43 Jsmall SMALL ratio ratio unary ed lis 1= 1.0
44 Jsmall SMALL ratio ratio unary ed lis [from
45 Jsmall SMALL ratio /= unary ed lis /= 0.8
46 lis SMALL scale /= ordinary ed Jis /=
L otope SMALL seale SMALL ordinary ed Jis intro x B-06
g 48 otope plevel scale SMALL ordinary ed Iis intro E
R Ibig plevel seale SMALL ordinary ed Jis intro ‘% -0.4
50 otope plevel scale SMALL ordinary ed lis intro n
51 otope plevel scale smallest ordinary ed compared intro ‘ -0.2
52 otope plevel too SMALL ordinary ed to
53 otope plevel too big ordinary ed to ) -0.0
54 otope SMALL for big. ext
55 otope SMALL for big ext
56 otope ensure for big o to
57 otope ensure for big
58 ompe
59 otop use
60 b
61 otope use extrav
62 ( use for
63 make ert
64 5 the be . big
6&%\ o © & ® & & ¢ ®
¢ TARGET
Token INTROVERT

Figure 5: Comprehensive raw outputs obtained though DLA on OLMo-2 for a sampled analogy.

21



Under review as a conference paper at ICLR 2026

H APPLICABILITY TO OTHER DOMAINS

H.1 GENERALIZATION OF INPUT REPRESENTATION

VSA representations are automatically generated from input features, with their construction guided
by the probing objective and the target latent features. While our work focuses on textual inputs
with well-defined semantics, allowing straightforward extraction of input features (i.e., words), the
underlying principle is flexible and generalizable. Equation 2 illustrates the creation of input repre-
sentations via binding and bundling operations for our specific input template and downstream task.
The hyperdimensional algebra underlying VSA allows this approach to generalize to other textual
formats, NLP tasks, and even multi-modal data (see appendix P).

Scalability challenges depend largely on the nature of the input features. For tasks such as toxicity
detection, expert-labeled data or specialized feature extraction pipelines may be required. For ex-
ample, mapping the phrase “You are a pathetic excuse for a human just like the rest of your kind”
to a conceptual form such as (Payack @ Pinsutt) + (Pavak © Gidentity) requires human expertise. Once
features are extracted, however, constructing VSA encodings is automatic, efficient, and scalable.
VSA probing can then uncover encoded concepts in the LLM vector space, for instance:

Ys © ¢attack = ¢idemity -+ noise

In contrast, tasks based on syntactic structures offer more scalable input extraction. For example, the
sentence “The city of Turin is in Italy” can be processed with conventional techniques such as POS
tagging and Semantic Role Labeling (SRL). A VSA encoding can then be automatically created:

(PNOUN © Preity) + (PPROPN © PTurin) + (PVERB © Pbe) + (PprROPN © Prtaly)

H.2 APPLICABILITY TO OTHER DOWNSTREAM TASKS

Although we demonstrate VSA-based probing using analogy-competition tasks, the methodology is
generalizable to other experimental settings. The analogy-based dataset was chosen to:

 provide a simple, controlled, and interpretable evaluation environment;
* elicit LLMs to focus on concepts and their inherent relationships;

* probe the LLM vector space with inputs spanning a spectrum of reasoning tasks.

Thanks to the flexibility of VSAs and hypervector algebra, VSA-based probing can be applied to a
wide variety of experimental settings with different:

1. Downstream tasks. Our decoding paradigm can be used for linguistic feature extraction,
toxicity detection, or bias classification;

2. Textual templates. For example, in question-answering setting, an input text in such as
“Who wrote the play Romeo and Juliet?” can be encoded as

(¢task ® ¢questian) + ((brelation ® ¢written3y) + ((bplay © (bRameo&Juliet)

allowing the VSA to query LLM representations and reveal which concepts are strongly
represented or linked to the predicted answer;

3. Modalities. As discussed in Appendix P, inputs combining text with other modalities could
also be encoded and probed via VSAs.

VSA-based probing thus provides a unified, flexible framework for examining how LLMs encode
and relate abstract input features, from syntactic structures to high-level concepts such as gender
bias or toxic language.

22



Under review as a conference paper at ICLR 2026

I QUESTION-ANSWERING SETTING FROM SECTION 5.3

We generate 693,886 training examples Q from the SQuAD dataset using an augmenting strategy
by incrementally considering textual questions with their corresponding features:

(A1) “What was the name” — Pname

(A2) “What was the name of the ship” — @name + Pship

(A3) “...7 = ...

(A;,—1) “What was the name of the ship that Napoleon sentto the Black Sea?’ — dname

= ¢name =+ ¢ship + ¢napoleon + ¢send =+ thheBlackSea
(A;) “What was the name of the ship that Napoleon sentto the Black Sea?”
Charlemagne” (d)name + ¢ship + ¢napole0n + ¢send + ¢theBlackSea) + ¢charlemagne

For our experiments, we generate another corpus Q including also the contextual text (Wikipedia
article) provided for each SQuAD’s items:
“Napoleon III responded with a show of force . . . by the Greek Orthodox Church.
Q: What was the name of the ship that Napoleon sent to the Black Sea? (6)
A (< words):”

Lastly, we apply our entire pipeline by probing the final state of a language model at the last token
(colon) and extracting concepts through comparison with the codebook ®. We analyze the model’s
internal state across the text generation process, considering the residual stream at initialization
(H[seq,)) and after the autoregressive generation of ¢ tokens (H[seq,]).

J COSINE SIMILARITIES AMONG THE ITEMS OF THE VSA CODEBOOK

Cosine Similarity Distribution

—0.080% —0.060% —0.040% —0.020% 0.000% 0.020% 0.040%
Cosine Similarity

Figure 6: Distribution of pair-wise cosine similarities among the items of the codebook.

23



Under review as a conference paper at ICLR 2026

K SPEARMAN CORRELATION FOR THE QA-RELATED EXPERIMENTS

target length - 0.1-0.2-0.3-0.4-0.0-0.2-0.0-0.1 0.0 0.2 -0.1-0.2 0.3 0.3 0.4
vsa sim before items 0.1 -0.1-0.1-0.1-0.1 0.1 ﬂ-o.z 0.4 0.0 0.1 0.1 0.3 0.1 0.1

-0.1

0.1

lim 1 --0.2-0.1 m-o.o 0201 0.1-0.0-02-0.002-0.1-0.0-010.1 14
Im em --0,3-0.1m [470.002 0.0 0.100-02-0.002-01-0.1-0.2 0.1
IIm mentioned in answer--0.4-0.lm -0.0 0.1 0.0 0.0 0.0 -0.1-0.0 0.1 -0.1-0.1-0.2 0.0

extracted before question --0.0-0.1-0.0-0.0-0.0 0.4 0.1 -o.1w-o.3 03010101

extracted after question --0.2 0.1 0.2 0.2 0.1 0.4 -0.1 0.2 -O.SE 0.3 m 0.0 -0.0-0.1 0.2

extracted before answer --0.0M 0.1 0.0 0.0 0.1-0.1 0.3-0.4-0.0-0.1-0.1-0.2-0.1-0.1-0.1
extracted after answer --0.1-0.2 0.1 0.1 0.0 -0.1 0.2 0.3 -0.0W-O.I-O.I-0.1-0.2-0.1-0.3 0.0-
extracted before other - 0.0 0.4 -0.0-0.0 0.0 N-O.S-OA-0.0 0.3 m-O.Z-OAo-O.l-OAo-O.Z

extracted after other - 0.2 0.0 -042-0.2-0.1-0.3m-0.0m 03  -0.2-0.50.0 0.0 0.1

-0.1

0.3 0.5 -

Correlation Coefficient

semantic extracted before question --0.1 0.1 -0.0-0.0-0.0()74 0.3 -0.1-0.1005-02 0.5 0.3 0.1 0.1 [!11] 051
05

semantic extracted after question --0.2 0.1 0.2 0.2 0.1 0.3 m-0.1-0.1-0.2 -0.5 0.5 0.1 0.3 0.0

semantic extracted before answer - 0.3 0.3 -0.1-0.1-0.1 0.1 0.0 -0.2-0.1-0.0 0.0 0.3 0.1 mi

semantic extracted after answer - 0.3 0.1 -0.0-0.1-0.1 0.1 -0.0-0.1-0.2-0.1 0.0 0.1 0.3 m 0.5
semantic question answer overlap -0.4 0.1 -0.1-0.2-0.2 0.1 -0.1-0.1-0.1-0.0 0.1 0.1 0.0
0.10.10.0 0302 -0.1-043-0.2-0.1m 05

o
”

semantic before after overlap --0.1

o
'S
o
w
o
-

semantic extracted after answer - ¢

target length -
vsa sim before items - £
IIm f1 -
llm em -
IIm mentioned in answer -
extracted before question -
extracted after question -
extracted before answer -
extracted after answer -
extracted before other -
extracted after other -
semantic extracted before question
semantic extracted after question
semantic extracted before answer - 3
semantic question answer overlap - :

Figure 7: Spearman correlation coefficients computed on

o H )

vea sim before tems- 1009 | 1007 1e14

im mentioned in answer -RUSSRN IR Y

extracted before answer -JRTREY

extracted after answer -JRERERIIER

extracted beore otner -JEIREY

extracted after other IR

semantic extracted before question.

semantic extracted after question RIS

semantic extracted before answer RIRES

semantic extracted after answer -RCERINIES

semantic question answer overlap

semantic before aftr overiap -JRRS

target fength |
vsa sim before items |
i em
extracted before answer |
extracted before other |
rother |

before

im mentioned in answer
before
extracted atter question |

extacted

exra
semanti before ater overiap -

Semantic extracted after question |
semantic extracted before answer
semantic extracted after answer |

Semantic question answer

H

Figure 8: P-values of the Spearman correlation coefficients.

24

-1.0

semantic before after overlap -

004

P-value



Under review as a conference paper at ICLR 2026

L OVERVIEW OF THE EXPERIMENTAL METRICS

L.1 LLAMA 4, SCOUT

NEXT TOKEN NEXT TOKEN NEXT TOKEN
PRECISION@1 PRECISION@5 SOFTMAX
100%  91.9% 100% i
I
80% . 80%
§ co% WSS 5 60% ggu s
© © ©
2 s — 42.5% g
g 40% % 40% - i 8
b —
20% 20%
o7% ——— [ edten 028
0% _— 0% ;
FALSE Initial TRUE FALSE Initial TRUE 0.00 0.25 0.50 0.75 1.00
token token
TARGET TOKEN TARGET TOKEN
RANK SOFTMAX DIFF PRECISION®@1
: 100%
86.6%
- -
2 2 £ 60%
E £ E
o o g
fa} a g 40%
20% 13.4%
i - Median(s) - Median (0.85)
i H 0,
0 500 1000 0.00 0.25 0.50 0.75 1.00 0% FALSE TRUE
TARGET VSA
PRECISION@5 COSINE SIM
100% '
87.5% i
80% AREAS (52 domains)
mmm Morphological Modifiers (14)
g 60% " mmm Verbal & Grammatical Forms (13)
",—E £ mmE Semantic Relations (8)
g £ BN Factual Knowledge (7)
g 40% e B Mathematics (7)
B Semantic Hierarchies (3)
20% 12.5%
Median (0.42)
0% :
FALSE TRUE 0.00 0.25 0.50 0.75 1.00

Figure 9: Experimental metrics of the LLM’s next-token prediction task and probing performance
for Llama 4. Precision@k is displayed as a categorical variable, with its binary values portrayed as
boolean. The category initial token is associated to the special case (0.5) introduced in Section 5.1.
We measure VSA noise by computing the cosine similarity between the retrieved target concept and
its codebook version ®.

25



Under review as a conference paper at ICLR 2026

L.2 OLMo-2
NEXT TOKEN NEXT TOKEN NEXT TOKEN
PRECISION@1 PRECISION@5 SOFTMAX
100% 100% i
80% 80%
n ) 59.1%
5 60% 5 60% o
] 47.1% ® kS
E 43.5% % £
2 B EE ;
E——
— [ ]
20% mm——— 20%
I
0 o
0% FALSE Initial TRUE 0% FALSE Initial TRUE 0.00 0.25 0.50 0.75 1.00
token token
TARGET TOKEN TARGET TOKEN
RANK SOFTMAX DIFF PRECISION@1
100%
87.9%
80%
0 p 5 60%
‘© © ©
€ € c
8 8 2 20%
3 8 (]
20% 12.1%
Tt Median (1)
0%
0 2000 4000 6000 0.00 0.25 0.50 0.75 1.00 FALSE TRUE
TARGET VSA
PRECISION®@5 COSINE SIM
100% 89.2% 3
80% AREAS (52 domains)
mmm Morphological Modifiers (14)
g 60% " mmm \erbal & Grammatical Forms (13)
E £ mmm Semantic Relations (8)
§ é EEm Factual Knowledge (7)
g 40% e mmm Mathematics (7)
mmm Semantic Hierarchies (3)
20%  10.8%
—————— Median (0.49)
0% i
FALSE TRUE 0.00 0.25 0.50 0.75 1.00

Figure 10: Experimental metrics of the LLM’s next-token prediction task and probing performance
for OLMo-2. Precision@k is displayed as a categorical variable, with its binary values portrayed as
boolean. The category initial token is associated to the special case (0.5) introduced in Section 5.1.

26



Under review as a conference paper at ICLR 2026

M SYNTHETIC CORPUS

Table 11: Knowledge bases for our synthetic corpus S.

Dataset Domains Sample example
Google Analogy Test Set 12 capital world, currency, plural, . . . 33,812 Denmark : krone = Mexico : peso
Bigger Analogy Test Set 33  verb+ment, occupation, gender, ... 73,471 queen : king = mother : father
Mathematics 7 double, square, division2, ... 6,816 4 : 16 =5 :
52 114,099

Table 12: Overview of our experimental set, grouped by tasking an LLM to cluster the domains.

Category Domains

Docs

Morphological Modifiers 14
Verbal & Grammatical Forms 13

noun+less, adj+ness, . . .
past tense, plural, . ..

34,308 (30%)
31,219 (27%)

Factual Knowledge 7  country capital, occupation, . . . 18,800 (17%)
Semantic Relations 8 family, genders, . . . 16,831 (15%)
Mathematics 7  math double, math division5, . .. 6,816 (6%)
Semantic Hierarchies 3 hypernyms, hyponyms, . . . 6,125 (5%)
52 114,099 (100%)

Table 13: All domains, and their corresponding cardinality after data augmentation for training.

Domain Examples Domain Examples Domain Examples
country_capital 21801  capital_world 18561 country_language 12299
antonyms_gradable 11268 adj_superlative 10942  un+adj_reg 10614
adj+ly_reg 10576  adj_comparative 10519 male_female 10236
noun_plural_reg 10216  noun_plural_irreg 10206  verb_Ving_Ved 10164
verb_inf_3pSg 10112  animal_sound 10083  verb_inf_Ving 10008
name_nationality 9998  verb+er_irreg 9865 verb_Ving_3pSg 9861
verb+able_reg 9849 adj+ness_reg 9849  animal_shelter 9833
hypernyms_animals 9831 over+adj_reg 9828 re+verb_reg 9821
verb+ment_irreg 9807  verb_inf_Ved 9805 UK _city_county 9805
name_occupation 9801 noun+less_reg 9801  verb_3pSg_Ved 9801
verb+tion_irreg 9801 hypernyms_misc 9719 antonyms_binary 9603
past_tense 6313  plural 4129 comparative 3765
present_participle 3401 plural_verbs 3055 currency 2983
adjective_to_adverb 2977 math_double 2918 nationality_adjective 2818
superlative 2545 math_division2 2498 opposite 2221
math_division5 641 family 529 math_squares 402
math_division10 258  hyponyms_misc 102 math_root 77
math_cubes 29

DOMAINS: 52

TEXTUAL EXAMPLES: 395,944

N DECLARATION OF LLM USAGE

The paper presents a pipeline that treats LLMs as subjects of study, not tools. To enhance in-
terpretability, we adopted an LLM (GPT-40) to categorize the 52 distinct analogy domains into

semantically coherent macro categories (Table 12 in Appendix M).

27



Under review as a conference paper at ICLR 2026

O DIMENSIONALITY REDUCTION

O.1 AVERAGE CORRELATIONS AMONG MODEL’S HIDDEN LAYER

16 0.5 0.5 0.4 04 04 04 0.3 0.3 0.3 0.09

17 04 04 04 03 0.1

18 ok . . . . .7 0.7 0.6 0.6 0.6 O. 0.5 0.5 04 0.1

iCE 0.7 0.8 0. 9 0.9 0.8 0.8 0.7 0.7 0.7 0. H 0.5 0.1
I 0.6 0.7 0.8 O. 9 09 0.8 0.8 0.8 0.7 0.7 0. Y 0.1
1.0
p3R® 0.6 0.7 0.8 0.9 0. .9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 oW
Y2 0.5 0.6 0.7 0.8 0.9 0. 909 0.9 09 0.8 0.8 0.8 0.7 0.6 oW
0.5
pER (-1 0.6 0.7 0.8 0.8 0.9 0. .9 0.9 0.9 0.8 0.8 0.8 0.7 (AN
- S
v ©
=YL - 05 06 07 08 038 0. 9 09 0.9 08 0.8 0.7 KUPHEE-REEY
— el
o
25-0.4. .6 0.7 0.8 0.8 0.9 0. .9 0.9 0.9 0.8 0.7 (WIS
pL WS 0.6 0.7 0.7 0.8 0.9 0.9 0. .9 0.9 0.9 0.8 W] —05
27-0.4 0. .6 0.7 0.7 0.8 0.9 0.9 0. .9 0.9 0.8 W]
-1.0

28-0.4 0. . : . . . . . . . RN 0.2

29-0.3 0. ] : o 5 5 : . ; 5 0 R} 0.3

30-0.3 0.4

31-0.3 0.3

32-0.09 0.1 0.1 0.1 0.1

0.2 0.2 0.2

1 1 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Layer

Figure 11: Average Person correlations among the second half of model’s hidden layers for Llama3.1

0.2 ANALYSIS OF REPRESENTATION REDUNDANCY

In Section 4.3, we hypothesize that highly correlated rows (model’s adjacent layers) could cause
redundant representations, since they likely encode similar numerical patterns, and thus information.

Here, we present an analysis of representation redundancy, defined as approximate linear depen-
dence among LLM hidden layer embeddings. We computed the Gram matrix G = HH”, where H
is the model’s residual stream, and analyzed its eigenvalues. Table 14 shows results for the OLMo-2
model (considering the 32nd-to-64th range of hidden layers; Appendix D), averaged on a 100K train-
ing input sample. The spectrum reveals a few dominant eigenvalues (around 3-4 modes) followed by
many smaller ones, indicating that the embedding space is approximately low-rank. This suggests
that, when considering the full matrix (R33*5120 for OLMo-2), most hidden layer representations
(rows) are redundant, since only a few rows (or their combinations) contribute meaningful struc-
ture. The first mode is by far the most dominant, with a normalized eigenvalue of 0.65, compared
to 0.17 for the second. We hypothesize that this leading component might correspond to next-token
prediction representations, while the remaining modes capture secondary structures or auxiliary in-
formation. Our hyperdimensional probe aims to capture also these auxiliary latent structures, rather
than limiting solely on the single predominant component.

28



Under review as a conference paper at ICLR 2026

Table 14: Eigenvalues (EV) of the Gram matrix from OLMo-2’s residual stream.
Comp. EV (mean + std) Norm. EV

0 58084 £ 5293 0.650
1 15450 + 2056 0.170
2 5972 £+ 608 0.070
3 2539 £ 330 0.030
4 2057 £+ 220 0.020
5 1187 £+ 166 0.010
6 727 £ 119 0.010
7 505 £ 83 0.010
8 363 £ 59 0.000
9 282 £48 0.000
10 230 £ 37 0.000
30 306 0.000
31 27+6 0.000
32 22+6 0.000

0.3 SILHOUETTE ANALYSIS FOR DETERMINING OPTIMAL RANGE OF CLUSTERS

phi-4

Llama-3.1-8B
pythia-1.4b
OLMo-2-0325-32B
gpt2-medium
Llama-4-Scout-17B-16E
- Average score (0.18)

Low variability across
models (o < 0.06)

Silhouette Score

2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of Clusters (k)

Figure 12: Silhouette scores for varying numbers of clusters, computed using a random sample of
10,000 textual inputs from S. The six language models have varied layer counts (see Table 3), which
results in different maximum possible cluster numbers.

29



Under review as a conference paper at ICLR 2026

0.4 DISTRIBUTION OF CLUSTER ASSIGNMENTS FOR GROUPING MODEL’S HIDDEN LAYERS

16
17
18
19
20
21
22 - 10%
23- 0%
24 -
25 -
26 -
27 -
28 -
29 -
30 -
31-
32 -

100%

80%

60%

Layer
Inputs

- 40%

-20%

Cluster

Figure 13: Distribution of model’s hidden layers grouped by k-means clustering within the ingestion
algorithm F' for Llama3.1-8B. It portrays the percentages of cluster assignments across all instances.

0.5 ABLATION STUDY ON THE DIMENSIONALITY-REDUCTION STEPS

This section presents an analysis of skipping the dimensionality reduction steps introduced in Sec-
tion 4.3. While our VSA-based methodology would work without these compression steps, the
overall computational cost of probing would dramatically increase. For example, our ingestion
procedure (Appendix B; Section 4.3) reduces the probed OLMo-2’s embeddings from R33*5120 to
R5120 This allows our neural VSA encoder to have an input dimension d = 5012 with only 71M
trainable parameters (see Appendix C).

If the two steps are eliminated, and thus the entire residual stream of the model R33%5120 g consid-

ered, the encoder receives a flat input vector, creating an input dimension d = 168960 € R!68960,
Although the encoder would internally handle feature extraction, since the flattened input holds
all the information encoded in the LLM embeddings, this approach would increase the number of
trainable parameters to 742 million, representing a tenfold increase. Additionally, adopting a lazy
feature extraction stage in an input vector space of size ~ 10°, which is approximately low-rank
(see Appendix O.5), would result in a computationally inefficient approach.

Removing one of the two steps, such as sum pooling, should lead to just an increase of the overall
computational cost for the encoder (R?*5120 — R25600; ¢ — 25600; 155M trainable parameters;
x2), rather than affecting probe’s outputs. Further, since our neural VSA encoder is found effective
to extract latent features even from our heavily-compressed input representation (Section 5), other
dimensionality reduction approaches could also be as effective as ours (Appendix B).

In summary, skipping the compressing steps is possible and the only drawbacks should be the in-
crease of footprint of both the training and inference stages of the VSA-based probing (see also
Appendix Q).

30



Under review as a conference paper at ICLR 2026

P PROOF OF CONCEPT FOR HYPERDIMENSIONAL PROBE IN MULTIMODAL
SETTINGS

M u Iti m Od aI L L M ©eg.meta-1lama/L1ama-4-Scout-178-16E

@ MNIST Dataset for images

LET s:= 4
COMPUTE  y, = M(F(s))
QUERY  ys © ¢g = ¢ + noise
i THEN ys =~ (¢g3©® ¢4)

COCO Dataset for multimodality

toothbrush book

D

Ys ::f text T f image

f text +— d)bear + ¢toothbrush + beook

& fimage = (QSteddyBcar © ¢br0wn © ¢center)
» + (Qstoothbrush O] ¢white O] Qsleft)
+ ¢book ©) ((bcover ©) (bberlin)

https://cocodataset.org/#explore?id=184485

Figure 14: Proof of concept for using hyperdimensional probe in multimodal settings. Figure A
shows a complete probing procedure for a MNIST-based mathematical analogy. Figure B exhibits a
VSA encodings describing a multimodal input using textual and image features.

Q COMPUTATIONAL WORKLOAD

The computational workload of this work is split into two parts: LLM inference (exogenous, Sec-
tion 4.3) and the training and probing stages of our method (endogenous, Section 4.4 and 4.5).

The exogenous factor, running the Large Language Models, was the most computationally demand-
ing task. For our experiments, we tested six different Large Language Models in inference mode,
caching their embeddings for our training phase and probing them dynamically during the infer-
ence phase of our work (Figure 1). We worked with LLMs ranging from 355M parameters (GPT-2)
to 109B parameters (Llama 4, Scout), using between one and three NVIDIA® A100-80GB GPUs,
depending on the model size. Quantization is not employed.

In contrast, the computational demands of our VSA-based methodology is relatively low. The most
resource-intensive stage was training our neural VSA encoder, but due to its modest size (ranging
from 55M to 71 M parameters, see Appendix C), this process remained lightweight. We performed
this training on a single GPU, though it could easily be handled with much less powerful and lower-
memory GPUs. The probing stage is then composed of simple vector multiplications (unbinding,
Section 3), after loading the heavy LLM and our lightweight trained neural VSA encoder into mem-
ory (from 800 MB of the 55M version to 1 GB of the biggest one). Future research could explore
even further reducing the latent dimension of our neural VSA encoder (Appendix C) or adopt VSA
encodings with lower dimensionality (e.g. D = 512, leading to a more lightweight encoder.

31



	Introduction
	Related work
	Background
	Hyperdimensional probe detective
	Synthetic corpus
	Input representations
	Processing LLM embeddings F
	Neural VSA encoder T
	Probing VSA encodings I

	Experiments and results
	Experimental setup
	Extracting next-token concepts
	From input-completion tasks to question-answering

	Conclusions
	Limitations
	Algorithm to process LLM embeddings as described in ingestion
	Architecture of our Hyperdimensional probe
	Training performance of the neural VSA encoders
	Training details
	Concept of a neural VSA encoder
	Hugging Face repositories for the considered LLMs

	Unbinding stage from Unbinding Subsection
	Experimental results
	Validation strategy
	Distribution of instances with no concepts extracted
	Diagnosing erroneous answers from Llama 4

	Experimental comparison
	DLA-based experimental results
	Concepts extracted by DLA when VSA yields no concepts
	Raw results obtained though the DLA probing technique

	Applicability to other domains
	Generalization of input representation
	Applicability to other downstream tasks

	Question-answering setting from qa
	Cosine similarities among the items of the VSA codebook
	Spearman correlation for the QA-related experiments
	Overview of the experimental metrics
	Llama 4, Scout
	OLMo-2

	Synthetic corpus
	Declaration of LLM usage
	Dimensionality reduction
	Average correlations among model's hidden layer
	Analysis of representation redundancy
	Silhouette analysis for determining optimal range of clusters
	Distribution of cluster assignments for grouping model's hidden layers
	Ablation study on the dimensionality-reduction steps

	Proof of concept for hyperdimensional probe in multimodal settings
	Computational workload

