
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYPERDIMENSIONAL PROBE: DECODING LLM REP-
RESENTATIONS VIA VECTOR SYMBOLIC ARCHITEC-
TURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their capabilities, Large Language Models (LLMs) remain opaque with
limited understanding of their internal representations. Current interpretability
methods, such as direct logit attribution (DLA) and sparse autoencoders (SAEs),
provide restricted insight due to limitations such as the model’s output vocabulary
or unclear feature names. This work introduces Hyperdimensional Probe, a novel
paradigm for decoding information from the LLM vector space. It combines ideas
from symbolic representations and neural probing to project the model’s resid-
ual stream into interpretable concepts via Vector Symbolic Architectures (VSAs).
This probe combines the strengths of SAEs and conventional probes while over-
coming their key limitations. We validate our decoding paradigm with controlled
input–completion tasks, probing the model’s final state before next-token predic-
tion on inputs spanning syntactic pattern recognition, key–value associations, and
abstract inference. We further assess it in a question-answering setting, examining
the state of the model both before and after text generation. Our experiments show
that our probe reliably extracts meaningful concepts across varied LLMs, embed-
ding sizes, and input domains, also helping identify LLM failures. Our work
advances information decoding in LLM vector space, enabling extracting more
informative, interpretable, and structured features from neural representations.

1 INTRODUCTION

Although LLMs excel across tasks, their black-box nature limits interpretability. Recent work has
focused on decoding human-interpretable concepts from LLM latent representations (Gurnee &
Tegmark, 2023; Park et al., 2023; Zhang et al., 2024). Three main paradigms (Ferrando et al., 2024;
Elhage et al., 2021) are currently proposed to inspect model’s residual stream: Supervised Probes,
Direct Logit Attribution (DLA), and Sparse Autoencoders (SAEs). Probes are supervised models for
task-specific probing objectives that map a model’s vector space to meaningful features (Gurnee &
Tegmark, 2023; Marks & Tegmark, 2023; Diego Simon et al., 2024), though their decoding capabil-
ities have been debated (Hewitt & Liang, 2019). DLA projects representations on the LLM’s output
vocabulary (Belrose et al., 2023), but this constrains the abstraction to the level of LLM tokens.
SAEs learn a sparse proxy representation (Bricken et al., 2023; Lieberum et al., 2024; Kissane et al.,
2024), but naming triggered features often suffers from vagueness, verbosity, and data dependence.

Vector Symbolic Architectures (VSAs) are a computational framework (Schlegel et al., 2022;
Gayler, 1998) inspired by cognitive science (Hawkins, 2021; Piantadosi et al., 2024), increasingly
used to map neural representations to human-readable symbols. It has been used for tasks rang-
ing from visual problems such as multi-attribute digit recognition (Frady et al., 2020) and Raven’s
progressive matrices (Hersche et al., 2023) to mechanistic interpretability (Knittel et al., 2024).

This work introduces a novel paradigm for decoding information from LLM vector spaces by in-
tegrating ideas from symbolic representations and neural probing. We propose Hyperdimensional
Probe, a novel approach for decoding human-interpretable information from latent representations
of LLMs using VSAs and hypervector operations. We design a supervised and shallow neural net-
work (encoder) to map the LLM’s residual stream into a controlled vector space structured by VSA
encodings, projecting its internal activations into human-interpretable and context-relevant concepts.
Functioning as a hybrid supervised probe, it harnesses the orthogonality property of VSAs to com-
bine the SAEs’ ability to uncouple superposed subspaces with the interpretability advantages offered

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(B) LLM's hidden layers

(D) Merge embeddings

Codebook creation

(C) K-means clustering

(A) Textual input

LLM
In

ge
st

io
n

al
go

rit
hm

"krone : Denmark = peso :"

Text to compressed
LLM embeddings

Preprocessing

Embeddings
to VSA encodings

Training

(B) Neural translator

(A) Create VSA encodings Further investigation of latent errors

LLM's answers
explanation

Explainability

Probe VSA
encodings

Inference
(B) Probe and extract

(A) Inference on a different template
("king is to queen as

son is to")

?,/from,__

Direct Logit Attribution

😥

Hyperdimensional probe

🧐

next token "daughter"
😔

🕵️

Figure 1: We first compress neural representations of the LLM’s next-token task (F , blue). Next,
we train a neural VSA encoder to map these neural embeddings into a proxy space, VSA encod-
ings structured with input-related concepts (T , orange). We then probe the LLM’s embeddings by
extracting concepts from VSA encodings using hypervector algebra (I , green). This process of con-
cept extraction ultimately enables deeper analysis of the model’s erroneous answers (red).

by traditional probes. Our method addresses several limitations of prior approaches by: (i) avoiding
dependence on the model’s output vocabulary used in DLA, (ii) mitigating the potential confounding
effects of task performance in conventional probes, and (iii) eliminating the need for explicit feature
naming of SAEs. Section 4 describes our novel decoding paradigm, and Section 5 validates it in
a controlled setting, also demonstrating its effectiveness in debugging LLM failures. Appendix G
contrasts our VSA-based results with DLA. Section 5.3 applies our methodology to the Stanford
Question Answering Dataset (Rajpurkar et al., 2016), validating it in a question-answering setting.

Figure 1 shows our framework, from LLM token mbedding processing, and neural VSA encoder
training, to LLM answer explanation. The primary methodological contributions of this work are:

• Hyperdimensional probe: a novel paradigm for information decoding in LLMs via VSAs;
• Effective compression of LLM embeddings to probe a wide range of model’s residual stream

while reducing the overall computational cost of probing;
• Enhanced interpretability of neural representations and LLM’s erroneous outputs.

2 RELATED WORK

The latent representations of transformers, also known as residual stream, is a high-dimensional
linear vector space that aggregates the outputs of all hidden layers (Elhage et al., 2021).Probing
this additive space requires the identification of human-interpretable features across different lay-
ers (Ferrando et al., 2024). This investigation is grounded in the linear representation hypothesis,
which posits that latent features can be encoded as linear subspaces (Engels et al., 2024), formed and
accessed during the forward pass (Park et al., 2023). In recent years, three main paradigms (Ferrando
et al., 2024) have been proposed to extract information from this vector space.
Supervised Probes is a generic mapping paradigm that maps the model’s residual stream to task-
relevant features, measuring how much information about them is embedded (Tenney et al., 2019).
Previous works have shown that several features are linearly encoded in transformers, from syntac-
tical information (Hernández López et al., 2023; Diego Simon et al., 2024), to complex concepts
such as space-time coordinates (Gurnee & Tegmark, 2023) and truthfulness (Marks & Tegmark,
2023). However, their probing effectiveness is debated due to difficulties in separating information
decoding from probe learning (Ferrando et al., 2024; Hewitt & Liang, 2019).
Direct Logit Attribution (DLA) projects latent representations onto its output vocabulary through
the unbundling layer (Geva et al., 2022). This method, also known as Logit Lens (Belrose et al.,
2023), interprets outputs as predicted logits at a given point in the forward pass. DLA reveals
next-token predictions, assuming that all subsequent layers are bypassed and providing insight into
prediction dynamics (Jastrzebski et al., 2017). However, this approach faces key limitations in
uncovering features in the LLM vector space, as it relies solely on the next-token representation and
is constrained by the model’s token vocabulary. Thus, abstraction is limited, while additional vector
transformations might also be necessary (Belrose et al., 2023; Sakarvadia et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Sparse AutoEncoders (SAEs) use sparse dictionary learning (Olshausen & Field, 1997) to disen-
tangle overlapping subspaces created by superposition (Cunningham et al., 2023). An autoencoder
reconstructs the residual stream in an unsupervised fashion, enforcing sparsity in its learned rep-
resentations. Once trained, these serve as a proxy layer for analysis. SAE activated neurons are
interpreted via two strategies: identify representative tokens via DLA (Kissane et al., 2024; Dunef-
sky et al., 2024); clustering inputs by shared SAE neurons, followed by manual (Jing et al., 2025) or
automatic (Bricken et al., 2023; Lieberum et al., 2024) feature naming. While SAEs help address-
ing superposition, interpreting the resulting features is challenging. Feature naming plays a crucial
role in SAE-based analyses but remains problematic: DLA approaches restrict feature abstraction to
LLM tokens, whereas example-based approaches can be overly broad and heavily data-dependent.

Our Hyperdimensional Probe functions as a hybrid supervised probe, taking advantage of the or-
thogonality property of VSAs to combine SAEs’ ability to uncouple superposed subspaces with the
interpretability advantages offered by conventional probes. Our controlled vector space mimics the
proxy layer of SAEs without requiring a subsequent feature-naming step. Moreover, learning a vec-
tor transformation, rather than directly performing a downstream task, as in traditional probes, may
better isolate encoded information by reducing task performance confounds. Finally, our method
overcomes the key limitation of DLA-based analysis, its dependence on the model’s output vocab-
ulary, by supporting concept sets with unrestricted levels of abstraction, cardinality, and data types.
A recent study (Knittel et al., 2024) uses VSAs for the mechanistic interpretability of transformers
(GPT-2), showing layer-wise dynamics of neural weights can be seen as VSA-related circuits of
word embeddings, attention, and MLP outputs. In contrast, our work decodes the semantics of the
residual stream instead of examining the contributions of the model components to its construction.

3 BACKGROUND

Vector Symbolic Architectures (VSAs), also known as Hyperdimensional Computing, assume en-
tities or data structures can be represented as random points in a high-dimensional space. Owing
to the concentration of measure phenomenon (Ledoux, 2001; Kanerva, 2009), exponentially many
distinct concepts can be encoded as nearly orthogonal random vectors. A codebook Φ maps a prede-
fined set N of concepts to their hypervectors, while orthogonality and simple hypervector operations
allow composition into more complex concepts.

VSA codebook. We adopt the Multiply-Add-Permute architecture (MAP-Bipolar, MAP-B) from
VSAs (Schlegel et al., 2022; Gayler, 1998), using bipolar hypervectors in −1, 1D. Dimensional-
ity D, typically 102–104, depends on the number of concepts (Kanerva, 1988) and representation
complexity. MAP-B can theoretically encode 2D orthogonal, independent elements (Schlegel et al.,
2022). Its codebook Φ ∈ −1, 1nc×D stores nc atomic concepts as bipolar random vectors, generated
deterministically from seeds to ensure orthogonality and independence. Each vector is associated
with a concept, and Φ enables evaluation of representations by comparing them with known vectors.
Since MAP-B operates in the bipolar domain, cosine similarity is used (Schlegel et al., 2022).

Hypervector algebra. The hypervector algebra (Kanerva, 2009) relies on two operations: binding
and bundling, which support representing complex cognitive structures, such as textual propositions,
in a distributed, noise-tolerant manner (Gayler, 1998; Kanerva, 2009). Binding operation (⊙) en-
codes input features with their associated values. For example, it can associate concepts with con-
textual information, such as (USA⊙ dollar). The bundling operation (+), or superposition, creates
set of (contextualized) concepts by combining multiple concepts into one, such as (USA+Mexico).
The resulting bundled vector is by design similar to each of its constituents, enabling retrieval.
Binding is obtained via Hadamard product (element-wise) while bundling is element-wise sum. Po-
larization (sign) is typically required after bundling (Kleyko et al., 2020) to maintain the bipolar
domain. This process irreversibly blends the parts, diminishing their similarity to the originals in
proportion to their number. Conversely, unbinding (⊘) in VSAs recovers elemental vectors from a
binding operation by factoring out one vector via multiplication with its inverse (itself in MAP-B).

4 HYPERDIMENSIONAL PROBE

This section presents our VSA-based paradigm for extracting human-interpretable information from
LLM latent representations. In Section 4.1, we introduce a synthetic corpus of diverse analogies,
providing a simple and controlled environment to validate our decoding method. Section 5.3 applies
our methodology in a QA setting, while Appendix H discusses other settings. Section 4.2 then
presents the construction of input representations using the hypervector algebra. We then illustrate

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

our three-stage pipeline: (a) processing LLM embeddings (Section 4.3, F in Figure 1); (2) the neural
VSA encoder that maps embeddings onto our controlled proxy space, yielding VSA encodings
(Section 4.4, T); and (3) the extraction of concepts from this proxy space (Section 4.5, I).

4.1 SYNTHETIC CORPUS

We build a textual dataset to evaluate the key components of our decoding paradigm in a simple,
controlled, and interpretable testbed. Using controlled input-completion tasks also allows us to focus
LLMs on concepts and their relationships, while testing inputs demanding diverse reasoning from
syntactical pattern recognition and key-value association to abstract inference.

Knowledge bases. This work focuses on analogies, textual inputs representing pairs of concepts
connected by the same type of factual, syntactic, or semantic relationship. We collect pairs of
analogies from two knowledge bases: Google analogy test set (Mikolov, 2013), and the Bigger
Analogy Test Set (BATS, (Gladkova et al., 2016)). These span 44 domains across five distinct
categories, covering a wide range of factual and linguistic relationships, including analogies related
to factual knowledge (e.g., a country’s currency), semantic relations (e.g., grammatical gender), and
morphological modifiers (e.g., verb+men). We also design mathematical analogies using three-digit
integers and basic operations such as doubling, cubing, division, and extraction of roots.

Textual analogies. After collecting these pairs, we generate 114,099 distinct textual examples,
denoted as S, by combining all possible domain pairings. Each training example is formatted as:

a1 : a2 = b1 : b2 (1)
where a1 and b1 represent the keys of the two pairs, and a2 and b2 are their corresponding
values. For example, Denmark:krone = Mexico:peso for the countries currencies, and
queen:king = mother:father for the grammatical gender. Table 11 and Table 12 in Ap-
pendix M show the domains grouped by knowledge base and category, respectively. Some concepts
span multiple domains, such as Australia links to Canberra, English, and Australian.
These overlaps can help mitigate the confounding effect of memorizing key-value pairs. For our ex-
periments in Section 5, we further limit confounding effects by using the same pairs but generating
a set of textual inputs (S̄) with a verbose template: a1 is to a2 as b1 is to b2. Con-
versely, for training (Section 4.4), we apply data augmentation strategies on S, such as key-value
swapping, effectively tripling the corpus size which results in 395,944 training inputs (Appendix M).

4.2 INPUT REPRESENTATIONS

This section describes the process of constructing VSA encodings for training. This procedure,
illustrated with our textual templates (Equation 1), generalizes to other templates (e.g., question-
answer in Section 5.3) or tasks (e.g., toxicity detection; Appendix H) since VSAs and hypervector
algebra can encode complex structures across diverse inputs.

Codebook construction. The codebook defines the set of all input features; in our case, the con-
textually relevant concept, and is later used to construct and query VSA encodings. In our controlled
setting, the codebook Φ (feature set) is constructed directly using all unique words included in the
corpus, such as: mexico → ϕmexico ∈ Φ, and krone → ϕkrone ∈ Φ. Thus, we create a matrix
Φ ∈ {−1, 1}nc×D, using the torch-hd library (Heddes et al., 2023), where D is the VSA dimen-
sion and nc = 2, 996 is the number of concepts/features. We set D = 4096 as an adequate hidden
dimension, given the cardinality of our codebook (≈ 103), which remains well below the theoretical
capacity limit of the MAP-B architecture (Section 3). The average pairwise cosine similarity of the
concepts in the codebook is 0± 0.02, confirming orthogonality (full distribution in Appendix J).

VSA encodings. With well-structured textual inputs, extracting input features and building their
VSA-based representation is straightforward. Scalability to other input types is addressed in Ap-
pendix H.1. For each training input s ∈ S, we generate its encoding by exploiting its constructive
words (Equation 1), retrieving their corresponding hypervectors: {ϕa1

, ϕa2
, ϕb1 , ϕb2} ⊂ Φ. To en-

code an input sentence, we then exploit hypervector operations: binding and bundling (Section 3).
Given that the input template represents two conceptual key–value pairs, we first bind each key to
its corresponding value, such as linking each country to its currency in Equation 2. The full text is
then encoded through bundling, producing a superposed set of contextualized concepts represented
as key–value associations. Ultimately, we polarize it, with the sign function, to maintain the bipolar
domain. The input encoding in VSA for a given sentence is then computed as:

ys = (ϕkey ⊙ ϕvalue) + (ϕkey ⊙ ϕvalue) + . . . = (ϕa1 ⊙ ϕa2) + (ϕb1 ⊙ ϕb2) (2)
“ Denmark : krone = Mexico : peso” 7→ (ϕdenmark ⊙ ϕkrone) + (ϕmexico ⊙ ϕpeso)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.3 PROCESSING LLM EMBEDDINGS F

The first stage of our pipeline involves feeding textual inputs to an autoregressive transformer model,
followed by obtaining and preprocessing its residual stream (F in Figure 1). Using our corpus, we
prompt an LLM with an input sentence s ∈ S, LLM(s). For each textual input, its final word (b2)
is removed beforehand as it represents the value of the second analogy, our target concept.

Caching token embeddings. Our probing goal is to inspect the complete internal state of a lan-
guage model prior to its next-token prediction, capturing all encoded concepts without assuming
beforehand the type of relationship with its prediction. To this end, we examine the residual stream
in the final token representation, focusing on the middle to last layers. Emerging evidence shows
that transformers encode next-token information in the final token due to their autoregressive na-
ture (Elhage et al., 2021; Olsson et al., 2022), refining it in later residual stream layers (Belrose
et al., 2023; Hernandez et al., 2023). Specifically, for an autoregressive language model with L
hidden layers, we consider the embeddings (with size d) of the last token (“:”) in the latter half, for
all l ∈ [L/2, . . . , L], yielding a matrix in RL/2×d.

However, considering such a wide range of layers presents a computational challenge, as prob-
ing a high-dimensional matrix can significantly increase the computational footprint of the prob-
ing pipeline. Further, adjacent layer-wise embeddings are highly correlated (0.9) as shown in Ap-
pendix O.1, likely encoding redundant numerical patterns, and thus similar information. Here, we
define representation redundancy as the approximate linear dependence among LLM hidden layer
embeddings. Appendix O.2 shows that the LLM embedding space is roughly low-rank, with only a
few rows/layers (or their combinations) contribute meaningful structure.

Dimensionality reduction. To reduce the computational cost of our approach, we lower the input
dimensionality for our encoder by introducing two dimensionality-reduction steps: k-means cluster-
ing (Jain & Dubes, 1988), and sum pooling. Clustering reduces representation redundancy by group-
ing similar vector regions in LLM embedding space and computing centroids, accomplishing knowl-
edge distillation. To determine the optimal range for k, we adopt the silhouette score (Rousseeuw,
1987). A trade-off between reduction, granularity, and model variability emerges with 3–7 clusters
(Appendix O.3). We set k = 5 to maintain the essential data structure while supporting effective
dimensionality reduction.1 We then apply sum pooling, which consists of summing all centroid
embeddings;2 merging group representatives (k-dimensional matrix) into a vector exploiting the ad-
ditivity property of LLM embeddings demonstrated in previous work (Bronzini et al., 2024). For
example, these reduction steps allows us to downsize the probed embedding space of OLMo-2:

R33×5120 → R5120.

Appendix O.5 presents an ablation showing that skipping these two compression steps increases the
encoder’s trainable parameters tenfold. In summary, the neural representation of a textual input from
a language model is processed through the ingestion procedure F , as summarized in Algorithm 1.

4.4 NEURAL VSA ENCODER T

We train a supervised model to map token embeddings from an autoregressive transformer into VSA
encodings with a known representation (T in Figure 1). We define a supervised regression model
M, a shallow feedforward neural network, to map the LLM vector space to bipolar hypervectors.
The modelM is trained on the LLM-VSA dataset generated using the corpus S (Section 4.1), which
consists of paired LLM embeddings (es in Algorithm 1) and their corresponding VSA representa-
tions (ys in Equation 2). The model infers latent features from the unknown LLM vector space to
translate the encoded semantics into VSA representations with explicit and interpretable semantics.
We define the neural VSA encoder modelM as a three-layer MLP with 55M–71M parameters (de-
pending on the input embedding size d; see Appendix C), performing a non-linear transformation:

M : Rd → {−1, 1}D, es → ys. (3)

We use the hyperbolic tangent function (tanh) in the output layer for bipolar outputs and incor-
porate residual connections to enhance training stability and convergence. The training process
minimizes the Binary Cross-Entropy (BCE) error between the bipolar target hypervectors and the

1Appendix O.4 shows that the clusters consistently group adjacent layers.
2Preliminary evidence suggests that directly summing all layers (up to 32) results in a noisier representation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

predictions. To ensure compatibility with such binary loss function, targets are temporarily con-
verted to binary based on their sign; and predictions are smoothly mapped to the range [0, 1] using
the sigmoid function. A Mean Squared Error (MSE) regularization term is added to the loss, with a
coefficient of 0.1.3 Implementation details for the training process are reported in Appendix D.1.

Language models. We valide our methodology on embeddings from popular open-weight LLMs
available on the Hugging Face platform with 355M-109B parameters, experimenting with different
embedding sizes and layer counts. In particular, we test the latest Meta AI’s Llama 4 Scout, (AI,
2025) a multi-modal mixture of 16 experts (MoE), Llama 3.1-8B (Grattafiori et al., 2024), Mi-
crosoft’s Phi-4 (Abdin et al., 2024), EleutherAI’s Pythia-1.4b (Biderman et al., 2023), AllenAI’s
OLMo-2-32B (OLMo et al., 2024), and OpenAI’s legacy GPT-2-medium (Radford et al., 2019).

Performance. The LLM-VSA dataset uses a random 70-15-15 split of S for training, validation,
and test sets. Since our setting can be interpreted both as a vector-based regression task and a multi-
label classification problem,4 we evaluate our approach using two distinct metrics: cosine similarity
and multi-label binary accuracy. For binary accuracy, targets and predictions are binarized based
on sign. First, evaluating the cosine similarity between the predicted and target VSA encodings
yields a test-set average score of 0.89 (best LLM in Appendix D, Llama 3.1-8B), indicating strong
numerical alignment between our encoder’s outputs and the target encodings. Second, we obtain an
average binary accuracy of 0.94, which indicates robust classification accuracy after polarizing the
predictions with the sign function. This means that on average, the VSA encodings produced by
our trained model deviated from the targets by only 6% of the vector elements, a negligible error
given VSA’s large tolerance to noise. All tested models exhibit consistent performance;5 layer count
has no effect, whereas reducing the embedding dimension is found to be slightly detrimental. This
empirical evidence supports the effectiveness of our proposed methodology and the hypothesis that
LLM embeddings can be represented using fully distributed encodings such as MAP-B in VSAs.

4.5 PROBING VSA ENCODINGS I

In the third, and experimental stage of our work (I in Figure 1, Section 5), we examine the VSA
encodings produced by our trained neural VSA encoder M, extracting the embedded concepts.
To retrieve the embedded atomic concepts, we use the unbinding operation from VSA algebra (⊘,
Section 3). This vector operation reverses binding, which in our case links a pair’s key with its
corresponding value, enabling one vector to be extracted from another. Since the generated VSA
encoding may encode either no or several concepts, we attempt to extract the target concept (b2) by
dynamically testing the unbinding operation with various candidates.

This concept-related flexibility represents the novelty and added value of VSA-based probing, al-
lowing us to query our proxy space without prior assumptions on the number of concepts. Conse-
quently, we distinguish between two scenarios: in the first, no unbinding operations are required
when the model encodes none or a single concept; in the second scenario, when multiple concepts
are embedded, we test the unbinding operation with different concepts to isolate a single one. For
example, unbinding a VSA encoding with the concept of Mexico and obtaining Peso suggests
that the probed encoding originally incorporated both the key and value of the target analogy pair:

LET s := “Denmark:krone=Mexico:” 7→ “peso”
COMPUTE ys =M(F (s)) (4)

QUERY ys ⊘ ϕmexico = ϕpeso + noise

THEN ys ≈ (ϕmexico ⊙ ϕpeso)

When probing an encoding (ys in Equation 4), we pick in-context concepts (ϕdenmark, ϕkrone, and
ϕmexico), and their combinations, as candidates for unbinding. The best candidate was chosen
by benchmarking the resulting concept after unbinding, against the in-context and target concepts
through cosine similarity. If no relevant match was found (sim < 0.1), no operation was applied.
In the experiments reported in Section 5, 80% of unbinding operations, averaged across all mod-
els, relied on the key of the target pair. In contrast, no operation was applied in 12% of the cases.
Appendix E shows the proportions of other candidates and highlights the variations among models.

3Empirical results demonstrated better performance than other coefficients tested, ranging from 0.01 to 1.
4VSA encodings can be viewed as vectors with D distinct labels, each assuming one of two possible values.
5Appendix D reports the training performance of our neural VSA encoder M for all of the six models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS AND RESULTS

This section presents insights into experiments with our trained encoders. We first outline the exper-
imental setup in Section 5.1. We then report findings on LLM performance and concept extraction
using our hyperdimensional probe in Section 5.2. Appendix G contrasts our results with DLA,
showing inferior probing capabilities, likely due to its reliance on the next-token representation, and
thus surface-level features. Lastly, Section 5.3 extends our approach to the question-answering task.

5.1 EXPERIMENTAL SETUP

Data. We test our trained neural VSA encodersM on the set of textual inputs formatted using the
verbose template (S̄, Section 4.1). Thus, we validate our methodology using inputs with syntactic
structures that differ from those seen during the training stage. Therefore, we perform information
decoding from the vector representation of a different token, shifting from the colon token of the
training template (Equation 1) to the token to. This aims to further mitigate confounding effects
from probe’s task performance in relation to information decoding.
Metrics. Our experimental evaluation has a two-fold objective (Equation 4): we assess the per-
formance of LLMs in the next-token prediction, and our VSA-based probing method for retrieving
targets from their latent representations using precision@k. We measure the LLM’s performance
via: binary precision on the next-token prediction against the target word; softmax score of the most
likely next token and the target one; and rank of the target token on the ordered softmax scores. We
compute the precision of LLM predictions by considering the most likely next token based on soft-
max scores (next-token@1), and the top-5 most likely ones (next-token@5). To address scenarios
where the token generated by the LLM includes the initial part of the target word due to tokenization,
we introduce a value of 0.5 in the LLM’s precision metrics (see also Appendix A). For example, this
value is assigned if the model predicts the next token as ack for the target word acknowledge.
To evaluate the performance of our VSA-based probing approach, we assess the binary precision of
retrieving the target VSA concept from LLM latent representations via probing@1, and probing@5.

5.2 EXTRACTING NEXT-TOKEN CONCEPTS

Figure 2 shows VSA-based probing for target concept retrieval, and LLM performance to complete
analogies with targets.6

High variability in LLM performance. In an unexpected contrast, the largest model evaluated
(109B; Llama 4, Scout) exhibited the lowest precision@1 in the next-token prediction task (8%,
Figure 2), even underperforming the legacy GPT-2. Yet, its next-token@5 was comparable to others
(still the lowest), but ranked among the best in probing@1. Strong probing performance suggests
the final state encodes the target concept, but the model often fails to output it. This might be
caused by exogenous (e.g., prompt design) and endogenous factors (e.g., tokenization). As shown
in Appendix F.3, the model frequently predicted a space instead of the correct word, which still
often appeared in its top five predictions. This emphasizes variability introduced by tokenization
and prompt design, which might have greater impact on token-based probing methods such as DLA.

Pr@1 Pr@5 Pr@1 Pr@5
0%

20%

40%

60%

80%

100%

Pr
ec

isi
on

@
K

Pr@1, avg. 31% Pr@1, avg. 83%

8%

46%

69% 70%

89% 91%

68%

48%

LLM Next Token

LLMs
Llama 4
GTP-2
Pythia
Llama 3.1
Phi-4
OLMo-2

VSA Probing

Figure 2: LLM performance in completing the analogies with target words (left), and the effective-
ness of our decoding method in extracting the targets from LLM latent representations (right).

6Appendix F displays the same results in a table, with statistical variability and two control tests.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Concepts extracted by hyperdimensional probe. Key|Target indicates extraction of
the key (b1) and value (b2) of the target analogy; Key for only b1. Example refers to a1 and a2, the
in-context example’s concepts; Context|Target for all concepts. Key Values shows concepts
linked in a different domain, Out-of-context for those unrelated to input. NONE means no
concepts. On average, our probe captures concept–target combinations in about 80% of cases.

Extracted Concepts (%) GPT-2 Pythia Llama 3.1 Phi-4 OLMo-2 Llama4, Scout AVERAGE
Key | Target 60.0 66.9 85.4 84.8 80.1 79.0 76.0 ± 9.4

NONE 21.9 16.7 6.9 7.6 8.5 11.5 12.2 ± 5.4
Key 4.5 6.1 0.6 1.0 1.8 3.4 2.9 ± 2.0

Example 5.8 2.4 1.5 1.3 2.0 0.8 2.3 ± 1.6
Context | Target 1.1 1.9 1.5 1.2 4.4 2.4 2.1 ± 1.1
Key | Key Values 1.3 1.4 1.8 1.5 1.1 0.8 1.3 ± 0.3

Out-of-context 1.6 1.2 0.5 0.7 0.8 1.1 1.0 ± 0.4
Example Value | Key Values 1.5 1.3 0.3 0.0 0.2 0.1 0.6 ± 0.6

Key Values | Target 0.4 0.1 0.3 0.4 0.1 0.1 0.2 ± 0.1
Target 0.1 0.1 0.1 0.2 0.1 0.1 0.1 ± 0.0

VSA probing exposes varying conceptual richness. Regarding the concepts extracted by our
hyperdimensional probe, we achieve an average probing@1 across all models equal to 83% (right
side of Figure 2, Appendix F), extracting the target concept with its key for most cases (60% for
GPT-2, 85% for Llama 3.1, Table 1). Notably, GPT-2 shows the highest percentage of cases where
no concepts are extracted (22%) and only the concepts from the in-context example (6%), ranking
second in extracting only the keys of the target concept (5%). This underscores its struggle with the
NLP task of completing analogies, even when it appears to grasp the context. On the other hand,
OLMo-2 has the highest proportion of instances in which our probing approach retrieves the target
concept alongside all in-context concepts (Context | Target, 4%), indicating its richer representation
in its final state for both the input context and next word. This latent richness is then reflected in its
performance on next-token prediction, achieving the highest next token@1 equal to 48% (Figure 2).
In cases where the target word was not among the top five predictions of Llama 4, nearly 50% of
the instances (Appendix L.1; 28% for OLMo-2 in Appendix L.2),7 our probing method success-
fully extracted the target concept and its associated key in 70% of instances, while no concept was
retrieved in 18% of cases (26% for OLMo-2). Although the first outcome supports previous obser-
vations, the absence of extracted concepts merits a more granular analysis across analogy categories
(Table 12 in Appendix M). Our probe most frequently encounters conceptually-empty representa-
tions in mathematical analogies (88%, Appendix F.2, also for OLMo-2 comparison), followed by
semantic hierarchies (39%). Factual and morphological analogies show much lower rates, at 5.5%
and 1.1%, respectively. As elaborated in Appendix F.2, these differences likely stem from the type
of reasoning involved: linguistic analogies depend on syntactical patterns, factual and semantic re-
lations on key–value associations, and hierarchies or mathematical analogies on abstract inference.

5.3 FROM INPUT-COMPLETION TASKS TO QUESTION-ANSWERING

To further validate our proposed approach in real-world scenarios and beyond the controlled analogy
task explored previously, we apply our methodology to a question answering task, using the popular
SQuAD dataset (Rajpurkar et al., 2016).

This dataset evaluates extractive question answering – i.e. each answer is a text span within the input
context – through questions generated by crowdworkers over Wikipedia articles. It fits our concept-
focused probing objective, as its questions/answers map to concepts presented in the given context.
This elicits the language model to focus on those concepts, allowing us to benchmark the extracted
concepts against features derived from both questions and answers. We extract input features based
on lexical semantics, exploiting WordNet (Miller, 1995) and DBpedia (Lehmann et al., 2015) as
knowledge bases. The input representations (Section 4.2) are then created using bundling, such as:

“What was the name of the ship that Napoleon sent to the Black Sea? (5)
Charlemagne” 7→ (ϕname + ϕship + ϕnapoleon + ϕsend + ϕtheBlackSea) + ϕcharlemagne

We generate 693,886 training inputs Q by incrementally considering questions with their corre-
sponding features (see also Appendix I). Our trained encoder (Section 4.4) achieves a test-set cosine
similarity of 0.44, and a binary accuracy of 0.70 with Llama3.1. For our experiments, we consider
10,000 sampled questions Q̄, each now prefixed with its contextual text. We then probe the model’s

7We report the target word is absent from next token@k, including also tokens that represent its beginning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Concepts extracted before and after the LLM’s text generation, with respect to question
and answer features. Red denotes the subset of failure instances, while green the full sample Q̄.

final state before and after the autoregressive text generation, and extract concepts encoded in VSA
encodings (Section 4.5) by comparing them directly with the codebook Φ, as binding is not involved.
LLM performance on Q̄ shows an average F1 score of 0.69 ± 0.38, exact match of 0.52 ± 0.5, with
68% of outputs mentioning the target answers. On average, our probe extracts three concepts both
before and after the model’s text generation.

Observing concept drift. We evaluate semantic-based concept relevance by computing cosine
similarity between concept embeddings and question-answer features. The average similarity of
extracted concepts related to the question decreases after text generation: by 4.8% for the entire
sample and by 8.0% in the LLM error subset (32% of the sample), while no significant differ-
ences are observed prior to generation (Figure 3; left). For answer-related concepts, overall no
change is observed before and after text generation, but the LLM error subset shows a slight in-
crease (+3.2–3.5%; Figure 3, right). This suggests that LLM failures may stem from losing focus on
the question rather than from a lack of answer-related knowledge. This hypothesis is supported by a
weak positive Spearman correlation (0.2 with a p-value of 1e−99; Appendix K) between LLM’s F1
score and the proportion of question-related concepts extracted after text generation. For example,
for the SQuAD query “What do laboratories try to produce hydrogen from?” (target answer: “solar
energy and water”), the model erroneously outputs “water and heat” (F1 = 0.57). Before the model’s
text generation, our proposed approach extracts the concepts ϕtry, ϕproduce, ϕhydrogen (question) and
ϕsolar, ϕwater (answer); after generation, the question-related concept set reduced to ϕproduce and the
answer set gained the concept ϕenergy. While answer-related concepts refined, the model lost focus
on the subject hydrogen, drifting toward a generic notion of production and ultimately an error.

6 CONCLUSIONS

This work offers empirical evidence supporting the hypothesis that LLM embeddings can be ac-
curately represented using Vector Symbolic Architectures (VSAs), combining ideas from symbolic
representations and neural probing. Our Hyperdimensional probe is found to effectively extract
human-interpretable information from latent representations of LLMs, as reported in Section 5.

Our novel decoding paradigm combines SAEs’ ability to disentangle superposed subspaces with
the interpretability of conventional probes, overcoming DLA’s vocabulary dependence and feature-
naming of SAE-based analysis. Although illustrated within a controlled testbed for input-
competition tasks, our approach readily extends to other experimental settings, such as the question-
answering scenario described in Section 5.3. Appendix H discusses further applications, including
bias and toxicity detection. Our probe reveals non-trivial insights into LLM representations, from
GPT-2’s context-related richness to the richer embeddings for linguistic analogies. Our VSA-based
probing paradigm is computationally efficient, with a lightweight probe that inspects a wide range
of the model’s residual stream at minimal memory cost (see also Appendix Q). It applies to any
autoregressive transformer, and its implementation works with any Hugging Face language models.

Additionally, the absence of theoretical limits in VSAs regarding the types of data, with the poten-
tiality of hyperdimensional algebra, enables decoding multimodal latent features from LLM vector
space. For example, the proof of concept in Appendix P shows VSA-based probing for a MNIST-
based mathematical analogy (LeCun et al., 2010) and a VSA encoding for a multimodal input from
the COCO dataset (Lin et al., 2014).

Limitations. The main limitation of our work (Appendix A) is its reliance on a predefined set of
concepts. While we applied several strategies to mitigate confounding effects in probe learning, such
as testing on syntactically different inputs, we could not measure their effectiveness. Appendix F.1
presents two control tests (Hewitt & Liang, 2019) to evaluate confounding effects on decoding.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The submission includes both the source code and our synthetic corpus, which will be made pub-
licly available upon acceptance. A README.md file is provided with the code, containing detailed
instructions to reproduce our methodology (Section 4) and experimental results (Section 5).

Section 4 presents our methodology, covering the entire pipeline from data creation (Section 4.1 and
Section 4.2) to the training process of our proposed method (Section 4.3 and Section 4.4). Additional
details of the training procedure are provided in Appendix D.1, while the overall model architecture
is shown in Appendix C. The ingestion algorithm for LLM embeddings described in Section 4.3 is
further illustrated in Appendix B. Finally, Appendix D.3 provides the Hugging Face links for all the
LLMs used in our work, and Appendix Q reports the computational workload of our methodology.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Meta AI. The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation.
https://ai.meta.com/blog/llama-4-multimodal-intelligence, 2025.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens. arXiv preprint arXiv:2303.08112, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decom-
posing language models with dictionary learning. Transformer Circuits Thread, pp. 2, 2023.

Marco Bronzini, Carlo Nicolini, Bruno Lepri, Jacopo Staiano, and Andrea Passerini. Unveiling llms:
The evolution of latent representations in a dynamic knowledge graph. In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=dWYRjT501w.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Pablo J Diego Simon, Stéphane d’Ascoli, Emmanuel Chemla, Yair Lakretz, and Jean-Rémi King. A
polar coordinate system represents syntax in large language models. Advances in Neural Infor-
mation Processing Systems, 37:105375–105396, 2024.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
circuits. arXiv preprint arXiv:2406.11944, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Joshua Engels, Isaac Liao, Eric J Michaud, Wes Gurnee, and Max Tegmark. Not all language model
features are linear. arXiv e-prints, pp. arXiv–2405, 2024.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-Jussà. A primer on the inner
workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

10

https://openreview.net/forum?id=dWYRjT501w

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

E Paxon Frady, Spencer J Kent, Bruno A Olshausen, and Friedrich T Sommer. Resonator networks,
1: An efficient solution for factoring high-dimensional, distributed representations of data struc-
tures. Neural computation, 32(12):2311–2331, 2020.

R. W. Gayler. Multiplicative binding, representation operators & analogy. In D. Gentner, K. J.
Holyoak, and B. N. Kokinov (eds.), Advances in Analogy Research: Integration of Theory and
Data from the Cognitive, Computational, and Neural Sciences, pp. 1–4, 1998.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 30–45, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.3. URL
https://aclanthology.org/2022.emnlp-main.3/.

Anna Gladkova, Aleksandr Drozd, and Satoshi Matsuoka. Analogy-based detection of morphologi-
cal and semantic relations with word embeddings: what works and what doesn’t. In Proceedings
of the NAACL Student Research Workshop, pp. 8–15. ACL, 2016. doi: 10.18653/v1/N16-2002.

Gotelli, Nicholas J, and Werner Ulrich. Statistical challenges in null model analysis. Oikos, 121(2):
171–180, 2012.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint
arXiv:2310.02207, 2023.

Jeff Hawkins. A thousand brains: a new theory of intelligence. Basic Books, 2021.

Mike Heddes, Igor Nunes, Pere Vergés, Denis Kleyko, Danny Abraham, Tony Givargis, Alexandru
Nicolau, and Alexander Veidenbaum. Torchhd: An open source python library to support research
on hyperdimensional computing and vector symbolic architectures. Journal of Machine Learning
Research, 24(255):1–10, 2023.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas,
Yonatan Belinkov, and David Bau. Linearity of relation decoding in transformer language models.
arXiv preprint arXiv:2308.09124, 2023.

José Antonio Hernández López, Martin Weyssow, Jesús Sánchez Cuadrado, and Houari Sahraoui.
Ast-probe: Recovering abstract syntax trees from hidden representations of pre-trained language
models. In Proceedings of the 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE ’22, New York, NY, USA, 2023. Association for Computing Machin-
ery. ISBN 9781450394758. doi: 10.1145/3551349.3556900. URL https://doi.org/10.
1145/3551349.3556900.

Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebastian, and Abbas Rahimi. A neuro-vector-
symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence, 5
(4):363–375, 2023.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Kentaro
Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 2733–2743, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1275. URL
https://aclanthology.org/D19-1275/.

Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

Stanislaw Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. CoRR, abs/1710.04773, 2017. URL http:
//arxiv.org/abs/1710.04773.

11

https://aclanthology.org/2022.emnlp-main.3/
https://doi.org/10.1145/3551349.3556900
https://doi.org/10.1145/3551349.3556900
https://aclanthology.org/D19-1275/
http://arxiv.org/abs/1710.04773
http://arxiv.org/abs/1710.04773

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yi Jing, Zijun Yao, Lingxu Ran, Hongzhu Guo, Xiaozhi Wang, Lei Hou, and Juanzi Li. Sparse auto-
encoder interprets linguistic features in large language models. arXiv preprint arXiv:2502.20344,
2025.

Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed repre-
sentation with high-dimensional random vectors. Cognitive computation, 1:139–159, 2009.

Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda. In-
terpreting attention layer outputs with sparse autoencoders. arXiv preprint arXiv:2406.17759,
2024.

D. Kleyko, R. W. Gayler, and E. Osipov. Commentaries on ”learning sensorimotor control with
neuromorphic sensors: Toward hyperdimensional active perception” [science robotics vol. 4 issue
30 (2019) 1-10]. arXiv:2003.11458, pp. 1–10, 2020.

Johannes Knittel, Tushaar Gangavarapu, Hendrik Strobelt, and Hanspeter Pfister. Gpt-2 through the
lens of vector symbolic architectures. arXiv preprint arXiv:2412.07947, 2024.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs, 2, 2010.

Michel Ledoux. The concentration of measure phenomenon. Number 89 in Mathematical Surveys
and Monographs. American Mathematical Soc., 2001.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al. Dbpedia–a large-
scale, multilingual knowledge base extracted from wikipedia. Semantic web, 6(2):167–195, 2015.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, pro-
ceedings, part v 13, pp. 740–755. Springer, 2014.

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
model representations of true/false datasets. arXiv preprint arXiv:2310.06824, 2023.

Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 3781, 2013.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39–41, 1995.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Steven T Piantadosi, Dyana CY Muller, Joshua S Rule, Karthikeya Kaushik, Mark Gorenstein,
Elena R Leib, and Emily Sanford. Why concepts are (probably) vectors. Trends in Cognitive
Sciences, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
sis. Journal of computational and applied mathematics, 20:53–65, 1987.

Mansi Sakarvadia, Arham Khan, Aswathy Ajith, Daniel Grzenda, Nathaniel Hudson, André Bauer,
Kyle Chard, and Ian Foster. Attention lens: A tool for mechanistically interpreting the attention
head information retrieval mechanism. arXiv preprint arXiv:2310.16270, 2023.

K. Schlegel, P. Neubert, and P. Protzel. A comparison of vector symbolic architectures. Artificial
Intelligence Review, 55:4523–4555, 2022.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Liyi Zhang, Michael Y Li, and Thomas L Griffiths. What should embeddings embed? autoregressive
models represent latent generating distributions. arXiv preprint arXiv:2406.03707, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LIMITATIONS

While we apply data augmentation and test on syntactically different inputs to mitigate confounding
on information decoding (Section 4.1 and Section 5.1), we could not measure the effectiveness of
these strategies.

Table 1, Table 8 and Table 9 report on the actual concepts identified by our probing method. The
label Key values denotes instances where the probe retrieves a key of an analogy pair with a
concept linked to it in a different domain (see Australia in Section 4.1). This outcome can be
viewed as an artifact of our probe, revealing the confounding influence of memorized key-value
associations. Nevertheless, such cases constitute only a small fraction, 2% of the 114,099 textual
inputs processed across all models, covering Key — Key Values, Example Value — Key Values,
and Key Values — Target shown in Table 1. To further investigate potential confounding effects
from probe learning, we introduce two control tests, as proposed in (Hewitt & Liang, 2019). Using
randomly-permuted input embeddings (es) as a null model (Gotelli et al., 2012), and applying the
unbinding operation on VSA encodings (ys) with concept pairs unrelated to inputs, respectively,
permuted and unrelated baseline in Appendix F.

In Section 5.1, we introduce the value of 0.5 in the precision metric for LLM’s next-token predic-
tion due to tokenization. While this approach is suitable for our needs, it may underestimate the
model’s performance, resulting in lower precision@k scores in next-token prediction. However, in
our experiments, only 8.6% of all instances fail in this scenario for the next token@1, considering
the averaged ratio across models (Llama 4: 0.7%, Pythia: 16.2%; see also Appendix L.1 and Ap-
pendix L.2). On the other hand, models’ tokenizers could introduce variability in language models
by themselves.

While our approach avoids dependence on the LLM’s vocabulary of DLA-based methods (Section 2)
due to the data-agnostic nature of VSAs, it still requires a predefined set of concepts. This set can
however be seen as an alphabet with no practical constraints on the cardinality, type and source of
its symbols.

B ALGORITHM TO PROCESS LLM EMBEDDINGS AS DESCRIBED IN
SECTION 4.3

Algorithm 1: Ingestion procedure F

Data: Textual sequence s ∈ S
Result: Compressed model state for its next token prediction
begin

// Get the residual stream from the language model

H← LLM(s) ∈ RL×T×d ;
// Retain embeddings of the last token from the bottom half of the layers

H⋆ ← H[L/2 : L,−1];
// Apply K-Means clustering

C← KMeansK=5(H
⋆) ∈ RK×d ;

// Sum pooling across the centroids

es ←
∑5

k=1 Ck ∈ Rd ;

return es

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C ARCHITECTURE OF OUR Hyperdimensional probe

Table 2: Configuration of the neural VSA encoderM for an input embedding dimension equal to d.
Component Input Dim Output Dim Note
Input Layer
Linear Layer d 4096 -
Normalization - - LayerNorm (4096)
Activation - - GELU

Residual Block 1
Linear Layer 4096 4096 GELU activation
Normalization - - LayerNorm (4096)
Dropout - - p = 0.5
Residual Connection - - Identity

Residual Block 2
Linear Layer 4096 4096 GELU activation
Normalization - - LayerNorm (4096)
Dropout - - p = 0.5
Residual Connection - - Identity

Output Layer
Normalization - - LayerNorm (4096)
Linear Layer 4096 4096 -
Activation - - Tanh

Trainable parameters with: d = 1024, 55M
d = 2048, 59M
d = 4096, 67M
d = 5120, 71M

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D TRAINING PERFORMANCE OF THE NEURAL VSA ENCODERS

Table 3: Training performance of our neural VSA encoderM on the test set. Order by model size.
Large Language Model Cosine

similarity
Binary

accuracyName Parameters Embedding
dimension

Layers from
residual stream

Llama 4, Scout, 17B-16E 109 B 5120 24th to 48th |25| 0.890 0.934
OLMo-2 32 B 5120 32nd to 64th |33| 0.878 0.926

Phi 4 14 B 5120 20th to 40th |21| 0.881 0.930
Llama 3.1-8B 8 B 4096 16th to 32nd |17| 0.892 0.937
Pythia-1.4b 1.4 B 2048 12th to 24th |13| 0.861 0.916

GPT-2, medium 355 M 1024 12th to 24th |13| 0.865 0.920

AVERAGE 0.878
± 0.01

0.927
± 0.01

D.1 TRAINING DETAILS

The neural VSA encoderM was trained for 421 epochs on average via PyTorch Lighting,8 using
early stopping (patient set at 100 epochs) and a batch size of 32. The optimal learning rate was
automatically determined using the learning rate finder provided by the aforementioned library, and
was approximately set to 3e−5 on average. We use AdamW as the optimizer (weight decay of 1e−4),
applying a learning rate schedule based on Cosine Annealing with Warm Restarts, starting from the
100th epoch and doubling the restart period thereafter. To adapt the batch size after LR restarts, we
employed a Gradient Accumulation Scheduler: the effective batch size was doubled at the 110th
epoch, quadrupled at the 310th, and increased eightfold at the 410th epoch. During training, the
model’s outputs are dynamically binarized using the sigmoid function to ensure compatibility with
the loss function (Section 4.4). This approach demonstrated better empirical performance than linear
min-max normalization.

D.2 CONCEPT OF A NEURAL VSA ENCODER

LLM
F (s) = es

Ingestion algorithm

VSA encoding (ys)

Proxy space
Textual input s ∈ S

M : Rd → {−1, 1}D

Figure 4: The regression model that maps the neural representations into a controlled vector space.

D.3 HUGGING FACE REPOSITORIES FOR THE CONSIDERED LLMS

1. Meta AI’s Llama 4, Scout, huggingface.co/meta-llama/Llama-4-Scout-17B-16E
2. Meta AI’s Llama 3.1, huggingface.co/meta-llama/Llama-3.1-8B
3. Microsoft’s Phi-4, huggingface.co/microsoft/phi-4
4. EleutherAI’s Pythia, huggingface.co/eleutherai/pythia-1.4b
5. AllenAI’s OLMo-2, huggingface.co/allenai/OLMo-2-0325-32B
6. OpenAI’s GPT-2, huggingface.co/openai-community/gpt2-medium

8lightning.ai/docs/pytorch/stable

16

https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/microsoft/phi-4
https://huggingface.co/eleutherai/pythia-1.4b
https://huggingface.co/allenai/OLMo-2-0325-32B
https://huggingface.co/openai-community/gpt2-medium
https://lightning.ai/docs/pytorch/stable

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E UNBINDING STAGE FROM SECTION 4.5

Table 4: Unbinding stage: Proportions of the best unbinding concepts used for extracting concepts
from VSA encodings across different models, with overall mean and standard deviation. Key refers
to cases where the candidate concept corresponds to the key of the target pair (b1), while NONE
indicates that no unbinding operations were applied to the probed VSA encoding. Example denotes
a concept where the key (a1) and value (a2) from the in-context example were pre-bound. Lastly,
Context represents a scenario where the in-context example (a1, a2) was pre-bound together with
the key of the target pair (b1). On the other hand, Greedymeans using a concept candidate from the
vocabulary, rather than picking it among those of the input. The table has been trimmed to highlight
the relevant and common items across the models. We consider the first four strategies to be the
most relevant, as they account for 97% of all unbinding operations across models.

Concept for unbinding (%) GPT-2 Pythia Llama 4, Scout OLMo-2 Phi-4 Llama 3.1 AVERAGE
Key 65.9 74.4 83.2 83.2 87.4 87.9 80.3 ± 7.8

NONE 22.0 16.9 11.6 8.6 7.7 7.0 12.3 ± 5.4
Example Key 6.0 2.6 1.0 2.1 1.5 1.7 2.5 ± 1.7

Context 1.2 2.0 2.6 4.5 1.3 1.5 2.2 ± 1.2
Greedy 2.1 1.9 1.3 0.9 1.2 0.9 1.4 ± 0.5

Example Value 1.6 1.5 1.0 0.4 0.7 0.5 0.9 ± 0.5
Cleaned Example Key 0.2 0.5 0.0 0.1 0.2 0.1 0.2 ± 0.2

Cleaned Example Value 0.9 0.1 0.0 0.1 0.1 0.1 0.2 ± 0.3
Cleaned Key 0.0 0.0 0.0 0.0 0.0 0.1 0.0 ± 0.0

Cleaned Original 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
Example 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0

Example Value & Key 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
Example Key & Key 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0

F EXPERIMENTAL RESULTS

Table 5: Experimental results on the LLM’s next-token prediction, along with our probing method
for retrieving the target concept from model’s latent representations. The model are ordered based
on precision@1 for next-token prediction, and standard deviation is reported for each. To control
for randomness, we also introduce two control tests using Llama 3.1-8B: a comparison against a
null model with randomly-permuted input embeddings (es, permuted baseline), and extraction of
concept pairs unrelated to inputs (ys, unrelated baseline).

MODEL Next Token Prediction VSA-based Probing
Precison@1 Precison@5 Precison@1 Precison@5

Permuted baseline - - 0.080 ± 0.27 0.103 ± 0.30
Unrelated baseline - - 0.099 ± 0.30 0.105 ± 0.31

Llama 4 Scout, 17B-16E 0.077 ± 0.26 0.463 ± 0.48 0.866 ± 0.34 0.875 ± 0.33
GPT-2, medium 0.227 ± 0.39 0.471 ± 0.46 0.692 ± 0.46 0.702 ± 0.46

Pythia-1.4b 0.288 ± 0.41 0.541 ± 0.44 0.778 ± 0.42 0.790 ± 0.41
Llama 3.1-8B 0.309 ± 0.44 0.490 ± 0.47 0.891 ± 0.31 0.908 ± 0.29

Phi 4 0.478 ± 0.48 0.683 ± 0.43 0.887 ± 0.32 0.904 ± 0.30
OLMo-2 0.482 ± 0.48 0.656 ± 0.44 0.879 ± 0.33 0.890 ± 0.31

AVERAGE 0.310 ± 0.41 0.551 ± 0.45 0.832 ± 0.35 0.845 ± 0.33

F.1 VALIDATION STRATEGY

To assess the effectiveness of our probe, we conduct two control tests (see Table 5) as proposed in
“Designing and interpreting probes with control tasks” by Hewitt & Liang (2019):

1. Permuted Baseline: We compared our outputs against a null model by inputting the trained
probe with randomly permuted LLM embeddings;

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2. Unrelated Baseline: We attempt to extract concepts that are unrelated to the input using
VSA-based probing.

Both tests yielded very low precision probing scores, reinforcing the effectiveness of our method.
These results show that:

• Applying our VSA-based probing (see Equation 4) using concepts irrelevant to input texts
results in meaningless outputs;

• Corrupted or nonsensical input embeddings also produce poor results.

That said, it is crucial to recognize a fundamental limitation of all probing approaches: by definition,
the human-interpretable information encoded in LLM embeddings is not explicitly known. Conse-
quently, no probing method can provide absolute certainty in decoding such information. To address
this, we further validated our method by evaluating the trained probes on textual inputs distinct from
those used during training, thereby reinforcing the reliability of our information decoding approach.

F.2 DISTRIBUTION OF INSTANCES WITH NO CONCEPTS EXTRACTED

We examine probe performance across different LLM input types, defining success and failure by
the presence or absence of concepts extracted by VSA probing. Table 6 displays the distribution
of instances with no concept extracted grouped by input categories. While we observe model-wise
variability, this preliminary analysis shows a common pattern in representation blankness.

1. Linguistic analogies yield the lowest rate of missing concept extraction (1–1.8%), suggest-
ing richer LLM representations, likely due to reliance on all concepts to capture implicit
syntactic patterns.

2. Factual knowledge and semantic relations show slightly higher but still low blank rates
(5.3–7%). Since these analogies rely on key–value associations, blanks may reflect missing
associations in the model.

3. Semantic hierarchies (34.8%) and mathematical analogies (89.5%) yield the highest
blank rates. Both require more abstract reasoning, but the large gap in mathematics likely
stems from the rarity of analogical tasks with numbers, compared to equation solving or
standard math problems more common in training data.

Table 6: Analogies by Area (%) for the subset of instances with no retrieved concepts for Llama
4 and OLMo2, mentioned in Section 5.2. OLMo-2 shows richer embeddings than Llama 4, with
lower proportions of instances with conceptually-blank representations for most of the areas. Llama
4 slightly outperform OLMo2 in mathematical and grammatical analogies.

Area Llama 4
(docs, %)

OLMo2
(docs, %) AVG Sample Domain

Mathematics 87.8 91.1 89.5 80 is to 160 as 98 is to math double
Semantic Hierarchies 38.8 30.8 34.8 limousine is to car as monorail is to hyponyms
Semantic Relations 10.0 3.9 7.0 Croatia is to Croatian as Switzerland is to nationality adjective
Factual Knowledge 5.5 5.1 5.3 euclid is to Greek as galilei is to name nationality

Verbal & Grammatical Forms 1.4 2.1 1.9 seeing is to saw as describing is to past tense
Morphological Modifiers 1.1 0.8 1.0 agree is to agreement as excite is to verb+ment

F.3 DIAGNOSING ERRONEOUS ANSWERS FROM LLAMA 4

Llama 4 most frequently generated a white space token for our corpus S̄, accounting for 76% of
its outputs, considerably higher than the 8% average observed in the other models (30% for Llama
3.1). Its next most common tokens were: ? (9%), what (6%) and x (0.7%). The target token
had a median rank of 5, with its SoftMax score trailing the top-1 token by a median difference of
0.85 (Appendix L.1), which starkly contrasts other models with 0.05. Thus, the model confidently
predicted a space, with the target word often within its top five predictions. These insights, and the
strong performance of our hyperdimensinal probe (probing@1 = 87%), suggest issues in handling
the syntactical structure of our corpus rather than lack of analogical reasoning. Possibly influenced
by its tokenizer (see space-token frequency in the other Llama), which emphasizes prompt engineer-
ing importance and variability caused by models’ tokenizers. This may be further worsened by the
model’s multimodality and the complexity of its MoE architecture.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G EXPERIMENTAL COMPARISON

We compare our VSA-based results to those yieled by the Direct Logit Attribution (DLA) technique;
because, unlike SAEs, it requires no extra steps such as feature-naming, making it the most direct
and unambiguous comparison for our approach.

Our neural VSA encoder (Section 4.4) does qualify as a supervised probe, as it is trained to
map LLM internal representations (i.e., residual stream activations) into interpretable, human-
understandable features (i.e., VSA encodings). Supervised probes are typically designed for specific
experimental goals or target features, ranging from syntactic structure, as in “A Polar Coordinate
System Represents Syntax in Large Language Models” (Diego Simon et al., 2024); to real-world
knowledge, as in “Language Models Represent Space and Time” (Gurnee & Tegmark, 2023); and
to abstract semantics, as in “The Geometry of Truth” (Marks & Tegmark, 2023). Our probe is
specifically designed around VSA principles, so direct comparisons with non-VSA probes would
require fundamentally different approaches not grounded in VSAs.

While our controlled vector space (VSA encodings) parallels the SAE proxy layer, our approach
uses a top-down strategy by querying it with predefined concepts (Equation 4), whereas SAEs rely
on a bottom-up process that names all triggered features post hoc. This bottom-up approach reveals
an unbounded set of latent features without relevance filtering, requiring exhaustive feature naming
and additional filtering to isolate those aligned with our bounded input-output concept framework.
In addition, while SAEs typically target a single layer, our probing approach examines nearly the
entire residual stream simultaneously, complicating direct and precise comparisons. This manual
intervention involved in SAE-based methods, from feature naming to filtering, prevent them from
being fully automated, and directly comparable to our supervised approach. By contrast, DLA out-
puts a single, unique and unambiguous feature (token) constrained by the model’s output vocabulary,
enabling a direct comparison through a fuzzy token-to-concept matching with our concept set.

In summary, DLA is the most direct comparison, as SAE comparisons require additional steps, mak-
ing them indirect and ambiguous, and supervised probes reflect only a generic mapping paradigm.

G.1 DLA-BASED EXPERIMENTAL RESULTS

To validate our results, we apply DLA to all models using S̄, as it allows direct baseline without
extra steps such as feature naming or filtering required in SAE analysis. See Appendix G for details.

We adopt simple, fuzzy token-to-concept matching approach with our concept set (e.g., pes 7→
peso), and consider projected next-token predictions (Appendix G.3) from the model’s middle to
last layers of the last token, as VSA probing. DLA produces no concepts in nearly 30% of analogies
on average (see NONE in Table 7; +17% compared to VSA, Table 1), while yielding the target with
its key in 26% of the cases (-50%). In instances without concepts from DLA, our VSA-based probe
extracts, on average, the key-target pair in 57% of all analogies (Table 8), while returning none
for 28%. For instance, for the analogy king is to queen as son is to 7→ daughter,
using OLMo-2, our probe extracts the key-target concepts (son and daughter), while DLA pro-
duces no concepts. The model predicts the next token prediction as ? with a softmax score of
0.06, followed by father (0.05); the target word has a rank of 37. Focusing on next-token rep-
resentations, and thus capturing surface-level features, DLA exhibits inferior probing capabilities
compared to ours, which compromise subsequent interpretability analyses of LLM embeddings. On
the other hand, we observe substantial variance within this subset during VSA probing. Across mod-
els (Table 8), our probe fails to retrieve any concepts in 43% of cases for Llama 4, compared to only
14% for Llama 3.1. GPT-2 confirms greater representativeness for the in-context example. There is
also variation across analogy categories in this subset (Table 9): for OLMo-2, linguistic analogies
show the highest retrieval rates for Context | Target (7.4% and 4.4%), whereas mathematical
analogies shows nearly no concept retrieval (91%), confirming common blank representations. Ap-
pendix G.2 shows that, in cases where VSA fails, also DLA frequently yields no concepts rather
than other relevant concepts.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Concepts extracted using the DLA probing technique on the full corpus S̄ with all LLMs.
Likewise in our VSA-based probing, we focus on the same middle-to-bottom range of model’s
hidden layers of the last token. The table highlights the key common items across models, with the
first six cases covering over 95% of all extracted concepts.

Extracted Concepts (docs, %) GPT-2 Pythia Llama4, Scout OLMo-2 Phi-4 Llama 3.1 AVERAGE ∆ VSA
NONE 33.9 32.8 15.4 14.6 33.1 47.4 29.5 ± 11.4 +17.3
Target 15.0 18.0 36.7 29.0 34.4 22.5 25.9 ± 8.1 +25.8

Key | Target 12.6 19.3 38.4 38.5 22.7 22.1 25.6 ± 9.7 - 50.4
Key 9.7 10.4 6.3 10.4 6.0 4.5 7.9 ± 2.4 +5.0

Example Value 12.8 5.7 0.3 0.7 0.9 0.5 3.5 ± 4.6 +3.5
Example 9.0 5.3 0.3 1.7 1.0 0.5 3.0 ± 3.2 +0.7

Example Value | Target 1.0 2.1 0.7 0.6 0.3 0.9 0.9 ± 0.6 +0.9
Example Key 3.0 1.5 0.1 0.2 0.1 0.1 0.8 ± 1.1 +0.7

Context | Target 0.6 0.3 0.5 1.5 0.3 0.4 0.6 ± 0.4 -1.5

Table 8: Concepts extracted though VSA-based probing when DLA yields no concepts. The
table highlights VSA can also capture model’s variability (e.g., in-context concepts, target concepts).
The table highlights key shared items across models, covering nearly 98% of all extracted concepts.

GPT-2 Pythia Llama 3.1 Phi-4 OLMo-2 Llama 4, Scout AVERAGE
DLA failures (docs, %) 33.9 32.8 47.4 33.1 14.6 15.4 29.5 ± 11.4

Concepts extracted by VSA (docs, %)

Key | Target 53.5 56.5 76.6 70.5 44.5 42.6 57.4 ± 12.5
NONE 26.8 24.3 13.7 18.6 41.0 43.2 27.9 ± 10.9

Example 6.8 3.0 2.1 2.1 3.4 2.0 3.2 ± 1.7
Key 5.2 7.3 0.7 0.9 1.6 3.0 3.1 ± 2.4

Out-of-context 2.0 1.8 1.1 1.9 3.8 4.5 2.5 ± 1.2
Key | Pair Values 1.8 2.1 2.5 3.2 2.4 1.8 2.3 ± 0.5
Context | Target 0.7 1.2 1.1 0.7 1.9 1.4 1.2 ± 0.4

Target 0.1 0.1 0.2 0.0 0.1 0.0 0.1 ± 0.1

Table 9: Percentages of extracted factors by analogy category considering the subset of instances
when the DLA yields no concept for OLMo-2.

Extracted
concepts (docs,

%)

Morphological
Modifiers

Verbal &
Grammatical

Forms

Factual
Knowledge

Semantic
Relations Mathematics Semantic

Hierarchies AVERAGE

Key | Target 90.3 83.4 70.1 79.4 0.0 41.5 60.8 ± 30.3
NONE 1.6 2.7 14.3 1.7 91.1 21.1 22.1 ± 31.1

Example 0.7 0.7 4.7 8.5 0.0 15.0 4.9 ± 5.1
Key 1.6 2.7 3.8 1.4 0.0 5.1 2.4 ± 1.7

Key | Pair Values 1.3 0.9 0.0 5.1 0.0 11.6 3.2 ± 4.2
Context | Target 4.4 7.4 0.8 1.6 0.0 0.6 2.5 ± 2.6
Out-of-Context 0.2 0.6 1.3 0.0 8.8 0.9 1.9 ± 2.9

Context 0.0 0.3 0.1 0.0 0.0 0.3 0.1 ± 0.1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G.2 CONCEPTS EXTRACTED BY DLA WHEN VSA YIELDS NO CONCEPTS

Table 10: Concepts extracted though DLA-based probing when VSA yields no concepts. The table
highlights DLA also extract no concepts in the majority of the instances (59 ± 15 %), highlighting
high variability among models.

Extracted concepts (docs,%) GPT-2 Pythia Llama3 Phi-4 OLMo-2 Llama4 AVERAGE
None 40.9 46.5 83.1 72.7 55.9 53.9 58.8± 14.8
Target 8.1 9.0 5.3 15.7 14.3 23.3 12.6± 6.4
Key 7.5 11.7 3.4 4.3 13.2 9.1 8.2± 3.7
Key | Target 6.9 8.7 5.7 3.6 11.8 11.9 8.1± 3.3
Example Value 17.9 11.1 1.3 1.0 1.3 0.6 5.5± 6.7
Example 12.1 6.6 0.4 2.2 1.7 0.1 3.9± 4.3
Example Key 3.3 2.7 0.1 0.1 0.2 0.2 1.1± 1.2
Example Value | Target 1.0 1.7 0.1 0.0 0.2 0.2 0.5± 0.7
Example Value | Key 1.0 0.6 0.1 0.0 0.4 0.3 0.4± 0.4
Example Key | Key 0.3 0.4 0.1 0.0 0.1 0.1 0.2± 0.2
Example Value | Key | Target 0.3 0.3 0.0 0.0 0.3 0.2 0.2± 0.1
Context | Target 0.3 0.2 0.3 0.2 0.4 0.1 0.3± 0.1
Example Key | Target 0.2 0.1 0.0 0.0 0.0 0.0 0.1± 0.1
Target | Example 0.1 0.1 0.0 0.0 0.1 0.0 0.1± 0.1

G.3 RAW RESULTS OBTAINED THOUGH THE DLA PROBING TECHNIQUE

Figure 5: Comprehensive raw outputs obtained though DLA on OLMo-2 for a sampled analogy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H APPLICABILITY TO OTHER DOMAINS

H.1 GENERALIZATION OF INPUT REPRESENTATION

VSA representations are automatically generated from input features, with their construction guided
by the probing objective and the target latent features. While our work focuses on textual inputs
with well-defined semantics, allowing straightforward extraction of input features (i.e., words), the
underlying principle is flexible and generalizable. Equation 2 illustrates the creation of input repre-
sentations via binding and bundling operations for our specific input template and downstream task.
The hyperdimensional algebra underlying VSA allows this approach to generalize to other textual
formats, NLP tasks, and even multi-modal data (see appendix P).

Scalability challenges depend largely on the nature of the input features. For tasks such as toxicity
detection, expert-labeled data or specialized feature extraction pipelines may be required. For ex-
ample, mapping the phrase “You are a pathetic excuse for a human just like the rest of your kind”
to a conceptual form such as (ϕattack ⊙ ϕinsult) + (ϕattak ⊙ ϕidentity) requires human expertise. Once
features are extracted, however, constructing VSA encodings is automatic, efficient, and scalable.
VSA probing can then uncover encoded concepts in the LLM vector space, for instance:

ys ⊘ ϕattack = ϕidentity + noise

In contrast, tasks based on syntactic structures offer more scalable input extraction. For example, the
sentence “The city of Turin is in Italy” can be processed with conventional techniques such as POS
tagging and Semantic Role Labeling (SRL). A VSA encoding can then be automatically created:

(ϕNOUN ⊙ ϕcity) + (ϕPROPN ⊙ ϕTurin) + (ϕVERB ⊙ ϕbe) + (ϕPROPN ⊙ ϕItaly)

H.2 APPLICABILITY TO OTHER DOWNSTREAM TASKS

Although we demonstrate VSA-based probing using analogy-competition tasks, the methodology is
generalizable to other experimental settings. The analogy-based dataset was chosen to:

• provide a simple, controlled, and interpretable evaluation environment;

• elicit LLMs to focus on concepts and their inherent relationships;

• probe the LLM vector space with inputs spanning a spectrum of reasoning tasks.

Thanks to the flexibility of VSAs and hypervector algebra, VSA-based probing can be applied to a
wide variety of experimental settings with different:

1. Downstream tasks. Our decoding paradigm can be used for linguistic feature extraction,
toxicity detection, or bias classification;

2. Textual templates. For example, in question-answering setting, an input text in such as
“Who wrote the play Romeo and Juliet?” can be encoded as

(ϕtask ⊙ ϕquestion) + (ϕrelation ⊙ ϕwrittenBy) + (ϕplay ⊙ ϕRomeo&Juliet)

allowing the VSA to query LLM representations and reveal which concepts are strongly
represented or linked to the predicted answer;

3. Modalities. As discussed in Appendix P, inputs combining text with other modalities could
also be encoded and probed via VSAs.

VSA-based probing thus provides a unified, flexible framework for examining how LLMs encode
and relate abstract input features, from syntactic structures to high-level concepts such as gender
bias or toxic language.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

I QUESTION-ANSWERING SETTING FROM SECTION 5.3

We generate 693,886 training examples Q from the SQuAD dataset using an augmenting strategy
by incrementally considering textual questions with their corresponding features:

(A1) “What was the name” 7→ ϕname

(A2) “What was the name of the ship” 7→ ϕname + ϕship

(A3) “. . . ” 7→ . . .

(An−1) “What was the name of the ship that Napoleon sent to the Black Sea?” 7→ ϕname

7→ ϕname + ϕship + ϕnapoleon + ϕsend + ϕtheBlackSea

(An) “What was the name of the ship that Napoleon sent to the Black Sea?”

Charlemagne” 7→ (ϕname + ϕship + ϕnapoleon + ϕsend + ϕtheBlackSea) + ϕcharlemagne

For our experiments, we generate another corpus Q̄ including also the contextual text (Wikipedia
article) provided for each SQuAD’s items:

“Napoleon III responded with a show of force . . . by the Greek Orthodox Church.

Q: What was the name of the ship that Napoleon sent to the Black Sea? (6)
A (≤ words):”

Lastly, we apply our entire pipeline by probing the final state of a language model at the last token
(colon) and extracting concepts through comparison with the codebook Φ. We analyze the model’s
internal state across the text generation process, considering the residual stream at initialization
(H[seq0]) and after the autoregressive generation of t tokens (H[seqt]).

J COSINE SIMILARITIES AMONG THE ITEMS OF THE VSA CODEBOOK

0.080% 0.060% 0.040% 0.020% 0.000% 0.020% 0.040% 0.060% 0.080%
Cosine Similarity

100

101

102

103

104

105

Ve
ct

or
s

Cosine Similarity Distribution

Figure 6: Distribution of pair-wise cosine similarities among the items of the codebook.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

K SPEARMAN CORRELATION FOR THE QA-RELATED EXPERIMENTS

Figure 7: Spearman correlation coefficients computed on Q̄.

Figure 8: P-values of the Spearman correlation coefficients.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

L OVERVIEW OF THE EXPERIMENTAL METRICS

L.1 LLAMA 4, SCOUT

FALSE Initial
token

TRUE0%

20%

40%

60%

80%

100%

Ob
se

rv
at

io
ns

91.9%

0.7%
7.4%

NEXT TOKEN
PRECISION@1

FALSE Initial
token

TRUE0%

20%

40%

60%

80%

100%

Ob
se

rv
at

io
ns

49.9%

7.6%

42.5%

NEXT TOKEN
PRECISION@5

0.00 0.25 0.50 0.75 1.00

Do
m

ai
ns

NEXT TOKEN
SOFTMAX

Median (0.88)

0 500 1000

Do
m

ai
ns

TARGET TOKEN
RANK

Median (5)

0.00 0.25 0.50 0.75 1.00

Do
m

ai
ns

TARGET TOKEN
SOFTMAX DIFF

Median (0.85)

FALSE TRUE0%

20%

40%

60%

80%

100%

Ob
se

rv
at

io
ns

13.4%

86.6%

PRECISION@1

FALSE TRUE0%

20%

40%

60%

80%

100%

Ob
se

rv
at

io
ns

12.5%

87.5%

PRECISION@5

0.00 0.25 0.50 0.75 1.00

Do
m

ai
ns

TARGET VSA
COSINE SIM

Median (0.42)

AREAS (52 domains)
Morphological Modifiers (14)
Verbal & Grammatical Forms (13)
Semantic Relations (8)
Factual Knowledge (7)
Mathematics (7)
Semantic Hierarchies (3)

Figure 9: Experimental metrics of the LLM’s next-token prediction task and probing performance
for Llama 4. Precision@k is displayed as a categorical variable, with its binary values portrayed as
boolean. The category initial token is associated to the special case (0.5) introduced in Section 5.1.
We measure VSA noise by computing the cosine similarity between the retrieved target concept and
its codebook version Φ.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

L.2 OLMO-2

FALSE Initial
token

TRUE0%

20%

40%

60%

80%

100%

Ob
se

rv
at

io
ns

47.1%

9.5%

43.5%

NEXT TOKEN
PRECISION@1

FALSE Initial
token

TRUE0%

20%

40%

60%

80%

100%

Ob
se

rv
at

io
ns

27.9%

13.1%

59.1%

NEXT TOKEN
PRECISION@5

0.00 0.25 0.50 0.75 1.00

Do
m

ai
ns

NEXT TOKEN
SOFTMAX

Median (0.23)

0 2000 4000 6000

Do
m

ai
ns

TARGET TOKEN
RANK

Median (1)

0.00 0.25 0.50 0.75 1.00

Do
m

ai
ns

TARGET TOKEN
SOFTMAX DIFF

Median (0.0)

FALSE TRUE0%

20%

40%

60%

80%

100%

Ob
se

rv
at

io
ns

12.1%

87.9%

PRECISION@1

FALSE TRUE0%

20%

40%

60%

80%

100%

Ob
se

rv
at

io
ns

10.8%

89.2%

PRECISION@5

0.00 0.25 0.50 0.75 1.00

Do
m

ai
ns

TARGET VSA
COSINE SIM

Median (0.49)

AREAS (52 domains)
Morphological Modifiers (14)
Verbal & Grammatical Forms (13)
Semantic Relations (8)
Factual Knowledge (7)
Mathematics (7)
Semantic Hierarchies (3)

Figure 10: Experimental metrics of the LLM’s next-token prediction task and probing performance
for OLMo-2. Precision@k is displayed as a categorical variable, with its binary values portrayed as
boolean. The category initial token is associated to the special case (0.5) introduced in Section 5.1.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

M SYNTHETIC CORPUS

Table 11: Knowledge bases for our synthetic corpus S.
Dataset Domains Sample example

Google Analogy Test Set 12 capital world, currency, plural, . . . 33,812 Denmark : krone = Mexico : peso
Bigger Analogy Test Set 33 verb+ment, occupation, gender, . . . 73,471 queen : king = mother : father

Mathematics 7 double, square, division2, . . . 6,816 4 : 16 = 5 : 25

52 114,099

Table 12: Overview of our experimental set, grouped by tasking an LLM to cluster the domains.
Category Domains Docs

Morphological Modifiers 14 noun+less, adj+ness, . . . 34,308 (30%)
Verbal & Grammatical Forms 13 past tense, plural, . . . 31,219 (27%)

Factual Knowledge 7 country capital, occupation, . . . 18,800 (17%)
Semantic Relations 8 family, genders, . . . 16,831 (15%)

Mathematics 7 math double, math division5, . . . 6,816 (6%)
Semantic Hierarchies 3 hypernyms, hyponyms, . . . 6,125 (5%)

52 114,099 (100%)

Table 13: All domains, and their corresponding cardinality after data augmentation for training.
Domain Examples Domain Examples Domain Examples
country capital 21801 capital world 18561 country language 12299
antonyms gradable 11268 adj superlative 10942 un+adj reg 10614
adj+ly reg 10576 adj comparative 10519 male female 10236
noun plural reg 10216 noun plural irreg 10206 verb Ving Ved 10164
verb inf 3pSg 10112 animal sound 10083 verb inf Ving 10008
name nationality 9998 verb+er irreg 9865 verb Ving 3pSg 9861
verb+able reg 9849 adj+ness reg 9849 animal shelter 9833
hypernyms animals 9831 over+adj reg 9828 re+verb reg 9821
verb+ment irreg 9807 verb inf Ved 9805 UK city county 9805
name occupation 9801 noun+less reg 9801 verb 3pSg Ved 9801
verb+tion irreg 9801 hypernyms misc 9719 antonyms binary 9603
past tense 6313 plural 4129 comparative 3765
present participle 3401 plural verbs 3055 currency 2983
adjective to adverb 2977 math double 2918 nationality adjective 2818
superlative 2545 math division2 2498 opposite 2221
math division5 641 family 529 math squares 402
math division10 258 hyponyms misc 102 math root 77
math cubes 29

DOMAINS: 52 TEXTUAL EXAMPLES: 395,944

N DECLARATION OF LLM USAGE

The paper presents a pipeline that treats LLMs as subjects of study, not tools. To enhance in-
terpretability, we adopted an LLM (GPT-4o) to categorize the 52 distinct analogy domains into
semantically coherent macro categories (Table 12 in Appendix M).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

O DIMENSIONALITY REDUCTION

O.1 AVERAGE CORRELATIONS AMONG MODEL’S HIDDEN LAYER

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Layer

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

La
ye

r

1 0.8 0.8 0.7 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.09

0.8 1 0.9 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.1

0.8 0.9 1 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.1

0.7 0.8 0.9 1 0.9 0.9 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.5 0.1

0.6 0.7 0.8 0.9 1 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.5 0.1

0.6 0.7 0.8 0.9 0.9 1 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.2

0.5 0.6 0.7 0.8 0.9 0.9 1 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.6 0.2

0.5 0.6 0.7 0.8 0.8 0.9 0.9 1 1 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.2

0.5 0.5 0.6 0.7 0.8 0.8 0.9 1 1 1 0.9 0.9 0.9 0.8 0.8 0.7 0.2

0.4 0.5 0.6 0.7 0.8 0.8 0.9 0.9 1 1 1 0.9 0.9 0.9 0.8 0.7 0.2

0.4 0.5 0.6 0.7 0.7 0.8 0.9 0.9 0.9 1 1 1 0.9 0.9 0.9 0.8 0.2

0.4 0.5 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 1 1 1 0.9 0.9 0.8 0.2

0.4 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1 1 1 0.9 0.8 0.2

0.3 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1 1 1 0.8 0.3

0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1 1 0.9 0.3

0.3 0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 1 0.4

0.09 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.4 1

1.0

0.5

0.0

0.5

1.0

Co
rre

la
tio

n

Figure 11: Average Person correlations among the second half of model’s hidden layers for Llama3.1

O.2 ANALYSIS OF REPRESENTATION REDUNDANCY

In Section 4.3, we hypothesize that highly correlated rows (model’s adjacent layers) could cause
redundant representations, since they likely encode similar numerical patterns, and thus information.

Here, we present an analysis of representation redundancy, defined as approximate linear depen-
dence among LLM hidden layer embeddings. We computed the Gram matrix G = HHT , where H
is the model’s residual stream, and analyzed its eigenvalues. Table 14 shows results for the OLMo-2
model (considering the 32nd-to-64th range of hidden layers; Appendix D), averaged on a 100K train-
ing input sample. The spectrum reveals a few dominant eigenvalues (around 3-4 modes) followed by
many smaller ones, indicating that the embedding space is approximately low-rank. This suggests
that, when considering the full matrix (R33×5120 for OLMo-2), most hidden layer representations
(rows) are redundant, since only a few rows (or their combinations) contribute meaningful struc-
ture. The first mode is by far the most dominant, with a normalized eigenvalue of 0.65, compared
to 0.17 for the second. We hypothesize that this leading component might correspond to next-token
prediction representations, while the remaining modes capture secondary structures or auxiliary in-
formation. Our hyperdimensional probe aims to capture also these auxiliary latent structures, rather
than limiting solely on the single predominant component.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 14: Eigenvalues (EV) of the Gram matrix from OLMo-2’s residual stream.
Comp. EV (mean ± std) Norm. EV

0 58084 ± 5293 0.650
1 15450 ± 2056 0.170
2 5972 ± 608 0.070
3 2539 ± 330 0.030
4 2057 ± 220 0.020
5 1187 ± 166 0.010
6 727 ± 119 0.010
7 505 ± 83 0.010
8 363 ± 59 0.000
9 282 ± 48 0.000

10 230 ± 37 0.000
.
30 30 ± 6 0.000
31 27 ± 6 0.000
32 22 ± 6 0.000

O.3 SILHOUETTE ANALYSIS FOR DETERMINING OPTIMAL RANGE OF CLUSTERS

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of Clusters (k)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
lh

ou
et

te
 S

co
re

phi-4
Llama-3.1-8B
pythia-1.4b
OLMo-2-0325-32B
gpt2-medium
Llama-4-Scout-17B-16E
Average score (0.18)
Low variability across
models (< 0.06)

Figure 12: Silhouette scores for varying numbers of clusters, computed using a random sample of
10,000 textual inputs from S. The six language models have varied layer counts (see Table 3), which
results in different maximum possible cluster numbers.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

O.4 DISTRIBUTION OF CLUSTER ASSIGNMENTS FOR GROUPING MODEL’S HIDDEN LAYERS

0 1 2 3 4
Cluster

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

La
ye

r

100%
100%
100%
100%
100% 0%
99% 1%
10% 90%
0% 100%

100% 0%
4% 96%
0% 100% 0%

99% 1%
64% 36%
0% 100%

100%
100%

100%

20%

40%

60%

80%

100%

In
pu

ts
Figure 13: Distribution of model’s hidden layers grouped by k-means clustering within the ingestion
algorithm F for Llama3.1-8B. It portrays the percentages of cluster assignments across all instances.

O.5 ABLATION STUDY ON THE DIMENSIONALITY-REDUCTION STEPS

This section presents an analysis of skipping the dimensionality reduction steps introduced in Sec-
tion 4.3. While our VSA-based methodology would work without these compression steps, the
overall computational cost of probing would dramatically increase. For example, our ingestion
procedure (Appendix B; Section 4.3) reduces the probed OLMo-2’s embeddings from R33×5120 to
R5120. This allows our neural VSA encoder to have an input dimension d = 5012 with only 71M
trainable parameters (see Appendix C).

If the two steps are eliminated, and thus the entire residual stream of the model R33×5120 is consid-
ered, the encoder receives a flat input vector, creating an input dimension d = 168960 ∈ R168960.
Although the encoder would internally handle feature extraction, since the flattened input holds
all the information encoded in the LLM embeddings, this approach would increase the number of
trainable parameters to 742 million, representing a tenfold increase. Additionally, adopting a lazy
feature extraction stage in an input vector space of size ≈ 105, which is approximately low-rank
(see Appendix O.5), would result in a computationally inefficient approach.

Removing one of the two steps, such as sum pooling, should lead to just an increase of the overall
computational cost for the encoder (R5×5120 7→ R25600; d = 25600; 155M trainable parameters;
x2), rather than affecting probe’s outputs. Further, since our neural VSA encoder is found effective
to extract latent features even from our heavily-compressed input representation (Section 5), other
dimensionality reduction approaches could also be as effective as ours (Appendix B).

In summary, skipping the compressing steps is possible and the only drawbacks should be the in-
crease of footprint of both the training and inference stages of the VSA-based probing (see also
Appendix Q).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

P PROOF OF CONCEPT FOR HYPERDIMENSIONAL PROBE IN MULTIMODAL
SETTINGS

Figure 14: Proof of concept for using hyperdimensional probe in multimodal settings. Figure A
shows a complete probing procedure for a MNIST-based mathematical analogy. Figure B exhibits a
VSA encodings describing a multimodal input using textual and image features.

Q COMPUTATIONAL WORKLOAD

The computational workload of this work is split into two parts: LLM inference (exogenous, Sec-
tion 4.3) and the training and probing stages of our method (endogenous, Section 4.4 and 4.5).

The exogenous factor, running the Large Language Models, was the most computationally demand-
ing task. For our experiments, we tested six different Large Language Models in inference mode,
caching their embeddings for our training phase and probing them dynamically during the infer-
ence phase of our work (Figure 1). We worked with LLMs ranging from 355M parameters (GPT-2)
to 109B parameters (Llama 4, Scout), using between one and three NVIDIA® A100-80GB GPUs,
depending on the model size. Quantization is not employed.

In contrast, the computational demands of our VSA-based methodology is relatively low. The most
resource-intensive stage was training our neural VSA encoder, but due to its modest size (ranging
from 55M to 71M parameters, see Appendix C), this process remained lightweight. We performed
this training on a single GPU, though it could easily be handled with much less powerful and lower-
memory GPUs. The probing stage is then composed of simple vector multiplications (unbinding,
Section 3), after loading the heavy LLM and our lightweight trained neural VSA encoder into mem-
ory (from 800 MB of the 55M version to 1 GB of the biggest one). Future research could explore
even further reducing the latent dimension of our neural VSA encoder (Appendix C) or adopt VSA
encodings with lower dimensionality (e.g. D = 512, leading to a more lightweight encoder.

31

	Introduction
	Related work
	Background
	Hyperdimensional probe detective
	Synthetic corpus
	Input representations
	Processing LLM embeddings F
	Neural VSA encoder T
	Probing VSA encodings I

	Experiments and results
	Experimental setup
	Extracting next-token concepts
	From input-completion tasks to question-answering

	Conclusions
	Limitations
	Algorithm to process LLM embeddings as described in ingestion
	Architecture of our Hyperdimensional probe
	Training performance of the neural VSA encoders
	Training details
	Concept of a neural VSA encoder
	Hugging Face repositories for the considered LLMs

	Unbinding stage from Unbinding Subsection
	Experimental results
	Validation strategy
	Distribution of instances with no concepts extracted
	Diagnosing erroneous answers from Llama 4

	Experimental comparison
	DLA-based experimental results
	Concepts extracted by DLA when VSA yields no concepts
	Raw results obtained though the DLA probing technique

	Applicability to other domains
	Generalization of input representation
	Applicability to other downstream tasks

	Question-answering setting from qa
	Cosine similarities among the items of the VSA codebook
	Spearman correlation for the QA-related experiments
	Overview of the experimental metrics
	Llama 4, Scout
	OLMo-2

	Synthetic corpus
	Declaration of LLM usage
	Dimensionality reduction
	Average correlations among model's hidden layer
	Analysis of representation redundancy
	Silhouette analysis for determining optimal range of clusters
	Distribution of cluster assignments for grouping model's hidden layers
	Ablation study on the dimensionality-reduction steps

	Proof of concept for hyperdimensional probe in multimodal settings
	Computational workload

