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Abstract

Meta-learning (ML) has emerged as a promising direction in learning models under con-
strained resource settings like few-shot learning. The popular approaches for ML either
learn a generalizable initial model or a generic parametric optimizer through episodic train-
ing. The former approaches leverage the knowledge from a batch of tasks to learn an optimal
prior. In this work, we study the importance of tasks in a batch for ML. We hypothesize that
the common assumption in batch episodic training where each task in a batch has an equal
contribution to learning an optimal meta-model need not be true. We propose to weight the
tasks in a batch according to their “importance” in improving the meta-model’s learning.
To this end, we introduce a training curriculum called task attended meta-training to learn a
meta-model from weighted tasks in a batch. The task attention module is a standalone unit
and can be integrated with any batch episodic training regimen. The comparisons of the
task-attended ML models with their non-task-attended counterparts on complex datasets
like miniImagenet, FC100 and tieredImagenet validate its effectiveness.

1 Introduction

The ability to infer knowledge and discover complex representations from data has made deep learning models
widely popular in the machine learning community. However, these models are data-hungry, often requiring
large volumes of labeled data for training. Collection and annotation of such large amounts of training data
may not be feasible for many real life applications, especially in domains that are inherently data constrained,
like medical and satellite image classification, drug toxicity estimation, etc. Meta-learning (ML) has emerged
as a promising direction for learning models in such settings, where only a limited amount (few-shots) of
labeled training data is available. A typical ML algorithm employs an episodic training regimen that differs
from the training procedure of conventional learning tasks. This episodic meta-training regimen is backed
by the assumption that a machine learning model quickly generalizes to novel unseen data with minimal
fine-tuning when trained and tested under similar circumstances Vinyals et al. (2016). To facilitate such
a generalization capacity, a meta-training phase is undertaken, where the model is trained to optimize its
performance on several homogeneous tasks/episodes randomly sampled from a dataset. Each episode or task
is a learning problem in itself. In the few-shot setting each task is a classification problem, a collection of K
support (train) and Q query (test) samples corresponding to each of the N classes. Task-specific knowledge
is learned using the support data, and meta-knowledge across the tasks is learned using query samples, which
essentially encodes “how to learn a new task effectively.”

The learned meta-knowledge is generic and agnostic to tasks from the same distribution. It is typically
characterized in two different forms - either as an optimal initialization for the machine learning model or a
learned parametric optimizer. Under the optimal initialization view, the learned meta-knowledge represents
an optimal prior over the model parameters, that is equidistant, but close to the optimal parameters for all
individual tasks. This enables the model to rapidly adapt to unseen tasks from the same distribution Finn
et al. (2017); Li et al. (2017); Jamal & Qi (2019). Under the parametric optimizer view, meta-knowledge
pertaining to the traversal of the loss surface of individual tasks is learned by the meta-optimizer. Through
learning task specific and task agnostic characteristics of the loss surface, a parametric optimizer can thus
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effectively guide the base model to traverse the loss surface and achieve superior performance on unseen
tasks from the same distribution Ravi & Larochelle (2017).

Initialization based ML approaches accumulate the meta-knowledge by simultaneously optimizing over a
batch of tasks. On the other hand, a parametric optimizer sequentially accumulates meta-knowledge across
individual tasks. The sequential accumulation process leads to a long oscillatory optimization trajectory
and a bias towards the last task, limiting the parametric optimizer’s task agnostic potential. Leveraging
common knowledge from a batch of tasks to learn the parametric optimizer can help address this issue.
We first propose to accumulate meta-knowledge in a batch mode for the parametric optimizer. Further,
under such batch episodic training (for both initialization and optimization views), a common assumption
in ML that the randomly sampled episodes of a batch contribute equally to improving the learned meta-
knowledge need not hold good. Due to the latent properties of the sampled tasks in a batch and the
model configuration, some tasks may be better aligned with the optimal meta-knowledge than others. We
hypothesize that proportioning the contribution of a task as per its alignment towards the optimal meta-
knowledge can improve the meta-model’s learning. This is analogous to classical machine learning algorithms
like sample re-weighting, which however, operate at sample granularity. In re-weighting, samples leading to
false positives are prioritized and therefore replayed. Hence, the latent properties due to which a sample
is prioritized are explicitly defined. For complex task distributions, explicitly handcrafting the notion of
“importance” of a task would be hard.

To this end, we propose a task attended meta-training curriculum that employs an attention module that
learns to assign weights to the tasks of a batch with experience. The attention module is parametrized as a
neural network that takes meta-information in terms of the model’s performance on the tasks in a batch as
input and learns to associate weights to each of the tasks according to their contribution in improving the
meta-model. Overall, we make the following contributions,

• We propose a task attended meta-training strategy wherein different tasks of a batch are weighted
according to their “importance” defined by the attention module. This attention module is a stan-
dalone unit that can be integrated into any batch episodic training regimen.

• To integrate task attention module with the parametric optimizer, we design a batch-mode para-
metric optimizer (MetaLSTM++) and experimentally show its merit on miniImagenet, FC100, and
tieredImagenet datasets.

• We conduct extensive experiments on miniImagenet, FC100, and tieredImagenet datasets and com-
pare ML algorithms like MAML, MetaSGD, ANIL, and MetaLSTM++ with their non-task-attended
counterparts to validate the effectiveness of the task attention module and its coupling with any batch
episodic training regimen.

• We also perform exhaustive empirical analysis and visual inspections to decipher the working of the
task attention module.

2 Related Work

ML literature is profoundly diverse and may broadly be classified into initialization Finn et al. (2017); Li
et al. (2017); Jamal & Qi (2019); Raghu et al. (2020); Rusu et al. (2019); Sun et al. (2019) and optimization
approaches Ravi & Larochelle (2017); Aimen et al. (2021) depending on the metaknowledge. However, these
approaches assume uniform contribution of tasks in learning a meta-model. In supervised learning, assigning
non-uniform priorities to the samples is not new Kahn & Marshall (1953); Shrivastava et al. (2016). Self-
paced learning Kumar et al. (2010) and hard example mining Shrivastava et al. (2016) have popularly been
used to reweight the samples and various attributes like losses, gradients, and uncertainty have been used
to assign priorities to samples Lin et al. (2017); Zhao & Zhang (2015); Chang et al. (2017). Zhao & Zhang
(2015) introduce importance sampling to reduce variance and improve the convergence rate of stochastic
optimization algorithms over uniform sampling. They theoretically prove that the reduction in the variance
is possible if the sampling distribution depends on the norm of the gradients of the loss function. Chang et al.
(2017) conclude that mini-batch SGD for classification is improved by emphasizing the uncertain examples.
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Lin et al. (2017) propose reshaped cross-entropy loss (focal loss) that down-weights the loss of confidently
classified samples. Nevertheless, assigning non-uniform priorities to tasks in meta-learning is under-explored
and has recently drawn attention Kaddour et al. (2020); Gutierrez & Leonetti (2020); Liu et al. (2020); Yao
et al. (2021). Gutierrez & Leonetti (2020) propose Information-Theoretic Task Selection (ITTS) algorithm
to filter training tasks that are distinct from each other and close to the tasks of the target distribution.
However, this algorithm results in a smaller pool of training tasks. A model trained on the smaller subset
learns better than the one trained on the original set. On the other hand, Kaddour et al. (2020) propose
probabilistic active meta-learning (PAML) that learns probabilistic task embeddings. Scores are assigned to
these embeddings to select the next task presented to the model. These algorithms are, however, specific to
meta-reinforcement learning (meta-RL). On the contrary, our focus is on the few shot classification problem.
Liu et al. (2020) propose a greedy class-pair potential-based adaptive task sampling strategy wherein task
selection depends on the difficulty of all class-pairs in a task. This sampling technique is static and operates
at a class granularity. On the other hand, our approach is dynamic and operates at a task granularity.
Assigning non-uniform weights to samples prevents overfitting on corrupt data points Ren et al. (2018b);
Jiang et al. (2018). Ren et al. (2018b) used gradient directions to re-weight the data points, and Jiang
et al. (2018) learned a curriculum on examples using a mentor network. However, these approaches assume
availability of abundant labeled data. Yao et al. (2021) extended Jiang et al. (2018) to few-shot learning
setup. They propose a neural schedular to predict the sampling probability of tasks in a candidate pool.
Parallel to Jiang et al. (2018), they consider noisy and imbalanced task distributions. Our work is different
from these approaches as we do not propose a task sampling strategy but a dynamic task-batch re-weighting
mechanism for the meta-model update in a few-shot learning setup. Further, our problem is different and
more generic as we consider prevalent task distributions which are neither noisy nor imbalanced. Contrary
to our idea is TAML Jamal & Qi (2019) - a meta-training curriculum that enforces equity across the tasks in
a batch. We show that weighting the tasks according to their “importance” and hence utilizing the diversity
present in a batch given the meta-model’s current configuration offers better performance than enforcing
equity in a batch of tasks.

3 Preliminary

In a typical ML setting, the principal dataset D is divided into disjoint meta-sets M (meta-train set),
Mv (meta-validation set) and Mt (meta-test set) for training the model, tuning its hyperparameters and
evaluating its performance, respectively. Every meta-set is a collection of tasks T drawn from the joint
task distribution P (T ) where each task Ti consists of support Di = {{xc

k, yc
k}K

k=1}N
c=1 and query set D∗

i =
{{x∗c

q , y∗c
q }

Q
q=1}N

c=1. Here (x, y) represents a (sample, label) pair and N is the number of classes, K and Q
are the number of samples belonging to each class in the support and query set, respectively. According
to support-query characterization M, Mv and Mt could be represented as {(Di, D∗

i )}M
i=1, {(Di, D∗

i )}R
i=1,

{(Di, D∗
i )}S

i=1 where M, R and S are the total number of tasks in M, Mv and Mt respectively. During
meta-training on M, meta-model θ is adapted on Di of each Ti to ϕi. The adapted model ϕi is then
evaluated on D∗

i to update θ. The output of this episodic training is either an optimal prior or a parametric
optimizer, both aiming to facilitate the rapid adaptation of the model on unseen tasks from Mt.

3.1 Meta-knowledge as an Optimal Initialization

When meta-knowledge is a generic initialization on the model parameters learned through the experience
over various tasks, it is enforced to be close to each individual training tasks’ optimal parameters. A model
initialized with such an optimal prior quickly adapts to unseen tasks from the same distribution during meta-
testing. MAML Finn et al. (2017) employs a nested iterative process to learn the task-agnostic optimal prior
θ. In the inner iterations representing the task adaptation steps, θ is separately fine-tuned for each meta-
training task Ti of a batch using Di to obtain ϕi through gradient descent on the train loss Li. Specifically, ϕi

is initialized as θ and updated using ϕi ← ϕi−α∇ϕiLi(ϕi), T times resulting in the adapted model ϕT
i . In the

outer loop, meta-knowledge is gathered by optimizing θ over loss L∗
i computed with the task adapted model

parameters ϕT
i on query dataset D∗

i . Specifically, during meta-optimization θ ← θ−β∇θ

∑B
i=1 L∗

i (ϕT
i ) using

a task batch of size B. MetaSGD Li et al. (2017) improves upon MAML by learning parameter-specific
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learning rates α in addition to the optimal initialization in a similar nested iterative procedure. Meta-
knowledge is gathered by optimizing θ and α in the outer loop using the loss L∗

i computed on query set D∗
i .

Specifically, during meta-optimization (θ, α) ← (θ, α) − β∇(θ,α)
∑B

i=1 L∗
i (ϕT

i ). Learning dynamic learning
rates for each parameter of a model makes MetaSGD faster and more generalizable than MAML. A single
adaptation step is sufficient to adjust the model towards a new task. The performance of MAML is attributed
to the reuse of the features across tasks rather than the rapid learning of new tasks Raghu et al. (2020).
Exploiting this characteristic, ANIL freezes the feature backbone learned in the outer loop and only adapts
the classifier in the inner loop T times. Specifically during adaptation ϕl

i ← ϕl
i − α∇ϕl

i
Li(ϕl

i), where 1, . . . , l

are the layers of the model. During meta-optimization θ ← θ − β∇θ

∑B
i=1 L∗

i ([ϕl
i]T ). Freezing the feature

backbone during adaptation reduces the overhead of computing gradient through the gradient (differentiating
through the inner loop), and thereby heavier backbones could be used for the feature extraction. TAML
Jamal & Qi (2019) suggests that the optimal prior learned by MAML may still be biased towards some tasks.
They propose to reduce this bias and enforce equity among the tasks by explicitly minimizing the inequality
among the performances of tasks in a batch. The inequality defined using statistical measures such as Theil
Index, Atkinson Index, Generalized Entropy Index, and Gini Coefficient among the performances of tasks
in a batch is used as a regularizer while gathering the meta-knowledge. For the baseline comparison, in
our experiments, we use the Theil index for TAML owing to its average best results. Specifically during

meta-optimization θ ← θ − β∇θ

[∑B
i=1 L∗

i (ϕT
i ) + λ

{
L∗

i (θ)
L̄∗(θ)

ln L∗
i (θ)

L̄∗(θ)

}]
(for TAML-Theil Index) where B is

the number of tasks in a batch, L∗
i is loss of task Ti on the query set D∗

i and L̄∗ is the average test loss on
a batch of tasks. As TAML enforces equity of the optimal prior towards meta-train tasks, it counters the
adaptation, which leads to slow and unstable training largely dependent on λ.

3.2 Meta-knowledge as a Parametric Optimizer

A regulated gradient-based optimizer gathers the task-specific and task-agnostic meta-knowledge to traverse
the loss surfaces of tasks in the meta-train set during meta-training. A base model guided by such a
learned parametric optimizer quickly finds the way to minima even for unseen tasks sampled from the
same distribution during meta-testing. MetaLSTM Ravi & Larochelle (2017) is a recurrent parametric
optimizer θ that mimics the gradient-based optimization of a base model ϕ. This recurrent optimizer is an
LSTM Hochreiter & Schmidhuber (1997) and is inherently capable of performing two-level learning due to its
architecture. During adaptation of ϕi on Di, θ takes meta information of ϕi characterized by its current loss
Li and gradients ∇ϕi

(Li) as input and outputs the next set of parameters for ϕi. This adaptation procedure
is repeated T times resulting in the adapted base-model ϕT

i . Internally, the cell state of θ corresponds to
ϕi, and the cell state update for θ resembles a learned and controlled gradient update. The emphasis on
previous parameters and the current update is regulated by the learned forget and input gates respectively.
While adapting ϕi to Di, information about the trajectory on the loss surface across the adaptation steps is
captured in the hidden states of θ, representing the task-specific knowledge. During meta-optimization, θ is
updated based on the loss L∗

i of model computed on query set D∗
i to garner the meta-knowledge across tasks.

Specifically, during meta-optimization, θ ← θ−β∇θL∗
i (ϕT

i ). A caveat of MetaLSTM is the sequential update
to the parametric optimizer θ after adapting to each task. As a result, the parametric optimizer traverses the
loss surface in an ordered sequence of task-specific optima. This leads to a longer and oscillatory optimization
trajectory and bias of θ towards the final task. We propose to overcome this bottleneck by learning θ according
to the training procedure of optimal initialization ML approaches, which we term as MetaLSTM++ Aimen
et al. (2021). Unlike MetaLSTM, the meta-knowledge θ of MetaLSTM++ is updated based on the average
test loss of the tasks in a batch. This is intuitive as a batch of tasks may better approximate the task
distribution than a single task. The batch update on θ makes the optimization trajectory smooth, short,
and robust to task order. Specifically, during meta-optimization θ ← θ − β∇θ

∑B
i=1 L∗

i (ϕT
i ).

4 Task Attention in Meta-learning

A common assumption under the batch-wise episodic training regimen adopted by ML is that each task in a
batch has an equal contribution in improving the learned meta-knowledge. However, this need not always be
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Figure 1: Computational Graph of the forward pass of the meta-model using task attended meta-training
curriculum. The output of this procedure is a meta-model θn. Gradients are propagated through solid lines
and restricted through dashed lines.

true. It is likely that given the current configuration of the meta-model, some tasks may be more important
for the meta-model’s learning. A contributing factor to this difference is that tasks sampled from complex
data distributions can be profoundly diverse. The diversity and latent properties of the tasks coupled with
the model configuration may induce some tasks to be better aligned with the optimal meta-knowledge than
others. The challenging aspect in the meta-learning setting is to define the “importance” and associate
weights to the tasks of a batch proportional to their contribution to improving the meta-knowledge. As
human beings, we learn to associate importance to events subjective to meta-information about the events
and prior experience. This motivates us to define a learnable module that can map the meta-information of
tasks to their importance weights.

4.1 Characteristics of Meta-Information

Given a task-batch {Ti}B
i=1, the task attention module takes as input meta-information about each task (Ti)

in the batch, defined as the four tuple below:

I =
{ (

||∇ϕT
i

L∗
i (ϕT

i )||, L∗T
i , A∗T

i ,
L∗T

i

L∗0
i

) }B

i=1
(1)

where corresponding to each task i in the batch ||∇ϕT
i

L∗
i (ϕT

i )|| denotes the norm of gradient, L∗T
i and A∗T

i

are the test loss and accuracy of the adapted model respectively, and L∗T
i

L∗0
i

is the ratio of the model’s test

loss post and prior adaptation.

4.1.1 Gradient norm

Let P =
{

ϕT
i

}B

i=1 be the parameters of the models obtained after adapting the initial model (for T itera-

tions) on the support data {Di}B
i=1 of tasks {Ti}B

i=1. Also, let G =
{

(∇ϕT
i

L∗(ϕT
i , D∗

i )
}B

i=1
be the gradients
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of the adapted model parameters w.r.t the query losses {L∗
i }B

i=1. The gradient norm
{
||∇ϕT

i
L∗

i (ϕT
i )||
}B

i=1
is the L2 norm of the gradients and quantifies the magnitude of the consolidated displacement of the
adapted model parameters during a gradient descent update on query data. Larger gradient norm on query
dataset could indicate that the model has either not learned the support set or has overfitted. Hence
the model is not generalizable on query set compared to the models with low gradient norm. Gradi-
ent norm therefore carries information about the convergence and generalizability of the adapted models.

Algorithm 1: Task Attended Meta-Training
Input:
Dataset: M = {Di, D∗

i }M
i=1

Models: Meta-model θ, Base-model ϕ, Att-module δ
Learning-rates: α, β, γ
Parameters: Iterations niter, Batch-size B,

Adaptation-steps T
Output: Meta-model : θ

1 Initialization: θ, δ ← Random Initialization
2 for iteration in niter do
3 {Ti}B

i=1 = {Di, D∗
i }B

i=1 ← Sample task-batch(M)
4 for all Ti do
5 ϕ0

i ← θ
6 L∗0

i , _← evaluate(ϕ0
i , D∗

i )
7 ϕT

i = adapt(ϕ0
i , Di)

8 L∗T
i , A∗T

i ← evaluate(ϕT
i , D∗

i )
9 end

10 [wi]Bi=1 ←

Att_module

([
L∗T

i

L∗0
i

, A∗T
i , ||∇ϕT

i
L∗

i (ϕT
i )||, L∗T

i

]B

i=1

)
11 θ ← θ − β∇θ

∑B
i=1 wiL

∗
i (ϕT

i )
12 {Dj , D∗

j }B
j=1 ← Sample task-batch(M)

13 for all Tj do
14 ϕ0

j ← θ

15 ϕT
j = adapt(ϕ0

j , Dj)
16 end
17 δ ← δ − γ∇δ

∑B
j=1 L∗

j (ϕT
j )

18 end
19 Return θ

4.1.2 Test Loss

{L∗T
i }B

i=1 represents the empirical error (cross
entropy loss) of the adapted base models on
unseen query instances and hence characterizes
their generalizability. Unlike grad norm, which
characterizes the generalizability in parameter
space, query loss quantifies generalizability in
the output space as the divergence between the
real and predicted probability distributions. As
{L∗T

i }B
i=1 is a key component in the meta-update

equation, it is an important factor influencing
the meta-model’s learning. Further, test errors
of classes have been widely used to determine
their “easy or hardness” Bengio et al. (2009); Liu
et al. (2021). Thus {L∗T

i }B
i=1 acquaints the at-

tention module with the generalizability aspect
of task models and their influence in updating
the meta-model.

4.1.3 Test Accuracy

{A∗T
i }B

i=1 corresponds to the accuracies of
{ϕT

i }B
i=1 on {D∗

i }B
i=1 scaled in the range [0,1].

A∗T
i evaluates the thresholded predictions (pre-

dicted labels) unlike L∗T
i , which evaluates the

confidence of the model’s predictions on the true
class labels. Two task models may predict the
same class labels but differ in the confidence of
the predictions. In such scenarios, neither loss
nor accuracy is individually sufficient to compre-
hend this relationship among the tasks. So, the
combination of these two entities is more reflec-
tive of the nature of the learned task models.

4.1.4 Loss-ratio

Let L∗0
i be the loss of θ on the D∗

i , and L∗T
i be the loss of the adapted model ϕT

i on D∗
i . The loss-ratio L∗T

i

L∗0
i

is representative of the relative progress of a meta-model on each task. Higher values (> 1) of the loss-ratio
suggests adapting θ to Di has an adverse effect on generalizing it to D∗

i (negative impact), while lower values
(< 1) of the loss-ratio indicates the benefit of adaptation of θ on Di (positive impact). Loss-ratio of exactly
one signifies adaptation attributes to no additional benefit (neutral impact). Therefore, loss-ratio provides
information regarding the impact of adaptation on each task for a given meta-model.

4.2 Task Attention Module

We learn a task attention module parameterized by δ, which attends to the tasks that contribute more to
the model’s learning i.e., the objective of the task attention module is to learn the relative importance of
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each task in the batch for the meta-model’s learning. Thus the output of the module is a B−dimensional
vector w = [w1, . . . , wB ], (

∑B
i=1 wi = 1) quantifying the attention-score (weight - wi) for each task. The

attention vector w is multiplied with the corresponding task losses of the adapted models L∗
i (ϕT

i ) on the
held-out datasets D∗

i to update the meta-model θ:

θt+1 ← θt − β∇θt

B∑
i=1

wiL
∗
i (ϕT

i ) (2)

After the meta-model is updated using the weighted task losses, we evaluate the goodness of the generated
attention weights. We sample a new batch of tasks {Dj , D∗

j }B
j=1 and adapt a base-model ϕj using the

updated meta-model θt+1 on the train data {Dj} of each task. The mean test-loss of the adapted models
{ϕT

j }B
j=1 reflect the goodness of the weights assigned by the attention-module in the previous iteration. The

attention module δ is thus updated using the gradients flowing back into it w.r.t to this mean test-loss. The
attention network is trained simultaneously with the meta-model in an end to end fashion using the update
rule:

δt+1 ← δt − γ∇δt

B∑
j=1

L∗
j (ϕT

j ) (3)

where ϕT
j is adapted from θt+1.

4.3 Task Attended Meta-Training Algorithm

We demonstrate the meta-training curriculum using the proposed task attention in Figure 1, formally sum-
marized in Algorithm 1. As with the classical meta-training process, we first sample a batch of tasks from the
task distribution. For each task Ti, we adapt the base-model ϕi using the train data {Di}B

i=1 for T time-steps
(line 7). The meta-information about the adapted models for each task is then computed, comprising of

the loss L∗T
i , the accuracy A∗T

i , the loss-ratio L∗T
i

L∗0
i

and gradient norm ||∇ϕT
i

L∗
i (ϕT

i )|| on test data {D∗
i }B

i=1.

The meta-information corresponding to each task in a batch is given as input to the task attention module
(Figure 1 - Label: 2 ) which outputs the attention vector (line 10). The attention vector in combination with
test losses {L∗

i }B
i=1 is used to update meta-model parameters θ (line 11, Figure 1 - Label: 4 ). We sample

a new batch of tasks {Dj , D∗
j }B

j=1 and adapt the base-models {ϕT
j }B

j=1 using the updated meta-model. We
compute the mean test loss over the adapted base-models {L∗

j (ϕT
j )}B

j=1, which is then used to update the
parameters of the task attention module δ (lines 12-17).

The attention network is designed as a stand-alone module to learn the mapping from the meta-information
space to the importance of tasks in a batch. Thus, it is important to decouple the learning of the attention
network from that of the meta-model. The parameters of the meta-model θ should not be directly dependent
on that of the task attention module δ. We prevent it by enforcing ∇θwiL

∗
i (ϕT

i ) = wi∇θL∗
i (ϕT

i ). Restricting
the flow of gradients to the meta-model through the task attention module also enables us to evade the
computational overhead generated by the product of gradients. Specifically, stopping the gradient flow frees
us from computing ∇δtθt+1.∇ϕtδt.∇θtϕt. The leading term ∇δtθt+1 in turn requires the computation of
∇δt .∇θt .∇θt . Figure 1 demonstrates the paths along which gradient backflow is restricted and permitted as
dashed and solid lines respectively.

5 Experiments and Results

We consider different few-shot learning settings on the benchmark datasets - miniImagenet, Fewshot Cifar
100 (FC100) and tieredImagenet to test the effectiveness of the proposed attention module. All the experi-
mental results and comparisons correspond to our re-implementation of the ML algorithms integrated into
learn2learn library Arnold et al. (2020) to ensure fairness and uniformity. We believe that integrating the
proposed attention module and additional ML algorithms into the learn2learn library will benefit the ML
community. We perform individual hyperparameter tuning for all the models over the same hyperparam-

7



Under review as submission to TMLR

eter space to ensure a fair comparison. The architecture and hyper-parameter details are provided in the
implementation details. The source code is publicly available.1

5.1 Datasets and Implementation Details

miniImagenet Vinyals et al. (2016) dataset comprises 600 color images of size 84 × 84 from each of 100
classes sampled from the Imagenet dataset. The 100 classes are split into 64, 16 and 20 classes for meta-
training, meta-validation and meta-testing respectively. Fewshot Cifar 100 (FC100) Oreshkin et al.
(2018) dataset has been created from Cifar 100 object classification dataset. It contains 600 color images of
size 32 × 32 corresponding to each of 100 classes grouped into 20 superclasses. Among 100 classes, 60 classes
belonging to 12 superclasses correspond to meta-train set, 20 classes from 4 superclasses to meta-validation
set, and the rest to meta-test set. tieredImagenet Ren et al. (2018a) is a more challenging benchmark for
few-shot image classification. It contains 779,165 color images sampled from 608 classes of Imagenet and
are grouped into 34 super-classes. These super-classes are divided into 20, 6, and 8 disjoint sets for meta-
training, meta-validation, and meta-testing. In line with the state-of-the-art literature Sun et al. (2020),

Table 1: Comparison of few-shot classification performance of MAML and TA-MAML on miniImagenet
dataset with meta-batch size 4 and 6 for 5 and 10-way (1 and 5-shot) settings. The ± represents the 95%
confidence intervals over 300 tasks. Algorithms denoted by * are rerun on their optimal hyper-parameters.
We observe that TA-MAML consistently performs better than MAML, and an increase in the tasks in a
batch improves the performance of both MAML and TA-MAML. The hardware constraint restricts the study
on a 10-way 5-shot setting (meta-batch size 6), and meta-batch size of 8 or higher (OOM is an acronym for
Out of memory).

Test Accuracy (%) on miniImagenet

5-Way 10-Way

Model 1 Shot 5 Shot 1 Shot 5 Shot

Batch Size 4

MAML∗ 46.10 ± 0.19 60.16 ± 0.17 29.42 ± 0.11 41.98 ± 0.10
TA-MAML 48.36 ± 0.23 62.48 ± 0.18 31.15± 0.11 43.70 ± 0.09

Batch Size 6

MAML∗ 47.72 ± 1.041 63.45 ± 1.083 31.55 ± 0.626 OOM
TA-MAML 49.14 ± 1.211 65.26 ± 0.956 32.62± 0.635 OOM

we use miniImagenet, FC100 and tieredImagenet for evaluating the effectiveness of the proposed attention
module as they are more challenging datasets comprising of highly diverse tasks.

We use the architecture from Finn et al. (2017) for the base model and a two-layer LSTM Ravi & Larochelle
(2017) for the parametric optimizer. The task attention module is a ReLU activated neural network with a 1
× 1 convolutional layer followed by 2 fully connected layers with 32 neurons, and finally a softmax activation
to generate the attention weights. We perform a grid search over 30 different configurations for 5000 iterations
to find the optimal hyper-parameters for each setting. The search space is shared across all meta-training
algorithms and datasets. The meta, base and attention model learning rates are sampled from a log uniform
distribution in the ranges

[
1e−4, 1e− 2

]
,
[
1e−2, 5e−1] and

[
1e−4, 1e−2] respectively (see appendix for more

details). The hyperparameter λ for TAML (Theil) is sampled from a log uniform distribution over the range
of
[
1e−2, 1

]
. The number of adaptation steps is fixed to 5 for all settings except for 10-way 5-shot setting,

where we use 2 adaptation steps owing to the computational expenses. The meta-batch size is set to 4 for
all settings Finn et al. (2017); Jamal & Qi (2019). However, we study its impact in Table 1. All models
were trained for 55000 iterations (early stopping was employed for tieredImagenet) using the optimal set of
hyper-parameters using an Adam optimizer Kingma & Ba (2015).

1https://github.com/taskattention/task-attended-metalearning.git
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5.2 Influence of Task Attention on Meta-Training

As the task-attention (TA) is a standalone module, it can be integrated with any batch episodic training
regimen. To facilitate this integration, we introduced a batch-wise training regimen for parametric optimizer
(MetaLSTM++ Aimen et al. (2021)). The comparative analysis of MetaLSTM and MetaLSTM++ on
miniImagenet, FC100, and tieredImagenet is presented in Table 2. It is evident from the results that batch-
wise episodic training is effective than sequential episodic training.

Table 2: Comparison of few-shot classification performance of vanilla ML algorithms with their task attended
versions on miniImagenet, FC100 and tieredImagenet datasets for 5 and 10-way (1 and 5-shot) settings. The
± represents the 95% confidence intervals over 300 tasks. Algorithms denoted by * are rerun on their
optimal hyper-parameters for a fair comparison. Attention-based ML algorithms perform better than their
corresponding vanilla approaches across all the settings. Further, MetaLSTM++ and TA-MAML perform
better than MetaLSTM and TAML, respectively, across all settings and datasets.

Test Accuracy (%)

5-Way 10-Way

Model 1 Shot 5 Shot 1 Shot 5 Shot

miniImagenet

MAML∗ 46.10 ± 0.19 60.16 ± 0.17 29.42 ± 0.11 41.98 ± 0.10
TAML∗ 46.26 ± 0.21 53.40 ± 0.14 29.76 ± 0.11 36.88 ± 0.10
TA-MAML 48.36 ± 0.23 62.48 ± 0.18 31.15± 0.11 43.70 ± 0.09

MetaSGD∗ 47.65± 0.21 61.60 ± 0.17 30.09± 0.10 42.22 ± 0.11
TA-MetaSGD 49.28 ± 0.20 63.37 ± 0.16 31.50± 0.11 44.06 ± 0.10

MetaLSTM∗ 41.48 ± 1.02 58.87 ± 0.94 28.62 ± 0.64 44.03 ± 0.69
MetaLSTM++ 48.00 ± 0.19 62.73 ± 0.17 31.16 ± 0.09 45.46 ± 0.10
TA-MetaLSTM++ 49.18 ± 0.17 64.89 ± 0.16 32.07± 0.11 46.66 ± 0.09

ANIL∗ 46.92 ± 0.62 58.68 ± 0.54 28.84 ± 0.34 40.95 ± 0.32
TA-ANIL 48.84 ± 0.62 60.80± 0.55 31.14± 0.34 42.52 ± 0.34

FC100

MAML∗ 36.40 ± 0.38 46.76±0.21 23.93±0.14 31.14 ± 0.07
TAML∗ 38.00 ± 0.26 48.05± 0.13 21.60± 0.14 33.19± 0.07
TA-MAML 39.86± 0.25 49.56 ± 0.13 25.46± 0.15 36.06± 0.08

MetaSGD∗ 33.46 ± 0.23 43.96± 0.13 21.40±0.15 30.59± 0.07
TA-MetaSGD 35.66±0.25 49.49± 0.12 23.80±0.15 32.08±0.07

MetaLSTM∗ 37.20 ± 0.26 47.89 ± 0.13 21.70 ± 0.14 32.11 ± 0.07
MetaLSTM++ 38.60 ±0.23 49.82 ± 0.12 22.80 ± 0.14 33.46 ± 0.08
TA-MetaLSTM++ 41.53 ±0.28 51.17 ±0.13 25.33 ±0.15 34.18 ±0.08

ANIL∗ 34.08 ± 1.29 44.74 ± 0.68 20.65 ± 0.77 27.93 ± 0.42
TA-ANIL 38.06 ± 1.26 46.94± 0.69 23.27± 0.79 28.29 ± 0.40

tieredImagenet

MAML∗ 44.40 ± 0.49 57.07 ± 0.22 27.40 ± 0.25 34.30 ± 0.14
TAML∗ 46.40 ± 0.40 56.80 ± 0.23 26.40 ± 0.25 34.40 ± 0.15
TA-MAML 48.40 ± 0.46 60.40 ± 0.25 31.00± 0.26 37.60± 0.15

MetaSGD∗ 52.80 ± 0.44 62.35 ± 0.26 31.90 ± 0.27 44.16 ± 0.15
TA-MetaSGD 56.20 ± 0.45 64.56 ± 0.24 33.20± 0.29 47.12 ± 0.16

MetaLSTM∗ 37.00 ± 0.44 59.83 ± 0.25 29.80 ± 0.28 39.28 ± 0.13
MetaLSTM++ 47.60 ± 0.49 63.24 ± 0.25 30.70 ± 0.27 47.97 ± 0.16
TA-MetaLSTM++ 49.00 ± 0.44 66.15 ± 0.23 32.10± 0.27 51.35 ± 0.17

ANIL∗ 45.08 ± 1.37 59.71 ±0.77 29.32 ± 0.83 42.76 ± 0.50
TA-ANIL 45.96 ± 1.32 60.96± 0.72 32.68± 0.92 47.56 ± 0.51

We also investigate the performance of the models trained with the TA meta-training regimen with their
non-TA counterparts. Specifically, we compare MAML, MetaSGD, MetaLSTM++ and ANIL with TA-
MAML, TA-MetaSGD, TA-MetaLSTM++ and TA-ANIL respectively over 5 and 10-way (1 and 5-shot)
settings on miniImagenet, FC100 and tieredImagenet datasets and report the results in Table 2. For ANIL
and TA-ANIL, we consider 1000 testing tasks. We observe that models trained with TA regimen generalize
better to the unseen meta-test tasks than their non-task-attended versions across all the settings in all

9
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datasets. Note that the proposed task attention mechanism aims not to surpass the state-of-the-art meta-
learning algorithms but provides new insight into the batch episodic meta-training regimen, which as per
our knowledge, is common to all meta-learning algorithms.

We also compare the performance of TA-MAML against TAML - a meta-training regimen that forces the
meta-model to be equally close to all the tasks. The results, as presented in Table 2, suggest that TA-MAML
performs better than TAML on all benchmarks across all settings.

MAML
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et

MetaSGD MetaLSTM++
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ed
Im

ag
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et

Figure 2: Mean validation accuracies of MAML (Col-1), MetaSGD (Col-2) and MetaLSTM++ (Col-3) across
300 tasks with/without attention on 5-way 1-shot setting on miniImagenet (Row-1) and tieredImagenet
(Row-2) datasets.

Note that both TAML and TA-MAML are approaches that built upon MAML to address the inequal-
ity/diversity of tasks in a batch. Our aim is thus to compare TAML and TA-MAML and not to assess the effi-
cacy of TAML when meta-trained using task attention. We investigate the influence of the TA meta-training
regimen on the model’s convergence by analyzing the trend of the model’s validation accuracy over iterations.

Table 3: Effect of ablating components of meta-information in
TA-MAML for 5 way 1 and 5 shot settings on miniImagenet
dataset.

Ablation on inputs

Grad norm Loss Loss-ratio Accuracy Test Accuracy

5-way 1-shot 5-way 5-shot

× × × × 46.10±0.19 60.16±0.17
× 47.30±0.16 60.48±0.16

× 47.62±0.17 62.17±0.17
× 48.10±0.18 60.90±0.20

× 47.30±0.18 61.52±0.16
48.36±0.23 62.48±0.18

Figure 2 depicts the mean validation ac-
curacy over 300 tasks on miniImagenet
and tieredImagenet datasets for a 5-
way 1-shot setting across training itera-
tions. We observe that the models meta-
trained with TA regimen tend to achieve
higher/at-par performance in fewer it-
erations than the corresponding models
meta-trained with the non-TA regimen.

5.3 Ablation Studies

To examine the significance of each in-
put given to the task attention model,
we conduct an ablation study on 5-way 1 and 5 shot TA-MAML on miniImagenet dataset and report
the results in Table 3. We observe that all the components of meta-information contribute to the learn-
ing of a more generalizable meta-model. To further support this observation, we analyze the ranks of

10
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the tasks for maximum and minimum values of : loss, loss ratio, accuracy, and grad norm in a batch,
as per the weights across training iterations and the results are described in the supplementary material.

5.4 Relation of Weights with Meta-Information

Figure 3: Mean Pearson correlation of TA-MAML on 5-way 1-
shot (left) and 5-shot (right) setting on miniImagenet.

We investigate the relationship between
the meta-information and weights as-
signed by the task attention module by
analyzing the mean Pearson correlation
of each of the components (four tu-
ple) of the meta-information with the
attention vector across the training it-
erations. This is depicted in Figure
3 for TA-MAML on 5-way 1 and 5
shot settings for miniImagenet dataset.
We observe that the loss ratio and loss
are positively correlated with the attention vector, while accuracy and gradient norm is negatively correlated.
In 5-way 5-shot setting, we observe that the correlation pattern is comparable to 5-way 1-shot setting, but
the mean correlation value of grad norm across iterations is less than that of the 5-way 1-shot setting. This
could be because the 5-way 5-shot setting is richer in data than the 5-way 1-shot setting, which allows better
learning and therefore has low average values of grad norm (Section 4.1.1).

Figure 4: Trend analysis of weighted loss across meta-training iterations for
TA-MAML on 5-way 1-shot (left) and 5-shot (right) settings on miniImagenet
dataset. Iterations are in thousands.

In figure 4, we illustrate
the trend of mean weighted
loss across iterations for TA-
MAML on 5-way 1 and
5 shot settings on mini-
Imagenet dataset. The
trend indicates that the av-
erage weighted loss decreases
over the meta-training it-
erations. The shaded re-
gion represents a 95% confi-
dence interval over 100 tasks.

5.5 Analysis of Attention Network

Figure 5: Trend of an attention vector in 5-way 1-shot (left) and 5-shot
(right) settings on miniImagenet dataset for TA-MAML.

To gain further insights into the
operation of the attention mod-
ule, we also examine the trend
of the attention-vector (Figure 5)
while meta-training TA-MAML
for 5 way 1 and 5 shot settings
on the miniImagenet dataset. We
plot the maximum and the min-
imum attention score assigned
to the tasks of a batch across
iterations together with a few
weighted task batches in 5-way
1-shot setting for illustration.
We note that the weighted task
batches are only intended to
demonstrate the change in the
tasks’ attention scores across it-
erations. The next experiment
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presents a more rigorous analysis studying the relationship among classes in a task and atten-
tion scores assigned. We also note that the mean attention score is always 0.25 as we follow
a meta-batch size of 4. We observe that the TA module’s output follows an interesting trend.

Figure 6: Trend of an attention vector
for TA-MAML when attention module
is frozen after 15000 iterations in 5-way
1-shot setting on miniImagenet dataset.

Initially, the TA module assigns almost uniform weights to all the
tasks of a batch; however, as the iterations increase, the TA mod-
ule assigns unequal scores to the tasks in a batch, preferring some
over the other. This suggests that during the initial phases of the
meta-model’s training, all tasks have equal contribution towards
learning a generic structure of the meta-knowledge. As the meta-
model’s learning proceeds, learning the further fine-grained meta-
knowledge structure requires prioritizing some tasks in a batch over
the others, which are potentially better aligned with learning the
optimal meta-knowledge. To reduce the computational burden, we
freeze the weights of the attention module after 15000 iterations,
i.e., only inputs of the attention module vary beyond 15000 iter-
ations. We obtained a similar performance as when the attention
module was trained throughout the meta-train phase (≈ 48% for
5-way 1-shot setting on miniImagenet dataset). From Figure 6,
we observe that the attention vector still follows a similar trend as
when trained end-to-end, indicating 15000 iterations are sufficient
for the attention module’s training. Thus, we note that proposed
approach is computationally feasible. We further attempt to decipher the functioning of the black box atten-
tion network by analyzing the qualitative relation among weights and the classes of task batches (Figure 9 is
presented in supplementary material due to space constraints). In Figure 9 left column (col-1) corresponds to
the cases where the assignment of attention scores to the tasks is human interpretable. In contrast, the right
column (col-2) refers to the uninterpretable attention scores. From the human perspective, tasks containing
images from similar classes are hard to distinguish and are assigned higher attention scores indicated by red
bounding boxes in Figure 9 (col-1). Specifically, (col-1, row-1) task 2 is regarded as most important, possibly
because it includes three breeds of dogs followed by task 4, which comprises two species of fish. However,
the aforementioned is not a hard constraint, as there are some task batches (Figure 9 (col-2)) in which the
distribution of weights cannot be explained qualitatively.

6 Conclusion

In this work we have shown that the batch wise episodic training regimen adopted by ML strategies can
benefit from leveraging knowledge about the importance of tasks within a batch. Unlike prior approaches
that assume uniform importance for each task in a batch, we propose task attention as a way to learn the
relevance of each task according to its alignment with the optimal meta-knowledge. We have validated the
effectiveness of task attention by augmenting it to popular initialization and parametric-optimization based
ML strategies. To facilitate integration with the latter, we have introduced a batch wise training strategy for
a parametric optimizer, that outperforms its previous sequential counterpart. We have demonstrated through
few-shot learning experiments on miniImagenet, FC100 and tieredImagenet datasets that augmenting task
attention helps attain better generalization to unseen tasks from the same distribution while requiring fewer
iterations to converge. We also conduct an exhaustive empirical analysis on the distribution of attention
weights to study the nature of the meta-knowledge and task attention module. We believe that this end-to-
end attention-based meta training paves the way towards efficient and automated meta-training.
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7 Appendix

7.1 Experiments

7.1.1 Ablation Studies

We analyze the ranks of the tasks for maximum and minimum values of : loss, loss ratio, accuracy, and
grad norm in a batch wrt attention weights throughout meta-training of TA-MAML on a 5-way 1 and 5
shot settings on miniImagenet dataset (Figure 7 and 8). Specifically, the highest weighted task is given rank
one, and the least weighted task in a batch is given the last rank. We observe that the TA module does not
assign maximum weight to the tasks with maximum or minimum values of : test loss, loss ratio, grad norm
or accuracy throughout meta-training. Thus, the TA module does not trivially learn to assign weights to
the tasks based on some component of meta-information but learns useful latent information from all the
components to assign importance for the tasks in a batch.

5-way 1-shot setting

Figure 7: Rank Analysis of tasks for maximum and minimum values of : loss, loss-ratio, accuracy and grad
norm throughout the training of TA-MAML for 5-way 1 shot setting on miniImagenet dataset.
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5-way 5-shot setting

Figure 8: Rank Analysis of tasks for maximum and minimum values of : loss, loss-ratio, accuracy and grad
norm throughout the training of TA-MAML for 5-way 5 shot setting on miniImagenet dataset.
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7.1.2 Analysis of Attention Network

Figure 9: Explanations of TA module in TA-MAML on miniImagenet. Left Col) Higher weights accredited
to tasks with comparable classes marked by red bounding boxes. Right Col) Association of weights and
task data is qualitatively uninterpretable. Rows correspond to the batches.
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7.1.3 Hyperparameter Details

Setting Model base lr meta lr attention lr lambda
miniImagenet

5.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0748

TA-MAML 0.0763 0.0005 0.0004 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0529 0.0011 0.0004 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0012 - -
TA-MetaLSTM++ - 0.0012 0.0031 -

ANIL 0.3000 0.0006 - -
TA-ANIL 0.0763 0.0005 0.0004 -

5.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.7916

TA-MAML 0.0763 0.0005 0.0004 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0529 0.0011 0.0004 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0012 - -
TA-MetaLSTM++ - 0.0004 0.0001 -

ANIL 0.3000 0.0006 - -
TA-ANIL 0.0763 0.0005 0.0004 -

10.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.2631

TA-MAML 0.2551 0.0015 0.0001 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0627 0.0008 0.0013 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0015 - -
TA-MetaLSTM++ - 0.0009 0.0015 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.2551 0.0015 0.0001 -

10.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0741

TA-MAML 0.2551 0.0015 0.0001 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0627 0.0008 0.0013 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0036 - -
TA-MetaLSTM++ - 0.0024 0.0002 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.2551 0.0015 0.0001 -
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Setting Model base lr meta lr attention lr lambda
FC100

5.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0164

TA-MAML 0.2826 0.0003 0.0024 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0349 0.0008 0.0001 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0010 - -
TA-MetaLSTM++ - 0.0002 0.0074 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.2826 0.0003 0.0024 -

5.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0153

TA-MAML 0.2826 0.0003 0.0024 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0349 0.0008 0.0001 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0002 - -
TA-MetaLSTM++ - 0.0007 0.0003 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.2826 0.0003 0.0024 -

10.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0794

TA-MAML 0.2353 0.0002 0.0001 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.2583 0.0029 0.0007 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0021 - -
TA-MetaLSTM++ - 0.0005 0.0014 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.2826 0.0003 0.0024 -

10.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0193

TA-MAML 0.2353 0.0002 0.0001 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.2583 0.0029 0.0007 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0004 - -
TA-MetaLSTM++ - 0.0004 0.0090 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.2826 0.0003 0.0024 -
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Setting Model base lr meta lr attention lr lambda
tieredImagenet

5.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.3978

TA-MAML 0.02615 0.0005 0.0015 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0944 0.0003 0.0002 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0002 - -
TA-MetaLSTM++ - 0.0010 0.0006 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.0261 0.0005 0.0015 -

5.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.7733

TA-MAML 0.0261 0.0005 0.0015 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0944 0.0003 0.0002 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0009 - -
TA-MetaLSTM++ - 0.0012 0.0001 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.0261 0.0005 0.0015 -

10.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.4752

TA-MAML 0.0821 0.0002 0.0006 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0512 0.0007 0.0018 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0011 - -
TA-MetaLSTM++ - 0.0018 0.0002 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.0821 0.0002 0.0006 -

10.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.2501

TA-MAML 0.0821 0.0002 0.0006 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD 0.0512 0.0007 0.0018 -
MetaLSTM - 0.0050 - -

MetaLSTM++ - 0.0024 - -
TA-MetaLSTM++ - 0.0015 0.0019 -

ANIL 0.5000 0.0030 - -
TA-ANIL 0.0821 0.0002 0.0006 -
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