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Abstract

Machine learning for node classification on graphs is a prominent area driven
by applications such as recommendation systems. State-of-the-art models often
use multiple graph convolutions on the data, as empirical evidence suggests they
can enhance performance. However, it has been shown empirically and theoret-
ically, that too many graph convolutions can degrade performance significantly,
a phenomenon known as oversmoothing. In this paper, we provide a rigorous
theoretical analysis, based on the two-class contextual stochastic block model
(CSBM), of the performance of vanilla graph convolution from which we remove
the principal eigenvector to avoid oversmoothing. We perform a spectral analysis
for k rounds of corrected graph convolutions, and we provide results for partial
and exact classification. For partial classification, we show that each round of
convolution can reduce the misclassification error exponentially up to a saturation
level, after which performance does not worsen. We also extend this analysis to the
multi-class setting with features distributed according to a Gaussian mixture model.
For exact classification, we show that the separability threshold can be improved
exponentially up to O(log n/log log n) corrected convolutions.

1 Introduction

Graphs naturally represent complex relational information found in a plethora of applications such
as social analysis [Backstrom and Leskovec, 2011], recommendation systems [Ying et al., 2018,
Borisyuk et al., 2024], computer vision [Monti et al., 2017], materials science and chemistry [Reiser
et al., 2022], statistical physics [Battaglia et al., 2016, Bapst et al., 2020], financial forensics [Zhang
et al., 2017, Weber et al., 2019] and traffic prediction in Google Maps [Derrow-Pinion et al., 2021].

The abundance of relational information in combination with features of the corresponding entities
has led to improved performance of machine learning models for classification and regression tasks.
Central to the field of machine learning on graphs is the graph convolution operation. It has been
shown empirically [Defferrard et al., 2016, Kipf and Welling, 2017, Gasteiger et al., 2019, Rossi
et al., 2020] that using graph convolutions to the feature data enhances the prediction performance of
a model, but too many graph convolutions can have the opposite effect [Oono and Suzuki, 2020, Chen
et al., 2020, Keriven, 2022, Wu et al., 2023], an issue known as oversmoothing. Several solutions
have been proposed for this problem, we refer the reader to the survey of Rusch et al. [2023].

In this paper we provide a rigorous spectral analysis, based on the contextual stochastic block
model [Deshpande et al., 2018], to show that the oversmoothing phenomenon can be alleviated by
excluding the principal eigenvector’s component from the graph convolution matrix. This is similar
to the state-of-the-art normalization approach used in Zhao and Akoglu [2020], Rusch et al. [2023]
(PairNorm). However, our method explicitly uses the principal eigenvector. We provide below some
intuition about why excluding the principal eigenvector helps to alleviate over-smoothing.
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Let A be the adjacency matrix of the given graph, and D be the degree matrix. Vanilla graph
convolutions are represented using matrices such as D−1A or D−1/2AD−1/2 [Kipf and Welling,
2017]. Suppose our graph is d−regular, meaning that each node has exactly d neighbors. In this case,
both graph convolutions reduce to 1

dA. The top eigenvector of A is 1 with eigenvalue d, where 1 is
the vector of all ones. This means that limk→∞

1
dkA

k = 1
n11

⊤, which implies that applying many
convolutions is equivalent to projecting our data onto the all-ones vector. Thus, all feature values
will converge to the same point. Therefore, we should expect, as verified by most real-world and
synthetic experiments, that many rounds of the convolution x 7→ 1

dAx will lead to a large learning
error. However, if we instead perform convolution with the corrected matrix Ã := 1

dA − 1
n11

⊤,
then the convergent behavior of x 7→ Ãkx would be equivalent to projecting x onto the second
eigenvector of A. This eigenvector is known to capture information about sparse bipartitions in the
graph G [Cheeger, 1970, Alon and Milman, 1985, Alon, 1986], and so for certain problems, like
binary classification, we may expect this eigenvector to capture a larger amount of information about
our signal. We note that another well-studied graph matrix is the Laplacian, D-A. In the regular
case, this has the same eigenvectors as the adjacency matrix, but with reversed spectrum. The trivial
eigenvector we remove is exactly the Nullspace of the Laplacian.

In our analysis, we study the classification problem in the contextual stochastic block model, with
a focus on linear, binary classification. Our results are stated in terms of the following corrected
convolution matrices:

Â = D−1/2AD−1/2 − 1

1⊤D1
D1/2

11
⊤D1/2 and Ã =

1

d
A− 1

n
11

⊤, (1)

where d := 2|E|/n is the empirical average degree in A, where |E| is the number of edges in the
graph. Note that Â is derived from the normalized adjacency matrix, while Ã is (up to a scalar
multiple) its unnormalized counterpart. Briefly, we demonstrate that when the graph is of reasonable
quality, the corrected graph convolutions exponentially improve both partial and exact classification
guarantees. Depending on the density and quality of the given graph, improvement becomes saturated
after O(log n) convolutions in our partial and exact classification results. However, in comparison to
a similar analysis in [Wu et al., 2023] for vanilla graph convolutions (without correction), we show
that classification accuracy does not become worse as the number of convolutions increases.

1.1 Our Contributions

In this work, we provide, to our knowledge, the first theoretical guarantees on partial and exact
classification after k rounds of graph convolutions in the contextual stochastic block model. Our
main result is to show that each graph convolution with the corrected matrix reduces the classification
error by a multiplicative factor until a certain point of “saturation” and the number of convolutions
required until saturation depends on the amount of input feature variance. We show that the accuracy
of the linear classifier at the point of saturation only depends on the strength of the signal from the
graph. This is in contrast to the uncorrected convolution matrix, which will always exhibit a decrease
in classification accuracy after many convolutions. Finally, we show that given slightly stronger
assumptions on graph density and signal strength, the convolved data at the point of saturation will
be linearly separable with high probability. To quantify our results, we let p and q be the intra- and
inter-class edge probabilities with γ(p, q) = |p− q|/(p+ q) being the “relative signal strength” in
the graph. Let d̄ be the expected degree of each vertex. Our results can be summarized as follows:

• If p+ q ≥ Ω( log
2 n
n ) and γ ≥ Ω( 1√

d̄
), each convolution with Ã reduces classification error

by a factor of about 1
γ2d̄

until the fraction of errors is O( 1
γ2d̄

)

• If p+ q ≥ Ω( log
2 n
n ) and γ ≥ Ω(

√
logn
d̄

), each convolution with Â reduces classification

error by a factor of about logn
γ2d̄

until the fraction of errors is O( logn
γ2d̄

)

• If p + q ≥ Ω( log
3 n
n ), γ ≥ Ω(k

√
logn
d̄

) and the input features has signal-to-noise ratio at

least Ω(
√

logn
n ), the data is linearly separable after k rounds of convolutions with Ã.

To obtain our partial classification results, we use spectral analysis to bound the mean-squared-error
between the convolved features and the true signal. For exact classification, we prove a concentration
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inequality on the total amount of message received by a vertex through “incorrect paths” of length
k after k rounds of convolution through a combinatorial moment analysis. Using this, we establish
entry-wise bounds on the deviation of the convolved feature vector from the true signal.

Finally, we extend our partial-recovery result to the multi-class setting. In this setting, we assume
our features are distributed according to a Gaussian mixture model with L equal-sized clusters and
our graph is distributed according to a L-block stochastic block model. Our analysis for partial
recovery generalizes easily to the multi-class setting with the use of basic non-linear classifiers. Just
as before, we show that convolution with the corrected, un-normalized adjacency matrix, Ã, reduces
classification error by a constant fraction each round, until a point of saturation where no further
improvement is made.

2 Literature review

Research on graph learning has increasingly focused on methods that integrate node features with
relational information, particularly within the semi-supervised node classification framework, see,
for example, Scarselli et al. [2009], Cheng et al. [2011], Gilbert et al. [2012], Dang and Viennet
[2012], Günnemann et al. [2013], Yang et al. [2013], Hamilton et al. [2017], Jin et al. [2019], Mehta
et al. [2019], Chien et al. [2022], Yan et al. [2021]. These studies have underscored the empirical
advantages of incorporating graph structures when available.

The literature also addresses the expressive capacity [Lu et al., 2017, Balcilar et al., 2021] and gener-
alization potential [Maskey et al., 2022] of Graph Neural Networks (GNNs), including challenges
like oversmoothing [Keriven, 2022, Xu et al., 2021, Oono and Suzuki, 2020, Li et al., 2018, Rusch
et al., 2023]. In our paper, we ground our work on the contextual stochastic block model [Desh-
pande et al., 2018], a widely used statistical framework for analyzing graph learning and inference
problems. Recent theoretical studies have extensively used the CSBM to illustrate several statistical,
information-theoretic, and combinatorial results on relational data accompanied by node features. In
Deshpande et al. [2018], Lu and Sen [2020], the authors investigate the classification thresholds for
accurately classifying a significant portion of nodes from this model, given linear sample complexity
and large but bounded degree. Additionally, Hou et al. [2020] introduces graph smoothness metrics
to quantify the utility of graphical information. Further developments in Chien et al. [2021, 2022],
Baranwal et al. [2021, 2023a] extend the application of CSBM, establishing exact classification
thresholds for graph convolutions in multi-layer networks, accompanied by generalization guarantees.
A theoretical exploration of the graph attention mechanism (GAT) is provided by Fountoulakis et al.
[2023], delineating conditions under which attention can improve node classification tasks. More
recently, Baranwal et al. [2023b] provide the locally Bayes optimal message-passing architecture for
node classification for the general CSBM.

In this paper, we provide exact and partial classification guarantees for multiple graph convolution
operations. Previous investigations have often been confined to a few convolution layers, limiting
the understanding of their effects on variance reduction (see, for example, Baranwal et al. [2023a]).
Our findings contribute a novel spectral perspective on graph convolutions, describing how the
fraction of recoverable nodes is influenced by the signal-to-noise ratio in the node features and the
scaled difference between intra- and inter-class edge probabilities. We also demonstrate that the
oversmoothing phenomenon can be alleviated by excluding the principal eigenvector’s component
from the adjacency matrix – a strategy somewhat akin to the normalization approach used in Zhao
and Akoglu [2020] (PairNorm), albeit our method explicitly uses the principal eigenvector and is
grounded in rigorous spectral justifications.

In a relatively recent work [Wu et al., 2023] the authors rigorously analyze the phenomenon of
oversmoothing in GNNs for the 2-block CSBM by identifying two competing effects of graph
convolutions: the mixing effect, which homogenizes node representations across different classes,
and the denoising effect, which homogenizes node representations within the same class. Their
analysis shows that oversmoothing occurs when the mixing effect dominates the denoising effect, and
they quantify the number of layers required for this transition. In contrast, we work with the corrected
graph convolution in the 2-block CSBM and show that it improves performance exponentially
up to saturation, after which more convolutions do not improve nor degrade performance. On a
technical level, the previous work only analyzes the distribution of a single node’s feature values after
convolution and does not take into account correlations between nodes. In our work, we use spectral
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analysis of higher powers of the convolution matrix, which takes into account correlations between
nodes to obtain our partial classification results over the whole dataset. To handle the modified
convolution in the exact classification setting, we analyze the error more directly through matrix
perturbation analysis rather than trying to directly count the higher-order neighbors of each vertex as
in previous works [Baranwal et al., 2023a, Wu et al., 2023].

3 Preliminaries and Model Description

Throughout this paper, we use 1 to denote the all-ones vector and ei to denote the ith standard basis
vector in Rn. Given a vector x ∈ Rn, we use ∥x∥ to denote its Euclidean norm

√∑n
i=1 x(i)

2. We
use ∥x∥∞ to denote its infinity norm, maxni=1 |x(i)|. For a matrix M ∈ Rn, we use ∥M∥ to denote its

operator norm, maxx ̸=0,∥x∥=1 ∥Mx∥. We use ∥M∥F =
√∑

i,j M
2
i,j to denote its Frobenius norm.

We also make routine use of the spectral theorem, which says that if M is a n× n symmetric matrix,
then it can be diagonalized with n orthogonal eigenvectors and real eigenvalues. In particular, there
exist λ1, λ2, ...λn ∈ R and orthonormal vectors w1, w2, ...wn ∈ Rn such that M =

∑n
i=1 λiwiw

⊤
i .

Note that when M is symmetric, ∥M∥ = maxi |λi| = maxx:∥x∥=1 |x⊤Mx|.

Finally, we use the N (µ,Σ) to a Gaussian distribution with mean µ and covariance matrix Σ. For
one-dimensional Gaussians, we use N (µ, σ2). For X ∼ N (µ, σ2), we will frequently use the
Gaussian tail bound: Pr [|X − µ| > tσ] ≤ exp(− t2

2 ).

3.1 Contextual Stochastic Block Model

In this section, we formally describe the contextual stochastic block model introduced by [Deshpande
et al., 2018]. Our model is defined by parameters n,m ∈ N, p, q ∈ [0, 1], µ, ν,∈ Rm and σ ∈ R+ In
the model, we are given a random undirected graph, G = (V,E), where |V | = n, drawn from the
2-block stochastic block model and features drawn from the Gaussian mixture model. Our vertices
are partitioned into two classes, S and T , of size n/2, which we want to recover. For each pair of
vertices i, j ∈ S and i, j ∈ T , the edge (i, j) is in E independently with probability p while for each
pair i ∈ S and j ∈ T , the edge (i, j) is in E with probability q. In addition to the graph, we are also
given a feature matrix X ∈ Rn×m drawn from a Gaussian mixture model with two centers µ and ν.
For each i ∈ V , we let gi ∼ N (0, σ2Im) be an i.i.d. Gaussian noise vector. Now let (xi)i∈n be the
rows of X . For i ∈ S, we have xi = µ+ gi and for each i ∈ T , we have xi = ν + gi.

In the multi-class setting, our nodes are partitioned into L classes, C1, ...CL, of size n/L. The
inter-class edge probability is p and intra-class edge probability is q. We assume the features are
generated by a Gaussian mixture with L centers c1, ...cL ∈ Rm. If node i is in class l, then we
observe its feature vector as xj = cl + gi. In addition, we will let µi := cl, for i ∈ Cl, denote the
center for vertex i.

4 Results and Interpretation

In our analysis, there are two types of objectives. In the exact classification objective, the aim is to
exactly recover S and T with probability 1−o(1). In the partial classification, or “detection” problem,
the goal is to correctly classify 1− o(1) fraction of vertices correctly with probability 1− o(1). We
begin by stating our results for the partial classification regime. For ease of notation, we will assume
p > q from this point forward. We show in Appendix B.1 that this assumption is made without loss
of generality.
Theorem 4.1. Suppose we are given a 2-block m-dimensional CSBM with parameters n, p >

q, µ, ν, σ satisfying γ(p, q) := p−q
p+q ≥ Ω

(√
1
np

)
and p ≥ Ω

(
log2 n

n

)
. There exists a lin-

ear classifier such that after k rounds of convolution with Ã, will, with probability at least
1− 1

2 exp(−Ω
(

n∥µ−ν∥2

σ2

)
), misclassify at most

O

(
1

γ2p
+
( C

γ
√
np

)2k σ2

∥µ− ν∥2
n log n

)
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vertices, where C is an absolute constant. Furthermore, if γ ≥ Ω(
√

logn
np ) then with probability at

least 1− 1
2 exp(−Ω

(
n∥µ−ν∥2

σ2

)
), the same linear classifier after k rounds of convolution with Â will

misclassify at most

O

(
log n

γ2p
+
(C log n

γ
√
np

)2k σ2

∥µ− ν∥2
n log n

)
vertices.

Now we take a closer look at the error bound. For brevity, we will focus on our results regarding
convolutions with Ã. First, we see that an important ratio in our bound is the term 1/(γ2np). This
term is small if γ2 is much larger than the inverse of the expected degree of each vertex, (p+ q)n/2,
which is at most np. Our assumption that this ratio is upper bounded by a constant means that we need
the signal from the graph to be sufficiently strong. Now, if we examine our misclassification error
bound, and let ρ = C/(γ2np) where C is a sufficiently large constant, then we see that the fraction of
misclassified vertices is at most ρ+ρkσ2 log n/ ∥µ− ν∥2. Our assumption on the parameters ensures
that ρ < 1. Note that only the second term depends on k, and the feature’s noise-to-signal ratio.
This term measures the amount of error introduced by the variance in the features and exponentially
decreases with k. Moreover, after about k = log1/ρ

(
σ2 log n/(ρ ∥µ− ν∥2)

)
convolutions, the ρ

term, which only depends on graph parameters, will dominate over the variance term, indicating that
more convolutions will not improve the quality of the convolved features beyond the quality of the
signal from the graph. If σ/ ∥µ− ν∥ is constant, we will always reach our optimal error bound of
O(ρ) when k = O(log log n). Moreover, if γ = Ω(1), as was assumed in Baranwal et al. [2021],
then we will have 1/ρ ≥ Ω(np). This means even when σ/ ∥µ− ν∥ ≈

√
n/ log n, we will reach

optimality in constant number of convolutions with high probability if the graph is moderately dense.
For example, if p = 1/

√
n, then we only need 3 convolutions and if p = Ω(1), then we only need

2. On the other hand, if γ is on the order of Θ(1/
√
np), then in the worst case, we may need log n

convolutions to reach our optimal bound. Next, we state our results for exact classification.
Theorem 4.2. Suppose we are given a 2-block m-dimensional CSBM with parameters n, p >

q, µ, ν, σ satisfying γ(p, q) ≥ Ω
(
k
√

logn
np

)
and p ≥ log3 n

n . Then after k = O(log n) rounds of

graph convolution with Ã, our data is linearly separable with probability 1− n−Ω(1) if

∥µ− ν∥
σ

≥ Ω

(
max

(√
log n

n
,
( C

γ
√
np

)k√
log n

))
where C is an absolute constant.

Here, we bound the minimum signal-to-noise ratio required for exact classification as a function
of p, q, n and k. Just like the partial classification result, our function has a term that decreases
exponentially with k and a term independent of k. The rate of decrease for the dependent term is
proportional to 1/(γ

√
np), or

√
ρ. We see once again that with more convolutions, the requirement

on the feature signal-to-noise ratio for exact classification becomes exponentially weaker. More-
over, since we assumed that γ ≥ Ω(k

√
log n/(np)), as long as ∥µ− ν∥ ≥ Ω(σ

√
log n/n), the

data becomes linearly separable after k = O(log n/log log n) convolutions. Just as in the partial
classification case, we observe that the larger γ is, the fewer convolutions we need to obtain the
optimal bound. In particular, if γ = Ω(1) and p = Ω(1) then one convolution already gives the
optimal bound, and if p = 1/

√
n, then two convolutions are enough. For technical reasons, we only

analyze exact classification using convolution with the corrected un-normalized adjacency matrix, Ã.
Similar bounds should hold for Â based on our simulation results, but we leave this for future work.

4.1 Discussion on our Assumptions

Both Theorem 4.1 and Theorem 4.2 require a lower bound of γ ≥ ω(1/
√
np), and this is to ensure

that the signal from the graph is strong enough so that a convolution does not destroy the signal
from the data. Also, implicit in the probability bound of Theorem 4.1 and in Theorem 4.2, is the
assumption that our signal-to-noise ratio, ∥µ− ν∥ /σ, is at least ω(1/

√
n) so the feature noise does
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not completely drown out the signal. Our lower-bound assumption on p is to ensure concentration
in the behavior of the degrees and the adjacency matrix towards their expectation. In Theorem 4.2,
we also assume that k = O(log n). This is done mainly for technical reasons of our proof but we
note that this assumption is made without loss of generality because as mentioned, the bound in
Theorem 4.2 does not improve for k ≥ log n. Finally, we note that the case p > q corresponds to a
homophilous graph, and the case p < q corresponds to a heterophilous graph (see Luan et al. [2021],
Ma et al. [2022] for more). For binary classification, it has been shown [Baranwal et al., 2023a] that
one can assume p > q without loss of generality and make corresponding adjustments in the classifier.
As such, we assume that p > q. For more detail regarding this assumption, see Appendix B.1.

5 One-Dimensional CSBM

In Baranwal et al. [2021], the authors showed that analyzing the linear classifier for the m-dimensional
CSBM reduces to analyzing the 1-dimensional model. We say that a CSBM is one-dimensional
and centered with parameters n, p, q, σ if it has one-dimensional features and means 1/

√
n and

−1/
√
n. That is, we have one feature vector x ∈ Rn given by x = s + g, where g ∼ N (0, σ2In)

and s(i) = 1/
√
n for i ∈ S and −1/

√
n for i ∈ T . We will refer to s as our signal vector and for

ease of notation, we normalize it so that it always has unit norm. The following lemma allows us to
reduce the analysis of the linear classifier for a general CSBM to the analysis of the 1-dimensional
centered CSBM (proof in Appendix B.1). Thus, in the proofs of our main theorems, we will analyze
the 1-dimensional case before applying Lemma 5.1.
Lemma 5.1. Given an m-dimensional 2-block CSBM , there exist w ∈ Rm and b ∈ Rn such that
Xw + b = s+ g where for each vertex i, gi is i.i.d. N (0, σ′2) with σ′ = 4σ√

n∥µ−ν∥ .

In the 1-dimensional model, it is clear how our signal s is present in our features. Our convolution
matrix also captures the signal because it can be viewed as a perturbation of the matrix ss⊤. This is
especially evident with the un-normalized convolution matrix Ã, which satisfies the following

Ã = ηss⊤ +
1

d
R+ d′11⊤ (2)

where η := (p− q)n/(2d) is the signal strength, d′ := ((p+ q)n/2− d)/(nd) is the average degree
deviation, and R is the “edge-deviation" matrix, where Ri,j = Ai,j − E[Ai,j ]. Since R has i.i.d.
zero-mean entries with variance at most p, we can use standard matrix concentration inequalities
to show it is not too big. Likewise, d′ is small due to degree concentration, and together, these two
concentration results imply that Ã is close to γss⊤. In fact, if we show degree concentration for all
vertices, then we can show that Â also behaves like Ã. We state these concentration results below.

Proposition 5.2. Assume that p = Ω( log
2 n
n ), and let γ = p−q

p+q . With probability 1 − n−Ω(1), we
have the following concentration results

1. |d′| ≤ O(1/n1.5), which implies that η ∈ γ(1± o(1)).

2. ∥R∥ ≤ O(
√
np)

3.
∥∥∥Ã− γss⊤

∥∥∥ ≤ O( 1√
np ) and

∥∥∥Â− γss⊤
∥∥∥ ≤ O(

√
logn
np )

These concentration properties are crucial for spectral analysis. Details are given in Appendix B.1.

6 Partial Classification

In this section, we give a sketch of the proof of our partial classification result, Theorem 4.1. The full
proofs can be found in Appendix C. We will show that partial classification can be achieved if the
convolved vector is well-correlated with our signal vector s as defined in the beginning of Section 5
in the centered-1 dimensional CSBM. We will analyze our result for convolutions using the matrix
M ∈ {Ã, Â}.
Proposition 6.1. Given a centered 1-dimensional 2 block CSBM with parameters n, p > q, σ and
γ(p, q) = p−q

p+q , suppose our convolution matrix M satisfies
∥∥M − γss⊤

∥∥ ≤ δ and γ ≥ Cδ for a
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large enough constant C. Let xk = Mkx, be the result of applying k rounds of graph convolution to
our input feature x. Then with probability at least 1− 1

2 exp(−
1

4σ2 ), there exists a scalar Ck and an
absolute constant C ′ such that

∥Ckxk − s∥2 ≤ O

(
δ2

γ2
+
(C ′δ

γ

)2k
nσ2 log n

)
The main idea of our analysis is to use the fact that the top eigenvector of M , denoted ŝ, is well
correlated with our signal s. Since

∥∥M − γss⊤
∥∥ ≤ δ and γ > Cδ by assumption, standard

Matrix perturbation arguments imply that the spectrum of M will be in (γ ± δ,±δ,±δ, ...) with
high probability. Given our assumption of γ > Cδ, there will be a large gap between the top
eigenvalue of M and the rest of its eigenvalues. A well-known result Davis and Kahan implies that
∥s− ŝ∥2 ≤ O(δ2/γ2), i.e. s is close to ŝ. Thus, we prove Proposition 6.1 by showing that the
influence of the rest of the eigenvectors on our convolved vector, xk = Mkx, decreases exponentially
with k, which allows us to bound the squared norm distance between xk and s. In particular, we
take our normalization constant to be Ck ≈ 1/λk

1 , where λ1 is the maximum eigenvalue of M .
Note that limk→∞(1/λk

1)M
k = ŝŝ⊤. Roughly speaking, we decompose our convolution vector

as Ckxk ≈ (1/λk
1)M

ks + (1/λk
1)M

kg. To bound the distance of this vector from s, we analyze
the contribution of each of the two terms to our error separately. That is, we show that with high
probability ∥(1/λk

1)M
ks− s∥2 ≤ O(δ2/γ2) and

∥∥Mkg
∥∥2 ≤ O((δ/γ)2knσ2 log n). Note that the

first error term is from taking the convolution of the noisy graph with the true signal, and thus does
not decrease with k. The second error term, on the other hand, comes from variance in the features, g,
and thus decreases with our noise level σ and drops exponentially with each convolution.

Finally, given Proposition 6.1, we can prove the partial classification result by noting that if we
partition the convolved 1-dimensional data around 0, then each misclassified vertex contributes 1/n to
the mean-squared error, which means the number of misclassified vertices is at most ∥Ckxk − s∥2 n.
This, combined with Lemma 5.1 to generalize to the m−dimensional case will prove Theorem 4.1

7 Exact Classification

In this section, we sketch the proof of Theorem 4.2 for exact classification using the un-normalized
corrected convolution matrix Ã. Full proofs can be found in Appendix D. To show linear separability,
we would like xk = Ãkx to have positive entries for all vertices in S and negative entries for all
vertices in T . This means that we want to show ∥Ckxk − s∥∞ < 1/

√
n for some appropriate scalar

Ck. In particular, we will take Ck to be 1/ηk, where η is our empirical estimate of γ(p, q). In partial
classification, it sufficed to bound the mean squared error ∥Ckxk − s∥22, using spectral analysis but
bounding ∥Ckxk − s∥∞ requires more work because now we are bounding the entrywise instead of
average error. In our approach, we bound the volume of messages passed through “incorrect paths”
in our graph and show that the contribution from these messages is small. Then, we show the other
source of error, the feature variance, is reduced exponentially with each round of convolution. As
with the partial classification result, we first prove our result in the 1-dimensional centered model:
Proposition 7.1. Suppose we are given a 1-dimensional centered 2-block CSBM with parameters

n, p, q, σ and k = O(log n) such that γ = p−q
p+q ≥ Ω

(
k
√

logn
np

)
, p ≥ log3 n

n , and σ ≤ O
(

1√
logn

)
.

Then with probability at least 1− n−Ω(1):∥∥∥∥ 1

ηk
Ãkx− s

∥∥∥∥
∞

≤ 1

2
√
n
+O

((
C

γ
√
np

)k

σ
√
log n

)

Given, Proposition 7.1, Theorem 4.2 follows immediately by applying Lemma 5.1. We now give
a sketch of our proof for Proposition 7.1. To bound each entry of Ckxk − s, we must bound
|e⊤u Ãkx/ηk − e⊤u s| for all u ∈ V . Similar to in partial classification, we will split our error
into error from Ãks and error from Ãkg. That is, for each u ∈ V , we separately upper bound
|e⊤u (ηss⊤+R′)ks−e⊤u s| and |e⊤u (ηss⊤+R′)kg|, where R′ = Ã−ηss⊤. The matrix (ηss⊤+R′)k,
when expanded out, can be written as ηkss⊤ plus a sum of 2k − 1 terms, each of which is a non-
commutative product of matrices of the form ηss⊤ or R′. We group these error matrices into terms
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of order ℓ for ℓ ∈ [k], where the ℓth order terms are comprised of products that contain ℓ copies of R′

and k − ℓ copies of γss⊤.

In our analysis, we first use degree concentration to show that instead of analyzing the error w.r.t.
R′, it suffices to analyze the error w.r.t. 1

dR. To bound e⊤u (ηss
⊤ + 1

dR)ks, we expand it out
and find that each term arising from an error matrix of order ℓ can be written as a multiple of
e⊤uR

a1s ·s⊤Ra2s · ...s⊤RaLs where a1, ...aL are non-negative integers satisfying a1+a2+ ...aL = ℓ.
The symmetric terms can be bounded by showing s⊤Ras ≲ (

√
np)a using simple spectral arguments.

To control the asymmetric term, we show that with high probability, |e⊤uRa1s| ≤ 1√
n
(Cnp log n)a1/2

for a constant C. This part is the most technical part and requires the slightly stronger graph density
assumption: p ≥ Ω(log3 n/n). Thus, we have |e⊤uRa1s · s⊤Ra2s · ...s⊤RaLs| ≤ 1√

n
(Cn log n)ℓ/2

for some constant C. The analysis for bounding euÃ
kg is similar. Finally, by combining these

bounds with our assumptions that γ is large enough, we obtain Proposition 7.1.

Now, we take a closer look at the step of bounding the asymmetric term. Recall that R is a
random symmetric matrix with i.i.d. zero mean entries. The term e⊤uR

ℓs can be expressed as∑
w Rw(0),w(1)Rw(1),w(2), ...Rw(ℓ−1),w(a)s(w(a)) where the sum is over all walks, w, of length a

in the complete graph over n vertices starting at w(0) := u. From a message-passing perspective,
one can interpret this as bounding the deviation between the amount of signal message u receives
over paths of a certain length and the amount of message it expects to receive. To bound this term,
we use a path counting argument to control its higher moments, and then apply Markov’s inequality:
Pr
[
|e⊤uRas| ≥ λ

]
< 1

λ2tE[|e⊤uRas|2t].

8 Multi-class Analysis on Gaussian Mixture Model

In this section, we will formally state and sketch our results for the multi-class analysis. Full proofs
are in Appendix E. For simplicity, we will only analyze convolution with the un-normalized corrected
convolution matrix, Ã. The reason that the corrected convolution still gives good performance is
that when class sizes are balanced, the second eigenspace of the expected adjacency matrix has
multiplicity L− 1 and exactly captures the L clusters (see Lemma E.1). Before formally stating our
result, we will introduce some useful notation:

• Graph Signal: λ := (p−q)n
dL is the strength of the signal from the graph.

• Graph Noise: δ := C( 1d (
√

np(1− p)/L +
√
nq(1− q))) for some constant C. δ is an

upper bound on the graph noise.
• Let U := E[X] be the matrix whose ith column is µi. We also assume our features are

centered on expectation so that U⊤1 = 0. This is not restrictive since it can be satisfied by
applying a linear shift to the features

• Let ∆ = mini,j∈[n] ∥µi − µj∥ be the minimum distance between the centers

Theorem 8.1. Given the CSBM with parameters, p, q, L, n,m, suppose min(p, q) ≥ Ω( log
2 n
n ) and

|λ| > 4kδ. Let X(k) = 1
λk Ã

kX be the feature matrix after k rounds of convolutions with scalaing

factor 1/λk. Let x(k)
i be the ith row of the matrix X(k). Then with probability 1− n−Ω(1), at least

n− ne nodes, i, satisfy
∥∥∥x(k)

i − µi

∥∥∥ < ∆/2 where

ne = O
(
(kδ/|λ|)2

∥U∥2F
∆2

+ (L+ n(δ/|λ|)2k)σ
2m log n

∆2

)
.

In particular, the quadratic classifer x 7→ softmax(∥x− cl∥2)Ll=1 will correctly classify at least
n− ne points, and when ne = o(n), then we can correctly classify 1− o(1) fraction of points.

Intuitively, our theorem states that each convolution will cause the points in each cluster to “contract”
towards their means up until a certain saturation point is reached. If after this contraction, many
points are closer to their own centers than to any other centers, the softmax classifier will correctly
classify them. Just as in Theorem 4.1, our error bound consists of one component depending on the
variance, σ2, that is large at the beginning and decreases exponentially with each convolution. The
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classification accuracy at the point of saturation (k ≈ log n) depends on the squared product between
graph’s signal-to-noise ratio, δ/|λ|, and the “separation ratio” of the datasets: ∥U∥F /∆. As in the
two-class setting, our theorem captures both the homophilic and heterophilic settings. However, for
large L, our error parameter, δ, can be much larger if q > p. This observation of noisier graphs in
the heterophilic setting, leading to less accurate performance, is consistent with observations from
previous studies [Choi et al., 2023].

9 Experiments

In this section, we demonstrate our results empirically. For synthetic data, we show Theorems 4.1
and 4.2 for linear binary classification. For real data, we show that removing the principal component
of the adjacency matrix exhibits positive effects on multi-class node classification problems as well.

9.1 Synthetic Data

For synthetic data from the CSBM, we demonstrate the benefits of removing the principal component
of the adjacency matrix before performing convolutions for both variants of convolution described in
Equation (1). We choose n = 2000 nodes with 20 features for each node, sampled from a Gaussian
mixture. The intra-edge probability is fixed to p = O(log3 n/n). We perform linear classification to
demonstrate the results in Theorem 4.1 and Theorem 4.2, training a one-layer GCN network both
with and without the corrected convolutions and perform an empirical comparison.

We provide plots for two different settings: (1) Fix γ = |p− q|/(p+ q) = 2/3 and vary signal-to-
noise ratio of the node features, ∥µ − ν∥/σ, for different number of convolutions. We observe in
Figure 1 that as the number of convolutions increases, the original GCN [Kipf and Welling, 2017] (in
blue) starts performing poorly, while the corrected versions (in orange and green) retain the accuracy
for lower signal-to-noise ratio; (2) Fix ∥µ− ν∥/σ = 1 and vary the graph relative signal strength,
γ, for different number of convolutions. We observe the same trends in this setting, as depicted in
Figure 2. The vertical lines represent the threshold for exact classification from Theorem 4.2.
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Figure 1: Accuracy plot (average over 50 trials) against the signal-to-noise ratio of the features (ratio
of the distance between the means to the standard deviation) for increasing number of convolutions.
Here, v = D1/2

1 and the “GCN with vv⊤ removed” refers to convolution with the corrected,
normalized adjacency matrix. “GCN with 11⊤ removed” is the corrected, unnormalized matrix.

9.2 Real Data

Similar to synthetic data, we compare the results for corrected graph convolution to the original GCN
on the following real graph benchmarks datasets: CORA, CiteSeer, and Pubmed citation networks
[Sen et al., 2008] in the multi-class setting. In Figure 3, we see that overall the accuracy of every
learning method decreases as the number of convolutions increases but the corrected convolutions
converge to an accuracy much higher than that of the uncorrected convolution. This is attributed to
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Figure 2: Accuracy plot (average over 50 trials) against graph relative signal strength (γ = |p −
q|/(p+ q)) for various values of the number of convolutions.

the fact that for multi-class classification on general graphs, the important information about class
memberships is typically captured by the top C eigenvectors (except the first one) where C is greater
than the number of classes [Lee et al., 2014]. In general, these eigenvectors could have different
eigenvalues. Since the limiting behavior of many rounds of convolutions is akin to projecting the
features onto the eigenvector(s) corresponding to the second eigenvalue, we only expect this to
capture partial information about the multi-class structure. By contrast, we show, in Appendix E.1,
that for synthetic data with balanced classes, the classification accuracy only increases with more
convolutions if they are corrected to remove the top eigenvector.
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Figure 3: Accuracy plots (average over 50 trials) against the number of layers for real datasets.

10 Conclusion and Future Work

In this study, we utilized spectral methods to obtain partial and exact classification results for the
linear classifier with corrected convolution matrices in the 2-block CSBM. Our spectral approach
highlights, theoretically, how removing the top eigenvector can mitigate oversmoothing and improve
classification accuracy. We prove that the removal of the top eigenvector results in reducing feature
variance and correcting the asymptotic behavior of many rounds of convolution towards the second,
rather than the top eigenvector of the adjacency matrix. Finally, we showed that our analysis can
be generalized to the multi-class setting. We hope our analysis can lead to further developments in
theoretical and practical studies of GNNs. A natural extension of this work would be to generalize our
analysis to broader classes of multi-class models. For example, if the size of classes are unbalanced,
the second eigenspace may not capture all the information about the clusters. In addition, the
distribution of features may not follow a standard Gaussian mixture model, but more complicated
distributions, possibly with multiple centers [Baranwal et al., 2023a]. Another natural setting to
consider is when clusters in the feature distribution do not exactly match clusters in the graph.
Extending our analysis to these settings will likely require more sophisticated network architectures
and activation functions.
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A Linear Algebra and Probability Background

Before beginning our proofs, we will establish the following theorems from the literature and basic
facts that we will use throughout the proofs.

A.1 Linear Algebra

For matrix inequalities, we use the following inequalities about matrix spectral norms.
Theorem A.1. ([Vershynin, 2018] theorem 4.5.3.) Let A be a symmetric matrix with eigenvalues
λ1 ≥ λ2 ≥ ...λn and B be a symmetric matrix µ1 ≥ µ2 ≥ ....µn. Suppose ∥A−B∥ ≤ δ. Then,
maxi |λi − µi| ≤ δ

We also use the following basic result to relate the matrix spectral norm to its maximum entry
Lemma A.2. Let M be an n× n symmetric matrix such that each row of M has at most m non-zero
entries and each entry of M has an absolute value at most ε. Then ∥M∥ ≤ εm

Proof. We will use the fact that for any scalars a, b, we have 2ab ≤ a2 + b2 since a2 + b2 − 2ab =
(a− b)2 ≥ 0. We will also use supp(M) to denote the set of non-zero entries in M . Let x be a unit
vector. Then we have

|x⊤Mx| = |
∑
i

n∑
j=1

x(i)x(j)Mi,j |

≤ ε
∑

i,j∈supp(M)

x(i)x(j)

≤ ε
∑

i,j∈supp(M)

1

2
x(i)2 +

1

2
x(j)2

≤ εm
∑
i

x(i)2

= εm

Where the last inequality follows from the fact for every i, there are at most m entries j such that
Mi,j ̸= 0.

A.2 Concentration Inequalities

Throughout our analysis, we will mainly use the following two concentration inequalities. The first is
a bound on the the expected deviation of the sum of Bernoulli random variables
Theorem A.3. Let X1, ...Xn be Bernoulli random variables with mean at most p and Sn =

∑n
i=1 Xi.

Then

Pr [|Sn − E[Sn]| > t] < exp(−Ω(
t2

np
))

The second concentration inequality we will upper-bounds the spectral norm of random matrices
whose entries have zero mean and bounded variance.
Theorem A.4. ([Bandeira and van Handel, 2016] Remark 3.13) Let R be a random matrix whose
entries Ri,j are independent, zero mean, with variance σ2. Then with probability 1 − n−Ω(1), we
have

∥R∥ ≤ O(σ
√
n+ log n)

In particular, if σ2 = Ω( log
2 n
n ) then ∥R∥ ≤ O(σ

√
n)

We will also use the standard tail bound on the norm of a Gaussian vector
Lemma A.5. Let g ∼ N (0, σ2In) be a random Gaussian vector. Then Pr [∥g∥ > t] ≤
2 exp(− t2

2nσ2 )
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A.3 Other Facts

We will also be using the following basic fact about approximating the exponential function
Lemma A.6. For all x, 1 + x ≤ ex. If x ≤ 1, then ex ≤ 1 + 2x.

B Proofs in Section 5

B.1 Proof of Lemma 5.1

In the following section, we give the missing proofs of the basic properties of the CSBM. The first is
the reduction from the m−dimensional model to the centered 1−dimensional model, which we will
restate here:
Lemma B.1. Given an m-dimensional 2-block CSBM , there exist w ∈ Rm and b ∈ Rn such that
Xw + b = s+ g where for each vertex i, gi is i.i.d. N (0, σ′2) with σ′ = 4σ√

n∥µ−ν∥ .

Proof. Let Xi,: be the ith row of X . For each i ∈ S, we have Xi,: = µ+ gi and for each j ∈ T we
have Xj,: = ν + gj , where gi ∼ N (0, σ2Im) are i.i.d. random Gaussian noise vectors. Now we pick
w = (µ− ν), b = − 1

2 ⟨µ+ ν, µ− ν⟩1⃗. Now x′ = Xw + b. For i ∈ S, we let

s′(i) := ⟨µ− 1

2
(µ+ ν), µ− ν⟩ = 1

2
∥µ− ν∥2

and for i ∈ T , we let

s′(i) := ⟨ν − 1

2
(µ+ ν), µ− ν⟩ = −1

2
∥µ− ν∥2

The s′ part is our signal. On the other hand, the noise at each entry is given by x′(i) − s′(i) =
⟨gi, µ− ν⟩ which is Gaussian with standard deviation σ ∥µ− ν∥. Now, if we let x = 4√

n∥µ−ν∥2x′,

then we have x = s + g, where s(i) ∈ ± 1√
n

and each entry of g is i.i.d. Gaussian with standard
deviation σ′ := 4σ√

n∥ν−µ∥ .

Proof of Proposition 5.2 and Characterizing the Convolution Matrix

In this section, we will provide some crucial properties of the graph convolution matrices in (1) and
then use them to prove Proposition 5.2. The adjacency matrix A is a random matrix with expectation

E[A] =

[
pJn/2 qJn/2
qJn/2 pJn/2

]
Where Jm denotes the m × m all-ones matrix. It can be seen that E[A] is a rank-2 matrix, with
eigenvectors 1√

n
1 and s because E[A]1 = 1

2 (p+ q)n1 and E[A]s = 1
2 (p− q)ns, which means

E[A] =
1

2
(p+ q)11⊤ +

1

2
(p− q)nss⊤

Thus, in the centered one-dimensional CSBM, our true signal, s, is encoded in two ways: as the
second eigenvector of the matrix E[A] and as E[x]. We can express our unnormalized corrected
convolution matrix in terms of the signal, ss⊤, as follows:

Ã =
1

d
A− 1

n
11

⊤ =
(p− q)n

2d
ss⊤ +

1
2 (p+ q)n− d

nd
11

⊤ +
1

d
(A− E[A])

Recall from main text that we defined η := (p−q)n
2d be the signal strength, d′ := (p+q)n/2−d

nd to be the
degree deviation, and R = A− E[A] to be the error matrix. Thus, we have

Ã = ηss⊤ +
1

d
R+ d′11⊤

Note that R has independent zero mean entries with bounded variance, and such random matrices
have well-studied concentration properties. The main idea of our analysis is to show that d′ and
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R are small compared to our matrix signal strength η with high probability so that Ã behaves like
ηss⊤ ≈ γss⊤. To analyze convolution with the normalized Â, we use degree-concentration to show
that Â is close to Ã, and so also behaves like γss⊤.

Now we prove the main proposition in our section, Proposition 5.2, which we restate as follows:

Proposition B.2. Assume that p = Ω( logn
n ), and let γ = p−q

p+q . With probability 1− n−Ω(1), we have
the following concentration results

1. |d′| = |d− 1
2 (p+q)n|
nd ≤ O(1/n1.5), which implies that η ∈ p−q

p+q (1± o(1)).

2. ∥R∥ ≤ O(
√
np)

3.
∥∥∥Ã− γss⊤

∥∥∥ ≤ O( 1√
np ) and

∥∥∥Â− γss⊤
∥∥∥ ≤ O(

√
logn
np )

Proof. To bound the deviation of the average degree is equivalent to bounding the total number of
edges in the graph. Note that the expected number of edges in the graph is 1

4 (p+ q)n2. Thus, we
apply Theorem A.3 with t = Θ((p+ q)n1.5) to obtain

Pr

[
||E| − 1

4
(p+ q)n2| > t

]
≤ exp(−Ω(pn)) = n−Ω(1)

Since d = 2|E|/n, we have that with high probability, |d − 1
2 (p + q)n| ≤ O((p + q)

√
n) and

|d′| = |d− 1
2 (p+q)n|
nd ≤ O( (p+q)

√
n

(p+q)n2(1−o(1))) ≤ O(1/n1.5). This gives us bound number 1. To get
bound number 2, we apply Theorem A.4 on the error matrix R, noting that each entry of R has
variance at most p. To get bound number 3, let R′ = 1

dR + d′11⊤ = Ã − ηss⊤. Then with high
probability, we have

∥R′∥ ≤ 1

d
∥R∥+ d′ ∥J∥

≤ 1
1
2 (p+ q)n(1− o(1))

∥R∥+ d′
∥∥11⊤∥∥

≤ O(
1

√
pn

+
1√
n
) since

∥∥11⊤∥∥ = n

= O(
1

√
pn

)

Finally, we analyze the corrected normalized adjacency matrix Â. In this case, we want to show
degree concentration for every node. Let dv be the degree of node v, and d̄ = 1

2 (p + q)n be the
expected degree. By applying Theorem A.3 and using our assumption p > q, we have

Pr
[
|dv − d̄| >

√
Cnp log n

]
≤ exp(−Ω(log n))

Thus, with high probability, we have |dv − d| ≤ O(
√
np log n) for all v ∈ V . Now, to analyze the

normalized adjacency matrix, we have∥∥∥Â− γss⊤
∥∥∥ =

∥∥∥Â− γss⊤ + Ã− Ã
∥∥∥

≤
∥∥∥Â− Ã

∥∥∥+ ∥∥∥Ã− γss⊤
∥∥∥

≤
∥∥∥∥D−1/2AD−1/2 − 1

d
A

∥∥∥∥+ ∥∥∥∥ 1∑
v dv

D1/2
11

⊤D1/2 − 1

n
11

⊤
∥∥∥∥+O(

1
√
np

)

To bound
∥∥D−1/2AD−1/2 − 1

dA
∥∥, let ε =

√
C logn

np for large enough C so that for all v, dv ∈
d̄(1± ε). We note that the adjacency matrix has at most d̄(1 + ε) non-zero entries for each row and
for each u, v, we have

| 1√
dudv

− 1

d
| ≤ 1

d̄(1− ε)
− 1

d̄(1 + ε)
≤ O(

ε

d
)
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Thus, by applying Lemma A.2, we have
∥∥D−1/2AD−1/2 − 1

dA
∥∥ ≤ O(ε). Similarly, for all u, v, we

have

|
√
dudv∑
i di

− 1

n
| ≤ d̄(1 + ε)

d̄n(1− ε)
− 1

n
≤ O(

ε

n
)

Thus, Lemma A.2 implies that
∥∥∥ 1∑

v dv
D1/2

11
⊤D1/2 − 1

n11
⊤
∥∥∥ ≤ O(ε). Finally, this implies that

∥∥∥Â− γss⊤
∥∥∥ ≤ O(

√
log n

np
)

Note that the case p > q corresponds to a homophilous graph, and the case p < q corresponds
to a heterophilous graph (see Luan et al. [2021], Ma et al. [2022] for more), however, for binary
classification, it has been shown [Baranwal et al., 2023a] that once can assume p > q without loss
of generality, and make corresponding adjustments in the classifier. Indeed in our case, if p < q
then we can take −Ã as our convolution matrix so that its maximum modulus eigenvalue is positive.
Moreover, since our signal, s, is centered, taking a convolution with Ã is equivalent to taking a
convolution with −Ã. Thus, we can assume without loss of generality that γ is always non-negative,
i.e. p > q for the rest of our analysis.

C Proofs in Section 6

In this section, we will formally prove our first main theorem on partial classification, Theorem 4.1.
To start, we will show the correlation between the top eigenvector of the convolution matrix M and s.
Note that this result is well-known in the literature (for example see Vershynin [2018] chapter 4.5).
We will give the proof here for completeness.
Lemma C.1. Suppose M satisfies

∥∥M − γss⊤
∥∥ ≤ δ where γ > Cδ for large enough constant C.

Let ŝ be the top eigenvector of M . Then ⟨s, ŝ⟩2 ≥ 1− 4 δ2

γ2 , and ∥s− ŝ∥2 = O(δ/γ).

Proof. By assumption, we can express M as γss⊤ + R′ where ∥R′∥ ≤ δ. Now let λk be the kth

largest eigenvalue of M . By Theorem A.1, we have |λ1−γ| ≤ δ and ∀i > 1, |λi| ≤ δ. Now consider
the matrix I − ss⊤, which is the projection matrix onto the orthogonal complement subspace of s.
Since M = γss⊤ +R′, we have

γ(I − ss⊤) = γI −M +R′

and the matrix γI − M has the same eigenvectors as M . In particular, ŝ is an eigenvector with
eigenvalues γ − λ1. Thus, we have

γ
√

1− ⟨s, ŝ⟩2 = γ
√
ŝ⊤(I − ss⊤)ŝ

=
∥∥γ(I − ss⊤)ŝ

∥∥
= ∥(γI −M)ŝ+R′ŝ∥
≤ ∥(γI −M)ŝ∥+ ∥R′ŝ∥
≤ |γ − λ1|+ δ

≤ 2δ

Thus, we have ⟨s, ŝ⟩2 ≥ 1−4δ2/γ2. Since by our assumption, δ/γ is small, ŝ is very close to either s
or −s. For our analysis, it doesn’t matter which of these is the case as both s and −s equally separate
the points in our two classes. Thus, we can assume WLOG that ⟨s, ŝ⟩ > 0. As a consequence, we
have

∥s− ŝ∥2 = 2− 2⟨s, ŝ⟩ = 2− 2
√

1− 2δ/γ = O(δ/γ)

where the second inequality follows from applying the first order approximation
√
1− x = 1− x

2 −
O(x2) using the fact that δ/γ is small. Note that if ⟨s, ŝ⟩ was negative, we can do the same analysis
in the following sections with −s instead of s.
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Now we will prove the main result about partial classification in the 1-dimensional model, Proposi-
tion 6.1, which we restate as follows:
Proposition C.2. Given a centered 1-dimensional 2 block CSBM with parameters n, p > q, σ and
γ(p, q) = p−q

p+q , suppose our convolution matrix M satisfies
∥∥M − γss⊤

∥∥ ≤ δ and γ ≥ Cδ for a
large enough constant C. Let xk = Mkx, be the result of applying k rounds of graph convolution to
our input feature x. Then with probability at least 1− 1

2 exp(−
1

4σ2 ), there exists a scalar Ck and an
absolute constant C ′ such that

∥Ckxk − s∥2 ≤ O

(
δ2

γ2
+
(C ′δ

γ

)2k
nσ2 log n

)
Proof. Let λ1 ≥ ...λn be the eigenvalues of M and w1 =: ŝ, w2...wn be their corresponding
eigenvectors. By Lemma C.1, the eigenvalues satisfy λ1 ∈ γ ± δ and |λi| ≤ δ for i > 1. The
convolution vector after k rounds can be expressed as xk = Mkg +Mks, and we will analyze each
term individually.

Mkg = λk
1⟨g, w1⟩ŝ+

∑
i>1

λk
i ⟨g, wi⟩wi

= λk
1⟨g, w1⟩s+ λk

1⟨g, w1⟩(ŝ− s) +
∑
i>1

λk
i ⟨g, wi⟩wi

and similarly,

Mks = λk
1⟨s, w1⟩ŝ+

∑
i>1

λk
i ⟨s, wi⟩wi

= λk
1⟨s, w1⟩s+ λk

1⟨s, w1⟩(ŝ− s) +
∑
i>1

λk
i ⟨s, wi⟩wi

Now we will let Eg and Es be the error vectors, i.e. vectors that are not in the span of s, from each of
the terms respectively. That is

Eg = λk
1⟨g, w1⟩(ŝ− s) +

∑
i>1

λk
i ⟨g, wi⟩wi

Es = λk
1⟨s, w1⟩(ŝ− s) +

∑
i>1

λk
i ⟨s, wi⟩wi

Thus, we have
xk = λk

1⟨s+ g, ŝ⟩s+ Eg + Es

Thus, we will let Ck = (λk
1⟨s+g, ŝ⟩)−1 and bound the squared norm of the error terms Ck(Eg+Es).

We will also use the fact that for any vectors y, z, we have ∥y + z∥2 ≤ 2 ∥y∥2 + 2 ∥z∥2. Using this,
we have

∥Eg∥2 ≤ 2λ2k
1 |⟨ŝ, g⟩|2 ∥s− ŝ∥2 + 2

∥∥∥∥∥∑
i>1

λk
i ⟨g, wi⟩wi

∥∥∥∥∥
2

≤ O(λ2k
1 δ2/γ2)|⟨ŝ, g⟩|2 + 2δ2k

∥∥∥∥∥∑
i>1

⟨g, wi⟩wi

∥∥∥∥∥
2

≤ O(λ2k
1 δ2/γ2)|⟨ŝ, g⟩|2 + 2δ2k ∥g∥2

where in the second inequality, we used the fact that Lemma C.1 implies ∥s− ŝ∥2 ≤ O(δ2/γ2). By
Lemma A.5, we have ∥g∥2 = O(σ2n log n) with probability 1−n−Ω(1). Also, ⟨ŝ, g⟩ has distribution
N (0, 1) because ŝ is a unit vector. Thus with probability exp(− 1

4σ2 ), |⟨ŝ, g⟩| ≤ 1/2. If both these
events happen, then we have ∥Eg∥2 ≤ O(λ2k

1 δ2/γ2 + δ2kσ2n log n). Now, to bound the other error
term, we have

∥Es∥2 ≤ 2λ2k
1 ∥s− ŝ∥2 ⟨ŝ, s⟩2 + 2

∥∥∥∥∥∑
i>1

λk
2⟨wi, s⟩wi

∥∥∥∥∥
2

≤ 2λ2k
1 ∥s− ŝ∥2 ⟨ŝ, s⟩2 + 2δ2k ∥s∥2

≤ O(λ2k
1 δ2/γ2),
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where the last inequality follows from the fact that ∥s∥ = 1 and |λ1−γ| ≤ δ, which is a constant factor
smaller than λ1, which means δ2k = O(λ2k

1 δ2/γ2). Finally, we want to lower bound ⟨ŝ, s⟩+ ⟨s, g⟩
by a constant so Ck = O(λk

1). By Lemma C.1, we have ⟨ŝ, s⟩ > 1 − O(δ/γ). We can assume
that our constant C is large enough so that γ/δ < 1/4, which means that ⟨ŝ, s⟩ ≥ 3/4. Then
⟨ŝ, s⟩+ ⟨s, g⟩ ≥ 1/4 as long as ⟨s, g⟩ ≥ 0 or |⟨s, g⟩| ≤ 1/2. This happens with probability at least
1
2 + 1

2 (1− exp(− 1
4σ2 )) = 1− 1

2 exp(−
1

4σ2 ), and if this does occur, we have

∥Ckxk − s∥2 ≤ 2C2
k ∥Eg∥2 + 2C2

k ∥Es∥2

≤ O(λ2k
1 (λ−2k

1 δ2/γ2 + δ2knσ2 log n))

O(δ2/γ2 + (δ/λ1)
2knσ2 log n)

Moreover, since λ1 ≥ γ − δ, we have δ/λ1 ≤ δ/(γ − δ) = O(δ/γ) since γ is a least a constant
factor larger than δ, and this gives us our final bound.

With our main proposition established, we can prove our main theorem as follows:

Proof. (Theorem 4.1) First, we apply Lemma 5.1 to reduce to the one dimensional centered CSBM
with parameters p, q and σ′ = O( σ√

n∥µ−ν∥ ). Now let x = Xw + b be our transformed one-

dimensional feature vector and let xk = Mkx where M is either Ã or Â. To bound the mean-squared
error of our convolved data, we will apply Proposition 6.1. By Proposition 5.2, we can take

δ = O( 1√
np ) if M = Ã and δ = O(

√
logn
np ) if M = Â. Then, as long as γ ≥ Cδ for large enough

constant C, we have a scalar Ck and constant C ′ such that

∥Ckxk − s∥2 ≤ O

(
δ2

γ2
+
(C ′δ

γ

)2k σ2 log n

∥µ− ν∥2

)
Now, we take 0 to be the threshold, meaning we put vertex i in the first class if xk(i) < 0 and put
it in the second class otherwise. Note that this partitioning scheme is indifferent to the scaling of
the vector xk, so we can equivalently apply it to Ckxk (note this does not necessitate computing Ck

directly). Since each i ∈ S has s(i) = 1/
√
n and each j ∈ T has s(j) = −1/

√
n, a vertex can only

be misclassified if it contributes at least 1/n to the total squared distance ∥Ckxk − s∥2. Thus, the
total number of misclassified vertices is at most ∥Ckxk − s∥2 n, which gives us the main theorem
after substituting the appropriate value of δ.

D Proofs in Section 7

In this section, we will formally prove Proposition 7.1. Before we begin, we will, as a warm-
up, analyze the behavior of 1 convolution for the centered 1-dimensional CSBM. The following
proposition is essentially equivalent to theorem 1.2 in Baranwal et al. [2021]. The proof here is not
used later on, but gives some intuition about how to analyze exact classification using a matrix-focused
framework.
Proposition D.1. Suppose we are given the 1-dimensional centered CSBM with parameters n, p, q, σ

such that p ≥ Ω( log
2 n
n ), γ ≥ Ω(

√
logn
np ), and σ ≤ O( 1√

logn
). Then with probability 1−n−Ω(1), we

have ∥∥∥∥s− 1

η
x1

∥∥∥∥
∞

≤ O(σ
( 1
γ

√
log n

np
+

√
log n

n

)
) +

1

2
√
n

Proof. By the definition of our convolution matrix, we have
1

η
x1 =

1

η
(ηss⊤ +R′)(s+ g) = s+

1

η
R′s+ (ss⊤ +

1

η
R′)g

Thus, we can bound the infinity norm error as:∥∥∥∥s− 1

η
x1

∥∥∥∥
∞

=

∥∥∥∥1ηR′s+ (ss⊤ +
1

η
R′)g

∥∥∥∥
∞

≤
∥∥∥∥(ss⊤ +

1

η
R′)g

∥∥∥∥
∞

+

∥∥∥∥1ηR′s

∥∥∥∥
∞
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Since the infinity norm is the maximum absolute value of all entries, we need to bound terms
|e⊤uR′s|/η and |e⊤u (ss⊤ + R′/η)g| for all u ∈ V . We will start by bounding the Gaussian part
of the error. Since e⊤u (ss

⊤ + R′/η)g ∼ N (0, σ2 ∥R′eu/η + ⟨s, eu⟩s∥2), we have that with high
probability maxi∈n |e⊤u (ss⊤ + R′/η)g| ≤ O(σ

√
log n · ∥R′eu/η + ⟨s, eu⟩s∥). Now note that

|⟨s, eu⟩| = 1/
√
n and by Theorem A.4, ∥R′eu∥ ≤ ∥R′∥ ≤ O(σ

√
1
np ). Finally, by Proposition 5.2,

we have η = γ(1± o(1)). Thus, we have

|e⊤u (ss⊤ +R′/η)g| ≤ O(σ
( 1
γ

√
log n

np
+

√
log n

n

)
)

Now, to bound the error term |e⊤uR′s|, we have e⊤uR
′s = e⊤u (

1
dR + d′11⊤)s = 1

de
⊤
uRs

since s is orthogonal to the all-ones vector. Now, WLOG, suppose u ∈ S. Notice that
e⊤uRs = 1√

n
(
∑

i∈S Ru,i −
∑

i∈T Ru,i), where both sums are sums over independent shifted
Bernoulli random variables with variance at most p. Thus, by applying Theorem A.3, we have
|e⊤uR′s| ≤ 1√

n
·O(

√
np log n) = O(

√
p log n). Now, using the fact that d ≥ 1

2 (p+ q)n(1− o(1)),

we have | 1de
⊤
uRs| ≤ O( 1√

n
·
√

logn
np ). By our assumption, γ ≥ C

√
logn
np ) for large enough constant

C. Then, we can take C to be large enough so that

|1
η
e⊤uR

′s| = O
( 1

γ(1− o(1))

√
log n

np

)
≤ 1

2
√
n

D.1 Proof of Main Result

In this section, we prove Proposition 7.1, which we restate as follows:
Proposition D.2. Suppose we are given a 1-dimensional centered 2-block CSBM with parameters

n, p, q, σ and k = O(log n) such that γ = p−q
p+q ≥ Ω(k

√
logn
np ), p ≥ log3 n

n , and σ ≤ O( 1√
logn

).

Then with probability at least 1− n−Ω(1):∥∥∥∥ 1

ηk
Ãkx− s

∥∥∥∥
∞

≤ 1

2
√
n
+O((

C

γ
√
np

)kσ
√

log n)

Before proving the main proposition, we will use degree-concentration to reduce analyzing the error
matrix R′ = Ã− ηss⊤ to analysing 1

dR instead. This is useful because our analysis crucially uses
the fact that our error matrix R has zero-mean Radamacher entries.
Proposition D.3. Let R′ = Ã− ηss⊤ and suppose k ≤ O(log n). Then with high probability, we
have that

∥∥R′k − 1
dkR

k
∥∥ ≤ O( Ckk

√
logn

(
√
pn)k·

√
n
) for a constant C.

Proof. Before beginning the proof, we first need to give a tighter degree-concentration bound to show
that with high probability, |d′| ≤ O(

√
logn

n2√p ). By applying Theorem A.3 with t = Θ(n
√
p log n).

Pr

[
||E| − 1

4
(p+ q)n2| > t

]
≤ exp(−Ω

( n2p log n

(p+ q)n2

)
) = n−Ω(1)

Since d = 2|E|/n and with high probability at, |E| ≥ 1
4 (p+ q)n2 − t ≥ 1

4 (p+ q)n2(1− o(1)), we
have d ≥ 1

2 (p+ q)n(1− o(1)) = Ω(np). Putting these together, we get the bound:

|d′| =
|d− 1

2 (p+ q)n|
nd

= 2
||E| − 1

4 (p+ q)n2|
n2d

≤ O(
n
√
p log n

n3p
) ≤ O(

√
log n

n2√p
)

Now, recall from Equation (2) that R′ = 1
dR+ d′11⊤. By Proposition 5.2, we have that with high

probability, 1
d ∥R∥ ≤

√
C
np for some constant C. We will let δ :=

√
C
np be this upper bound. Now
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consider the matrix ( 1δR
′)k. We will let M0 = 1

dδR and M1 = d′

δ 11
⊤. Then, we have ∥M0∥ ≤ 1,

and ∥M1∥ ≤ d′n
δ . Since |d′| ≤

√
logn

n2√p with high probability, we will assume this event occurs. Thus,

we have ∥M1∥ ≤ O(n
√
np logn
n2√p ) ≤ O(

√
logn
n ). Finally, we have ( 1δR

′)k = (M0 +M1)
k. We are

going to expand this out, and so let us introduce some notation. Let
(
[k]
ℓ

)
= {i := (i1, i2, ...ik) ∈

{0, 1}k : i1 + i2 + ...ik = ℓ}. That is, it’s the set of length k binary sequences with exactly ℓ terms
equaled to 1. Now, we have

(M0 +M1)
k −Mk

0 =

k∑
ℓ=0

∑
i∈([k]

ℓ )

k∏
j=1

Mij −Mk
0

=

k∑
ℓ=1

∑
i∈([k]

ℓ )

k∏
j=1

Mij

For any matrices M,N , their spectral norms satisfy ∥MN∥ ≤ ∥M∥ ∥N∥. Thus, for each i ∈
(
[k]
ℓ

)
,

we have
∥∥∥∏k

j=1 Mij

∥∥∥ ≤ ∥M1∥ℓ since ∥M0∥ ≤ 1. Thus, we have

∥∥(M0 +M1)
k −Mk

0

∥∥ ≤
k∑

ℓ=1

(
k

ℓ

)
∥M1∥ℓ

= (1 + ∥M1∥)k − 1

≤ ek∥M1∥ − 1

≤ 2k ∥M1∥

where the second last inequality follows from Lemma A.6 because k ∥M1∥ ≤ k
√

logn
n ≤ 1 by our

assumptions on k. Finally, we have∥∥∥∥R′k − 1

dk
Rk

∥∥∥∥ = δk
∥∥(M0 +M1)

k −M0

∥∥
≤ 2δkk ∥M1∥

≤ O(
kCk

√
log n

(
√
pn)k ·

√
n
)

For a constant C.

As a corollary, we can show the following:

Corollary D.4. Let x and y be unit vectors. Then |x⊤R′ky| ≤ |x⊤( 1
dkR

k)y|+O( Ckk
√
logn

(
√
pn)k·

√
n
)) for

some constant C.

Proof. This follows from the basic properties of the spectral norm

|x⊤R′ky| = |x⊤(
1

dk
Rk +R′k − 1

dk
Rk)y|

≤ |x⊤(
1

dk
Rk)y|+ ∥x∥ ∥y∥

∥∥∥∥R′k − 1

dk
Rk

∥∥∥∥
≤ |x⊤(

1

dk
Rk)y|+O(

Ckk
√
log n

(
√
pn)k ·

√
n
)) by Proposition D.3

Corollary D.4 is key to proving our main technical lemma, the proof of which we will defer to the
next section.
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Lemma D.5. Given p ≥ log3 n
n , we have that with probability 1 − n−Ω(1), for all u ∈ V and all

k ∈ {1, 2, ...O(log n)}

|e⊤uR′ks| ≤ 1√
n

(
C

√
log n

pn

)k
for some constant C

Now, we are ready to prove our main result, Proposition 7.1. The proof is similar to that of
Proposition D.3 but requires the use of Lemma D.5 to obtain a sharper bound on the error terms than
by simply applying the spectral norm bound as we did in the degree-concentration proof.

Proof. (Proposition 7.1) Just like in the k = 1 case, we express Ã as ηss⊤ +R′ and decompose our
convolution vector into the following terms:

1

ηk
Ãkx =

1

ηk
Ãk(s+ g)

= s+ (
1

ηk
Ãk − ss⊤)s+

1

ηk
Ãkg

In order to bound
∥∥∥s− 1

ηk Ã
kx
∥∥∥
∞

, we will bound, for all u ∈ V , the error terms |e⊤u ( 1
ηk Ã

k − ss⊤)s|

and |e⊤u 1
ηk Ã

kg|. Similar to in the proof of Proposition D.3, we start by expanding out 1
ηk Ã

k. Let
Y0 = ss⊤ and Y1 = R′. Then we have

1

ηk
Ãk =

1

ηk
(ηY0 + Y1)

k

=
1

ηk

k∑
ℓ=0

ηk−ℓ
∑

i∈([k]
ℓ )

k∏
j=1

Yij

=

k∑
ℓ=0

η−ℓ
∑

i∈([k]
ℓ )

k∏
j=1

Yij

Note that (ss⊤)2 = ss⊤, which means that the first term in our summation (i.e. the ℓ = 0 terms) is
simply ss⊤. Now we start by bounding the error terms involving s.

|e⊤u (
1

ηk
Ãk − ss⊤)s| = |

k∑
ℓ=1

η−ℓ
∑

i∈([k]
ℓ )

e⊤u

k∏
j=1

Yijs|

≤
k∑

ℓ=1

η−ℓ
∑

i∈([k]
ℓ )

|e⊤u
k∏

j=1

Yijs|

For each i ∈
(
[k]
ℓ

)
, we have

|e⊤u
k∏

j=1

Yijs| = |e⊤uR′a1s · s⊤R′a2s · ...s⊤R′aLs|

where a1, ...aL are non-negative integers satisfying a1 + ...aL = ℓ. This is because the product∏k
j=1 Yij has exactly ℓ terms of the form R′ and ss⊤ for the rest of the terms. By Proposition 5.2,

the matrix R′ has spectral norm at most C1√
np for some constant C1 with high probability. For each

term of the form |s⊤R′ajs| for j > 1, we bound it by |s⊤R′ajs| ≤ ∥R′∥aj ≤
(

C1√
np

)aj

. For the first

term |e⊤uR′a1s|, we apply Lemma D.5 and give |e⊤uR′a1s| ≤ 1√
n

(
C2

√
logn
np

)a1

for some constant
C2. Thus, we have:

|e⊤u
k∏

j=1

Yijs| ≤
1√
n

(max(C1, C2)√
np

)a1+...aL√
log n

a1 ≤ 1√
n

(
C

√
log n

np

)ℓ
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where C is a large enough constant such that C ≥ max(C1, C2). Now, we let ρ := C
η

√
logn
np .

Assuming that γ ≥ 9Ck
√

logn
np and with high probability, η ∈ γ(1± o(1)), we have ρ ≤ 1

8k with
high probability. Thus, we have

|e⊤u (
1

ηk
Ãk − ss⊤)s| ≤

k∑
ℓ=1

η−ℓ
∑

i∈([k]
ℓ )

|e⊤u
k∏

j=1

Yijs|

≤ 1√
n

k∑
ℓ=1

(
k

ℓ

)
η−ℓ
(
C

√
log n

np

)ℓ
=

1√
n

k∑
ℓ=1

(
k

ℓ

)
ρℓ

=
1√
n
((1 + ρ)k − 1)

≤ 1

4
√
n

by Lemma A.6 and ρ ≤ 1

8k

Now, we bound the Gaussian part of the error:

e⊤u Ãg =

k−1∑
ℓ=0

η−ℓ
∑

i∈([k]
ℓ )

e⊤u

k∏
j=1

Yijg + η−ke⊤uR
′kg

For each i ∈
(
[k]
ℓ

)
where ℓ < k, we have

|e⊤u
k∏

j=1

Yijg| = |e⊤uR′a1s · s⊤R′a2s · ...s⊤R′aLg|

where a1+a2+...aL = ℓ. This is because when ℓ < k, there is at least one Yij term that is equalled to
ss⊤, which means in the product, the leftmost term must be e⊤uR

′a1s for some a1 and the right most
term must be s⊤R′aLg for some aL. Once again, we use the fact that |s⊤R′ajs| ≤ ∥R′∥aj ≤ ( C1√

np )
aj

for all j > 1, and by Lemma D.5, we have |e⊤uR′a1s| ≤ (C2

√
logn
np )a1 where C1, C2 are absolute

constants. To bound the last term, we have that s⊤R′ag ∼ N (0, σ2 ∥R′as∥2) for all a > 0. Thus,
with high probability, we have that |s⊤R′aLg| ≤ O(σ ∥R′aLs∥

√
log n) ≤ O(σ( C1√

np )
aL

√
log n).

Thus, we can apply the same bounds as we did for the error term involving s but now with an extra
σ
√
log n factor:

|e⊤u
k∏

j=1

Yijg| = |e⊤uR′a1s · s⊤R′a2s · ...s⊤R′aLg|

≤ O(
σ
√
log n√
n

·
k−1∑
ℓ=0

(
k

ℓ

)
ρℓ)

≤ O(
σ
√
log n√
n

· (1 + ρ)k)

≤ O(
σ
√
log n√
n

) by Lemma A.6

≤ O(
1

4
√
n
)

Where the last inequality follows assuming σ ≤ 1
C′√logn

for some large enough constant C ′. Finally,

to bound the kth order term, we have that with high probability, η−k|e⊤uR′kg| ≤ ( C1

η
√
np )

kσ
√
log n.

24



Putting everything together, and using the fact that η ≥ γ(1− o(1)) with high probability, we have
that for all u ∈ V ,

|e⊤u s−
1

ηk
Ãkx| ≤ 1

ηk
(|e⊤u (Ãk − ss⊤)s|+ |e⊤u Ãkg|) ≤ 1

2
√
n
+
( C

γ
√
np

)k
σ
√
log n)

for some absolute constant C

Given Proposition 7.1, we can derive Theorem 4.2 by using the standard reduction in Lemma 5.1.

Proof. (Theorem 4.2) By applying Lemma 5.1, we see that given m-dimensional features with feature
matrix X , we can transform it to a centered 1-dimensional feature vector x = Xw + b = s + g
where g ∼ N (0, σ′2I) and σ′ = 4σ√

n∥ν−µ∥ . Thus, we have ∥ν − µ∥ = 4σ
σ′√n

. By Proposition 7.1, our

1-dimensional features become linearly separable as long as
(

C
γ
√
np

)k
σ′√log n < 1

2
√
n

for some
absolute constant C. Given our expression of σ′ in terms of the mean distance, this is equivalent to

∥ν − µ∥ ≥ σ
( C

γ
√
np

)k√
log n

In Proposition 7.1, we also needed to assumed that σ′ ≤ O( 1√
logn

), which implies that

∥ν − µ∥ ≥ Ω(σ

√
log n

n
)

D.2 Message Passing Error Bound

In this section, we will prove our main technical lemma, Lemma D.5. By Corollary D.4, it suffices to
control the term |e⊤uRks| in order to control |e⊤uR′ks|. Since this is the sum over many dependent
random variables, we cannot easily compute its moment generating function. Instead, we will
compute the moments directly. In particular, we will apply Markov’s inequality using the 2tth

moment of this random variable E[(e⊤uRks)2t] for an appropriately chosen t. We now state our main
result for this section as follows:
Proposition D.6. Suppose R is an n × n symmetric random matrix where for each 1 ≤ i ≤ j,
Ri,j = 1− pi,j with probability pi,j and −pi,j with probability 1− pi,j and are independent. Let
p = maxi,j pi,j , and suppose p ≥ Ω( log

3 n
n ). Then we have

Pr

[
|e⊤uRks| > 1√

n
(C
√

np log n)k
]
≤ exp(−Ω(C log n))

Proof. The term e⊤uR
ks can be written as the sum over all walks of length k originating from u. Let

Wu,k denote the set of all walks of length k originating at u. For brevity, we will use W to denote
Wu,k. For each w ∈ W , let w(j) be the jth vertex in the walk. Note that w(0) = u always. Then we
have

e⊤uR
ks =

∑
w∈W

k∏
j=1

Rw(j−1),w(j)s(w(k))

Thus, we have

E[(e⊤uRks)2t] =
∑

w1,w2...w2t∈W
E[

2t∏
i=1

k∏
j=1

Rwi(j−1),wi(j)s(wi(k))]

≤
∑

w1,w2...w2t∈W
|E[

2t∏
i=1

k∏
j=1

Rwi(j−1),wi(j)]| ·
2t∏
i=1

|s(wi(k))|

=
1

nt

∑
w1,w2...w2t∈W

|E[
2t∏
i=1

k∏
j=1

Rwi(j−1),wi(j)]|
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Where the last equality follows from the fact that |s(v)| = 1/
√
n for all v ∈ V . Now, for each

w⃗ = (w1, ...w2t) ∈ W2t and edge h ∈ n×n, let #w⃗(h) be the number of times the edge h occurs in
the graph w1∪w2∪, ...w2t. In other words, for h = {a, b}, #w⃗(h) is the number of times the variable
Ra,b occurs in the product

∏2t
i=1

∏k
j=1 Rwi(j−1),wi(j). We will also let |w⃗| denote the number of

unique edges in the graph formed by the union of these 2t walks. For example, if w⃗ consist of the
walks (1, 2, 3), and (1, 2, 4), then we have #w⃗(1, 2) = 2, #w⃗(2, 3) = 1, #w⃗(2, 4) = 1, and |w⃗| = 3.
Using this notation, we have∑

w1,w2...w2t∈W
|E[

2t∏
i=1

k∏
j=1

Rwi(j−1),wi(j)]| =
∑

w⃗∈W2t

∏
h∈[n]×[n]

|E[R#w⃗(h)
h ]|

Now we note that each Rh has E[Rh] = 0 and for all k ≥ 2, we have

|E[Rk
h]| ≤ E[|Rk

h|] = ph(1− ph)
k + pkh(1− ph) = ph((1− ph)

k + pk−1
h (1− ph)) ≤ ph ≤ p

Thus, the term
∏

h∈[n]×[n] |E[R
#w⃗(h)
h ]| is only nonzero if in the union of the edges in the walks

w1, ...w2t, each edge is counted at least twice, and if it is non-zero, then it is the product of at most
|w⃗| terms of value at most p. We now let W2t

pair be the set of such walks, which we will denote as
“valid walks”. As an example, when t = 2 and k = 2, the walks {(1, 2, 3), (1, 2, 3)} would be valid
but {(1, 2, 3), (1, 2, 4)} would not be valid. Now we have∑

w⃗∈W2t

∏
h∈[n]×[n]

|E[R#w⃗(h)
h ]| ≤

∑
w∈W2t

pair

p|w⃗|

=

tk∑
ℓ=1

pℓ|{w⃗ ∈ W2t
pair, |w⃗| = ℓ}|

Now, what we have left is a counting problem. We need to count the number of valid sets of walks
whose union has exactly ℓ distinct edges. We note that ℓ can be at most tk because otherwise, there
must be an edge that is counted at most once, making the walks invalid. Since it is difficult to count
this quantity exactly, we will just upper-bound it as follows:

Proposition D.7. Suppose p ≥ log3 n
n and t ≤ logn

2k . Then we have:

|{w⃗ ∈ W2t
pair, |w⃗| = ℓ}| ≤

(
2tk

2ℓ

)
(2ℓ− 1)!! · ℓ2kt−2ℓ(n)ℓ

The notation of n!! denotes n · n− 2 · n− 4...1. Given this upper bound on the number of valid sets
of walks, we are ready to give our final bound. We will let t = C1 logn

2k for large enough constant
C1. Note that the only constraint on t is that it is a positive integer, and this is feasible as long as
k = O(log n). Since p ≥ log3 n

n , we have np ≥ (tk/C1)
3. We will make the substitution b = tk − ℓ.

Then we have
tk∑
ℓ=1

pℓ|{w⃗ ∈ W2t
pair, |w⃗| = ℓ}| ≤

tk−1∑
b=0

(np)tk−b(tk − b)2b(2tk − 2b− 1)!!

(
2tk

2b

)

≤
tk−1∑
b=0

(np)tk−b(2tk)tk−b(2tk)2b
(2tk)2be2b

(2b)2b

≤ (np)tk(2tk)tk
tk−1∑
b=0

(2tk)3be2b

(2b)!(np)b

≤ (np)tk(2tk)tk
∑
b≥0

(C1e
2)b

(2b)!

≤ O((np)tk(2tk)tk)

In the second line, we used the fact that (2tk − 2b− 1)!! is the product of tk − b terms of value at
most 2tk as well as the standard upper bound of

(
2tk
2b

)
≤ (2tk)2be2b

(2b)2b
, the second last bound follows
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from our assumption on p, and the final bound follows from the fact that the sum converges. Putting
all of this together, we have that for t = C1 logn

2k and p ≥ log3 n
n ,

E[(e⊤uRks)2t] ≤ O(
(2tknp)tk

nt
)

Now, we can apply Markov’s inequality on the tth moment with t = C1 logn
2k

Pr [[] |e⊤uRks| > 1√
n
(C
√

np log n)k] ≤ ntE[(e⊤uRks)2t]

C2tk(np log n)tk

≤ O(
(np log n)tkCtk

1

C2tk(np log n)tk
)

≤ O(

√
C1

logn

C logn
)

= exp(−Ω(log n))

for a sufficiently large constant C

Now, we combine our results from degree-concentration and the message passing error bound to
prove the main result of this section, Lemma D.5.

Proof. (Lemma D.5) First, note that for k = 0, the bound clearly holds, as |e⊤u s| = 1√
n

. Now for
general k, we start by applying Corollary D.4 to obtain

|e⊤uR′ks| ≤ 1

dk
|e⊤uRks|+O(

kCk
1

√
log n

√
npk ·

√
n
)

For some constant C1. Now by Proposition D.6, we have that with high probability e⊤uR
ks ≤

1√
n
(C2

√
np log n)k for some constant C2 and d ≥ 1

2 (p + q)n(1 − o(1)). Thus, we have

1
dk |e⊤uRks| ≤ 1√

n

(
C2

√
logn
pn

)k
. Note that

√
log n

k is bigger than k
√
log n for large enough n.

Thus, the 1
dk |e⊤uRks| term clearly dominates so we can take C to be around max(C1, C2) to obtain

our upper bound. Finally, by applying union bound, we can ensure that with high probability, bound
holds for all u ∈ V .

D.2.1 Proof of proposition Proposition D.7

In this section, we complete our proof of the main message passing error bound by proving the upper
bound on the number of valid sets of walks of length k.

Proof. (Proposition D.7) The idea to bound the quantity |{w⃗ ∈ W2t
pair, |w⃗| = ℓ}| is to first count

all the ways to partition the edges of the 2t walks into exactly ℓ groups of size at least 2. Then, for
each partition, we count the number of ways to assign the vertices of the walks in a way such that all
edges of the same group are assigned to the same pair of vertices. In the grouping stage, we first pick
2ℓ walk edges and pair them with each other, assigning a new group to each pair. Then for the rest
of the 2tk − 2ℓ edges, we assign each of them to one of the ℓ groups. This ensures that each group
has at least two edges. The number of ways to pick 2ℓ edges is

(
2kt
2ℓ

)
. The number of ways to pair

these edges is (2ℓ− 1)!! = (2ℓ− 1)(2ℓ− 3)... · 1. Finally, the number of way to assign the rest of
the edges to one of the groups is ℓ(2kt−2ℓ). Thus, the total number of valid partitions of the edges is
at most

(
2tk
2ℓ

)
(2ℓ− 1)!! · ℓ2kt−2ℓ. Note that this upper bound is tight when ℓ = tk but becomes less

tight as ℓ becomes smaller.

Given a partition of the edges, we now count the number of ways to assign the vertex variables wi(j).
We will give a simple assignment algorithm such that every valid assignment is a possible output
of the algorithm. Note that not every output of the algorithm is necessarily valid, so we are actually
over-counting.
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Vertex Assignment Procedure

• Pick an arbitrary partitioning of the edges into ℓ groups without singletons

• For i = 1 to 2t:

– For j = 1 to k

* If the edge (wi(j − 1), wi(j)) is not part of a group which contains an already
assigned edge, then pick a new vertex for wi(j).

* Else, let (wi′(j
′ − 1), wi′(j

′)) be an edge in the same group as (wi(j −
1), wi(j)) such that both wi′(j

′ − 1) and wi′(j
′) are already assigned. Then

assign wi(j) such that {wi(j − 1), wi(j)} = {wi′(j
′ − 1), wi′(j

′)}. If no
such assignment is possible, then the procedure fails.

To see that every possible valid set of walks can be outputted by this procedure, if we are given some
w⃗ = (w1, ...w2t) ∈ W2t

pair, we can take the partitioning of the edges in the first step to be to be the
partition induced by the union of the edges of the 2t walks. Then, we can simply follow the vertices
of the walks in the same order as in our assignment procedure and see that each time we encounter
a new edge corresponds to the first case of the inner for-loop and each time we traverse an already
traversed edge corresponds to the second case in the inner for-loop where the procedure does not fail.
Thus, the number of valid sets of walks with ℓ distinct edges is indeed upper bounded by the total
number of possible outputs to our vertex assignment procedure.

To bound the number of possible outcomes in our procedure, we see that in first case of the inner
for-loop, there are at most n possible assignments for the vertex wi(j). In the second step, there is
only one possible assignment if the procedure doesn’t fail. Since we encounter the first case of the
for-loop at most ℓ times, the total number of vertex assignments given a fixed partitioning of edges is
at most nℓ. Finally, this gives us the desired bound:

|{w⃗ ∈ W2t
pair, |w⃗| = ℓ}| ≤

(
2tk

2ℓ

)
(2ℓ− 1)!! · ℓ2kt−2ℓ(n)ℓ
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E Proofs for Section 8

In this section, we will prove our main results for multi-class analysis, Theorem 8.1. First, we will
characterize the convolution matrix in terms of the expected adjacency matrix:

Lemma E.1. In the multi-class setting, the convolution matrix, Ã, can be decomposed as Ã = M+R′

where:

• M has rank L− 1, with L− 1 eigenvalues equalled to (p−q)n
dL = λ. Also, MU = λU

• R′ is a random matrix such that with probability at least 1 − n−Ω(1), ∥R′∥ ≤
C( 1d (

√
np(1− p)/L+

√
nq(1− q))) = δ

Proof. The expected adjacency matrix in the multi-class setting can be written as

E[A] =

pJn/L qJn/L . . . qJn/L
qJn/L pJn/L . . . qJn/L
qJn/L . . . . . . qJn/L
qJn/L qJn/L . . . pJn/L

 = (qJL + (p− q)IL)⊗ Jn/L

The top (normalized) eigenvector of E[A] is 1√
n
1. The top eigenvalue is the expected degree

d = pn/L + (L − 1)qn/L. Moreover, E[A] has rank L and its eigenvectors are of the form√
L
n v ⊗ 1n/L where v is an eigenvector of the matrix (qJL + (p− q)IL). Since the top eigenvector

is 1√
n
1 = 1√

L
1L ⊗

√
L
n1n/L, the rest of the eigenvectors of E[A] must be of the form

√
L
n v2 ⊗

1n/L, ...
√

L
n vL ⊗ 1n/L, where v2, ...vL are an orthonormal basis of the subspace in RL orthogonal

to 1L. Thus, for l = 2, ..L, we have E[A](vl ⊗ 1) = 1
L (p− q)n(vl ⊗ 1), which means the second to

Lth eigenvalues of E[A] are equalled to λd.

Now let R = A− E[A] and . Then we have

Ã =
1

d̄
A− 1

n
11

⊤ = (
1

d̄
− 1

d
)A+

1

d
R+

1

d
E[A]− 1

n
11

⊤

Now, let M := 1
dE[A] − 1

n11
⊤. Note that the non-zero eigenspace of M is equivalent to 2nd to

Lth eigenspace of E[A] and the corresponding eigenvalue is λ. To show that MU = U , let u be any
column of U . By our assumption that each class has one center, the entries of u are constant on each
class. If we define v ∈ RL such that v(l) = u(i) for i ∈ Cl, then we can write u = v ⊗ 1n/L. Since
by our assumption, u ⊥ 1n, we must have v ⊥ 1L. Thus, we see that u is exactly in the subspace
spanned by the non-zero eigenvectors of M , which means Mu = λu.

Now, we simply have to bound the spectral norm of the matrix R′ := 1
dR + ( 1

d̄
− 1

d )A. We start
with bounding ∥R∥. To do so, we can write R as R = Rp + Rq, where Rp and Rq contain the
entries of R corresponding to intra- and inter- class edges respectively. Note that Rp is block
diagonal with L blocks of size n/L. Each block is size n/L × n/L and have i.i.d entries. By
Theorem A.4, each block has spectral norm at most O(

√
np(1− p)/L) with probability at least

1− n−Ω(1). Similarly, we have ∥Rq∥ ≤ O(
√
nq(1− q)) with probability at least 1− n−Ω(1). This

means ∥R∥ ≤ O(
√
np(1− p)/L+

√
nq(1− q)).

Now, we bound the degree deviation. Recall that d = 2|E|
n where |E| is the number of edges in G.

By applying Theorem A.3 with t =
√
np(1− p)/L+

√
nq(1− q), we have

Pr
[
|d̄− d| > t

]
≤ exp(−Ω(

t2

max(p, q)
)) ≤ n−Ω(1)

since min(p, q) ≥ log2 n/n. Assuming that |d̄ − d| ≤ t and noting that ∥A∥ ≤ d̄, we have∥∥( 1d − 1
d̄
)A
∥∥ ≤ ∥R∥ ≤ t/d. Thus, we have Ã = M+R′, where ∥R′∥ ≤ δ with high probability.

We will also need to bound the operator norm distance between the kth convolution and Mk
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Lemma E.2. Suppose |λ| > 2kδ. Then with high probability, we have∥∥∥∥ 1

λk
(Ãk −Mk)

∥∥∥∥ ≤ 2kδ/|λ|.

Proof. By Lemma E.1, we have

Ãk = (M +R′)k = Mk +

k∑
l=1

∑
b∈([k]

l )

k∏
i=1

M1−b(i)R′b(i),

where the inner sum is over bit-strings b of length k with exactly l 1’s and k − l 0’s. Note that
∥M∥ = |λ| and ∥R′∥ ≤ δ with high probability. Using the fact that ∥AB∥ ≤ ∥A∥ ∥B∥ and triangle
inequality, we have∥∥∥∥ 1

λk
((M +R′)k −Mk)

∥∥∥∥ ≤ 1

|λ|k
k∑

l=1

(
k

l

)
∥M∥k−l ∥R′∥l ≤

k∑
l=1

(
k

l

)
(
δ

|λ|
)l = (1 +

δ

|λ|
)k − 1

Our assumption that |λ| > 4δk implies the RHS is at most 2kδ/|λ| by Lemma A.6.

Now we are ready to prove Theorem 8.1.

Proof. We can express the total squared error after k convolutions as:
n∑

i=1

∥∥∥x(k)
i − µi

∥∥∥2 =
∥∥∥X(k) − U

∥∥∥2
F

We decompose our data as X(k) = U +G, where G is a Gaussian matrix with i.i.d N(0, σ2) entries.
Recall that we take our scaling factor to be 1/λk. Thus, we have∥∥∥X(k) − U

∥∥∥2
F
=

∥∥∥∥ 1

λk
Ãk(U +G)− U

∥∥∥∥2
F

≤ 2

∥∥∥∥ 1

λk
ÃkU − U

∥∥∥∥2
F

+ 2

∥∥∥∥ 1

λk
ÃkG

∥∥∥∥2
F

.

By Lemma E.1, we have MU = λU . Let u1, ...um be the columns of U . Then, we have∥∥∥∥ 1

λk
ÃkU − U

∥∥∥∥2
F

=

∥∥∥∥ 1

λk
(Ãk −Mk)U

∥∥∥∥2
F

=

m∑
i=1

∥∥∥∥ 1

λk
(Ãk −Mk)ui

∥∥∥∥2
≤

m∑
i=1

∥∥∥∥ 1

λk
(Ãk −Mk)

∥∥∥∥2 ∥ui∥2

=

∥∥∥∥ 1

λk
(Ãk −Mk)

∥∥∥∥2 ∥U∥2F

≤ O(kδ/|λ|)2 ∥U∥2F
where the last inequality follows from Lemma E.2. By Lemma A.5, we have, with high probability,∥∥∥∥ 1

λk
ÃkG

∥∥∥∥2
F

≤ 1

λ2k
Tr(Ã2k)σ2m log n

Since adding R′ to M perturbs its eigenvalues by at most δ (Theorem A.1), we have
1

λ2k
Tr(Ã2k) ≤ (1 + δ/|λ|)2k(L− 1) + n(δ/|λ|)2k

|λ| > 4δk implies (1 + δ/|λ|)2k ≤ O(1). Now let ne be the number of points i such that∥∥∥x(k)
i − µi

∥∥∥ ≥ ∆/2. Then we have

ne∆
2 ≤ 4

∥∥∥X(k) − U
∥∥∥2
F
≤ O((kδ/|λ|)2 ∥U∥2F + (L+ n(δ/|λ|)2k)mσ2 log n)
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Dividing both sides by ∆2 gives us the desired bound.

Finally, we recall that ∆ is the minimum distance between centers. Thus if
∥∥∥x(k)

i − µi

∥∥∥ < ∆/2, then
it is closer to its own center than any other center. Thus, the softmax classifier can correctly classify
all such points.

E.1 Additional Figures for Multi-class simulation

Finally, we conclude our section with some additional figures to illustrate the performance of the
corrected convolution on synthetic data. We compare the corrected and uncorrected convolutions
via both linear and non-linear models. Our means are class means are given by the standard basis
vectors. For the linear model (figs 4a – 4c), we look at five 1-vs-all classifiers followed by a softmax
to predict the class label, while the non-linear method (figs 4d – 4f) follows a typical two-layer
MLP-based architecture. In both cases, we observe that the corrected convolutions do not deteriorate
in performance as the number of convolutions increases. Note that while the performances are similar
between linear and non-linear classification, non-linear classification is required in general when each
individual class mean cannot be separated from all others via a linear hyperplane.

2 4 6 8 10 12 14
Number of Convolutions

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy GCN

GCN with vvT removed
GCN with 11T removed

(a) Linear method, q = 0.02, σ =
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(b) Linear method, q = 0.02, σ =
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(c) Linear method, q = 0.04, σ =
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(d) Nonlinear method, q = 0.02,
σ = 1.
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(e) Nonlinear method, q = 0.02,
σ = 8.
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(f) Nonlinear method, q = 0.04,
σ = 8.

Figure 4: Accuracy plot (averaged over 50 trials) on CSBM data with 5 balanced classes, 500 nodes
per class and orthogonal means, with fixed p = 0.1.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made match our theoretical contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention that we work on the contextual stochastic block model. Also,
throughout the paper we mention limitations of our analysis.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We do exactly what the question asks.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide information about the settings in our experiments. We also provide
reproducible code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide code that reproduces the experiments by just executing simple
Python notebooks.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do exactly what the question asks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We do provide errors bars in our plots.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We do exactly what the question asks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics. Our work is theoretical and we
don’t believe it has a direct path to negative societal impact. On the contrary, we hope
that our thorough theoretical analysis helps in interpreting performance of the models that
we use, which could, potentially, have positive impact in safety, security, discrimination,
surveillance, deception and harassment, environment, human rights, bias and fairness.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: As we mention above, our work is theoretical and we don’t believe it has
a direct path to negative societal impact. On the contrary, we hope that our thorough
theoretical analysis helps in interpreting performance of the models that we use, which
could, potentially, have positive impact in safety, security, discrimination, surveillance,
deception and harassment, environment, human rights, bias and fairness.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

35

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper is theoretical. It poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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