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Abstract
Diffusion-based purification (DBP) methods aim
to remove adversarial noise from the input sample
by first injecting Gaussian noise through a for-
ward diffusion process, and then recovering the
clean example through a reverse generative pro-
cess. In the above process, how much Gaussian
noise is injected to the input sample is key to the
success of DBP methods, which is controlled by a
constant noise level t∗ for all samples in existing
methods. In this paper, we discover that an opti-
mal t∗ for each sample indeed could be different.
Intuitively, the cleaner a sample is, the less the
noise it should be injected, and vice versa. Mo-
tivated by this finding, we propose a new frame-
work, called Sample-specific Score-aware Noise
Injection (SSNI). Specifically, SSNI uses a pre-
trained score network to estimate how much a
data point deviates from the clean data distribu-
tion (i.e., score norms). Then, based on the magni-
tude of score norms, SSNI applies a reweighting
function to adaptively adjust t∗ for each sample,
achieving sample-specific noise injections. Empir-
ically, incorporating our framework with existing
DBP methods results in a notable improvement in
both accuracy and robustness on CIFAR-10 and
ImageNet-1K, highlighting the necessity to allo-
cate distinct noise levels to different samples in
DBP methods. Our code is available at: https:
//github.com/tmlr-group/SSNI.

1. Introduction
Deep neural networks (DNNs) are vulnerable to adversarial
examples, which is a longstanding problem in deep learning
(Szegedy et al., 2014; Goodfellow et al., 2015). Adversar-
ial examples aim to mislead DNNs into making erroneous
predictions by adding imperceptible adversarial noise to
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clean examples, which pose a significant security threat in
critical applications (Dong et al., 2019; Cao et al., 2021;
Jing et al., 2021; Han et al., 2025). To defend against ad-
versarial examples, adversarial purification (AP) stands out
as a representative defensive mechanism, by leveraging pre-
trained generative models to purify adversarial examples
back towards their natural counterparts before feeding into
a pre-trained classifier (Yoon et al., 2021; Nie et al., 2022).
Notably, AP methods benefit from their modularity, as the
purifier operates independently of the downstream classifier,
which facilitates seamless integration into existing systems
and positions AP as a practical approach to improve the
adversarial robustness of DNN-based classifiers.

Recently, diffusion-based purification (DBP) methods have
gained much attention as a promising framework in AP,
which leverage the denoising nature of diffusion models
to mitigate adversarial noise (Nie et al., 2022; Xiao et al.,
2023; Lee & Kim, 2023). Generally, diffusion models train a
forward process that maps from data distributions to simple
distributions, e.g., Gaussian, and reverse this mapping via
a reverse generative process (Ho et al., 2020; Song et al.,
2021b). When applied in DBP methods, the forward process
gradually injects Gaussian noise into the input sample, while
the reverse process gradually purify noisy sample to recover
the clean sample. The quality of the purified sample heavily
depends on the amount of Gaussian noise added to the input
during the forward process, which can be controlled by a
noise level parameter t∗. Existing DBP methods (Nie et al.,
2022; Xiao et al., 2023; Lee & Kim, 2023) manually select
a constant t∗ for all samples.

However, we find that using a sample-shared t∗ may over-
look the fact that an optimal t∗ indeed could be different
at sample-level, as demonstrated in Figure 1. For exam-
ple, in Figure 1a, t∗ = 100 is too small, resulting in the
adversarial noise not being sufficiently removed by the dif-
fusion models. This is because diffusion models are good
at denoising samples that have been sufficiently corrupted
by Gaussian noise through the forward process (Ho et al.,
2020; Song et al., 2021b). With a small t∗, the sample re-
mains insufficiently corrupted, which limits the denoising
capability in the reverse process and thereby compromising
the robustness against adversarial examples. On the other
hand, in Figure 1b and 1c, t∗ = 100 is too large, resulting
in excessive disruption of the sample’s semantic informa-
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Figure 1. For each sub-figure: the 1st column contains the input (i.e., could either be AEs or CEs), the 2nd column contains noise-injected
examples with different t∗s, and the 3rd column contains purified examples. We use DiffPure (Nie et al., 2022) with a sample-shared
t∗ = 100 selected by Nie et al. (2022) to conduct this experiment on CIFAR-10 (Krizhevsky et al., 2009). The globally shared t∗ = 100
offers a baseline, but results in suboptimal prediction performance compared to what could be achieved by tuning the noise level for
individual samples. Notably, while the recovered images obtained by different noise levels may be visually indistinguishable, they
carry different semantics. For instance, the image is classified as “frog” (incorrect) with t∗ = 100 but as “dog” (correct) with t∗ = 60
(Figure 1b). These highlight the need for a sample-wise noise level adjustment.

tion during the forward process, which makes it difficult to
recover the original semantics in the reverse process. In this
case, both robustness and clean accuracy are compromised,
as the purified samples struggle to preserve the semantic
consistency of clean samples. These observations motivate
us to make the first attempt to adjust the noise level on a
sample-specific basis.

In this paper, we propose Sample-specific Score-aware
Noise Injection (SSNI), a new framework that leverages
the distance of a sample from the clean data distribution to
adaptively adjust t∗ on a sample-specific basis. SSNI aims
to inject less noise to cleaner samples, and vice versa.

To implement SSNI, inspired by the fact that scores (i.e.,
∇xlog pt(x)) reflect the directional momentum of sam-
ples toward the high-density areas of clean data distribu-
tion (Song & Ermon, 2019), we use score norms (i.e.,
∥∇xlog pt(x)∥) as a natural metric to measure the deviation
of a data point from the clean data distribution. In Section 3,
we establish the relationship between the score norm and the
noise level required for different samples. Specifically, sam-
ples with different score norms tend to have accumulated
different noise levels. Furthermore, we empirically show
that the cleaner samples – those closer to the clean data dis-
tribution – exhibit lower score norm, justifying the rationale
of using score norms for reweighting t∗. Concretely, we use
a pre-trained score network to estimate the score norm for
each sample. Based on this, we propose two reweighting
functions that adaptively adjust t∗ according to its score
norm, achieving sample-specific noise injections (see Sec-
tion 4.3). Notably, this reweighting process is lightweight,
ensuring that SSNI is computationally feasible and can be
applied in practice with minimal overhead (see Section 5.6).

Through extensive evaluations on benchmark image datasets
such as CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-

1K (Deng et al., 2009), we demonstrate the effectiveness of
SSNI in Section 5. Specifically, combined with different
DBP methods (Nie et al., 2022; Xiao et al., 2023; Lee &
Kim, 2023), SSNI can boost clean accuracy and robust
accuracy simultaneously by a notable margin against the
well-designed adaptive white-box attack (see Section 5.2).

The success of SSNI takes root in the following aspects: (1)
an optimal noise level t∗ for each sample indeed could be
different, making SSNI an effective approach to unleash the
intrinsic strength of DBP methods; (2) existing DBP meth-
ods often inject excessive noise into clean samples, resulting
in a degradation in clean accuracy. By contrast, SSNI injects
less noise to clean samples, and thereby notably improving
the clean accuracy. Meanwhile, SSNI can effectively handle
adversarial samples by injecting sufficient noise on each
sample; (3) SSNI is designed as general framework instead
of a specific method, allowing it to be seamlessly integrated
with a variety of existing DBP methods.

2. Preliminary and Related Work
In this section, we first review diffusion models and scores
in detail. We then review the related work of DBP methods.
Detailed related work can be found in Appendix A.

Diffusion models are generative models designed to ap-
proximate the underlying clean data distribution p(x0), by
learning a parametric distribution pϕ(x0) with a forward
and a reverse process. In Denoising Diffusion Probabilistic
Models (DDPM) (Ho et al., 2020), the forward process of a
diffusion model defined on X ⊆ Rd can be expressed by:

q(xt|x0) = N
(
xt;
√
ᾱx0, (1− ᾱt)I

)
, (1)

where ᾱt =
∏t

i=1(1 − βi) and {βt}t∈[0,T ] are predefined
noise scales with βt ∈ (0, 1) for all t. As t increases, xt
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converges toward isotropic Gaussian noise. In the reverse
process, DDPM seeks to recover the clean data from noise
by simulating a Markov chain in the reverse direction over
T steps. The reverse transition at each intermediate step is
modeled by

pϕ(xt−1|xt) = N (xt−1;µϕ(xt, t), σ
2
t I), (2)

where µϕ(xt, t) = 1√
1−βt

(
xt − βt√

1−ᾱt
ϵϕ(xt, t)

)
is the

predicted mean at t, and σt is a fixed variance (Ho et al.,
2020). More specifically, the model learns to predict the
noise ϵϕ∗(xt, t) added to the data. The training objective
minimizes the distance between the true and predicted noise,
accounting for different noise levels controlled by t:

ϕ∗ = argmin
ϕ

Ex0,t,ϵ

[∥∥ϵ− ϵϕ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
2

]
.

The generative process starts from pure noise xT ∼ N (0, I)
and progressively removes noise through T steps, with a
random noise term ϵ ∼ N (0, I) incorporated at each step:

x̂t−1 =
1√

1− βt

(
x̂t −

βt√
1− ᾱt

ϵϕ∗(x̂t, t)

)
+
√

βtϵ.

Score and score norm. In diffusion models, score refers
to the gradient of the log-probability density ∇xlog pt(x),
which maps the steepest ascent direction of the log-density
in the probability space (Song & Ermon, 2019). The asso-
ciated score norm ∥∇xlog p(x)∥ measures the gradient’s
magnitude, reflecting how much a data point deviates from
the clean data distribution: points located in low-probability
regions typically exhibit larger score norms, while those sit-
uated closer to high-density regions of clean data manifest
smaller score norms. This property is valuable for adversar-
ial example detection, as demonstrated by Yoon et al. (2021)
who establish that score norms can effectively distinguish
between adversarial and clean examples. However, direct
computation of the score is often intractable for complex
data distributions (e.g., images). In practice, it is estimated
using neural networks sθ : X × R+ → X that take as input
both a data point x and a specified timestep tS ∈ R+ to
approximate ∇xlog pt(x) by minimizing the Fisher diver-
gence between the true and estimated scores. Also, sθ(x, tS)
enables efficient computation of ∥∇xlog p(x)∥.

Diffusion-based purification. Adversarial purification
(AP) leverages generative models as an add-on module to
purify adversarial examples before classification. Within
this context, diffusion-based purification (DBP) methods
have emerged as a promising framework, exploiting the
inherent denoising nature of diffusion models to filter out
adversarial noise (Nie et al., 2022; Wang et al., 2022; Xiao
et al., 2023; Lee & Kim, 2023). Specifically, DBP works
with pre-trained diffusion model by first corrupting an adver-
sarial input through the forward process and then iteratively

0 10 20 30 40 50 60
Image Index

500

550

600

650

700

750

800

850

900

Sc
or

e 
No

rm

Perturbation Budgets
nat 2/255 4/255 6/255 8/255

Figure 2. Relationship between score norms and perturbation bud-
gets. We use one batch of clean data from CIFAR-10 and employ
PGD+EOT ℓ∞(ϵ = 8/255) as the attack.

reconstructing it via the reverse process. This projects the in-
put back onto the clean data manifold while stripping away
adversarial artifacts. Wang et al. (2022) introduce input
guidance during the reverse diffusion process to ensure the
purified outputs stay close to the inputs. Lee & Kim (2023)
propose a fine-tuned gradual noise scheduling for multi-step
purifications. Bai et al. (2024) improve the reverse diffusion
process by incorporating contrastive objectives.

3. Motivation
We now elaborate on the motivation of our method by con-
necting the impact of different perturbation budgets ϵ to the
required noise level t∗ of each sample through score norm.

Sample-shared noise-level t∗ fails to address diverse ad-
versarial perturbations. We empirically observe that an
optimal noise level t∗ for each sample indeed could be differ-
ent: While a constant noise level t∗ = 100, as suggested by
Nie et al. (2022), yields strong performances for certain sam-
ples, it leads to suboptimal results for others (from Figure 1).
Since DBP relies on adequate t∗ for forward noise injection
to remove adversarial perturbation, a shared t∗ cannot adapt
to the distinct adversarial perturbations of individual exam-
ples, leading to a suboptimal accuracy-robustness trade-off.
Specifically, Figure 1a shows that t∗ = 100 is insufficient to
remove the adversarial noise, leaving residual perturbations
that compromise robustness. In contrast, t∗ = 100 overly
suppresses the other sample’s semantic information during
the forward process, making it difficult to recover the origi-
nal semantics via the reverse process (Figure 1b-1c). These
findings highlight the need for sample-specific noise injec-
tion levels tailored to individual adversarial perturbations.

Score norms vary across perturbation budgets. Adversar-
ial and clean examples are from distinct distributions (Gao
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Figure 3. An overview of the proposed SSNI framework. SSNI introduces a novel sample-specific mechanism to adaptively adjust the
noise injection level for each sample, enhancing purification effectiveness in DBP methods. The process begins by forwarding each
sample image xi through the forward diffusion process using an off-the-shelf diffusion model. To determine how much noise to inject into
each sample, SSNI employs a pre-trained score network sθ to compute the score norm ∥sθ(xi)∥, which reflects the distance of the sample
from the clean data distribution. Based on this score norm, a reweighting function f adaptively determines the optimal noise level t∗i for
each sample. Finally, each sample is purified through a reverse diffusion process before being classified. Notably, SSNI is designed as a
general framework rather than a specific method, which can be seamlessly integrated with a wide range of existing DBP methods.

et al., 2021). Motivated by this, we further investigate how
different perturbation budgets ϵ affect score norms under
adversarial attacks (Figure 2). Specifically, we compute
the score norm of different samples undergoing PGD+EOT
ℓ∞(ϵ = 8/255) with perturbation budgets varying between
0 and 8/255 on CIFAR-10. We observe a consistent pat-
tern: score norms scale directly with perturbation strength:
larger ϵ values lead to higher norms, whereas smaller per-
turbations (i.e., cleaner samples) lead to lower norms The
findings extend the role of score norms from differentiating
adversarial/clean samples (Yoon et al., 2021) to differentiate
adversarial examples based on their perturbation strength.

Different score norms imply sample-specific t∗. Higher
score norms signal greater deviation from the clean data,
often caused by larger ϵ. Intuitively, samples with elevated
score norms demand higher t∗ (i.e., more aggressive noise
injection) to remove adversarial patterns. This dependency
creates a link: score norms can act as proxies for estimating
the optimal sample-specific t∗. Doing so successfully leads
to sufficient purification for adversarial examples while pre-
serving fidelity for cleaner inputs.

4. Sample-specific Score-aware Noise Injection
Motivated by Section 3, we propose Sample-specific Score-
aware Noise Injection (SSNI), a generalized DBP frame-
work that adaptively adjusts the noise level for each sample
based on how much it deviates from the clean data distribu-
tion, measured by the score norm. We begin by introducing
the SSNI framework, followed by a connection with existing

DBP methods and the empirical realization of SSNI.

4.1. Framework of SSNI

Overview. SSNI builds upon existing DBP methods by
reweighting the optimal noise level t∗ from a global, sample-
shared constant to a sample-specific quantity. At its core,
SSNI leverages score norms to modulate the noise injected
into each sample during diffusion, ensuring a more targeted
denoising process tailored to each sample. We visually
illustrate SSNI in Figure 3, and describe the algorithmic
workflow in Algorithm 1.

DBP with sample-shared noise level t∗. Existing DBP
methods use an off-the-shelf diffusion model for data pu-
rification, and a classifier responsible for label prediction.
Let Y be the label space for the classification task. Denote
the forward diffusion process by D : X → X , the reverse
process by R : X → X , and the classifier by C : X → Y .
For classification, each adversarial sample goes through

h(x) = C ◦R ◦D(x), with x = x0. (3)

In this context, xT = D(x0) refers to the noisy image
obtained after T steps of diffusion, and x̂0 = R(xT ) rep-
resents the corresponding recovered images through the
reverse process. Specifically, these methods predetermine a
constant noise level t∗ for all samples, following a shared
noise schedule {βt}t∈[0,T ]. The outcome of the forward
process defined in Eq. (1) can be expressed as:

xT =

√∏t∗

i=1
(1− βi)x+

√
1−

∏t∗

i=1
(1− βi)ϵ,
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for x = x0, ∀x ∈ X , where x0 represents the original data,
and ϵ ∼ N (0, I) denotes the Gaussian noise.

From sample-shared to sample-specific noise level. SSNI
takes a step further by transforming the sample-shared
noise level TSH(x) = t∗ into a sample-specific noise level
TSI(x) = t(x), computed through

t(x) = f(
∥∥sθ(x, tS)∥∥ , t∗), (4)

using a pre-trained score network θ, where sθ(x, t
S) is the

score evaluated at an arbitrary reference noise level tS, and
f(·, ·) is a reweighting function (detailed in Section 4.3) that
adjusts t∗ based on the score norm. The forward process of
SSNI then takes the form:

xt(x) =

√∏t(x)

i=1
(1− βi)x+

√
1−

∏t(x)

i=1
(1− βi)ϵ,

(5)
for x = x0, ∀x ∈ X . In this way, SSNI establishes a link
between the sample’s deviation from the clean data and the
intensity of noise injected during diffusion.

4.2. Unifying Sample-shared and Sample-specific DBP

We define a generalized purification operator encompassing
both sample-shared and sample-specific noise based DBP
methods as Φ(x) = R(xT (x)), where R denotes the reverse
process, xT (x) is the noisy version of x after T (x) steps of
diffusion, and T : X → T is a function that determines
the noise level for each input, with T = [0, Tmax] being the
range of possible noise levels. Based on Φ(·), we derive the
following understandings (justifications are in Appendix B).

Sample-shared DBP is a special case of SSNI. The noise
level of a sample-shared DBP, denoted by TSH(x) ≜ t∗, is
a constant for ∀x ∈ X , while for SSNI, we have: TSI(x) ≜
t(x) = f(

∥∥sθ(x, tS)∥∥ , t∗). Clearly, any TSH(x) can be
expressed by TSI(x), implying that any sample-shared noise
level t∗ is equivalently represented by SSNI with a constant
reweighting function.

SSNI has higher purification flexibility. To compare the
purification capabilities of different DBP strategies, we intro-
duce the purification range Ω. For an input x ∈ X , we define
Ω(x) =

{
Φ(x) | Φ(x) = R(xτ(x)), τ : X → T

}
, which

characterizes all possible purified outputs that a DBP strat-
egy can generate for x when using different noise levels
τ(x). We find that ΩSH ⊆ ΩSI holds for any x ∈ X , and
there exists at least one x ∈ X for which the inclusion is
strict, i.e., ΩSH ⊊ ΩSI. These results show that SSNI ex-
pands the space of possible purified outputs beyond what
sample-shared DBP can achieve, thus enabling greater flexi-
bility in the purification process.

4.3. Realization of SSNI

We now detail the empirical realizations of SSNI.

Algorithm 1 Diffusion-based Purification with SSNI.

Input: test samples x, a score network sθ, a reweighting
function f(·), a noise level tS for score evaluation, and
a pre-determined noise level t∗.

1: Approximate the score by sθ: sθ(x, tS)
2: Obtain the sample-specific noise level: t(x) =

f(
∥∥sθ(x, tS)∥∥ , t∗)

3: Execute forward diffusion process xt(x) ← Eq. (5)
4: for t = t(x), . . . , 1 do
5: Execute Reserve diffusion process x̂t−1 ← Eq. (2)
6: end for
7: return purified samples x̂

Realization of the score. A challenge to obtaining sample-
specific noise levels lies in the score network’s dependency
on a score-evaluation noise level as input. Estimating scores
of different adversarial samples at a single fixed tS intro-
duces sensitivity: scores computed at different reference
levels (e.g., tSi ̸= tSj ) yield inconsistent norms, biasing the
selection of t∗. Crucially, the “true” optimal tS for each
sample is unknown a priori, which leads to a circular de-
pendency between reference noise level selection and score
estimation. To alleviate this, we leverage expected pertur-
bation score (EPS), which aggregates scores of perturbed
samples across a spectrum of noise levels rather than rely-
ing on a single tS. This integration reduces sensitivity to
individual tS choices (Zhang et al., 2023). EPS is defined as

EPS(x) = Et∼U(0,tS)∇x log pt(x), (6)

where pt(x) is the marginal probability density and tS is
the maximum noise level for EPS. EPS computes the ex-
pectation of the scores of perturbed images across different
noise levels t ∼ U(0, tS), making it more robust to the
changes in noise levels. Notably, this tS is different from
the sample-shared noise injection level t∗. We will omit
tS from the notation of EPS(x) for brevity hereafter. Fol-
lowing Zhang et al. (2023), we set tS = 20. In practice, a
score∇x logpt

(x) can be approximated by a score network.
Specifically, we employ a score network pre-trained using
the score matching objective (Song & Ermon, 2019).

Realization of the linear reweighting function. We first
design a linear function to reweight t∗:

flinear(∥EPS(x)∥ , t∗) = ∥EPS(x)∥ − ξmin

ξmax − ξmin
× t∗ + b, (7)

where b is a bias term and t∗ denotes the optimal sample-
shared noise level selected by Nie et al. (2022). To
implement this reweighting function, we extract 5,000
validation clean examples from the training data (de-
noted as xv) and we use ∥EPS(xv)∥ as a reference
to indicate the approximate EPS norm values of clean
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data, which can help us reweight t∗. Then we de-
fine ξmin = min(∥EPS(x)∥ , ∥EPS(xv)∥) and ξmax =
max(∥EPS(x)∥ , ∥EPS(xv)∥) to normalize ∥EPS(x)∥ such
that the coefficient of t∗ is within a range of [0, 1], ensuring
that the reweighted t∗ stays positive and avoids unbounded
growth, thus preserving the semantic information.

Realization of the non-linear reweighting function. We
then design a non-linear function based on the sigmoid
function, which has two horizontal asymptotes:

fσ(∥EPS(x)∥ , t∗) = t∗ + b

1 + exp{−(∥EPS(x)∥ − µ)/τ}
,

(8)
where b is a bias term and t∗ denotes the optimal sample-
shared noise level selected by Nie et al. (2022) and τ is a
temperature coefficient that controls the sharpness of the
function. We denote the mean value of ∥EPS(xv)∥ as µ.
This ensures that when the difference between ∥EPS(x)∥
and µ is large, the reweighted t∗ can approach to the maxi-
mum t∗ in a more smooth way, and vice versa.

Adding a bias term to the reweighting function. One lim-
itation of the above-mentioned reweighting functions is that
the reweighted t∗ cannot exceed the original t∗, which may
result in some adversarial noise not being removed for some
adversarial examples. To address this issue, we introduce an
extra bias term (i.e., b) to the reweighting function, which
can increase the upper bound of the reweighted t∗ so that
the maximum possible reweighted t∗ can exceed original t∗.
Empirically, we find that this can further improve the robust
accuracy without compromising the clean accuracy.

5. Experiments
In this section, we use SSNI-L to denote our method with
the linear reweighting function, and use SSNI-N to denote
our method with the non-linear reweighting function.

5.1. Experimental Settings

Datasets and model architectures. We consider two
datasets for our evaluations: CIFAR-10 (Krizhevsky et al.,
2009), and ImageNet-1K (Deng et al., 2009). For classifiers,
we use the pre-trained WideResNet-28-10 and WideResNet-
70-16 for CIFAR-10, and the pre-trained ResNet-50 for
ImageNet-1K. For diffusion models, we employ two off-the-
shelf diffusion models trained on CIFAR-10 and ImageNet-
1K (Song et al., 2021b; Dhariwal & Nichol, 2021).

Evaluation metrics. For all experiments, we consider the
standard accuracy (i.e., accuracy on clean examples) and
robust accuracy (i.e., accuracy on adversarial examples) as
the evaluation metrics.

Baseline settings. We use three well-known DBP methods
as our baselines: DiffPure (Nie et al., 2022), GDMP (Wang

et al., 2022) and GNS (Lee & Kim, 2023). The detailed
configurations can be found in Appendix C. For the reverse
process within diffusion models, we consider DDPM sam-
pling method (Ho et al., 2020) in the DBP methods.

Evaluation settings for DBP baselines. Following Lee &
Kim (2023), we use a fixed subset of 512 randomly sampled
images for all evaluations due to high computational cost
of applying adaptive white-box attacks to DBP methods.
Lee & Kim (2023) provide a robust evaluation framework
for existing DBP methods and demonstrate that PGD+EOT
(Madry et al., 2018; Athalye et al., 2018b) is the golden
standard for DBP evaluations. Therefore, following Lee &
Kim (2023), we mainly use adaptive white-box PGD+EOT
attack with 200 PGD iterations for CIFAR-10 and 20 PGD
iterations for ImageNet-1K. We use 20 EOT iterations for
all experiments to mitigate the stochasticity introduced by
the diffusion models. As PGD is a gradient-based attack, we
compute the gradients of the entire process from a surrogate
process. The details of the surrogate process is explained in
Appendix D. We also evaluate DBP methods under adaptive
BPDA+EOT attack (Athalye et al., 2018a), which leverages
an identity function to approximate the direct gradient rather
than direct computing the gradient of the defense system.

Evaluation settings for SSNI. Since SSNI introduces an
extra reweighting process than DBP baselines, we implicitly
design two adaptive white-box attacks by considering the
entire defense mechanism of SSNI (i.e., adaptive white-box
PGD+EOT attack and adaptive white-box BPDA+EOT at-
tack). To make a fair comparison, we evaluate SSNI on
adaptive white-box attacks with the same configurations
mentioned above. The algorithmic descriptions for the adap-
tive white-box PGD+EOT attack and adaptive white-box
BPDA+EOT attack is provided in Appendix E and F. In
addition, to evaluate the generalization and adaptability of
SSNI to diverse adversarial attacks, we further include Au-
toAttack (Croce & Hein, 2020), DiffAttack (Chen et al.,
2024b) and the Diff-PGD attack (Xue et al., 2023) in Sec-
tion 5.4. We set the iteration number to 5 for Diff-PGD.

5.2. Defending Against Adaptive White-box PGD+EOT

We mainly present and analyze the evaluation results of
SSNI-N in this section and the experimental results of SSNI-
L can be found in Appendix G.

Result analysis on CIFAR-10. Table 1 shows the standard
and robust accuracy against PGD+EOT ℓ∞(ϵ = 8/255)
and ℓ2(ϵ = 0.5) threat models on CIFAR-10, respec-
tively. Notably, SSNI-N effectively improves the accuracy-
robustness trade-off on PGD+EOT ℓ∞(ϵ = 8/255) com-
pared to DBP baselines. Specifically, SSNI-N improves stan-
dard accuracy of DiffPure by 3.58% on WideResNet-28-10
and WideResNet-70-16 without compromising robust accu-
racy. For GDMP, the standard accuracy grows by 1.63% on

6
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Table 1. Standard and robust accuracy of DBP methods against adaptive white-box PGD+EOT (left: ℓ∞(ϵ = 8/255), right: ℓ2(ϵ = 0.5))
on CIFAR-10. WideResNet-28-10 and WideResNet-70-16 are used as classifiers. We compare the result of DBP methods with and
without SSNI-N. We report mean and standard deviation over three runs. We show the most successful defense in bold. The performance
improvements and degradation are reported in green and red.

PGD+EOT ℓ∞ (ϵ = 8/255)

DBP Method Standard Robust

W
R

N
-2

8-
10

Nie et al. (2022) 89.71±0.72 47.98±0.64
+ SSNI-N 93.29±0.37 (+3.58) 48.63±0.56 (+0.65)

Wang et al. (2022) 92.45±0.64 36.72±1.05
+ SSNI-N 94.08±0.33 (+1.63) 40.95±0.65 (+4.23)

Lee & Kim (2023) 90.10±0.18 56.05±1.11
+ SSNI-N 93.55±0.55 (+3.45) 56.45±0.28 (+0.40)

W
R

N
-7

0-
16

Nie et al. (2022) 90.89±1.13 52.15±0.30
+ SSNI-N 94.47±0.51 (+3.58) 52.47±0.66 (+0.32)

Wang et al. (2022) 93.10±0.51 43.55±0.58
+ SSNI-N 95.57±0.24 (+2.47) 46.03±1.33 (+2.48)

Lee & Kim (2023) 89.39±1.12 56.97±0.33
+ SSNI-N 93.82±0.24 (+4.43) 57.03±0.28 (+0.06)

PGD+EOT ℓ2 (ϵ = 0.5)

DBP Method Standard Robust

W
R

N
-2

8-
10

Nie et al. (2022) 91.80±0.84 82.81±0.97
+ SSNI-N 93.95±0.70 (+2.15) 82.75±1.01 (-0.06)

Wang et al. (2022) 92.45±0.64 82.29±0.82
+ SSNI-N 94.08±0.33 (+1.63) 82.49±0.75 (+0.20)

Lee & Kim (2023) 90.10±0.18 83.66±0.46
+ SSNI-N 93.55±0.55 (+3.45) 84.05±0.33 (+0.39)

W
R

N
-7

0-
16

Nie et al. (2022) 92.90±0.40 82.94±1.13
+ SSNI-N 95.12±0.58 (+2.22) 84.38±0.58 (+1.44)

Wang et al. (2022) 93.10±0.51 85.03±0.49
+ SSNI-N 95.57±0.24 (+2.47) 84.64±0.51 (-0.39)

Lee & Kim (2023) 89.39±1.12 84.51±0.37
+ SSNI-N 93.82±0.24 (+4.43) 84.83±0.33 (+0.32)

Table 2. Standard and robust accuracy (%) against adaptive white-
box PGD+EOT ℓ∞(ϵ = 4/255) on ImageNet-1K.

PGD+EOT ℓ∞ (ϵ = 4/255)

DBP Method Standard Robust

R
N

-5
0

Nie et al. (2022) 68.23±0.92 30.34±0.72
+ SSNI-N 70.25±0.56 (+2.02) 33.66±1.04 (+3.32)

Wang et al. (2022) 74.22±0.12 0.39±0.03
+ SSNI-N 75.07±0.18 (+0.85) 5.21±0.24 (+4.82)

Lee & Kim (2023) 70.18±0.60 42.45±0.92
+ SSNI-N 72.69±0.80 (+2.51) 43.48±0.25 (+1.03)

Table 3. Standard and robust accuracy (%) against adaptive white-
box BPDA+EOT ℓ∞(ϵ = 8/255) attack on CIFAR-10.

BPDA+EOT ℓ∞ (ϵ = 8/255)

DBP Method Standard Robust

W
R

N
-2

8-
10

Nie et al. (2022) 89.71±0.72 81.90±0.49
+ SSNI-N 93.29±0.37 (+3.58) 82.10±1.15 (+0.20)

Wang et al. (2022) 92.45±0.64 79.88±0.89
+ SSNI-N 94.08±0.33 (+1.63) 80.99±1.09 (+1.11)

Lee & Kim (2023) 90.10±0.18 88.40±0.88
+ SSNI-N 93.55±0.55 (+3.45) 87.30±0.42 (-1.10)

WideResNet-28-10 and by 2.47% on WideResNet-70-16,
respectively. Notably, SSNI-N improves the robust accuracy
of GDMP by 4.23% on WideResNet-28-10 and by 2.48%
on WideResNet-70-16. For GNS, both the standard accu-
racy and robust accuracy are improved by a notable margin.
We can observe a similar trend in PGD+EOT ℓ2(ϵ = 0.5).
Despite some decreases in robust accuracy (e.g., 0.06% on
DiffPure and 0.39% on GDMP), SSNI-N can improve stan-
dard accuracy by a notable margin, and thus improving the

accuracy-robustness trade-off by a notable margin.

Result analysis on ImageNet-1K. Table 2 presents the
evaluation results against adaptive white-box PGD+EOT
ℓ∞(ϵ = 4/255) on ImageNet-1K. SSNI-N outperforms all
baseline methods by notably improving both the standard
and robust accuracy, which demonstrates the effectiveness
of SSNI-N in defending against strong white-box adaptive
attack and indicates the strong scalability of SSNI on large-
scale datasets such as ImageNet-1K.

5.3. Defending Against Adaptive White-box
BPDA+EOT

We mainly present and analyze the evaluation results of
SSNI-N in this section and the experimental results of SSNI-
L can be found in Appendix G.

We further evaluate the performance of SSNI-N against
adaptive white-box BPDA+EOT ℓ∞(ϵ = 8/255), which
is an adaptive attack specifically designed for DBP methods
(Tramèr et al., 2020; Hill et al., 2021), as demonstrated in
Table 3. Specifically, incorporating SSNI-N with DiffPure
can further improve the standard accuracy by 3.58% with-
out compromising robust accuracy. Notably, incorporating
SSNI-N with GDMP can improve the standard and robust
accuracy simultaneously by a large margin. Despite some
decreases in robust accuracy when incorporating SSNI-N
with GNS (i.e., 1.10%), SSNI-N can improve standard ac-
curacy significantly (i.e., 3.45%), and thus improving the
accuracy-robustness trade-off by a notable margin.

5.4. Defending Against Additional Attacks

Table 4 reports the standard and robust accuracy of various
DBP methods on CIFAR-10 under three additional white-
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Table 4. Standard and robust accuracy (%) against AutoAttack (random version), DiffAttack and Diff-PGD attack with ℓ∞(ϵ = 8/255)
on CIFAR-10. We report mean and standard deviation over three runs. We show the most successful defense in bold.

ℓ∞ (ϵ = 8/255)

DBP Method Standard AutoAttack DiffAttack Diff-PGD

W
R

N
-2

8-
10

Nie et al. (2022) 89.71±0.72 66.73±0.21 47.16±0.48 54.95±0.77
+ SSNI-N 93.29±0.37 (+3.58) 66.94±0.44 (+0.21) 48.15±0.22 (+0.99) 56.10±0.35 (+1.15)

Wang et al. (2022) 92.45±0.64 64.48±0.62 54.27±0.72 41.45±0.60
+ SSNI-N 94.08±0.33 (+1.63) 66.53±0.46 (+2.05) 55.81±0.33 (+1.54) 42.91±0.56 (+1.46)

Lee & Kim (2023) 90.10±0.18 69.92±0.30 56.04±0.58 59.02±0.28
+ SSNI-N 93.55±0.55 (+3.45) 72.27±0.19 (+2.35) 56.80±0.41 (+0.76) 61.43±0.58 (+2.41)

Table 5. Ablation study on different sampling methods during the
reverse diffusion process. We measure the standard and robust
accuracy (%) against PGD+EOT ℓ∞(ϵ = 8/255) on CIFAR-10.
We use DiffPure as the baseline method and we set t∗ = 100.
WideResNet-28-10 is used as the classifier. We report mean and
the standard deviations over three runs.

Sampling Method Standard Robust

sdeint solver 89.06±0.48 47.72±0.24
DDPM 89.71±0.72 47.98±0.64
DDIM 91.54±0.72 37.50±0.80

box attacks: AutoAttack, DiffAttack, and Diff-PGD, all
under the ℓ∞(ϵ = 8/255) threat model. For the DiffPure,
SSNI-N improves standard accuracy by 3.58% and brings
robustness gains under AutoAttack (i.e., 0.21%), DiffAt-
tack (i.e., 0.99%), and Diff-PGD (i.e., 1.15%). For GDMP,
SSNI-N increases standard accuracy by 1.63%, and achieves
significant robustness improvements under AutoAttack (i.e.,
2.05%) and DiffAttack (i.e., 1.54%), with a slight gain un-
der Diff-PGD (i.e., 1.46%). Regarding GNS, SSNI-N boosts
the standard accuracy by 3.45%, and the robust accuracy
improves under AutoAttack (i.e., 2.35%), DiffAttack (i.e.,
1.70%), and Diff-PGD (i.e., 2.41%), respectively. Overall,
SSNI-N consistently enhances both standard and robust ac-
curacy across all three attack types, demonstrating its strong
generalization and adaptability to diverse adversarial threats.

5.5. Ablation Study

Ablation study on τ in SSNI-N. We investigate how the
temperature coefficient τ in Eq. (8) affects the perfor-
mance of SSNI-N against adaptive white-box PGD+EOT
ℓ∞(ϵ = 8/255) attack on CIFAR-10 in Figure 4. The tem-
perature coefficient τ controls the sharpness of the curve of
the non-linear reweighting function. A higher τ leads to a
more smooth transition between the low and high values of
the reweighting function, resulting in less sensitivity to the
changes of the input. From Figure 4, the standard accuracy
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Figure 4. Standard (top) and robust (bottom) accuracy (%) vs. τ ;
We report mean and the standard deviations over three runs.

remains stable across different τs, while the robust accuracy
increases to the climax when τ = 20. Therefore, we choose
τ∗ = 20 for the non-linear reweighting function to optimize
the accuracy-robustness trade-off for DBP methods.

Ablation study on sampling methods. DiffPure originally
used an adjoint method to efficiently compute the gradients
of the system, but Lee & Kim (2023) and Chen et al. (2024a)
suggest to replace adjoint solver with sdeint solver for the
purpose of computing full gradients more accurately (Li
et al., 2020; Kidger et al., 2021). Therefore, we investi-
gate whether using different sampling methods affect the
performance of DBP methods (here we use DiffPure as
the baseline method). We further compare the results with
DDIM sampling method (Song et al., 2021a), which is a
faster sampling method than DDPM (Ho et al., 2020). From
Table 5, DDPM achieves the best accuracy-robustness trade-
off among the three sampling methods, and thus we select
DDPM as the sampling method for all baseline methods.

Ablation study on score norms. We investigate the effect
of using single score norm (i.e., ∥∇x log pt(x)∥) for SSNI
in Appendix H. We find that although single score norm
can notably improve the standard accuracy, it reduces robust
accuracy. This might be attributed to the fact that single
score norm is sensitive to the purification noise levels.
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Table 6. Inference time of the DBP methods with and without SSNI for a single image running on one A100 GPU on CIFAR-10 and
ImageNet-1K. We use WideResNet-28-10 as the classifier for CIFAR-10 and ResNet-50 for ImageNet-1K.

DBP Method Noise Injection Method Time (s)

- 3.934
Nie et al. (2022) SSNI-L 4.473

SSNI-N 4.474

- 5.174
Wang et al. (2022) SSNI-L 5.793

SSNI-N 5.829

- 14.902
Lee & Kim (2023) SSNI-L 15.624

SSNI-N 15.534

DBP Method Noise Injection Method Time (s)

- 8.980
Nie et al. (2022) SSNI-L 14.515

SSNI-N 14.437

- 11.271
Wang et al. (2022) SSNI-L 16.657

SSNI-N 16.747

- 35.091
Lee & Kim (2023) SSNI-L 40.526

SSNI-N 40.633

Ablation study on the bias term b. We investigate how the
bias term b in reweighting functions affects the performance
of SSNI in Appendix I. We find that the selection of bias
term will not significantly impact the performance of our
framework under CIFAR-10 and ImageNet-1K. Note that
when bias increases, there is a general observation that the
clean accuracy drops and the robust accuracy increases. This
perfectly aligns with the understanding of optimal noise
level selections in existing DBP methods, where a large
noise level would lead to a drop in both clean and robust ac-
curacy and a small noise level cannot remove the adversarial
perturbation effectively.

Ablation study on model architectures. We also investi-
gate how the choice of model architecture affects the perfor-
mance of our method in Appendix J. Specifically, we evalu-
ate SSNI-N on a Swin-Transformer (Liu et al., 2021) under
the PGD+EOT ℓ∞(ϵ = 8/255) on CIFAR-10. We find that
the improvements brought by SSNI-N are consistent with
those observed on CNN-based models. In particular, SSNI-
N enhances both standard and robust accuracy across all
evaluated DBP baselines. Notably, the relative improvement
on robust accuracy is more significant for transformer-based
classifiers. This observation suggests that SSNI-N can effec-
tively complement the inherent robustness of transformer
models and generalizes well across different architectures.

5.6. Compute Resource

The inference time (in seconds) for incorporating SSNI mod-
ules into existing DBP methods on CIFAR-10 and ImageNet-
1K are reported in Tables 6. The inference time is measured
as the time it takes for a single test image to complete the
purification process. Specifically, SSNI is approximately
0.5 seconds slower than baseline methods on CIFAR-10 and
5 seconds slower than baseline methods on ImageNet-1K.
Thus, compared with DBP baseline methods, this reweight-
ing process is lightweight, ensuring that SSNI is computa-
tionally feasible and can be applied in practice with minimal

overhead. We implemented our code on Python version
3.8, CUDA version 12.2.0, and PyTorch version 2.0.1 with
Slurm Workload Manager. We conduct each of the experi-
ments on up to 4 × NVIDIA A100 GPUs.

6. Limitation
Maximum level tS for EPS. We use EPS to replace the
single reference noise level with an integrated approach.
Still, the maximum level tS defining the upper bound of the
expectation range is shared across samples, which may not
be the optimal choice though. We leave the exploration of
more sample-sensitive maximum levels to future studies.

The design of reweighting functions. The proposed
reweighting functions (i.e., the linear and non-linear
reweighting functions) may not be the optimal ones for
SSNI. However, designing an effective reweighting function
is an open question, and we leave it as future work.

Extra computational cost. The integration of an extra
reweighting process will inevitably bring some extra cost.
Luckily, we find that this reweighting process is lightweight,
making SSNI computationally feasible compared to existing
DBP methods (see Section 5.6).

7. Conclusion
In this paper, we find that an optimal t∗ indeed could be dif-
ferent on a sample basis. Motivated by this finding, we pro-
pose a new framework called Sample-specific Score-aware
Noise Injection (SSNI). SSNI sample-wisely reweights t∗

for each sample based on its score norm, which generally
injects less noise to clean samples and sufficient noise to
adversarial samples, leading to a notable improvement in
the accuracy-robustness trade-off. We hope this simple yet
effective framework could open up a new perspective in
DBP methods and lay the groundwork for future methods
that account for sample-specific noise injections.
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A. Detailed Related Work
Adversarial attack. Adversarial examples (AEs) have emerged as a critical security concern in the development of
AI systems in recent years (Szegedy et al., 2014; Goodfellow et al., 2015). These examples are typically generated by
introducing imperceptible perturbations to clean inputs, which can cause a classifier to make incorrect predictions with
high confidence. The methods used to generate such examples are known as adversarial attacks. One of the earliest
attack methods, the fast gradient sign method (FGSM), which perturbs clean data in the direction of the gradient of the
loss function (Goodfellow et al., 2015). Building on this idea, Madry et al. (2018) propose the projected gradient descent
(PGD) attack, which applies iterative gradient-based updates with random initialization. AutoAttack (AA) (Croce & Hein,
2020) integrate multiple attack strategies into a single ensemble, making it a widely adopted benchmark for evaluating
adversarial robustness. To address defenses that apply randomized input transformations, Athalye et al. (2018b) introduce
the expectation over transformation (EOT) framework for computing more accurate gradients. Additionally, Athalye et al.
(2018a) propose the backward pass differentiable approximation (BPDA), which approximates gradients using identity
mappings to circumvent gradient obfuscation defenses. According to Lee & Kim (2023), the combination of PGD and EOT,
i.e., PGD+EOT, is currently considered the most effective attack strategy against DBP methods. More recently, adversarial
attacks that specifically designed for DBP methods are proposed. For example, Xue et al. (2023) propose diffusion-based
projected gradient descent (Diff-PGD), which leverages an off-the-shelf diffusion model to guide perturbation optimization,
enabling the generation of more stealthy AEs. Chen et al. (2024b) propose DiffAttack, which crafts perturbations in the latent
space of diffusion models, rather than directly in pixel space, enabling the generation of human-insensitive yet semantically
meaningful AEs through content-preserving structures.

Adversarial defense. To counter the threat posed by adversarial attacks, numerous defense strategies have been developed,
including adversarial detection (AD), adversarial training (AT), and adversarial purification (AP). (1) AD: AD is the most
lightweight approach to defending against adversarial attacks is to detect and remove AEs from the input data. Earlier studies
typically trained detectors tailored to specific classifiers or attack types, often overlooking the underlying data distribution,
which limits their generalization to unseen attacks (Ma et al., 2018; Lee et al., 2018; Raghuram et al., 2021; Pang et al.,
2022). Recently, statistical adversarial data detection has attracted growing attention for its ability to address this limitation.
For instance, Gao et al. (2021) show that the maximum mean discrepancy (MMD) is sensitive to adversarial perturbations,
and use distributional discrepancies between AEs and CEs to effectively identify and filter out AEs, even under previously
unseen attacks. Building on this insight, Zhang et al. (2023) introduce a novel statistic called the expected perturbation
score (EPS), which quantifies the average score of a sample after applying multiple perturbations. They then propose an
EPS-based variant of MMD to capture the distributional differences between clean and adversarial examples more effectively.
(2) AT: Vanilla AT (Madry et al., 2018) directly generates adversarial examples during training, encouraging the model to
learn their underlying distribution. Beyond vanilla AT, various extensions have been proposed to improve its effectiveness.
For instance, Zhang et al. (2019) introduce a surrogate loss optimized based on theoretical robustness bounds. Similarly,
Wang et al. (2020) examine the role of misclassified examples in shaping model robustness and enhance adversarial risk via
regularization techniques. From a reweighting perspective, Zhang et al. (2021) propose geometry-aware instance-reweighted
AT (GAIRAT), which adjusts sample weights based on their distance to the decision boundary. Building on this, Wang
et al. (2021) utilize probabilistic margins to reweight AEs in a continuous and path-independent manner. More recently,
Zhang et al. (2024) suggest pixel-wise reweighting of AEs to explicitly direct attention toward critical image regions. (3)
AP: AP typically employs generative models to transform AEs back into their clean counterparts before classification (Liao
et al., 2018; Samangouei et al., 2018; Song et al., 2018; Naseer et al., 2020; Zhang et al., 2025). Within this context,
diffusion-based purification (DBP) methods have emerged as a promising framework, exploiting the inherent denoising
nature of diffusion models to filter out adversarial noise (Nie et al., 2022; Wang et al., 2022; Xiao et al., 2023; Lee & Kim,
2023). DBP works with pre-trained diffusion model by first corrupting an adversarial input through the forward process and
then iteratively reconstructing it via the reverse process. This projects the input back onto the clean data manifold while
stripping away adversarial artifacts. Wang et al. (2022) introduce input guidance during the reverse diffusion process to
ensure the purified outputs stay close to the inputs. Lee & Kim (2023) propose a fine-tuned gradual noise scheduling for
multi-step purifications. Bai et al. (2024) improve the reverse diffusion process by incorporating contrastive objectives.
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B. Justification of Section 4.2
Sampled-shared DBP is a special case of SSNI.

Proof. Let ΦSH be a sample-shared purification operator with constant noise level t∗. We can express ΦSS as a sample-
specific purification operator ΦSI by defining the reweighting function f as

f(z, t∗) = t∗ ∀z ∈ R, t ∈ [0, Tmax].

Then, for any x ∈ X , we have
ΦSI(x) = R(xT (x))

= R(xf(||sθ(x,t∗)||,t∗))

= R(xt∗)

= ΦSH(x).

SSNI has a Higher Purification Capacity.

Statement 1 [Comparison of Purification Range]: For any x ∈ X , we have ΩSH(x) ⊆ ΩSI(x).

Proof. Let y ∈ ΩSH(x). Then ∃t∗ ∈ [0, Tmax] such that y = R(xt∗). Define f(z, t∗) = t∗ for all z and t∗, then
t(x) = f(||sθ(x, t∗)||, t∗) = t∗. Therefore, y = R(xt∗) = R(xt(x)) ∈ ΦSI(x). This completes the proof of ΩSH(x) ⊆
ΩSI(x).

Statement 2 [Strict Inclusion]: There exists x ∈ X , we have ΩSH(x) ⊊ ΩSI(x).

Proof. Consider a non-constant score function sθ(x, t) and a non-trivial reweighting function f . We can choose x
such that t(x) ̸= t∗ for any fixed t∗. Then R(xt(x)) ∈ ΦSI(x) but R(xt(x)) ̸= ΦSH. This completes the proof of
ΩSH(x) ⊊ ΩSI(x).

C. Defense Methods Configurations
For all chosen DBP methods, we utilize surrogate process to obtain gradients of the defense system during white-box
adaptive attack, but we directly compute the full gradients during defense evaluation. Furthermore, we consistently apply
DDPM sampling method to the selected DBP methods, which means we replace the numeric SDE solver (sdeint) with
DDPM sampling method in DiffPure (Nie et al., 2022) and GDMP (Wang et al., 2022). The reason is that the SDE solver
does not support sample-specific timestep input. For DDPM sampling, we can easily manipulate sample-specific timestep
input by using matrix operation.

C.1. DiffPure

Existing DBP methods generally follow the algorithm of DiffPure (Nie et al., 2022). DiffPure conducts evaluation on
AutoAttack (Croce & Hein, 2020) and BPDA+EOT adaptive attack (Athalye et al., 2018a) to measure model robustness.
DiffPure chooses optimal t∗ = 100 and t∗ = 75 on CIFAR-10 against threat models ℓ∞(ϵ = 8/255) and ℓ2(ϵ = 0.5),
respectively. It also tests on high-resolution dataset like ImageNet-1K with t∗ = 150 against threat models ℓ∞(ϵ = 4/255).
Calculating exact full gradients of the defense system of DiffPure is impossible since one attack iteration requires 100
function calls (with t∗ = 100 and a step size of 1). DiffPure originally uses numerical SDE solver for calculating gradients.
However, the adjoint method is insufficient to measure the model robustness since it relies on the performance of the
underlying SDE solver (Zhuang et al., 2020; Lee & Kim, 2023; Chen et al., 2024a). Therefore, we apply surrogate process
to efficiently compute gradients of direct back-propagation in our evaluation. To overcome memory constraint issue, we
align the step size settings of denoising process in adversarial attack to 5 with the evaluation settings in (Lee & Kim, 2023)
and keep the timestep t∗ consistent with DiffPure. For ImageNet-1K evaluation, we can only afford a maximum of 10
function calls for one attack iteration.
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C.2. GDMP

GDMP basically follows the purification algorithm proposed in DiffPure (Nie et al., 2022; Wang et al., 2022), but their
method further introduces a novel guidance and use multiple purification steps sequentially. GDMP proposes to use gradients
of a distance between an initial input and a target being processed to preserve semantic information, shown in Eq. (9).

xt−1 ∼ N (µθ − sΣθ∇xtD(xt,xt
adv),Σθ), (9)

Given a DDPM (µϕ(xt),Σθ(xt)), a gradient scale of guidance s. xt is the data being purified, and xt
adv is the adversarial

example at t. Also, GDMP empirically finds that multiple purification steps can improve the robustness. In the original
evaluation of GDMP, the defense against the PGD attack consists of four purification steps, with each step including 36
forward steps and 36 denoising steps. For BPDA+EOT adaptive attack, GDMP uses two purification steps, each consisting
of 50 forward steps and 50 denoising steps.

Lee & Kim (2023) evaluated GDMP with three types of guidance and concluded that No-Guidance provides the best
robustness performance when using the surrogate process to compute the full gradient through direct backpropagation. In
our evaluation, we incorporate the surrogate process with No-Guidance to evaluate GDMP. Since it is impossible to calculate
the gradients of the full defense system, we use a surrogate process consisting of same number of purification steps but
with larger step size in the attack (with 6 denoising steps and 10 denoising steps for PGD+EOT and BPDA+EOT attack,
respectively). Notably, GDMP only uses one purification run with 45 forward steps to evaluate on ImageNet-1K, which we
keep consistent with this setting.

C.3. GNS

Lee & Kim (2023) emphasizes the importance of selecting optimal hyperparameters in DBP methods for achieving better
robust performance. Hence, Lee & Kim (2023) proposed Gradual Noise-Scheduling (GNS) for multi-step purification,
which is based on the idea of choosing the best hyperparameters for multiple purification steps. It is basically the same
architecture as GDMP (no guidance), but with different purification steps, forward steps and denoising steps. Specifically,
GNS sets different forward and reverse diffusion steps and gradually increases the noise level at each subsequent purification
step. We just keep the same hyperparameter settings and also use an ensemble of 10 runs to evaluate the method.

D. Surrogate Process of Gradient Computation
The surrogate process is an efficient approach for computing approximate gradients through backpropagation, as proposed
by (Lee & Kim, 2023). White-box adaptive attacks, such as PGD+EOT, involve an iterative optimization process that
requires computing the exact full gradients of the entire system, result in high memory usage and increased computational
time. DBP methods often include a diffusion model as an add-on purifier, which the model requires extensive function
calls during reverse generative process. Hence, it is hard to compute the exact full gradient of DBP systems efficiently.
The surrogate process takes advantage of the fact that, given a fixed total amount of noise, we can denoise it using fewer
denoising steps (Song et al., 2021a), but the gradients obtained from the surrogate process slightly differ from the exact
gradients. Instead of using the full denoising steps, we approximate the original denoising process with fewer function calls,
which allows us to compute gradients by directly back-propagating through the forward and reverse processes.

There are other gradient computation methods such as adjoint method in DiffPure (Li et al., 2020; Nie et al., 2022). It
leverages an underlying numerical SDE solver to solve the reverse-time SDE. The adjoint method can theoretically compute
exact full gradient, but in practice, it relies on the performance of the numerical solver, which is insufficient to measure the
model robustness (Zhuang et al., 2020; Lee & Kim, 2023; Chen et al., 2024a). Lee & Kim (2023) conducted a comprehensive
evaluation of both gradient computation methods and concluded that utilizing the surrogate process for gradient computation
poses a greater threat to model robustness. Hence, we use gradients obtained from a surrogate process in all our experiments.
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E. Adaptive White-box PGD+EOT Attack for SSNI
Madry et al. (2018) proposed Projected Gradient Descent (PGD), which is a strong iterative adversarial attack. Combining
PGD with Expectation Over Transformation (EOT) (Athalye et al., 2018b) has become a powerful adaptive white-box attack
against AP methods. In our defense system, we add a reweighting module to existing DBP methods, so this information
must be included during a white-box attack. We decide to place the reweighting process outside the EOT loops because
EOT provides more samples with different random transformations. It effectively reduces the randomness of gradient
computation but this process does not greatly affect the EPS value of the data. In addition, this approach further reduces the
computational cost.

Algorithm 2 Adaptive white-box PGD+EOT attack for SSNI.

Require: clean data-label pairs (x, y); purifier fp; classifier fc; a noise level T ; a score network sθ(x, T ); objective function
L; perturbation budget ϵ; step size α; PGD iterations K; EOT iterations N .

1: Initialize xadv
0 ← x

2: for k = 0, ...,K − 1 do
3: Computing sample-specific noise levels: t(xadv

k )← f(
∥∥sθ(xadv

k , T )
∥∥ , T )

4: Average the gradients over EOT: gk ← 1
N

∑N
i=1∇xadvL

(
fc(fp(x

adv
k , t(xadv

k ))), y
)

5: Update adversarial examples: xadv
k+1 ← ΠBϵ(x)

(
xadv
k + α · sign(gk)

)
6: end for
7: return xadv = xadv

K

F. Adaptive White-box BPDA+EOT Attack for SSNI
Athalye et al. (2018a) proposed Backward Pass Differentiable Approximation (BPDA), which is a popular adaptive attack to
DBP defense methods. When a defense system contains non-differentiable components where gradients cannot be directly
obtained, the BPDA method substitutes these non-differentiable operations with a differentiable approximation during
backpropagation in order to compute the gradients. It typically utilizes an identity function f(x) = x as the differentiable
approximation function. In specific, computing the exact full gradients via direct backpropagation through a diffusion model
is time-consuming and memory-intensive, so BPDA attack assumes the purification process is an identity mapping. This
implies that we ignore the impact of the purification on the gradients and directly treat the gradient with respect to the
purified data x̂0 as the gradient with respect to the input x0.

Algorithm 3 Adaptive white-box BPDA+EOT attack.

Require: clean data-label pairs (x, y); purifier fp; classifier fc; approximation function fapx; a noise level T ; a score
network sθ(x, T ); objective function L; perturbation budget ϵ; step size α; PGD iterations K; EOT iterations N .

1: Initialize xadv
0 ← x

2: for k ← 0 to K − 1 do
3: Computing sample-specific t: t(xadv

k )← f(
∥∥sθ(xadv

k , T )
∥∥ , T )

4: Average the gradient over EOT samples: gk ← 1
N

∑N
i=1∇xadvL

(
(fc(fapx(fp(x

adv
k )))), y

)
5: Update adversarial examples: xadv

k+1 ← ΠBϵ(x)

(
xadv
k + α · sign(gk)

)
6: end for
7: return xadv = xadv

K

G. Performance Evaluation of SSNI-L
We also incorporate SSNI-L reweighting framework with existing DBP methods for accuracy-robustness evaluation. In
Table 7, we report the results against PGD+EOT ℓ∞(ϵ = 8/255) and ℓ2(ϵ = 0.5) threat models on CIFAR-10, respectively.
We can see that SSNI-L can still support DBP methods to better trade-off between standard accuracy and robust accuracy.
Also, we report the results against BPDA+EOT ℓ∞(ϵ = 8/255) threat model on CIFAR-10 in Table 3. Overall, SSNI-L
slightly decreases the robustness of DBP methods against PGD+EOT attack and maintain the robustness of DBP methods
against BPDA+EOT attack, but there is a notable improvement in standard accuracy.
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Table 7. Standard and robust accuracy of DBP methods against adaptive white-box PGD+EOT (left: ℓ∞(ϵ = 8/255), right: ℓ2(ϵ = 0.5))
on CIFAR-10. WideResNet-28-10 and WideResNet-70-16 are used as classifiers. We compare the result of DBP methods with and
without SSNI-L. We report mean and standard deviation over three runs. We show the most successful defense in bold.

PGD+EOT ℓ∞ (ϵ = 8/255)

DBP Method Standard Robust

W
R

N
-2

8-
10

Nie et al. (2022) 89.71±0.72 47.98±0.64
+ SSNI-L 92.97±0.42 46.35±0.72

Wang et al. (2022) 92.45±0.64 36.72±1.05
+ SSNI-L 93.62±0.49 36.59±1.29

Lee & Kim (2023) 90.1±0.18 56.05±1.11
+ SSNI-L 93.49±0.33 53.71±0.48

W
R

N
-7

0-
16

Nie et al. (2022) 90.89±1.13 52.15±2.30
+ SSNI-L 93.82±0.49 49.94±0.33

Wang et al. (2022) 93.10±0.51 43.55±0.58
+ SSNI-L 93.88±0.49 43.03±0.60

Lee & Kim (2023) 89.39±1.12 56.97±0.33
+ SSNI-L 92.64±0.40 52.86±0.46

PGD+EOT ℓ2 (ϵ = 0.5)

DBP Method Standard Robust

W
R

N
-2

8-
10

Nie et al. (2022) 91.80±0.84 82.81±0.97
+ SSNI-L 93.82±0.37 81.12±0.80

Wang et al. (2022) 92.45±0.64 82.29±0.82
+ SSNI-L 93.62±0.49 80.66±1.31

Lee & Kim (2023) 90.10±0.18 83.66±0.46
+ SSNI-L 93.49±0.33 85.29±0.24

W
R

N
-7

0-
16

Nie et al. (2022) 92.90±0.40 82.94±1.13
+ SSNI-L 94.99±0.24 84.44±0.56

Wang et al. (2022) 93.10±0.51 85.03±0.49
+ SSNI-L 93.88±0.49 82.88±0.79

Lee & Kim (2023) 89.39±1.12 84.51±0.37
+ SSNI-L 92.64±0.40 84.90±0.09

Table 8. Standard and robust accuracy (%) against adaptive white-box BPDA+EOT ℓ∞(ϵ = 8/255) attack on CIFAR-10. We compare the
result of DBP methods with and without SSNI-L. We report mean and standard deviation over three runs. We show the most successful
defense in bold.

BPDA+EOT ℓ∞ (ϵ = 8/255)

DBP Method Standard Robust

W
R

N
-2

8-
10

Nie et al. (2022) 89.71±0.72 81.90±0.49
+ SSNI-L 92.97±0.42 80.08±0.96

Wang et al. (2022) 92.45±0.64 79.88±0.89
+ SSNI-L 93.62±0.49 79.95±1.12

Lee & Kim (2023) 90.10±0.18 88.40±0.88
+ SSNI-L 93.49±0.33 88.41±0.09

H. Ablation Study on Score Norm
We further provide experiments with the single score norm instead of the EPS norm. Yoon et al. (2021) shows score norm
∇xlog pt(x) is a valid measurement for adversarial detection. Incorporating single score norm with our SSNI-N framework,
it still achieves notable improvement on standard accuracy, but the robustness drops. The single score norm is highly
sensitive to noise levels, which makes it insufficient to completely distinguish between natural and adversarial examples.

Table 9. Standard and robust accuracy (%) against adaptive white-box PGD+EOT ℓ∞(ϵ = 8/255) attack on CIFAR-10. We use single
score norms (i.e., ∥∇xlog pt(x)∥). We report mean and standard deviation over three runs. We show the most successful defense in bold.

PGD+EOT ℓ∞ (ϵ = 8/255)

DBP Method Standard Robust

W
R

N
-2

8-
10

Nie et al. (2022) 89.71±0.72 47.98±0.64
+ SSNI-L 91.31±0.24 46.92±0.52
+ SSNI-N 92.84±0.18 47.20±1.22

Wang et al. (2022) 92.45±0.64 36.72±1.05
+ SSNI-L 93.15±0.92 35.72±1.33
+ SSNI-N 93.42±0.60 34.24±1.45

Lee & Kim (2023) 90.10±0.18 56.05±1.11
+ SSNI-L 93.40±0.49 54.52±0.46
+ SSNI-N 93.55±0.42 55.47±1.15
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I. Ablation Study on Bias Term

Table 10. Ablation study on the bias term b. We report the standard and robust accuracy of DBP methods against adaptive white-box
PGD+EOT on CIFAR-10. WideResNet-28-10 and WideResNet-70-16 are used as classifiers. We report mean and standard deviation over
three runs. We show the most successful defense in bold.

PGD+EOT ℓ∞ (ϵ = 8/255)

Bias 0 5 10 15 20 25 30

WRN-28-10

SS
N

I-
N

Standard 94.34±1.43 93.95±1.17 93.17±1.05 92.38±1.29 92.38±1.29 92.10±1.03 92.97±0.37
Robust 55.27±0.75 57.23±1.62 57.03±0.54 57.64±0.89 57.64±0.89 58.24±1.22 59.18±1.65

WRN-70-16

Standard 94.34±0.45 93.82±1.56 94.73±1.34 92.79±0.89 92.79±0.89 92.58±0.67 92.77±0.94
Robust 56.45±1.22 57.03±0.78 58.10±0.24 58.79±1.48 59.57±1.19 58.59±0.52 58.59±0.52

WRN-28-10

SS
N

I-
L

Standard 92.91±0.55 92.97±0.42 93.01±0.78 92.64±0.28 92.53±0.84 91.69±1.02 91.45±0.88
Robust 46.29±0.46 46.35±0.72 46.28±0.35 46.75±0.63 47.11±0.92 47.05±0.50 47.23±0.76

WRN-70-16

Standard 93.79±0.53 93.82±0.49 93.77±0.64 92.85±0.82 92.32±0.90 92.08±0.40 91.89±0.52
Robust 49.34±0.85 49.94±0.33 48.83±0.92 50.72±0.77 50.80±0.94 51.25±0.66 51.05±1.11

Table 11. Ablation study on the bias term b. We report standard and robust accuracy of DBP methods against adaptive white-box
PGD+EOT on ImageNet-1K. ResNet-50 is used as the classifier. We report mean and standard deviation over three runs. We show the
most successful defense in bold.

PGD+EOT ℓ∞ (ϵ = 4/255)

Bias 0 25 50 75 100 125 150

SS
N

I-
N RN-50

Standard 71.68±1.12 71.73±1.49 71.96±0.13 68.80±0.74 68.41±0.59 67.63±1.08 66.45±1.53
Robust 39.33±0.34 40.28±0.28 43.88±0.22 41.45±0.38 43.02±0.41 40.87±0.92 40.05±0.67

J. Ablation Study on Model Architecture

Table 12. Standard and robust accuracy (%) against adaptive white-box PGD+EOT ℓ∞(ϵ = 8/255) attack on CIFAR-10. The target
classifier is a Swin-Transformer. We report mean and standard deviation over three runs. We show the most successful defense in bold.

PGD+EOT ℓ∞ (ϵ = 8/255)

DBP Method Standard Robust

Sw
in

-T

Nie et al. (2022) 88.48±0.49 37.11±0.83
+ SSNI-N 88.67±0.55 39.65±0.47

Wang et al. (2022) 88.09±0.72 27.34±0.18
+ SSNI-N 89.45±0.34 28.71±0.27

Lee & Kim (2023) 88.67±0.20 52.54±0.14
+ SSNI-N 91.21±0.11 54.10±0.22
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K. Additional Justification of the Relationship Between Score Norms and Noise Levels
Extending the empirical findings from Section 3, we further justify how score norms of different samples correlate with
the noise level t∗ in diffusion models. With Proposition K.5, we find that the score norm varies with t, and the variation
exceeds a threshold ϵ > 0 when the time difference |t2 − t1| is sufficiently large. Thus, for two noisy samples x1 and
x2 with different score norms, the monotonic increase of {βt}t∈[0,T ] with t implies that different score norms correspond
to different noise levels, i.e., t1 ̸= t2. It implies that, for samples with different score norms, it is likely that they have
undergone different noise injection steps. 1.
Definition K.1 (Marginal Probability Density). Let X be the image sample space, p(x0) be the natural data distribution over
X , and the diffusion process kernel defined in Eq. (1). The marginal probability density pt : X → R+ at time 0 ≤ t ≤ T
can be expressed as:

pt(x) =

∫
X
q(x|x0)p(x0)dx0, (10)

where q(x|x0) describes how a natural sample x0 evolves under the forward process to x at time t.

Before proceeding with the proof of Lemma K.4 and Proposition K.5, we start by presenting two lemmas to facilitate the
proof.
Lemma K.2. Let pt(x) denote the marginal probability density of x at time t. For any x ∈ X and 0 ≤ t ≤ T , the score
function ∇x log pt(x) at time t can be expressed as:

∇x log pt(x) = Ep(x0|x) [∇x log q(x|x0)] ,

where p(x0|x) is the posterior given by Bayes’ Rule:

p(x0|x) =
q(x|x0)p(x0)∫
q(x|x0)p(x0)dx0

.

Proof.

∇x log pt(x) = ∇x log

∫
q(x|x0)p(x0)dx0 (by Def. K.1)

=
∇x

∫
q(x|x0)p(x0)dx0∫

q(x|x0)p(x0)dx0
(chain rule)

=

∫
∇xq(x|x0)p(x0)dx0∫
q(x|x0)p(x0)dx0

(Leibniz integral rule)

=

∫ ∇xq(x|x0)
q(x|x0)

q(x|x0)p(x0)dx0∫
q(x|x0)p(x0)dx0

(manipulate q(x|x0))

=

∫
(∇x log q(x|x0))q(x|x0)p(x0)dx0∫

q(x|x0)p(x0)dx0
(chain rule)

=

∫
(∇x log q(x|x0))p(x0|x)dx0 (p(x0|x) ≜

q(x|x0)p(x0)∫
q(x|x0)p(x0)dx0

)

(11)

This ends up with the expectation over the posterior p(x0|x) as Ep(x0|x) [∇x log q(x|x0)].

Lemma K.2 establishes a relationship between the marginal density and the forward process, where we can express the
behavior of ∇x log pt(x) in terms of the well-defined q(x|x0).
Lemma K.3. Consider the forward process q(xt|x0) is defined with noise schedule {βt}t∈[0,T ], where βt ∈ (0, 1) for all
0 ≤ t ≤ T . Then, for any x ∈ X and 0 ≤ t ≤ T , the score function∇x log pt(x) can be decomposed as:

∇x log pt(x) = −g(t)x+ Ep(x0|x)
[
g(t)
√
ᾱtx0

]
,

where g(t) = 1/(1− ᾱt) and ᾱt =
∏t

i=1(1− βi).
1However, we note that this analysis only focuses on the property of diffusion models, disregarding the potential interactions between

Gaussian and adversarial noise (which is often difficult to analyze directly). In this sense, it does not formally motivate the proposal of
SSNI and is not considered a core contribution of this study. We include this part of the content for completeness.
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Proof. Denote the score function st(x) = ∇x log pt(x) for convenience. By applying the results from Lemma K.2, we
write:

st(x) = Ep(x0|x) [q(x|x0)] .

Provided that q(x|x0) = N (x;
√
ᾱtx0, (1− ᾱt)I), we compute the gradient of the log-probability of the forward process

as:
∇x log q(x|x0) = ∇xN

(
x;
√
ᾱtx0, (1− ᾱt)I

)
= ∇x

[
− 1

2(1− ᾱt)
(x−

√
ᾱtx0)

⊤(x−
√
ᾱtx0) + C

]
= − 1

1− ᾱt
(x−

√
ᾱtx0),

where C is a constant term independent of x. Substitute the result back into st(x), we have:

st(x) = Ep(x0|x) [q(x|x0)]

= − 1

1− ᾱt
Ep(x0|x)

[
x−
√
ᾱtx0

]
= − 1

1− ᾱt
x+

√
ᾱt

1− ᾱt
Ep(x0|x)[x0]

= −g(t)x+ Ep(x0|x)
[
g(t)
√
ᾱtx0

]
.

The Lemma is completed by substituting g(t) = 1
1−ᾱt

into the last equation.

Lemma K.3 expresses the score function by the noisy data x with noise level t and the clean data x0. We next examine how
the score norm evolves to further understand its behavior as time increases.

Lemma K.4. Suppose there exists a constant K > 0 such that for all t ≥ 0 and all xt ∈ X , the expected norm of the clean
data given xt satisfies: Ex0∼p(x0|x)[∥x0∥] ≤ K ∥xt∥. Then, there exist constants 0 < C < 1 and T0 > 0 such that for all
t ≥ T0:

∥∇x log pt(x)∥
∥x∥

> C.

Proof. Again, denote st(x) = ∇x log pt(x). From Lemma K.3, we have:

st(x) = −g(t)x+ Ep(x0|x)
[
g(t)
√
ᾱtx0

]
.

Applying the triangle inequality to it, we have:

∥st(x)∥ ≥ g(t) ∥x∥ −
∥∥Ep(x0|x)

[
g(t)
√
ᾱtx0

]∥∥
≥ g(t) ∥x∥ − g(t)

√
ᾱtEp(x0|x) [∥x0∥] ,

where the second inequality comes from applying Jensen’s inequality: f(E[X]) ≤ E[f(X)] for convex function f and
random variable X , which leads to:∥∥Ep(x0|x)

[
g(t)
√
ᾱtx0

]∥∥ ≤ Ep(x0|x)
[∥∥g(t)√ᾱtx0

∥∥]
= g(t)

√
ᾱtEp(x0|x) [∥x0∥] .

As we have assumed the existence of K > 0 that makes Ex0∼p(x0|x)[∥x0∥] ≤ K ∥xt∥ holds for all x ∈ X , we have:

∥st(x)∥ ≥ g(t) ∥x∥ − g(t)
√
ᾱtK ∥x∥

= g(t) ∥x∥ (1−K
√
ᾱt).

We then turn to look into the asymptotic behavior of g(t). We have ᾱt =
∏t

s=1(1− βs). Since 0 < 1− βs < 1 for all s,
and the sequence is decreasing (as βs is increasing), it is easy to check that

lim
t→∞

ᾱt = 0
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and
lim
t→∞

g(t) = lim
t→∞

1

1− ᾱt
= 1.

This can then be formalized as, for any ϵ > 0, there exists a Tϵ such that for all t > Tϵ:

|g(t)− 1| < ϵ, and
√
ᾱt < ϵ.

Then, for t > Tϵ, we have
∥st(x)∥ ≥ g(t) ∥x∥ (1−K

√
ᾱt)

> (1− ϵ) ∥x∥ (1−Kϵ),

= (1− ϵ−Kϵ+Kϵ2) ∥x∥
= (1− (K + 1)ϵ+Kϵ2) ∥x∥ .

To establish the desired inequality ∥st(x)∥ ≥ C ∥x∥ for constants C > 0, we next investigate whether this quatratic
inequality Kϵ2 + (K + 1)ϵ+ (1− C) > 0 can be solved. Denote the discriminant D = (K + 1)2 − 4K(1− C), we have

D = (K + 1)2 − 4K(1− C)

= K2 − 2K + 1 + 4KC

= (K − 1)2 + 4KC

> 0 (since (K − 1)2 ≥ 0 and K > 0).

Then, let ϵ1 < ϵ2 be two real roots of Kϵ2 + (K + 1)ϵ+ (1− C) = 0, as the parabola opens upwards, i.e., K > 0, note
that ϵ > 0, we further need to ensure the smaller root ϵ = K+1−

√
D

2K > 0, such that

K + 1 >
√

(K + 1)2 − 4K(1− C)

(K + 1)2 > (K − 1)2 + 4KC

4K > 4KC

1 > C.

Putting them together, we have ϵ ∈ (0, ϵ1) ∪ (ϵ2,∞) that makes ∥st(x)∥ ≥ C ∥x∥ hold, given a constant 0 < C < 1 in
relation to K and ϵ. Setting T0 = Tϵ completes the proof.

Proposition K.5. Consider the diffusion model satisfying all conditions as specified in Lemma K.4. Assume that there exist
constants K > 0, such that βt ≤ K for all t ≥ 0. Additionally, suppose ∥x∥ ≤M for any x ∈ X , for some M > 0. Then,
for any ϵ, there exists a constant ∆ = 2ϵ/(CK) such that for t1, t2 ≥ 0, we have:

| ∥∇x log pt1(x)∥ − ∥∇x log pt2(x)∥ | > ϵ, with |t1 − t2| ≥ ∆.

Proof. Denote st(x) = ∇x log pt(x). Recall that we can express the score function as

st(x) = Ep(x0|x) [q(x|x0)]

= − 1

1− ᾱt
Ep(x0|x)

[
x−
√
ᾱtx0

]
= − 1

1− ᾱt
x+

√
ᾱt

1− ᾱt
Ep(x0|x)[x0]

Let g(t) = ∥st(x)∥2. We compute ∂g(t)
∂t using the chain rule and the product rule:

∂g(t)

∂t
= 2

〈
st(x),

∂st(x)

∂t

〉
= 2

〈
st(x),

∂

∂t

(
− 1

1− ᾱt
x+

√
ᾱt

1− ᾱt
Ep(x0|x)[x0]

)〉
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Recall that ᾱt =
∏t

i=1(1− βi), we next derive the derivative of ᾱt. We consider the continuous approximation of t, where
the product is approximated as an exponential of the integral

ᾱt = exp

(∫ t

0

log(1− βi)di

)
.

As βt is typically assumed to be small (which is an implicit common practice (Ho et al., 2020)), we further simplify
log(1 − βi) with its first-order Taylor approximation, i.e., log(1 − βi) ≈ −βi, which thus leads to the approximated
āt ≈ exp

(
−
∫ t

0
βidi

)
. This way we compute the derivative of āt as

∂

∂t
āt =

∂

∂t
exp

(
−
∫ t

0

βidi

)
= exp

(
−
∫ t

0

βidi

)
∂

∂t

(
−
∫ t

0

βidi

)
= exp

(
−
∫ t

0

βidi

)
(−βt)

= −βtᾱt

We can then compute the derivatives of the coefficients:

∂

∂t

(
1

1− ᾱt

)
=

−1
(1− āt)2

∂

∂t
(1− āt)

=
βtᾱt

(1− ᾱt)2

∂

∂t

( √
ᾱt

1− ᾱt

)
=

∂
∂t

√
ᾱt(1− ᾱt)−

√
ᾱt

∂
∂t (1− ᾱt)

(1− ᾱt)2

=

(
1
2 ᾱ

−1/2
t

∂ᾱt

∂t

)
(1− ᾱt) +

√
ᾱt

∂ᾱt

∂t

(1− ᾱt)2

=

(
1
2 ᾱ

−1/2
t (−βtᾱt)

)
(1− ᾱt) +

√
ᾱt (−βtᾱt)

(1− ᾱt)2

=
− 1

2βtᾱ
1/2
t (1− ᾱt)− βtᾱ

3/2
t

(1− ᾱt)2

= −βtᾱ
1/2
t

1
2 (1− ᾱt) + ᾱt

(1− ᾱt)2

= −βt

√
ᾱt

1 + ᾱt

2(1− ᾱt)2

Using the computed derivatives:

∂st(x)

∂t
=

βtᾱt

(1− ᾱt)2
x− βt

√
ᾱt

1 + ᾱt

2(1− ᾱt)2
Ep(x0|x)[x0].

Substituting these back, we get:

∂g

∂t
= 2

〈
− 1

1− ᾱt
x+

√
ᾱt

1− ᾱt
Ep(x0|x)[x0],

βtᾱt

(1− ᾱt)2
x− βt

√
ᾱt

1 + ᾱt

2(1− ᾱt)2
Ep(x0|x)[x0]

〉
=

2βtᾱt

(1− ᾱt)2

〈
st(x),x−

1 + ᾱt

2
√
ᾱt

Ep(x0|x)[x0]

〉
.
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Next, under Cauchy-Schwarz inequality: | ⟨a,b⟩ | ≤ ∥a∥ ∥b∥, we have

|∂g
∂t
| ≤ 2βtᾱt

(1− ᾱt)2
∥st(x)∥ ·

∥∥∥∥x− 1 + ᾱt

2
√
ᾱt

Ep(x0|x)[x0]

∥∥∥∥
Then, by the triangle inequality for vectors a and b:

∥a− b∥ = ∥a+ (−b)∥ ≤ ∥a∥+ ∥−b∥ = ∥a∥+ ∥b∥ ,

and the assumption ∥x∥ ≤M , we know that
∥∥Ep(x0|x)[x0]

∥∥ ≤M almost surely. Thus,

|∂g
∂t
| ≤ 2βtᾱt

(1− ᾱt)2
∥st(x)∥ ·

∥∥∥∥x− 1 + ᾱt

2
√
ᾱt

Ep(x0|x)[x0]

∥∥∥∥
≤ 2βtᾱt

(1− ᾱt)2
∥st(x)∥ ·

(
∥x∥+

∥∥∥∥1 + ᾱt

2
√
ᾱt

Ep(x0|x)[x0]

∥∥∥∥)
≤ 2βtᾱt

(1− ᾱt)2
∥st(x)∥

(
M +

1 + ᾱt

2
√
ᾱt

M

)
.

Let C1 = supt≥0
2ᾱt

(1−ᾱt)2
and C2 = supt≥0

1+ᾱt

2
√
ᾱt

. As 0 < ᾱt < 1, it is easy to check the maximum value of 1+ᾱt

2
√
ᾱt

,
i.e., C2 is achieved when ᾱt gets close to 1. This also aligns with the condition where sup 2ᾱt

(1−ᾱt)2
is reached. Thus,(

1 + 1+ᾱt

2
√
ᾱt

)
M ≤ (1 + C2)M = C3M for some constants C3 < 2, since C2 → 1 when ᾱt → 1. As a result, we have a

constant C > 0 leading to the upper bound as

|∂g
∂t
| < Cβt ∥st(x)∥ , with C = C1 · (C3M) .

Mean Value Theorem states that: for any t1, t2, there exists a ξ between t1 and t2 such that: |g(t2)− g(t1)| = |∂g∂t (ξ)||t2 −
t1| ≤ Cβξ∥sξ(x)∥|t2 − t1|.

Applying this to g(t), for any t1, t2, there exists a ξ between t1 and t2, such that:

|g(t2)− g(t1)| = |
∂g

∂t
(ξ)||t2 − t1|

≤ Cβξ ∥sξ(x)∥ |t2 − t1|
≤ CK ∥sξ(x)∥ |t2 − t1| (by assumption βt ≤ K)

Then, we can express

| ∥st2(x)∥ − ∥st1(x)∥ | =
| ∥st2(x)∥

2 − ∥st1(x)∥
2 |

(∥st2(x)∥+ ∥st1(x)∥)

≥ CK ∥sξ(x)∥ |t2 − t1|
∥st2(x)∥+ ∥st1(x)∥

From Lemma K.4, we have: there exists C ′ > 0 and T0 > 0 such that for all t ≥ T0: ||st(x)|| > C ′||x||. Applying this to
t1, t2, and ξ with δ > 0, we find that there exists a C ′ such that:

∥st1(x)∥ > C ′ ∥x∥
∥st2(x)∥ > C ′ ∥x∥
∥sξ(x)∥ > C ′ ∥x∥

Substituting these back, we have:

| ∥st2(x)∥ − ∥st1(x)∥ | ≥
CK2C

′ ∥x∥ |t2 − t1|
2C ′ ∥x∥

=
CK2

2
|t2 − t1|.

For any ϵ > 0, let ∆ = 2ϵ
CK2

. Then for |t2 − t1| ≥ ∆, we have: | ∥st2(x)∥ − ∥st1(x)∥ | > ϵ. This completes the proof.
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Remark K.6 (Relationship between score norms and t∗). According to Proposition K.5, for two distinct noise levels t1
and t2, we would obtain different score norms for the same sample x ∈ X . Hence, we consider that different t∗ would
change the score norm of the same sample x. In addition, we also imply that the score norms of the same sample x differ
if and only if the noise levels t∗ input to the score network sθ are different. This is because the score network only takes
two input arguments sθ(x, t∗), which is sample x and noise level t∗. For a natural example x, we treat it as a sample with
no adversarial perturbation, such that ϵ = 0. From Figure 2, cleaner samples typically exhibit smaller score norms, which
means the data points are close to the high data density region (Song & Ermon, 2019). Then, we should not diffuse the
natural data further with a large t∗ to retain the original semantic information. Samples subjected to stronger perturbations
exhibit larger score norms, which means the adversarial examples are far from the high data density area. We then inject
certain amounts of Gaussian noise to the sample to cover its adversarial perturbation during forward diffusion. We identify
the score norm as a metric to assess the sample’s proximity to the original data distribution p(x).

L. Visualizations for Purification Results

(a) Adversarial Examples (b) DiffPure (c) DiffPure + SSNI-L (d) DiffPure + SSNI-N

(a) Adversarial Examples (b) DiffPure (c) DiffPure + SSNI-L (d) DiffPure + SSNI-N

(a) Natural Examples (b) DiffPure (c) DiffPure + SSNI-L (d) DiffPure + SSNI-N
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