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ABSTRACT

Uncertainty estimation quantifies a model’s confidence in its predictions, foster-
ing calibrated trust among users. Existing approaches face two key limitations:
(1) most capture only a single type of uncertainty, and (2) they incur additional
training or inference overhead. We propose ReconstructionNet, a neural network
that addresses these limitations by modeling the joint input–output distribution
with class-specific autoencoders. This enables simultaneous prediction and esti-
mation of both aleatoric and distributional uncertainty in a single pass. Across
five real-world datasets, ReconstructionNet matches or surpasses baseline classi-
fiers while producing uncertainty estimates with greater reliability, selectivity, ro-
bustness to false negatives, and strong out-of-distribution detection. Furthermore,
ReconstructionNet’s architecture naturally supports uncertainty explanations, re-
vealing how individual features contribute to prediction uncertainty without extra
computation. Experiments demonstrate that these explanations highlight misclas-
sified regions consistent with human intuition. Together, these contributions es-
tablish ReconstructionNet as a unified framework for trustworthy and interpretable
artificial intelligence.

1 INTRODUCTION

Uncertainty estimation refers to the task of quantifying how uncertain a machine learning model is
about its prediction for each instance. Reliable uncertainty estimates foster calibrated trust by alert-
ing users to cases where the model is likely to be uncertain and erroneous (Toh et al., 2025). Com-
mon methods for uncertainty estimation include Bayesian Neural Networks (BNNs) (Jospin et al.,
2022), Monte Carlo Dropout (Gal & Ghahramani, 2016) and Deep Ensemble (Lakshminarayanan
et al., 2017). These methods quantify one or more of three main types of uncertainty (Malinin &
Gales, 2018): 1) Aleatoric (data), 2) Epistemic (model), and 3) Distributional uncertainty. While
existing work in uncertainty estimation shows promise, it often faces several limitations. Most un-
certainty estimates quantify only a single type of uncertainty and are unable to differentiate between
various sources of uncertainty. Furthermore, many uncertainty estimation methods incur increased
training and inference time.

We introduce ReconstructionNet, a neural network architecture designed to address the aforemen-
tioned limitations. ReconstructionNet quantifies aleatoric and distributional uncertainty by modeling
the joint input–output distribution with class-specific autoencoders, effectively measuring the dis-
tance of an instance from the training data of each class. This design reduces epistemic uncertainty
by constraining the state space and allows ReconstructionNet to distinguish between aleatoric and
distributional uncertainty.

Beyond identifying when a model is uncertain, understanding which features contribute to prediction
uncertainty is equally valuable, giving rise to the emerging field of uncertainty explanation (Wang
et al., 2025; Antorán et al., 2021; Fan, 2025). Uncertainty explanations are typically represented as
vectors of real values, where each value quantifies the significance and impact of an input feature on
the model’s uncertainty. State-of-the-art methods include applying out-of-the-box eXplainable Ar-
tificial Intelligence (XAI) techniques, such as Integrated Gradients (IG) (Sundararajan et al., 2017),
to explain existing uncertainty estimates (Mougan & Nielsen, 2023; Iversen et al., 2024). Other
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approaches involve observing how input perturbations affect prediction uncertainty (Antorán et al.,
2021; Wang et al., 2025) and learning which features significantly reduce uncertainty. However,
these methods require extra modules on top of uncertainty estimation, increasing inference time.

ReconstructionNet’s design enables inbuilt uncertainty explanation: each class-specific autoencoder
produces feature-wise reconstruction errors scaled by learned error weights for classification. Those
weighed reconstruction errors quantify each feature’s contribution to the uncertainty, providing un-
certainty explanations without additional modules or computation.

The contributions of this research are as follows:

1. Propose ReconstructionNet, a neural architecture that minimises epistemic uncertainty
while quantifying and explaining both aleatoric and distributional uncertainty.

2. Provide a theoretical evaluation of ReconstructionNet’s uncertainty explanations.

3. Demonstrate the efficacy of ReconstructionNet for prediction, uncertainty estimation, and
explanation on real-world applications in healthcare and finance.

2 RELATED WORK

2.1 UNCERTAINTY ESTIMATION

Definition 1 (Uncertainty Estimation) For instance x ∈ Rd and a model f , an uncertainty esti-
mator σ(x; f) : Rd → R assigns a real-valued measure of the prediction uncertainty for x.

Uncertainty estimates generally aim to quantify three types of uncertainty:

1. Aleatoric: Uncertainty arising from inherent noise in the training data. In classification
problems, this manifests as overlapping classes.

2. Epistemic: Uncertainty from inadequate model parameter fit, reducible by expanding the
dataset or narrowing the hypothesis space.

3. Distributional: Uncertainty caused by data shifts between the training and prediction set.

Bayesian methods capture epistemic uncertainty by modeling distributions over network weights.
For instance, Bayesian Neural Networks (BNNs) (Jospin et al., 2022) sample from these distribu-
tions to produce multiple predictions, with the variability reflecting uncertainty. Deep Ensembles
(Lakshminarayanan et al., 2017) and Monte Carlo Dropout (MCD) (Gal & Ghahramani, 2016) ap-
proximate this sampling via multiple models or stochastic weight activations within a single net-
work. More recently, efficient Bayesian last-layer approaches such as Variational Bayesian Last
Layers (Harrison et al., 2024) and Bayesian Non-negative Decision Layers (Hu et al., 2025) reduce
computational cost by restricting stochasticity to the final layer. While Bayesian methods remain
powerful, they typically require additional forward passes compared to deterministic models.

Evidential Deep Learning (EDL) methods (Ulmer et al., 2023; Amini et al., 2020) are more com-
putationally efficient than Bayesian approaches, requiring only a single forward pass and one trained
model. They assume the output follows a well-characterized distribution, predicting the parameters
of the output distribution from which uncertainty can be derived. For classification, this corre-
sponds to Dirichlet parameters (Sensoy et al., 2018), with Posterior Networks (PN) (Charpentier
et al., 2020) extending this via normalizing flows. Despite capturing aleatoric and distributional
uncertainty, these methods rely on restrictive assumptions about the output distribution.

Deterministic Uncertainty Methods (DUMs) (Postels et al., 2022; Charpentier et al., 2023; Ze-
lenka et al., 2023a) make minimal assumptions about the output distribution, estimating distribu-
tional uncertainty as the distance of an instance from the training set. A recent DUM, the Re-
construction Uncertainty Estimate (RUE) (Wang et al., 2024; Korte et al., 2024), uses a decoder
to reconstruct inputs from the latent representation, with reconstruction error serving as the uncer-
tainty measure. ReconstructionNet extends RUE by also capturing aleatoric uncertainty alongside
distributional uncertainty.
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2.2 UNCERTAINTY EXPLANATIONS

Knowing when a model is unreliable is valuable, but uncertainty explanations provide deeper insight
by quantifying the contribution of each feature to the model’s overall uncertainty.

Definition 2 (Uncertainty Explanation) Given an instance x ∈ Rd, a model f , and an uncertainty
estimator σ(x; f) : Rd → R, an uncertainty explanation method ζ(x; f, σ) : Rd → Rd assigns each
input feature a real value reflecting its contribution to f(x)’s uncertainty.

Uncertainty explanation is a nascent field with two primary approaches:

Gradient-Based Methods (Mougan & Nielsen, 2023; Iversen et al., 2024) applied standard eX-
plainable Artificial Intelligence (XAI) methods, such as Integrated Gradients (IG) (Sundararajan
et al., 2017), to explain uncertainty estimates. While easy to implement, gradient-based explana-
tions can be sparse due to vanishing gradients, making them difficult to interpret.

Perturbation-Based Methods (Antorán et al., 2021; Wang et al., 2025) assess each feature’s contri-
bution to uncertainty by perturbing inputs and measuring the impact on the uncertainty score. Their
accuracy depends on the number of perturbations, making them computationally expensive.

Both methods require an additional module for uncertainty explanation, increasing inference time.
In contrast, (Zelenka et al., 2023b) computes predictions, uncertainty, and explanations in a sin-
gle forward pass using one model. Based on prototype networks (Snell et al., 2017), it classifies
instances by similarity to class prototypes, with uncertainty explanations derived from the inner
product between the predicted prototype and the instance’s feature map. Similarly, Reconstruc-
tionNet leverages its architecture to provide ante-hoc uncertainty explanations efficiently during
inference.

2.3 RECONSTRUCTION-BASED METHODS

Anomaly Detection. Reconstruction error has been widely used in autoencoder-based anomaly
detection Chen et al. (2018) to identify deviations from the training distribution. While Reconstruc-
tionNet also leverages reconstruction errors, it differs substantially in several aspects:

Reconstruction for Classification and Uncertainty Estimation. Traditional anomaly-detection au-
toencoders detect out-of-distribution (OOD) inputs only. In contrast, ReconstructionNet uses class-
specific autoencoders to model the joint input-output distribution and classifies by selecting the
class with the lowest reconstruction error. This reconstruction error also serves as a distributional
uncertainty estimate. Reconstruction thus supports both classification and uncertainty estimation in
ReconstructionNet.

Reconstruction Errors as Explanations. Reconstruction errors in ReconstructionNet serve as
feature-level uncertainty explanations, highlighting which input features drive uncertainty, unlike
conventional anomaly detectors that produce only scalar anomaly scores.

Training Objective and Architecture. Unlike unsupervised anomaly detection, Reconstruction-
Net uses a supervised training objective and class-specific autoencoders, where each class has its
own encoder-decoder pair. This design enables joint modeling of input-output distributions.

Reconstruction Error as Regularizers Some works use reconstruction loss as a regularizer for
classification Le et al. (2018); Ghifary et al. (2016). ReconstructionNet differs fundamentally in
several aspects:

Class-specific autoencoders and joint distribution modeling. Prior works use a single autoencoder
with conditional probabilities for classification. ReconstructionNet employs one autoencoder per
class to model the joint input-output distribution, classifying via minimum reconstruction error.

Uncertainty estimation and explanations. Unlike prior works, ReconstructionNet leverages recon-
struction errors to quantify uncertainty and provide feature-level explanations.

Distinct architecture and prediction mechanism. Instead of connecting encoders directly to the
prediction head, ReconstructionNet computes weighted reconstruction errors across class-specific
autoencoders to make predictions.
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3 METHODOLOGY

We present ReconstructionNet, a neural network architecture which offers the following features:

1. Uses the joint input-output probability for classification.
2. Quantifies distributional and aleatoric uncertainty.
3. Generates uncertainty explanations.

(a) ReconstructionNet architecture (b) Class reconstructions on MNIST

Label: 4. Pred: 7. Label: 4. Pred: 9. Label: 6. Pred: 5.

(c) ReconstructionNet uncertainty explanations on MNIST

Figure 1: ReconstructionNet overview and examples. (a) ReconstructionNet architecture: Each
class-specific autoencoder is trained to reconstruct only its own class, producing reconstruction er-
rors inversely related to the joint input–output probability. After applying error weights and softmax
normalization, the resulting probabilities are used for classification (Equation 2). (b) MNIST class
reconstructions: Only the autoencoder for the true class yields a faithful reconstruction, leading to
lower reconstruction error and a higher prediction probability. Other autoencoders generate artifacts
(e.g., checkerboard patterns (Odena et al., 2016)) due to lack of training on mismatched classes. (c)
MNIST uncertainty explanations: Weighted class reconstruction errors highlight uncertain regions.
In the first example, the extra right vertical line increases uncertainty of it being a 7; in the middle,
the missing connector raises uncertainty of it being a 9; in the last, the extra bottom-left vertical line
increases uncertainty of it being a 5. See Appendix A.4 for implementation details.

3.1 CLASSIFICATION

Consider a classification dataset with N instances and C classes, where each instance i has an input
vector xi ∈ Rd and label yi. Let Xj denote the set of training instances with target label j, containing
Nj instances. For each instance i and class j, the true and predicted class probabilities are pij and
p̂ij , respectively.

Traditional neural networks predict the conditional probability of class j given instance xi. The
class with the highest conditional probability is then selected as the final predicted class ŷi:

ŷi = argmax
j∈{1,...,C}

Pr (ŷi = j | xi) . (1)
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ReconstructionNet differs from traditional feedforward neural network classifiers in its inference
process. ReconstructionNet instead predicts the joint probability of the target ŷi and input xi and
the target class with the highest joint probability is the final predicted class (Equation 2):

ŷi = argmax
j∈{1,...,C}

Pr (ŷi = j, xi) . (2)

Equation 2 is a valid classification formulation, equivalent to Equation 1 via Bayes’ theorem:

argmax
j

Pr (ŷi = j, xi) = argmax
j

Pr (ŷi = j | xi) Pr(xi) = argmax
j

Pr (ŷi = j | xi) . (3)

To model joint input-output probability, we adopt the model architecture in Figure 1a. Given a
classification problem with C classes, we construct C autoencoders g1, ..., gC and train them si-
multaneously, such that each autoencoder models the joint probability Pr(ŷi = j, xi). During
inference, the model computes feature-wise reconstruction errors eij for each autoencoder (Equa-
tion 4). x̂ij = gj(xi) is the reconstructed input of instance i by class-j autoencoder gj ; x̂k

ij is the
reconstruction for feature k.

eij =
[(
x̂1
ij − x1

i

)2 · · ·
(
x̂d
ij − xd

i

)2] (4)

Next, it calculates a weighted reconstruction error ϵij for each class j, where the weights ωj are
trainable parameters (Equation 5).

ϵij = ω⊺
j · eij . (5)

Finally, prediction probability p̂ij is obtained by applying softmax to the negative weighted errors
ϵi. Negation is used since the higher the reconstruction error, the lower the probability (Figure 1b).

p̂i = softmax (−ϵi) . (6)

To train the ensemble of class autoencoders concurrently, we designed a loss function (Equation 7)
consisting of two components, with β as a hyperparameter to balance both training objectives.

Ltotal = LCE + β · LClass MSE , LCE = −
N∑
i=1

C∑
j=1

pij log(p̂ij) (7)

LCE is the cross-entropy loss; it optimizes the classification performance of the ReconstructionNet.
To ensure that the class autoencoders also learn to model the joint probability Pr(ŷi = j,xi) while
also maintaining predictive accuracy, we introduce the class-dependent mean squared error (MSE):

Lj
Class MSE =

1

Nj

∑
xi∈Xj

∥x̂ij − xi∥2. (8)

Where each class autoencoder gj is trained to minimize reconstruction error for its corresponding
instances in Xj . The overall reconstruction loss, LClass MSE , is then the average across all classes:

LClass MSE =
1

N

C∑
j=1

Nj · Lj
Class MSE . (9)

The formulation of LClass MSE ensures each class autoencoder is trained exclusively to reconstruct
samples from its ground truth class, thereby modeling the joint distribution of the input and target.
Assume that the latent vector zj from the encoder of class j follows an isotropic Gaussian distri-
bution, Pr (xi, yi = j | zij) = N (x̂, σ2I) (Doersch, 2021; Odaibo, 2019). The probability density
function of the distribution of all x from class j can be expressed as:

Pr (xi, yi = j | zij) =
1

(2πσ2)d/2
exp

(
− 1

2σ2
∥xi − x̂ij∥2

)
. (10)

To model this distribution, we optimize our model to maximize the log-likelihood over the training
dataset with target class j:

ℓ(x̂, σ) =
∑
i∈Xj

[
−d

2
log(2πσ2)− 1

2σ2
∥xi − x̂ij∥2

]
(11)

=
∑
i∈Xj

[
−d

2
log(2πσ2)

]
− Nj

2σ2
· Lj

Class MSE . (12)
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We observe that maximizing the log-likelihood is equivalent to minimizing Lj
Class MSE . This

demonstrates that minimizing LClass MSE leads to the training of class autoencoders that model
the joint distribution of the input and target, with reconstruction error inversely related to the joint
probability. Additionally, the architecture and loss function of ReconstructionNet limit its hypothe-
sis space, making it more resistant to epistemic uncertainty (Hüllermeier & Waegeman, 2021).

3.2 UNCERTAINTY ESTIMATION

By modelling the joint input-output probability, we can quantify:

1. Aleatoric Uncertainty: When instances lie in overlapping class regions, several classes
have similarly high probabilities above threshold θ1, signalling high aleatoric uncertainty.

∃Ci ⊆ {1, . . . , C}, |Ci| ≥ 2 s.t.
Pr(ŷi = c1,xi) ≈ Pr(ŷi = c2,xi) ≥ θ1, ∀ c1, c2 ∈ Ci. (13)

2. Distributional Uncertainty: When instances lie beyond the training distribution, the joint
probabilities of all classes are similarly low, below some threshold θ2, signaling high dis-
tributional uncertainty.

∀ c ∈ {1, . . . , C}, Pr(ŷi = c,xi) ≤ θ2. (14)

Modelling joint probabilities allows differentiation between uncertainty types: instances show high
aleatoric uncertainty when their most probable classes have probabilities above θ1, and high distri-
butional uncertainty when all class probabilities are below θ2.

The notion of aleatoric uncertainty, as illustrated in Equation 13, is nicely captured by Shannon
entropy, reflecting evenly spread high prediction probabilities across overlapping classes:

Definition 3 (Aleatoric Uncertainty) For an instance xi, aleatoric uncertainty is quantified using
the Shannon entropy (Shannon, 1948) of the prediction probabilities p̂ij:

σaleatoric(xi) = −
C∑

j=1

p̂ij log p̂ij .

Distributional uncertainty in Equation 14 is captured by the predicted class’s reconstruction error. By
design, the predicted class has the lowest error and highest probability among all classes; therefore,
if its error is high (probability low), all other classes also have low probabilities.

Definition 4 (Distributional Uncertainty) For an instance xi, distributional uncertainty is the re-
construction error of the predicted class ŷi’s autoencoder:

σdist(xi) = ∥eiŷi
∥1.

3.3 UNCERTAINTY EXPLANATION

The weighted reconstruction errors ζ of the predicted class ŷ serve as uncertainty explanations, as
they represent feature uncertainties scaled by their importance to the prediction.

Definition 5 (ReconstructionNet Explanation) The ReconstructionNet Explanation for instance
xi and its predicted class ŷi is the weighted reconstruction errors of predicted class ŷi:

ζ(xi) = ωŷi
⊙ eiŷi

.

ReconstructionNet uncertainty explanations exhibit the following three properties: (1) Implemen-
tation Invariance (Sundararajan et al., 2017), (2) Sensitivity (Sundararajan et al., 2017), and (3)
Consistency (Lundberg & Lee, 2017). An explanation that satisfies all three properties is (1) consis-
tent across different implementations, (2) does not attribute irrelevant features incorrectly, and (3)
preserves the relative importance of features across models.

An uncertainty explanation is implementation-invariant if, for a pair of functionally equivalent pre-
diction models, the same explanation is generated for any instance. A pair of functionally equivalent
models are models that yield the same output for a given set of inputs.
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Property 1 (Implementation Invariance) Given two functionally equivalent prediction models, f
and f ′, an explanation function χ is implementation-invariant if and only if, for any instance x, the
explanations derived from both models using χ are equivalent: χ(x; f) = χ(x; f ′).

ReconstructionNet’s uncertainty explanations ζ, defined as the weighted reconstruction errors of the
predicted class (Definition 5), are implementation-invariant: for two functionally equivalent models,
both the error weights ω and the reconstruction errors remain identical.

A sensitive explanation function allocates zero attribution to irrelevant features for prediction. A
feature is considered irrelevant if a change in its value does not impact the model’s prediction.

Property 2 (Sensitivity) An explanation function χ is sensitive if it assigns a zero feature attribu-
tion value, χ(x; f)i = 0, to features i that are irrelevant to the prediction.

ReconstructionNet’s uncertainty explanations ζ are sensitive. Since the error weight ω encodes each
feature’s contribution to the final prediction, any change in feature uncertainty that does not affect
the prediction must have a weight of zero, yielding a weighted reconstruction error ζ of zero.

An explanation is consistent if a feature’s uncertainty attribution does not decrease when the model
is altered to increase that feature’s contribution.

Property 3 (Consistency) Let f ′ be a modification of f where feature i’s contribution is increased.
For an instance x and x\i with xi = 0, an explanation χ is consistent if:

f ′(x)− f ′
(
x\i

)
≥ f(x)− f

(
x\i

)
then χ (x; f ′)i ≥ χ (x; f)i .

ReconstructionNet’s uncertainty explanations, ζ, are consistent. For any instance, reconstruction
errors stay the same between f and f ′, since the joint input-output probability modeled by the
autoencoders is independent of feature contributions. Thus, only the error weights ω can change; if
a feature’s weight increases in f ′, its uncertainty attribution also increases, satisfying consistency.

4 EXPERIMENTS

4.1 DATASETS

We use tabular datasets (Covid, Diabetes, Fund) to evaluate uncertainty reliability, selectivity, and ro-
bustness, medical image datasets (ISIC, OCTMNIST) for OOD detection, and MNIST, ISIC, Covid
and Diabetes to assess uncertainty explanation correctness. The datasets are summarized as follows:

1. Covid (Hinns et al., 2021) is a tabular dataset of United Kingdom’s COVID-19 policies
and regional case counts, labelled by whether Rt (effective reproduction number) > 1.

2. Diabetes (Mustafa, 2023) is a binary tabular dataset of demographics, pre-existing condi-
tions, and vital signs, with labels indicating diabetes status.

3. Fund (Kovvuri et al., 2023) is a binary tabular dataset from 4,330 funds, using macroe-
conomic indicators, fund allocations, HHI, and past performance to predict if a fund’s net
asset value (NAV) exceeds the previous quarter’s.

4. ISIC (Codella et al., 2019; Tschandl et al., 2018) is a dermoscopic image dataset of seven
skin conditions. For OOD detection, we created three datasets with decreasing similarity
to ISIC: BCN-IN (images from seen classes of BCN20000 (Combalia et al., 2019)), BCN-
OUT (images from the unseen Scar class), and ChestMNIST (Wang et al., 2017).

5. OCTMNIST (Kermany et al., 2018) is a retinal OCT dataset with four classes. For OOD
detection, we used three datasets of decreasing similarity to OCTMNIST: OCTDL-IN (im-
ages from seen classes of OCTDL (Kulyabin et al., 2024)), OCTDL-OUT (images from
unseen classes), and ChestMNIST (Wang et al., 2017).

6. MNIST (Deng, 2012) is an image dataset of ten handwritten digits.

7
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4.2 BASELINES

We compared ReconstructionNet against six recent state-of-the-art uncertainty estimation methods:
(1) Entropy, (2) MCD, (3) DE, (4) PN, (5) BNN, and (6) EDL. Implementation and tuning details of
the baselines are provided in the appendix.

4.3 EVALUATION METRICS

We evaluate prediction performance with Area Under receiver operating characteristic Curve (AUC)
and accuracy. To evaluate uncertainty estimation performance, we used the following metrics:

1. Correlation (Mi et al., 2022; Upadhyay et al., 2022) measures reliability as the Pearson
correlation between uncertainty and error, with higher values indicating better reliability.

2. AURC (Ding et al., 2020) quantifies selectivity by measuring the area under the risk-
coverage curve (AURC), with lower values indicating better selectivity.

3. σ-Risk Score measures robustness to false negatives as errors for instances with normalized
uncertainty below σ = {0.1, 0.2, 0.3, 0.4}, with lower values indicating greater resilience.

4. OOD Detection (Lakshminarayanan et al., 2017; Postels et al., 2020; Malinin & Gales,
2018) measures how well uncertainty distinguishes in-distribution from OOD instances
using AUROC, with higher values indicating better detection.

4.4 RESULTS

4.4.1 PREDICTION PERFORMANCE

Table 1: Model prediction performance. NN refers to an MLP for tabular and a ResNet for image
datasets. The best-performing model for each metric is bolded, while the second-best is underlined.

Covid (Tabular) Diabetes (Tabular) Fund (Tabular) ISIC (Image) OCTMNIST (Image)

AUC (↑) Acc (↑) AUC (↑) Acc (↑) AUC (↑) Acc (↑) AUC (↑) Acc (↑) AUC (↑) Acc (↑)

RN (Ours) 0.95 ± 0.00 0.88 ± 0.00 0.97 ± 0.00 0.92 ± 0.01 0.75 ± 0.01 0.71 ± 0.00 0.91 ± 0.01 0.76 ± 0.01 0.99 ± 0.00 0.91 ± 0.02

NN 0.95 ± 0.00 0.89 ± 0.00 0.98 ± 0.00 0.93 ± 0.01 0.60 ± 0.02 0.71 ± 0.00 0.87 ± 0.01 0.70 ± 0.01 0.99 ± 0.01 0.88 ± 0.03
MCD 0.95 ± 0.00 0.89 ± 0.00 0.98 ± 0.00 0.93 ± 0.01 0.59 ± 0.02 0.71 ± 0.00 0.87 ± 0.01 0.70 ± 0.01 0.99 ± 0.01 0.88 ± 0.03
DE 0.95 ± 0.00 0.89 ± 0.00 0.98 ± 0.00 0.93 ± 0.00 0.59 ± 0.01 0.71 ± 0.00 0.89 ± 0.00 0.72 ± 0.01 0.99 ± 0.00 0.89 ± 0.02
PN 0.96 ± 0.01 0.88 ± 0.01 0.97 ± 0.00 0.92 ± 0.01 0.53 ± 0.00 0.71 ± 0.00 0.70 ± 0.01 0.64 ± 0.01 0.94 ± 0.02 0.80 ± 0.05
BNN 0.91 ± 0.02 0.85 ± 0.02 0.97 ± 0.01 0.91 ± 0.01 0.54 ± 0.01 0.71 ± 0.00 0.60 ± 0.02 0.52 ± 0.02 0.99 ± 0.00 0.87 ± 0.02
EDL 0.92 ± 0.02 0.79 ± 0.18 0.87 ± 0.07 0.95 ± 0.02 0.58 ± 0.05 0.62 ± 0.17 0.53 ± 0.01 0.51 ± 0.01 0.96 ± 0.00 0.83 ± 0.02

Table 1 compares model performance. ReconstructionNet (RN) achieved strong results across
datasets, with second-highest AUC and accuracy on COVID and Diabetes, and the highest AUC
and accuracy on Fund, ISIC, and OCTMNIST. Notably, on Fund, ReconstructionNet outperformed
others in AUC despite similar accuracy, suggesting it learns discriminative features robust to data
shifts (caused by the COVID-19 pandemic) and is resilient to epistemic uncertainty.

4.4.2 UNCERTAINTY ESTIMATION PERFORMANCE

Aleatoric Uncertainty: Table 2 summarizes uncertainty estimation performance. Reconstruction-
Net outperformed all models on COVID except σ-risk at σ = 0.1, where it matched MLP Entropy
and MCD. On Diabetes and Fund, it consistently ranked among the top across metrics.

Distributional Uncertainty: Table 3 presents the OOD detection performance of all uncertainty
estimates. ReconstructionNet achieves the highest AUROC across all OOD datasets and improves
as datasets deviate further from in-distribution data, showing it effectively ranks dataset dissimilarity.
In contrast, other estimates like Entropy, MCD, PN, and BNN drop on highly dissimilar datasets (see
ISIC) or struggle with unseen classes, as seen on OCTMNIST.

Distinguishing Between Aleatoric and Distributional: To illustrate ReconstructionNet’s ability
to separate uncertainty types, we visualize aleatoric and distributional uncertainty over time on the
Fund dataset (Figure 2). Aleatoric uncertainty is highest before January 2020, while during the 2020
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Table 2: Uncertainty estimation performance. The best-performing model for each metric is bolded,
while the second-best model is underlined.

Data UE Correlation (↑) AURC (↓) σ = 0.1 (↓) σ = 0.2 (↓) σ = 0.3 (↓) σ = 0.4 (↓)

Covid

RN (Ours) 0.823 ± 0.016 0.028 ± 0.002 0.005 ± 0.001 0.006 ± 0.002 0.007 ± 0.002 0.012 ± 0.005

MLP Entropy 0.664 ± 0.012 0.030 ± 0.002 0.003 ± 0.004 0.016 ± 0.006 0.022 ± 0.006 0.032 ± 0.005
MLP MCD 0.639 ± 0.012 0.032 ± 0.003 0.004 ± 0.005 0.018 ± 0.009 0.029 ± 0.006 0.042 ± 0.005
MLP DE 0.603 ± 0.031 0.030 ± 0.003 0.011 ± 0.003 0.020 ± 0.007 0.032 ± 0.007 0.040 ± 0.005
PN Epis 0.313 ± 0.082 0.038 ± 0.011 0.021 ± 0.010 0.034 ± 0.015 0.041 ± 0.017 0.051 ± 0.016
PN Alea 0.690 ± 0.034 0.029 ± 0.007 0.016 ± 0.005 0.022 ± 0.007 0.032 ± 0.006 0.039 ± 0.005
BNN 0.030 ± 0.027 0.132 ± 0.018 0.104 ± 0.070 0.159 ± 0.023 0.161 ± 0.023 0.132 ± 0.015
EDL 0.674 ± 0.068 0.115 ± 0.094 0.238 ± 0.105 0.073 ± 0.009 0.058 ± 0.004 0.045 ± 0.005

Diabetes

RN (Ours) 0.902 ± 0.011 0.008 ± 0.001 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000

MLP Entropy 0.864 ± 0.009 0.007 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
MLP MCD 0.845 ± 0.022 0.008 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.002 ± 0.001
MLP DE 0.733 ± 0.031 0.011 ± 0.001 0.000 ± 0.000 0.001 ± 0.000 0.005 ± 0.001 0.011 ± 0.003
PN Epis 0.525 ± 0.297 0.020 ± 0.021 0.006 ± 0.009 0.016 ± 0.023 0.023 ± 0.030 0.028 ± 0.033
PN Alea 0.812 ± 0.022 0.009 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.001 0.003 ± 0.001
BNN -0.619 ± 0.012 0.214 ± 0.016 0.262 ± 0.024 0.222 ± 0.016 0.185 ± 0.016 0.136 ± 0.013
EDL 0.942 ± 0.017 0.046 ± 0.034 0.000 ± 0.000 0.001 ± 0.002 0.006 ± 0.006 0.011 ± 0.010

Fund

RN (Ours) 0.385 ± 0.008 0.141 ± 0.003 0.039 ± 0.004 0.048 ± 0.005 0.077 ± 0.015 0.126 ± 0.023

MLP Entropy 0.131 ± 0.034 0.212 ± 0.023 0.064 ± 0.043 0.132 ± 0.063 0.187 ± 0.036 0.241 ± 0.012
MLP MCD 0.128 ± 0.038 0.236 ± 0.018 0.073 ± 0.067 0.124 ± 0.062 0.165 ± 0.046 0.210 ± 0.028
MLP DE 0.022 ± 0.045 0.287 ± 0.032 0.364 ± 0.331 0.330 ± 0.192 0.283 ± 0.031 0.286 ± 0.045
PN Epis 0.016 ± 0.001 0.291 ± 0.017 0.279 ± 0.028 0.278 ± 0.025 0.278 ± 0.022 0.279 ± 0.021
PN Alea 0.166 ± 0.026 0.271 ± 0.001 0.221 ± 0.007 0.225 ± 0.009 0.230 ± 0.013 0.235 ± 0.009
BNN -0.198 ± 0.028 0.364 ± 0.010 0.665 ± 0.189 0.543 ± 0.125 0.442 ± 0.065 0.405 ± 0.026
EDL 0.162 ± 0.118 0.301 ± 0.202 0.016 ± 0.015 0.055 ± 0.062 0.101 ± 0.078 0.174 ± 0.092

Table 3: Out-of-distribution (OOD) detection performance, measured using AUROC. OOD datasets
are presented in order of increasing deviation from the in-distribution. The best-performing model
for each metric is bolded, while the second-best model is underlined.

ISIC OCTMNIST

BCN-IN (↑) BCN-OUT (↑) ChestMNIST (↑) OCTDL-IN (↑) OCTDL-OUT (↑) ChestMNIST (↑)

RN (Ours) 0.777 ± 0.086 0.846 ± 0.070 0.919 ± 0.097 0.783 ± 0.082 0.866 ± 0.049 1.000 ± 0.000

ResNet Entropy 0.742 ± 0.010 0.757 ± 0.027 0.664 ± 0.072 0.674 ± 0.031 0.386 ± 0.066 0.826 ± 0.060
ResNet MCD 0.746 ± 0.004 0.770 ± 0.016 0.678 ± 0.080 0.661 ± 0.034 0.392 ± 0.064 0.844 ± 0.060
ResNet DE 0.720 ± 0.020 0.703 ± 0.029 0.728 ± 0.055 0.739 ± 0.009 0.497 ± 0.029 0.900 ± 0.028
PN Epis 0.674 ± 0.021 0.686 ± 0.039 0.654 ± 0.050 0.565 ± 0.052 0.483 ± 0.087 0.470 ± 0.145
PN Alea 0.660 ± 0.026 0.669 ± 0.041 0.631 ± 0.065 0.625 ± 0.063 0.492 ± 0.025 0.500 ± 0.107
BNN 0.556 ± 0.011 0.540 ± 0.056 0.547 ± 0.059 0.742 ± 0.014 0.734 ± 0.016 0.896 ± 0.015
EDL 0.533 ± 0.011 0.539 ± 0.023 0.619 ± 0.024 0.633 ± 0.012 0.669 ± 0.011 0.760 ± 0.013

recession (per the National Bureau of Economic Research), distributional uncertainty predominates,
demonstrating ReconstructionNet’s discriminative capability.

Figure 2: Aleatoric (Alea) and distributional (Dist) uncertainty over time on the Fund dataset. Un-
certainty values are min–max normalized, and error bars represent one standard deviation. In early
2020, distributional uncertainty overtook aleatoric uncertainty due to COVID-19–induced shifts,
while aleatoric uncertainty dropped as increasing class imbalance reduced label ambiguity.
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(a) Label: AKIEC. Pred: BCC. (b) Label: AKIEC. Pred: BKL. (c) Label: BCC. Pred: BKL.

Figure 3: Uncertainty explanation illustration using images from the ISIC dataset. Positive attri-
butions were min–max normalized, thresholded (pixel uncertainty > 0.15 shown in green), and
overlaid for clarity. The highlighted regions “explain” the prediction uncertainty. AKIEC refers to
Actinic Keratosis, BCC to Basal Cell Carcinoma, and BKL to Benign Keratosis.

4.4.3 UNCERTAINTY EXPLANATION PERFORMANCE

To highlight the practical value of our uncertainty explanations in identifying regions that con-
tribute to misclassification, we qualitatively assess them on the ISIC dataset. In Figure 3a, the
image was misclassified as BCC instead of AKIEC, with uncertainty concentrated on the mole at
the top-left corner, likely because such dark, mole-like spots resemble features more typical of BCC
than AKIEC (Lee, 2017). In Figures 3b and 3c, both images were misclassified as BKL, with uncer-
tainty concentrated on the hairs covering a substantial portion of the lesion, as such occlusions can
obscure diagnostic features. These visual explanations align with human intuition, demonstrating
their effectiveness in pinpointing input features that confuse the model.

Table 4: Top-k accuracy of each uncertainty-explanation method in identifying perturbed features
on the Covid and Diabetes datasets.

Method Covid Diabetes

Top-1 Acc Top-3 Acc Top-5 Acc Top-1 Acc Top-3 Acc Top-5 Acc

IG 0.163 ± 0.003 0.355 ± 0.017 0.436 ± 0.020 0.065 ± 0.008 0.221 ± 0.005 0.446 ± 0.022
SHAP 0.102 ± 0.011 0.193 ± 0.020 0.262 ± 0.017 0.093 ± 0.004 0.247 ± 0.008 0.387 ± 0.014

RN (Ours) 0.437 ± 0.035 0.604 ± 0.027 0.646 ± 0.023 0.272 ± 0.064 0.509 ± 0.045 0.599 ± 0.040

We also evaluate the performance of our uncertainty explanations on tabular data using the covariate-
shift experiment from Watson et al. (2023). For each test instance, we randomly perturb one feature
by adding noise drawn from N (0.5, 0.1) and assess whether an explanation ranks this perturbed
feature among its top-k most uncertain features (Top-k Accuracy). This directly measures whether
the explanation identifies the feature contributing to distributional uncertainty.

We compare ReconstructionNet (RN) explanations with: (1) Integrated Gradients (IG), a gradient-
based method, and (2) KernelSHAP, a perturbation-based method, both applied to explain the en-
tropy of ReconstructionNet’s predictive distribution (Iversen et al., 2024). Across the COVID and
Diabetes datasets (Table 4), RN achieves consistently higher top-k accuracy for all k, demonstrating
its effectiveness in localizing the source of uncertainty.

5 CONCLUSION

This paper proposed ReconstructionNet, a neural network for reliable uncertainty estimation along-
side classification. Unlike models based on conditional probability, ReconstructionNet uses class-
specific autoencoders to model the input–output joint distribution, predicting the class with maximal
joint probability (or minimal reconstruction error). This approach quantifies aleatoric and distri-
butional uncertainty while minimizing epistemic uncertainty in a single training session. Across
five real-world datasets, ReconstructionNet achieved comparable or improved classification per-
formance, with uncertainty estimates showing superior reliability, selectivity, robustness to false
negatives, and strong OOD detection. Its inbuilt, cost-free explanations highlight input features
contributing to uncertainty, with theoretical properties of (1) Implementation Invariance, (2) Sensi-
tivity, and (3) Consistency. While ReconstructionNet performs best on large, balanced datasets, this
limitation suggests future directions, such as quantifying epistemic uncertainty.
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6 REPRODUCIBILITY STATEMENT

For implementation details, see the code repository: https://anonymous.4open.
science/r/ReconstructionNet-4F8C/. For tabular datasets, input features were normal-
ized using min–max scaling prior to training. For image datasets, pixel intensities were scaled from
[0, 255] to [0, 1].
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for deterministic uncertainty methods. CoRR, abs/2303.05796, 2023. doi: 10.48550/ARXIV.
2303.05796. URL https://doi.org/10.48550/arXiv.2303.05796.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau. Autoencoder-based network
anomaly detection. In 2018 Wireless telecommunications symposium (WTS), pp. 1–5. IEEE, 2018.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05), volume 1, pp. 539–546, USA, 2005. IEEE.

Noel Codella, Veronica Rotemberg, Philipp Tschandl, M. Emre Celebi, Stephen Dusza, David Gut-
man, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, Harald Kittler, and
Allan Halpern. Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by
the International Skin Imaging Collaboration (ISIC), March 2019.

Marc Combalia, Noel CF Codella, Veronica Rotemberg, Brian Helba, Veronica Vilaplana, Ofer
Reiter, Cristina Carrera, Alicia Barreiro, Allan C Halpern, Susana Puig, et al. Bcn20000: Dermo-
scopic lesions in the wild. arXiv preprint arXiv:1908.02288, 2019.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Yukun Ding, Jinglan Liu, Jinjun Xiong, and Yiyu Shi. Revisiting the Evaluation of Uncertainty
Estimation and Its Application to Explore Model Complexity-Uncertainty Trade-Off. In 2020
IEEE CVPRW, pp. 22–31, Seattle, WA, USA, June 2020. IEEE. ISBN 978-1-72819-360-1. doi:
10.1109/CVPRW50498.2020.00010.

11

https://anonymous.4open.science/r/ReconstructionNet-4F8C/
https://anonymous.4open.science/r/ReconstructionNet-4F8C/
https://proceedings.neurips.cc/paper/2020/hash/aab085461de182608ee9f607f3f7d18f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/aab085461de182608ee9f607f3f7d18f-Abstract.html
https://openreview.net/forum?id=XSLF1XFq5h
https://proceedings.neurips.cc/paper_files/paper/1993/hash/288cc0ff022877bd3df94bc9360b9c5d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1993/hash/288cc0ff022877bd3df94bc9360b9c5d-Abstract.html
https://doi.org/10.48550/arXiv.2303.05796


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Carl Doersch. Tutorial on Variational Autoencoders, 2021. URL http://arxiv.org/abs/
1606.05908.

Xiuyi Fan. Position paper: Integrating explainability and uncertainty estimation in medical AI. In
Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), 2025.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. In Proceedings of The 33rd ICML, pp. 1050–1059, USA, June
2016. PMLR.

Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li. Deep
reconstruction-classification networks for unsupervised domain adaptation. In European con-
ference on computer vision, pp. 597–613. Springer, 2016.

James Harrison, John Willes, and Jasper Snoek. Variational bayesian last layers. arXiv preprint
arXiv:2404.11599, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015. URL https://arxiv.org/abs/1512.03385.

James Hinns, Xiuyi Fan, Siyuan Liu, Veera Raghava Reddy Kovvuri, Mehmet Orcun Yalcin, and
Markus Roggenbach. An initial study of machine learning underspecification using feature at-
tribution explainable ai algorithms: A covid-19 virus transmission case study. In PRICAI 2021:
Trends in Artificial Intelligence: 18th Pacific Rim International Conference on Artificial Intelli-
gence, PRICAI 2021, Hanoi, Vietnam, November 8–12, 2021, Proceedings, Part I 18, pp. 323–
335, Vietnam, 2021. Springer.

Xinyue Hu, Zhibin Duan, Bo Chen, and Mingyuan Zhou. Enhancing uncertainty estimation and
interpretability via bayesian non-negative decision layer. arXiv preprint arXiv:2505.22199, 2025.
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(eds.), Computer Vision – ECCV 2022, pp. 299–317, Cham, 2022. Springer Nature Switzerland.
ISBN 978-3-031-19775-8. doi: 10.1007/978-3-031-19775-8 18.

Hanjing Wang, Bashirul Azam Biswas, and Qiang Ji. Optimization-Based Uncertainty Attribution
Via Learning Informative Perturbations. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Rus-
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A APPENDIX

A.1 DATASET DETAILS

A.1.1 COVID-19 VIRUS TRANSMISSION DATASET

(Hinns et al., 2021) is a tabular binary classification dataset comprising 3,553 instances. Each in-
stance is characterized by 32 continuous features describing the United Kingdom’s COVID-19 poli-
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cies and daily case counts across 12 regions, covering the period from February 2020 to February
2021. The dataset is labelled with a binary class indicating whether Rt > 1, where Rt represents the
effective reproduction number. A value of Rt > 1 signifies an increasing spread of COVID-19. We
randomly divided the dataset into three subsets: training (70%), validation (10%), and test (20%).

A.1.2 DIABETES DIAGNOSIS DATASET

(Mustafa, 2023) is a tabular binary classification dataset comprising 100,000 instances, each repre-
senting a patient. Each instance is described by eight features detailing the patient’s demographics
(e.g., age and gender), pre-existing conditions (e.g., prevalence of heart disease), and vital signs
(e.g., blood glucose level), and has a binary label indicating whether the patient suffers from dia-
betes (0 indicating the patient is diabetes-free and 1 indicating the patient suffers from diabetes). We
divided the dataset into three subsets for our experiments: training (80%), validation (10%), and test
(10%).

A.1.3 FUND PERFORMANCE EVALUATION DATASET

(Kovvuri et al., 2023) is a tabular binary classification dataset comprising 77,940 instances, designed
to predict whether a fund’s net asset value (NAV) exceeds its NAV from the previous quarter. Each
instance represents the state of one of 4,330 funds between March 2017 and June 2021, sampled
quarterly. Each instance is characterized by 18 continuous features, including macroeconomic in-
dicators (such as stock market returns (ST), exchange rate returns (EXR), and interest rates (IR)),
country-level equity investment percentages and net asset data for the fund (covering 11 countries
and “Other Country”), the Herfindahl–Hirschman index (HHI), and a past performance metric com-
puted as the sum of class labels from the past four quarters (“L4f Gain”). We split the dataset into
three subsets based on date: instances before March 2020 were assigned to the training set (66.7%),
instances between March 2020 and June 2020 to the validation set (11.1%), and instances after June
2020 to the test set (22.2%).

A.1.4 ISIC

(Codella et al., 2019; Tschandl et al., 2018) is a dermoscopic image dataset containing instances from
seven skin conditions: melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC), ac-
tinic keratosis (AKIEC), benign keratosis (BKL), dermatofibroma (DF), and vascular lesion (VASC).
We followed the 2018 ISIC Challenge split, with 10,015 training, 193 validation, and 1,512 test im-
ages. For the Out-of-Distribution (OOD) detection experiments, we constructed three OOD datasets
with decreasing similarity to ISIC: (1) BCN-IN: 1,512 dermoscopic images of seen classes from the
BCN20000 dataset (Combalia et al., 2019), (2) BCN-OUT: 313 images from the unseen class Scar,
and (3) ChestMNIST: 1,512 images from the ChestMNIST dataset (Wang et al., 2017).

A.1.5 OCTMNIST

(Kermany et al., 2018) is a retinal OCT image dataset comprising four classes: 47% Normal, 34%
CNV (Choroidal Neovascularization), 11% DME (Diabetic Macular Edema), and 8% Drusen. We
split the dataset into three subsets: 97,477 training, 10,832 validation, and 1,000 test instances. For
the OOD detection experiments, we constructed three OOD datasets with decreasing similarity to
OCTMNIST: (1) OCTDL-IN: 618 OCTDL (Kulyabin et al., 2024) images from seen classes, (2)
OCTDL-OUT: 1,000 OCTDL images from unseen classes, and (3) ChestMNIST: 1,512 images
from the ChestMNIST dataset (Wang et al., 2017).

A.2 BASELINE DETAILS

We compared ReconstructionNet with recent state-of-the-art uncertainty estimates.

1. Entropy (Shannon, 1948) is derived from prediction probability.

2. Monte Carlo Dropout (MCD) (Gal & Ghahramani, 2016) We apply dropout (p = 0.5)
to the penultimate layer of the model and keep dropout active during inference to yield T
predictions (where T = 100 for the Covid and Fund datasets, and T = 10 for all other
datasets), following the hyperparameters in (Gal & Ghahramani, 2016).
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3. Deep Ensemble (DE) (Lakshminarayanan et al., 2017) uses five models, with the standard
deviation of their predictions as the uncertainty estimate.

4. Posterior Network (PN) (Charpentier et al., 2020) computes aleatoric uncertainty as the
inverse of the maximum prediction probability and epistemic uncertainty as the inverse of
the maximum of the Dirichlet distribution parameters.

5. Bayesian Neural Networks (BNN) (Jospin et al., 2022) estimate uncertainty as the stan-
dard deviation of T = 100 predictions obtained with different weight samples.

6. Evidential Deep Learning (EDL) (Sensoy et al., 2018) estimates uncertainty using the
entropy of the predicted probabilities.

A.3 METRIC DETAILS

A.3.1 CORRELATION

(Mi et al., 2022; Upadhyay et al., 2022) measures the reliability of the uncertainty estimate as the
Pearson’s correlation coefficient between the uncertainty estimate and the prediction error (mea-
sured as the absolute difference between the one-hot label and the predicted probability). A higher
correlation indicates a more reliable estimate, as prediction errors are likely to be high when the
model’s uncertainty is high, and vice versa.

A.3.2 AURC (AREA UNDER RISK-COVERAGE CURVE)

(Ding et al., 2020) quantifies the selectivity of the uncertainty estimate, indicating its usefulness in
selective prediction i.e. making predictions only for confident instances. This is computed as the
area under the risk-coverage curve, which plots the 0/1 loss (Risk) for instances with uncertainty
scores within the α%-percentile (Coverage) against the coverage. A selective uncertainty estimate
would yield a low AURC, as it effectively reduces loss across all possible uncertainty thresholds.

A.3.3 SIGMA-RISK SCORE

Evaluates the resilience of the uncertainty estimate to false negatives (incorrect instances with low
uncertainty), which can lead to significant costs if many are left undetected. It is computed as the
0/1 loss of instances with normalized uncertainty less than σ = {0.1, 0.2, 0.3, 0.4}. A lower σ-risk
score indicates greater robustness to false negatives. To ensure robustness to outliers, we apply min-
max normalization with the minimum and maximum values computed after outlier removal with the
interquartile range method.

A.3.4 OOD DETECTION

(Lakshminarayanan et al., 2017; Postels et al., 2020; Malinin & Gales, 2018) Evaluates how effec-
tively the uncertainty estimate can distinguish between in-distribution and OOD instances. This is
quantified using AUROC (Area Under the Receiver Operating Characteristic Curve), where the true
label indicates whether an instance is OOD and the target score is the uncertainty estimate. A higher
AUROC reflects a more reliable uncertainty measure capable of identifying OOD inputs.

A.4 IMPLEMENTATION DETAILS

The use of error weights ω allows the model to decouple the modeling of joint prediction proba-
bilities from the classification task, enabling simultaneous optimization of both objectives. It also
dynamically scales errors across classes to address variations in reconstruction difficulty and adjusts
the contribution of each feature to the prediction, acknowledging that not all reconstruction errors
equally impact the final outcome.

For image datasets, to reduce the size of the ReconstructionNet model, we trained class-specific
decoders sharing a common encoder instead of training separate class-specific autoencoders. The
encoder was based on a ResNet18 (He et al., 2015) backbone, and the decoders were implemented
as inverted ResNet18 backbones, replacing convolutional layers with transposed convolutions.
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Hyperparameters for all models were determined using grid search on the validation set. For Re-
constructionNet, we tuned the compression ratio (which determines the latent vector length as its
product with the feature count) along with the number of encoder and decoder layers, the width
of intermediate layers, and the loss function parameter β (β = 1.25, 2, 0.75 for Covid, Diabetes,
and Fund datasets). Both the MLP and ReconstructionNet models were trained on the training set
with oversampling using SMOTE (Chawla et al., 2002). All models were trained using the Adam
optimizer with early stopping. Each experiment was repeated five times, and we report the mean
and standard deviation of each metric.

A.5 VERIFYING UNCERTAINTY EXPLANATION PROPERTIES WITH TOY EXAMPLES

A.5.1 IMPLEMENTATION INVARIANCE

We illustrate the property of implementation invariance with a simple example. Suppose we have
two ReconstructionNet models, f and f ′, that differ in architecture:

• f : Each class autoencoder is shallow and linear;
• f ′: Each class autoencoder is deeper with nonlinearities.

If for every input x, the two ReconstructionNet models yield identical prediction probabilities p̂ for
all classes, then:

1. The predicted classes c∗ = argmaxj p̂j are identical,
2. The weighted reconstruction errors ϵ are identical,
3. The uncertainty explanations ζ(x), which are the feature-wise weighted reconstruction er-

rors of the predicted classes, are identical.

Thus, ReconstructionNet’s uncertainty explanations are implementation-invariant under this defini-
tion of functional equivalence.

A.5.2 SENSITIVITY

We illustrate the sensitivity property with a simple example. Consider a dataset where each input x
has three features, (x1, x2, x3). Suppose that for the predicted class c∗:

• The weighted reconstruction errors depend only on x1 and x2;
• The weight for x3 is zero: w3

c∗ = 0, indicating that changes in x3 do not affect the class
prediction.

The uncertainty explanation for input x is given by:

ζ(x) =
[
w1

c∗∥x1 − x̂1
c∗∥2 w2

c∗∥x2 − x̂2
c∗∥2 w3

c∗∥x3 − x̂3
c∗∥2

]
(15)

Since w3
c∗ = 0, the explanation assigns zero attribution to x3, which is irrelevant to the predic-

tion. Hence, ReconstructionNet’s uncertainty explanations satisfy the sensitivity property: features
irrelevant to the prediction receive zero attribution in the weighted reconstruction error.

A.5.3 CONSISTENCY

We illustrate the consistency property with a simple example. Consider an input x = (x1, x2, x3);
For the predicted class c∗, the uncertainty explanation is:

ζ(x) =
[
w1

c∗∥x1 − x̂1
c∗∥2 w2

c∗∥x2 − x̂2
c∗∥2 w3

c∗∥x3 − x̂3
c∗∥2

]
(16)

Now consider a modification f ′ of the model f where feature x2 is made more important for the
prediction (i.e., its weight increases in the softmax over reconstruction errors).

• The reconstruction errors ∥xj − x̂j
c∗∥2 remain unchanged, since the autoencoders are un-

changed.

• The weight for x2 increases: w2′

c∗ > w2
c∗ .
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Then the uncertainty attribution for x2 becomes:

ζ(x)2
′
= w2′

c∗∥x2 − x̂2
c∗∥2 ≥ w2

c∗∥x2 − x̂2
c∗∥2 = ζ(x)2. (17)

Thus, increasing a feature’s contribution to the prediction does not decrease its uncertainty attribu-
tion, demonstrating that ReconstructionNet’s uncertainty explanations satisfy the consistency prop-
erty.

A.6 ADDITIONAL UNCERTAINTY EXPLANATION EXAMPLES

MNIST: The examples illustrate how the model’s uncertainty explanations correspond to ambiguous
digit features that resemble other classes. In Figure 4a, the model predicted a 2 instead of a 0,
showing uncertainty around the missing connection in the 0. In Figure 4b, it predicted a 6 instead of
a 0, with uncertainty focused on the tail of the 6. In Figure 4c, the model again predicted a 6 instead
of a 0, highlighting uncertainty on the right curve that resembles a 0. In Figure 4d, it predicted a
9 instead of a 4, with uncertainty at the connecting bump of the 4 (which is atypical in a 9). In
Figure 4e, the model predicted a 5, with uncertainty concentrated on the top tail of the digit. Finally,
in Figure 4f, it predicted a 3 instead of an 8, highlighting the lower-left connecting curve, whose
removal would make the digit resemble a 3 more strongly.

ISIC: The examples demonstrate how the model’s uncertainty explanations capture visual features
that increase ambiguity in lesion classification, leading to misclassifications. In Figures 4g and 4h,
the model misdiagnoses the dermoscopic image, with the uncertainty explanations highlighting a
scab-like region. In Figures 4i, 4j and 4k, images were misclassified as MEL (melanoma) instead of
BCC or AKIEC, with uncertainty concentrated on the uneven pigmentation of the lesion, a feature
often associated with melanoma. In Figure 4l, the image was misclassified as AKIEC with uncer-
tainty explanations highlighting the presence of hairs covering a substantial portion of the lesion.

OCTMNIST These cases illustrate how the model’s uncertainty highlights regions that contribute
to misclassification in OCT images. In Figure 4m, the model classified the OCT image as DME,
with uncertainty concentrated around one of the fluid pockets. In Figure 4n, the model predicted
CNV instead of DME, again highlighting a fluid pocket. This reflects the ambiguity introduced by
fluid pockets, which are common to both conditions. Figures 4o, 4p, 4q, and 4r are Drusen images
misclassified as other conditions, with uncertainty explanations highlighting the deposits (uneven
bumps in the OCT images), which are key features of Drusen and major contributors to the model’s
uncertainty in each incorrect prediction.

A.7 COMPARISON WITH LLMS

Figure 5 compares uncertainty explanations from ReconstructionNet and a publicly available, off-
the-shelf large language model (LLM; Microsoft Copilot). We observe that ReconstructionNet pro-
duces more selective explanations, highlighting only small regions that contribute to uncertainty,
whereas Copilot often highlights large areas (notably, in Figure 5b the entire digit is highlighted).
Moreover, the regions identified by ReconstructionNet are more accurate. For example, in Figure 5a,
where the digit 4 is misclassified as 7, ReconstructionNet correctly highlights the additional vertical
line on the right, while Copilot highlights the connecting region that is common to both 4 and 7
and should not confuse the model. Similarly, in Figure 5c, where a 6 is misclassified as 5, Recon-
structionNet pinpoints the extra vertical line on the bottom left that distinguishes 5 from 6, whereas
Copilot highlights the top-left vertical line, which can occur in both digits.

A.8 RELATION TO CONTRASTIVE LEARNING AND SIAMESE NETWORKS

Note that, although the training procedure of ReconstructionNet shares similarities with contrastive
learning (Chopra et al., 2005), as both aim to minimize the distance between instances of the same
class while maximizing the distance between instances of different classes, there are key differences
in how these distances are computed. In contrastive learning, the distance is explicitly calculated
as the L2-norm between the embeddings of a pair of instances. In ReconstructionNet, the dis-
tance between an instance and the instances of a particular class is represented as the reconstruction
error of the corresponding class autoencoder. This distinction in distance measurement leads to
differences in the training loss. While contrastive learning incorporates the L2-norm distance be-
tween pairs of instances, ReconstructionNet uses class reconstruction error for its loss function.
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(a) Label: 0, Pred: 2 (b) Label: 0, Pred: 6 (c) Label: 0, Pred: 6

(d) Label: 4, Pred: 9 (e) Label: 6, Pred: 5 (f) Label: 8, Pred: 3

MNIST

(g) Label: AKIEC, Pred: BCC (h) Label: BCC, Pred: BKL (i) Label: BCC, Pred: MEL

(j) Label: AKIEC, Pred: MEL (k) Label: AKIEC, Pred: MEL (l) Label: BKL, Pred: AKIEC

ISIC

(m) Label: CNV, Pred: DME (n) Label: DME, Pred: CNV (o) Label: Drusen, Pred: CNV

(p) Label: Drusen, Pred: CNV (q) Label: Drusen, Pred: Normal (r) Label: Drusen, Pred: Normal

OCTMNIST

Figure 4: Uncertainty explanation illustration for MNIST, ISIC and OCTMNIST datasets. Positive
uncertainty explanations were min-max normalized, gamma-corrected, and overlaid on the images
for clarity. The highlighted regions “explain” the prediction uncertainty.
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(a) Label: 4, Pred: 7 (b) Label: 4, Pred: 9 (c) Label: 6, Pred: 5

Figure 5: Comparison of uncertainty explanations from ReconstructionNet and Microsoft Copilot
on the MNIST dataset. Positive uncertainty explanations from ReconstructionNet were min–max
normalized, with pixels having attribution greater than 0.2 shown in red and overlaid on the images
for clarity. Microsoft Copilot explanations were generated using the prompt: “This image has been
misclassified as [image class prediction]. Generate an image highlighting the regions contributing
to prediction uncertainty in red.” The highlighted regions are intended to “explain” the prediction
uncertainty.

Furthermore, in contrastive learning, the distances between instances of different classes are ex-
plicitly maximized and included in the loss function. In contrast, ReconstructionNet exclusively
trains each class autoencoder with instances belonging to its specific class. The architecture of
ReconstructionNet shares similarities with Siamese networks (Bromley et al., 1993) in its use of
sub-networks. However, unlike Siamese networks, which share weights across sub-networks, Re-
constructionNet allows each class autoencoder to have distinct weights.
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