
Under review as a conference paper at ICLR 2023

AUTOMATICALLY ANSWERING AND GENERATING
MACHINE LEARNING FINAL EXAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Can a machine learn machine learning? We propose to answer this question
using the same criteria we use to answer a similar question: can a human learn
machine learning? We automatically answer final exams in MIT’s, Harvard’s and
Cornell’s large machine learning courses and generate new questions at a human
level. Recently, program synthesis and few-shot learning solved university-level
problem set questions in mathematics and STEM courses at a human level. In
this work, we solve questions from final exams that differ from problem sets in
several ways: the questions are longer, have multiple parts, are more complicated,
and span a broader set of topics. We provide a new dataset and benchmark of
questions from machine learning final exams and code for automatically answering
these questions and generating new questions. To make our dataset a reproducible
benchmark, we use automatic checkers for multiple choice questions, questions
with numeric answers, and questions with expression answers, and evaluate a large
free language model, Meta’s OPT, and compare the results with Open AI’s GPT-3
and Codex. A student survey comparing the quality, appropriateness, and difficulty
of machine-generated questions with human-written questions shows that across
multiple aspects, machine-generated questions are indistinguishable from human-
generated questions and are suitable for final exams. We perform ablation studies
comparing zero-shot learning with few-shot learning, chain-of-thought prompting,
GPT-3 and OPT pre-trained on text and Codex fine-tuned on code on a range of
machine learning topics and find that few-shot learning methods perform best. We
make our data and code publicly available for the machine learning community.

1 INTRODUCTION

Can a machine learn machine learning? This work presents a new dataset of machine learning
final exams with 646 question parts and a benchmark of baselines using transformers and their
respective grade performance, demonstrating that the best baseline performs at a human level. In
university-level STEM courses, students complete assignments (including problem sets and labs)
and exams throughout the course. Recent work has opened the door for a machine to solve course
problem sets (Drori et al., 2022) using language models and few-shot learning. However, final exams
remain challenging, and this work is the first to present a structured dataset of machine learning finals
and a benchmark of baseline methods for answering them. Final exams differ from problem sets
because they serve as a benchmark of cumulative understanding of material learned over a semester
and evaluate the students’ depth and breadth of expertise. Further, questions on final exams are longer,
have multiple parts, span a broader set of topics, and are more complicated and nuanced.

All the above holds for MIT’s and Cornell’s Introduction to Machine Learning classes and Harvard’s
Machine Learning course. These are undergraduate courses with hundreds of students each semester,
making them the largest undergraduate courses offered. Introduction to Machine Learning is a core
class in the computer science program. The prerequisites for the course are Python Programming and
Multivariate Calculus, with Introduction to Algorithms and Linear Algebra recommended. The class
typically consists of weekly exercises, labs, quizzes, homework, a midterm, and a final exam. There
were no final exams in at MIT for Fall 2020 and Spring 2020 due to COVID-19.

Introduction to Machine Learning final exams differ from problem sets in several ways, and the
experience of solving each varies. First, finals are long, containing around nine questions with
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around seven parts each. Final exam questions are also multifaceted and multi-stepped: different
parts of a single question require applying different concepts and problem-solving skills, and parts
may build upon each other. While weekly problem sets focus on a single topic, finals span topics
from the entire semester. Further, final questions are often story-based problems that may require
mathematical modeling. Due to the time constraint of these exams, finals are also designed to test
core understanding and application of course material over rote calculations. Thus, asking a machine
to answer questions from finals allows for testing whether the model is able to learn a breadth and
depth of topics beyond problem sets.

In this work, we present a new dataset curated from final exams of MIT’s and Cornell’s Introduction
to Machine Learning course and Harvard’s Machine Learning class, totaling 646 question parts
spanning the broad range of topics in machine learning: regression, classifiers, logistic regression,
features, loss functions, neural networks, convolutional neural networks (CNNs), Markov decision
processes (MDPs), recurrent neural networks (RNNs), reinforcement learning, clustering, decision
trees, model selection, ensemble methods, Bayesian networks, hidden Markov models (HMMs), and
optimization. Our dataset covers the finals given at MIT for semesters of Fall 2017, Spring 2018,
Fall 2018, Spring 2019, Fall 2019, Spring 2021, Fall 2021, and Spring 2022, Harvard Spring 2015
and Spring 2021, and Cornell Spring 2017 and Fall 2018. Due to the COVID-19 pandemic, no finals
were in the MIT course during 2020.

Table 1: MIT Spring 2021, Question 10.a: question part, solution, Codex Zero-Shot answer, program output,
GPT-3 Zero-Shot answer, and GPT-3 Zero-Shot with CoT prompt answer.

Topic Classifiers

Question Part Given a set of data Dtrain = {(x(i), y(i))}, a weighted nearest neighbor
regressor has the form

h(x; θ) =

∑
(x(i),y(i))∈Dtrain

f(x, x(i); θ)y(i)∑
(x(i),y(i))∈Dtrain

f(x, x(i); θ)
.

A typical choice for f is

f(x, x′; θ) = e−θ∥x−x′∥2

where θ is a scalar and ∥x − x′∥2 =
∑d

j=1(xj − x′
j)

2. Assume our
training data Dtrain = ((1, 1), (2, 2), (3, 6)). What is h(10; 0)? That is,
letting θ = 0, what is our prediction for x = 10?

Solution 3

Codex Zero-Shot Answer import numpy as np

def f(x, x_i, theta):
return np.exp(-theta * np.linalg.norm(x - x_i)**2)

def h(x, theta):
D = np.array([(1, 1), (2, 2), (3, 6)])
numerator = 0
denominator = 0
for x_i, y_i in D:
numerator += f(x, x_i, theta) * y_i
denominator += f(x, x_i, theta)

return numerator / denominator

print(h(10, 0))

Program Output 3.0
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GPT-3 Zero-Shot Answer h(10; 0) = f(10,1,0)y(1)+f(10,2,0)y(2)+f(10,3,0)y(3)

f(10,1,0)+f(10,2,0)+f(10,3,0) = 1·1+1·2+1·6
1+1+1 =

9
3 = 3

GPT-3 ZS with CoT Answer f(10, (1, 1), 0) = e−0∥10−(1,1)∥2

= e−0∥9∥2

= e−0·81 = 1

f(10, (2, 2), 0) = e−0∥10−(2,2)∥2

= e−0∥8∥2

= e−0·64 = 1

f(10, (3, 6), 0) = e−0∥10−(3,6)∥2

= e−0∥7∥2

= e−0·49 = 1

h(10, 0) =

∑
(x(i),y(i))∈Dtrain

f(x,x(i),θ)y(i)∑
(x(i),y(i))∈Dtrain

f(x,x(i),θ)
= 1·1+1·2+1·6

1+1+1 = 9
3 = 3

We verify that our results are not due to overfitting by including MIT finals from 2021 and 2022 that
are unavailable online. Also, the MIT Spring 2022 final exam was given after GPT-3 and Codex were
last updated, which means that the models were not trained on this data. The final exam questions
have many parts, each posing a new problem, and each question in the dataset corresponds to one
part. The questions in the finals are varied in topics and solution types. Solutions are primarily
open-ended questions with some true/false and multiple-choice questions on theory, math, and code
implementations.

We make the dataset publicly available and welcome others to use it to aid in developing and assessing
new language models and methods. Due to the diversity of Intro to ML final questions, our dataset
uniquely assesses advanced problem-solving and reasoning skills in machine learning, math, and
natural language processing. This dataset opens the door to achieving breakthroughs in machine
learning performance in machine learning final exams. In addition to the dataset, we present a
benchmark using several baseline methods. We apply zero-shot and few-shot learning to GPT-3
and Codex, adding chain-of-thought prompting for GPT-3. We find that few-shot learning methods
perform best. As shown in Table 2 the best performing methods pass the final exams, and their grade
is comparable with human grades of MIT students on the same machine learning finals evaluated
by the same human graders. We generate new final exam questions that are indistinguishable from
human-written questions.

1.1 RELATED WORK

There is often thought that humans are generalists, whereas machines are specialists. However, large
language models based on transformers such as GPT-3 (Brown et al., 2020), Gopher (Rae et al.,
2021), and PaLM (Chowdhery et al., 2022), also called foundation models, are generalist learners.
Specifically, in our setting, while humans care about the number of topics in an exam and therefore
find finals more difficult than problem sets, foundation models effortlessly scale to many topics
without re-training. Language models may be pre-trained on text and fine-tuned on specific datasets
such as code, for example OpenAI’s Codex (Chen et al., 2021), which allows generating programs
from text. There are several ways to improve the mathematical reasoning ability of language models:
(1) using chain-of-thought (CoT) prompting (Kojima et al., 2022; Wei et al., 2022), (2) using the top-k
ranking solutions (Li et al., 2022) and merging them by voting (Wang et al., 2022) or least-to-most
prompting (Zhou et al., 2022), and (3) using program synthesis and few-shot learning to generate
code that answers questions (Drori et al., 2022).

Grading: Human Human Human Machine
Answers: Human Human Machine Machine
Questions: All Non-Image Non-Image Non-Image Non-Open

MIT Spring 2021 75.84 80.77 62.09 64
MIT Fall 2021 74.38 60.88 58.94 51.33
MIT Spring 2022 69.07 70.82 68.86 73.53

Mean 73.10 70.82 63.29 62.95

Table 2: Human and machine grading of human and machine solved final exams. Mean human and
machine grades on Introduction to Machine Learning final exams by semester. MIT Spring 2021,
MIT Fall 2021, and MIT Spring 2022 final exams were unavailable online when GPT-3 and Codex
were trained, ensuring that our results are not due to overfitting. Non-image grades consider question
parts that do not contain images that are required for solving the question.
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Semester Questions Parts

MIT Fall 2017 10 61
MIT Spring 2018 9 42
MIT Fall 2018 10 60
MIT Spring 2019 9 58
MIT Fall 2019 8 61
MIT Spring 2021 13 71
MIT Fall 2021 8 86
MIT Spring 2022 9 59
Harvard Spring 2015 8 12
Harvard Spring 2021 6 32
Cornell Spring 2017 30 48
Cornell Fall 2018 29 56

Mean 12.42 53.83
Total 149 646

Topic Questions Parts

Regression 10 62
Classifiers 24 85
Logistic Regression 3 10
Features 3.5 21
Neural Networks 19.5 87
Loss Functions 4 16
CNNs 9 65
MDPs 10 77
RNNs 7 33
Reinforcement Learning 11 60
Clustering 5 17
Decision Trees 14 48
Model Selection 5 16
Ensemble Methods 9 20
Bayesian Networks 1 6
HMMs 1 4
Optimization 10 16
Bonus/Name 3 3

Mean 8.28 35.89
Total 149 646

Table 3: The number of questions and parts in the final for each semester and topic of Introduction
to Machine Learning. MIT Spring 2020 and Fall 2020 did not have final exams due to COVID-19.
Topics can have half-questions attributed to them if a question has some parts under one topic and the
other parts under another topic.

Much of the prior work focuses on high school or middle school level material (Qu et al., 2021). The
first work to tackle university-level machine learning course problem set questions (Tran et al., 2021)
used a transformer and GNN architecture and heavily relied on data augmentation. This resulted in
overfitting and did not scale up to other types of questions or courses. Probability and statistics course
problem-set questions have been answered (Tang et al., 2022) by probabilistic program synthesis
with human performance. Problem-set questions from the core university math courses (Drori et al.,
2022) have been automatically solved using few-shot learning and program synthesis at a human
level. Other work considers university-level course questions across a variety of domains (Hendrycks
et al., 2021) and identifying theorems (Srivastava et al., 2022). Prior work on question generation
includes question–answer pair generation based on a text passage (Qu et al., 2021) and question text
generation based on other questions (Drori et al., 2022).

2 DATASET

We present a new dataset of 646 question parts from a dozen recent final exams of MIT’s and Cornell’s
Introduction to Machine Learning courses and Harvard’s Machine Learning class. The dataset spans
questions on the 17 machine learning topics covered in the courses: (1) regression, (2) classifiers,
(3) logistic regression, (4) features, (5) loss functions, (6) neural networks, (7) convolutional neural
networks (CNNs), (8) Markov decision processes (MDPs), (9) recurrent neural networks (RNNs),
(10) reinforcement learning, (11) clustering, (12) decision trees, (13) model selection, (14) ensemble
methods, (15) Bayesian networks, (16) hidden Markov models (HMMs), and (17) optimization. We
make our data and code publicly available.1

The breakdown of questions, parts, points, and non-image points by each semester and topic are
shown in Table 2. Each question in a final exam consists of multiple parts. Questions are written
by providing set-up and context information first, followed by the question parts (which may come
with additional information). Set-up and context information may contain (1) story elements (ex.,
character names, and motivations), (2) relevant definitions and equations, and (3) data points. We
format questions in the dataset by concatenating the question context, any context or solutions from
prior parts of the question required for answering the part, and the part’s context and question. We
split the questions into their corresponding parts. Questions consist of English text, mathematical
notation, and images. Mathematical notation is represented in the dataset by LaTeX and images by
screenshots from pdfs files. The types of question answers are diverse. A few are multiple-choice or

1Data and code are in the Supplementary Material.

4



Under review as a conference paper at ICLR 2023

true/false questions. Most are open-ended, for which the evaluation requires modeling the problem,
mathematical manipulation, or code writing. Many questions require providing an explanation.

We used twelve final exams from different semesters for data curation. We had access to the Latex
version for the three most recent semesters of MIT Spring 2021, Fall 2021, and Spring 2022, and
therefore did not require transcription. For the nine remaining exams, MIT Fall 2017, Spring 2018,
Fall 2018, Spring 2019, Fall 2019, Harvard Spring 2015 and Spring 2021, and Cornell Spring 2018
and Fall 2018, we had access to the pdf versions. In these cases, we used mathpix mathpix.com
for an initial transcription, and curators then evaluated and manually corrected the input questions
and verified the correctness of each input question.

We extract questions and solutions for all parts of all types of questions, including those that rely
on images. We curated nine exams from publicly available pdf files. MIT Spring 2020 and Fall
2020 do not have final exams due to COVID-19. The three MIT exams between 2021 and 2022
were unavailable online; therefore, the model does not overfit their solutions. The aggregate average
grades were available to the students and did not contain any personally identifiable information.
Three duplicate questions were originally on the final exam of MIT Fall 2017 (questions 1, 3, 6) and
appeared again in the final exam of MIT Spring 2022.

3 BENCHMARK

3.1 BASELINES

We provide a benchmark by comparing six baselines for answering the final exam questions: (1)
GPT-3 with zero-shot learning, (2) GPT-3 with few-shot learning, (3) GPT-3 with zero-shot learning
and chain-of-thought (CoT) prompting, (4) GPT-3 with few-shot learning and chain-of-thought (CoT)
prompting, (5) Codex with zero-shot learning, and (6) Codex with few-shot learning.

Table 4 shows the prompt used for each approach. GPT-3 zero-shot uses the question as-is, whereas
GPT-3 zero-shot with CoT uses the suffix “Let’s think step by step.” after the question to encourage
multi-step output. Codex zero-shot uses the prefix “Write a program that answers” before the question
within Python comments denoted by triple quotes """ to encourage Codex to write code. GPT-3
few-shot finds the closest questions in the embedding space, measured by cosine similarity, and uses
them and their corresponding answers before the new question as examples in the prompt. Codex
few-shot finds the closest questions in the embedding space also as measured by cosine similarity
and uses these questions and their corresponding code as examples.

For students, a good study technique is to use previous final exams to review and practice for their
upcoming final. We model this method by few-shot learning using the question–answer pairs (for
GPT-3) or question–code (for Codex) with the closest question embeddings from previous finals. We
implement this by considering all the exam questions, marking each question by its semester and
year, and using only previous semesters’ questions for few-shot learning. The MIT Fall 2017 and
Spring 2022 exams contain three duplicate questions, and we handle these same questions the same
way humans do by allowing few-shot learning in MIT Spring 2022 based on successful Fall 2017
zero-shot answers. It is reasonable that if a student studies all previous exams, there may be 8.5% of
repeated question points. Since MIT Fall 2017, Harvard Spring 2015, and Cornell Spring 2017 are
the first final exams in the corresponding universities, we do not perform few-shot learning on these.

3.1.1 COMPARISON WITH OPEN LANGUAGE MODELS

We also evaluated our dataset on an open-source language model, Meta’s OPT-175B. OPT-175B
is a model consisting of 175 billion parameters. Our dataset consists of final exam questions from
machine learning courses and fit to be used by OPT-175B. Tables 5 and 6 compare the results of
OpenAI GPT-3, OpenAI Codex, and Meta OPT. We evaluated OPT on only 163 question parts, since
OPT was limited to handling questions under 256 characters in length. We implement the inference
for the OPT-175B model using Alpa. Alpa is a particular framework designed for training and
inference of large models. For the hardware, we use an 8x A100 PCIE cluster. The model requires
about 560 GB of VRAM in our run case and each example takes nine minutes for inference.
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Method Prompt

GPT-3 Zero-Shot <question>

GPT-3 Few-Shot Q: <similar question>
A: <similar question’s answer>
Q: <question>
A:

GPT-3 Zero-Shot with CoT Q: <question>
A: Let’s think step by step.

GPT-3 Few-Shot with CoT Q: <similar question>
A: <similar question’s answer>
Q: <question>
A: Let’s think step by step.

Codex Zero-Shot """
Write a program that answers the following question: <question>
"""

Codex Few-Shot """
Write a program that answers the following question: <similar question>
"""
<similar question’s correct code>
"""
Write a program that answers the following question: <question>
"""

Table 4: Input prompt for each of six baseline methods (1) GPT-3 Zero-Shot, (2) GPT-3 Few-Shot,
(3) GPT-3 Zero-Shot with CoT, (4) GPT-3 Few-Shot with CoT, (5) Codex Zero-Shot, and (6) Codex
Few-Shot. Similar questions (as measured by cosine similarity) are drawn from previous finals only.

3.2 GRADING

3.2.1 HUMAN GRADING

The questions are of different types: multiple-choice, numerical, expressions, and open-text. We
grade answers and aim to keep all factors equal in grading human and machine answers. Human and
machine answers are graded based on the number of points allocated to each question part, giving
full, partial, or no credit for each answer. We approximate partial credit by assigning half-credit.
The course staff graded student final exams, which included graduate TAs and instructors. Two of
the same graduate TAs and the instructor that graded the student answers also graded the machine
answers. Grading instructions are the same for grading student answers as grading machine answers.

3.2.2 AUTOMATIC GRADING

We label each question’s answer type into one or two categories out of four options - multiple choice
(MC), numerical, expression, or open. We consider answers multiple choice if the test-taker is
presented with an enumerated list of choices, numerical if the answer is a number, expression if
the answer includes variables or other notation, and open if the answer calls for free-response text.
We categorize questions that have additional questions nested within them by the multiple relevant
categories. Most often, this is the case when a question with one of MC, numerical, or expression, is
followed by a follow-up question asking the student to explain their previous answer. The breakdown
of the questions is: 98 are multiple-choice, 84 numerical, 81 expressions, and 204 are open. The
’Non-Open Points’ column of Tables 7 and 8 show the answer type breakdown by number of points.
Table 7 shows the number of question parts that do not rely on images, the number of points that do
not rely on images, and the number of non-open question points in Introduction to Machine Learning
finals for each semester. MIT Spring 2020 and Fall 2020 did not have final exams due to COVID-19.
Table 8 shows the breakdown by topic. Our automatic grading uses string matching and regular
expressions. In the case of multiple-choice results, we check that the output of the code is equal to
the solution. In the case of numerical answers, we look for a matching integer or real number.

3.3 PERFORMANCE

Table 5 shows the machine grades by semester and Table 6 shows the machine grades by topic,
excluding question parts that rely on images. We compare the average grade of GPT-3 with zero-shot
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Semester GPT-3 ZS GPT-3 FS GPT-3 ZS CoT GPT-3 FS CoT Codex ZS Codex FS OPT ZS

MIT Fall 2017 38.21 NA 22.86 NA 21.43 NA NA
MIT Spring 2018 44.35 60.48 38.71 70.97 32.26 67.74 33.33
MIT Fall 2018 51.99 52.18 61.63 64.17 49.78 54.00 47.54
MIT Spring 2019 43.45 54.23 41.07 58.81 15.54 41.55 34.64
MIT Fall 2019 54.92 77.05 29.92 58.20 26.23 61.48 NA
MIT Spring 2021 44.33 55.81 53.45 60.21 33.62 62.09 33.77
MIT Fall 2021 58.94 69.44 50.35 54.90 18.11 42.00 24.44
MIT Spring 2022 42.78 68.86 32.03 53.48 51.01 65.46 60.71
Harvard Spring 2015 85.71 NA 85.71 NA 50.00 NA 21.43
Harvard Spring 2021 47.73 86.36 47.73 81.82 43.18 86.36 45.45
Cornell Spring 2017 78.91 NA 80.86 NA 51.30 NA 21.88
Cornell Fall 2018 36.45 53.27 44.39 61.21 42.52 56.07 28.97

Table 5: We benchmark different baselines for each semester, excluding question parts that rely on
images. We compare the average grade of GPT-3 with zero-shot (ZS), GPT-3 with few-shot (FS)
learning, GPT-3 with ZS, and chain-of-thought (CoT) prompting, GPT-3 with FS and CoT prompting,
Codex with ZS, Codex with FS, and OPT with ZS. MIT Fall 2017, Cornell Spring 2017, and Harvard
Spring 2015 were the first semester for each university, so few-shot learning results based on previous
semesters are unavailable (NA). MIT Spring 2020 and MIT Fall 2020 did not have final exams due to
COVID-19. MIT Spring 2021, MIT Fall 2021, and MIT Spring 2022 final exams were unavailable
online when GPT-3 and Codex were trained, ensuring that the model is not overfitting. The result of
the best-performing method for each semester is marked in bold.

Topic GPT-3 ZS GPT-3 FS GPT-3 ZS CoT GPT-3 FS CoT Codex ZS Codex FS OPT ZS

Regression 31.71 50.00 25.61 40.85 40.24 50.00 50.00
Classifiers 38.18 46.21 26.28 42.35 18.88 53.74 50.00
Logistic Reg. 50.00 60.00 77.50 77.50 55.00 70.00 16.67
Features 58.65 75.96 53.85 77.31 68.85 81.54 10.00
Loss Functions NA NA NA NA NA NA NA
Neural Networks 48.34 60.23 44.54 68.42 37.82 63.45 27.27
CNNs 37.50 53.58 28.36 47.81 13.38 36.77 23.83
MDPs 49.19 52.01 46.03 54.23 24.38 38.03 28.32
RNNs 61.46 71.88 57.29 66.14 12.50 40.63 39.28
RL 36.09 42.99 36.67 50.11 28.79 45.11 24.28
Clustering 100.00 100.00 100.00 100.00 50.00 50.00 63.33
Decision Trees 54.70 71.80 32.48 51.28 46.15 54.70 55.00
Model Selection 82.93 83.74 72.76 95.12 67.48 69.92 21.95
Ensemble Methods 27.89 50.00 22.12 66.35 32.69 50.00 13.46
Bayesian Networks 100.00 100.00 100.00 100.00 0.00 0.00 100.00
HMMs 100.00 100.00 50.00 100.00 100.00 100.00 100.00
Optimization 55.00 60.00 35.00 55.00 17.50 70.00 20.00

Table 6: We benchmark different baselines for each course topic, excluding question parts that rely
on images. We compare the grade of GPT-3 with zero-shot (ZS), GPT-3 with few-shot (FS) learning,
GPT-3 with zero-shot and chain-of-thought (CoT) prompting, GPT-3 with FS and CoT, Codex with
zero-shot, Codex with few-shot learning, and OPT with ZS. The question parts on loss functions rely
on image information and are therefore unavailable (marked NA). The result of the best-performing
method for each semester is marked in bold.

(ZS), GPT-3 with ZS and chain-of-thought (CoT) prompting, GPT-3 with few-shot (FS) learning,
GPT-3 with FS and CoT prompting, Codex with ZS, Codex with FS, and OPT with ZS. Fall 2017
is the first semester, so few-shot learning results based on previous semesters are unavailable (NA).
Spring 2020 and Fall 2020 did not have final exams due to COVID-19. Spring 2021, Fall 2021, and
Spring 2022 final exams were unavailable online when GPT-3 and Codex were trained, ensuring that
the model is not overfitting content it has seen previously. The results consistently demonstrate that
few-shot learning methods perform best across semesters and topics, as marked in bold.

3.4 LIMITATIONS

Our dataset consists of all question parts and their solutions, including images. However, our baseline
methods do not handle questions that rely on an image containing the information required to solve
the question since GPT-3 and Codex do not handle images. Tables 7 and 8 show the breakdown of the
number of question parts and points of questions that do not rely on image information for answering
the question. On average, 27.55% of the question parts, which make up 30.32% of the points in final
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Semester Non-Image Parts / All Non-Image Points Non-Open Points

MIT Fall 2017 49 / 61 70 / 100 69 / 70
MIT Spring 2018 27 / 42 62 / 100 59 / 62
MIT Fall 2018 30 / 60 62 / 100 37.5 / 62
MIT Spring 2019 41 / 58 70 / 100 48 / 70
MIT Fall 2019 46 / 61 61 / 100 50 / 61
MIT Spring 2021 51 / 71 62 / 100 43 / 61
MIT Fall 2021 56 / 86 48 / 100 43 / 48
MIT Spring 2022 46 / 59 68 / 100 53.5 / 68
Harvard Spring 2015 8 / 12 70 / 90 35 / 70
Harvard Spring 2021 15 / 32 22 / 53 11 / 22
Cornell Spring 2017 48 / 48 128 / 128 74 / 128
Cornell Fall 2018 51 / 56 107 / 120 71 / 107

OPT Total 418 / 585 759 / 1091 525 / 759

Total 468 / 646 830 / 1191 594 / 830

Table 7: The number of question parts that do not rely on images, the number of points that do not
rely on images, and the number of non-open question points, in finals for each semester. MIT Spring
2020 and MIT Fall 2020 did not have final exams due to COVID-19.

Topic Non-Image Parts / All Non-Image Points / All Non-Open Points

Regression 37 / 62 45 / 71 35.5 / 45
Classifiers 72 / 85 169 / 200 126.5 / 169
Logistic Regression 10 / 10 14 / 14 7 / 14
Features 18 / 21 26 / 38 22 / 26
Loss Functions 2 / 16 3 / 21 3 / 3
Neural Networks 66 / 87 112 / 153 100.5 / 112
CNNs 54 / 65 61 / 80 57 / 61
MDPs 38 / 77 39 / 121 32.5 / 39
RNNs 27 / 33 48 / 67 36 / 48
Reinforcement Learning 52 / 60 87 / 111 57 / 87
Clustering 5 / 17 30 / 55 15 / 30
Decision Trees 33 / 48 76 / 113 39 / 76
Model Selection 16 / 16 41 / 41 14 / 41
Ensemble Methods 20 / 20 52 / 52 31 / 52
Bayesian Networks 1 / 6 2 / 11 0 / 2
HMMs 1 / 4 1 / 7 0 / 1
Optimization 13 / 16 20 / 32 15 / 20
Bonus/Name 3 / 3 4 / 4 3 / 3

Total 468 / 646 830 / 1191 594 / 830

Table 8: The number of questions parts that do not rely on images, number of points that do not rely
on images, and number of non-open question points in the finals for each topic of the course.

exams, are questions that rely on image information. The points attributed to the non-image parts are
tallied, recorded, and used to calculate non-image percentage grades.

3.5 GENERATING NEW QUESTIONS

The creation of new, high-quality questions by course instructors and TA is often a time-consuming,
high-effort process. These new questions must be varied from past questions while still testing the
same core concepts. We explore the potential of using GPT-3 to write exam content efficiently by
using the dataset of exam questions to generate new questions automatically. We use questions from
our dataset as prompts to create new high-quality questions not present in our dataset. We create a list
of various questions in our curated dataset and use the resulting list to prompt GPT-3 to create a new
question. The supplementary material demonstrates the results of this process for each topic in the
course. The Appendix consists of new generated questions and the closest question from our dataset
as measured by the cosine similarity of the embedding of each question. These new questions are
diverse and qualitatively similar to questions on previous MIT final exams. This provides an efficient
way for course TAs and instructors to generate new final questions.

3.5.1 STUDENT SURVEY

To evaluate the machine-generated questions, we conducted an anonymous online student survey
comparing them with the human-written questions in terms of quality, appropriateness relative to

8
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the course, and question difficulty. We surveyed 15 students who have taken the Introduction to
Machine Learning course or its equivalent. The survey was optional and included informed consent,
with the following description: “We are conducting a survey to assess the quality and difficulty of
automatically generated questions for an introductory machine learning course final. You will be
presented with a series of questions, either human-written (taken from an actual course final exam) or
machine generated, but you will not be told the source of a given question. For each question, you
will be asked (a) whether you think the question is human-written or machine-generated, (b) whether
the question is appropriate for the given course final, and finally (c) how you would rate the difficulty
of the question. Please carefully read each question and answer to the best of your ability”.

We randomly sampled one generated question and its closest (measured by cosine similarity) original,
human-written question for each of the twelve machine learning topics. Students were asked to read
these 24 questions in the survey, mixed and presented randomly, and then answer three questions for
each: (1) “Is the question human-written or machine-generated?”, (2) “Is the question appropriate or
not appropriate for the specific course final?”, and (3) “What is the question’s difficulty level on a
scale between 1 (easiest) and 5 (hardest)?”. We ask the students to provide ratings and not to solve
the questions. The results of our survey are as follows: Out of the human-written questions, students
identified 56.11% of them correctly as human-written and 43.89% incorrectly as machine-generated.
Of the machine-generated questions, students identified 45% of them correctly as machine-generated
and 55% of them incorrectly as human-written. The difficulty ratings were between 1 (the easiest)
and 5 (the hardest). Students rated machine-generated questions with a difficulty level of 2.55 with a
1.11 standard deviation and rated human-written questions with a difficulty level of 2.85 with a 1.12
standard deviation. Students rated machine-generated questions as appropriate 82.6% of the time and
human-written questions as appropriate 85.0% of the time.

The conclusions we draw from the survey are that (1) survey participants considered human-written
questions to be as likely to be human-written or machine-generated, and similarly, machine-generated
questions were considered equally likely to be machine-generated as human-written, (2) survey
participants considered the machine-generated questions slightly easier than human-written questions,
and (3) survey participants considered machine-generated questions as appropriate as human-written
questions. Based on these results, we conclude that across multiple aspects, the machine-generated
questions are highly similar to human-generated questions and can be adapted to generate questions
for machine learning courses.

3.6 IMPLEMENTATION DETAILS

We use the latest OpenAI GPT-3 and Codex models and do not re-train these very large language
models. We fix all the hyperparameters of the models so that the answers are deterministic and
reproducible. Specifically, we set both top P, which controls diversity, and sampling temperature,
which controls randomness, to 0. The frequency and presence penalties are also set to 0, and we do
not halt on any stop sequences. We allow diversity for generating new questions by setting the top
P and temperature to 0.1. We run Codex with an upper bound of generating programs with 1024
tokens. We use the OpenAI text-davinci-002 and code-davinci-002 engines for generating text and
programs. For few-shot-learning and question generation, we use the text-similarity-babbage-001
engine to embed the questions and find the closest questions in the dataset by cosine similarity. The
running time for answering or generating each question part is a few seconds.

4 CONCLUSIONS

We present a dataset and benchmark for answering and generating university-level final exams in
machine learning. Machine performance and human performance are evaluated by the same graders
and grading instructions, as well as by automatic checkers. A comparison of baselines shows that
few-shot learning methods perform best across semesters and topics. A limitation of our work is that
our benchmark does not consider questions that rely on images for their solution. This work may
result in improving students learning for final exams, help course staff generate questions for finals,
and compare levels of difficulty of exams across semesters and schools. This work includes final
exams from MIT’s and Cornell’s Introduction to Machine Learning classes and Harvard’s Machine
Learning course. We hope this dataset and benchmark serve the machine learning community and
advance the state-of-the-art in the field.

9
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A APPENDIX

Table 9: Generating new questions: example of a new question for each topic automatically generated and the closest
question in the dataset based on cosine similarity of the questions embeddings.

Topic Question Similarity

Regression Generated Question: “We’re given a data set D =
{(

x(i), y(i)
)}n

i=1
,

where x(i) ∈ Rd and y(i) ∈ R. Let X be a d × n matrix in which the
x(i) are the columns and let Y be a 1× n vector containing the values
of y(i). Using the ordinary least-squares formula, we can compute
Wols =

(
XXT

)−1
XY T Using ridge regression, we can compute

Wridge =
(
XXT + λI

)−1
XY T We decide to try to use these methods

to initialize a single-unit neural network with a linear activation function.
Assume that XXT is neither singular nor equal to the identity matrix,
and that neither Wols nor Wridge is equal to (0, 0, . . . , 0). Consider a
neuron initialized with Wridge . Provide an objective function J(W ) that
depends on the data, such that batch gradient descent to minimize J will
have no effect on the weights, or argue that one does not exist."

Closest Question: “We’re given a data set D =
{(

x(i), y(i)
)}n

i=1
, where

x(i) ∈ Rd and y(i) ∈ R. Let X be a d× n matrix in which the x(i) are
the columns and let Y be a 1 × n vector containing the values of y(i).
Using the analytical regression (ordinary least-squares) formula, we can
compute

Wols =
(
XXT

)−1
XY T

Using ridge regression, we can compute Wridge =(
XXT + λI

)−1
XY T We decide to try to use these methods to

initialize a single-unit "neural network" with a linear activation function
and no offset: h(x;W ) = WTx. Assume that XXT is invertible and
not equal to the identity matrix, and that neither Wols nor Wridge is equal
to (0, 0, . . . , 0). Note also that we are not using an explicit offset/bias
term. Rory has solved many problems from this particular domain
before and the solution has typically been close to W ∗ = (1, . . . , 1)T .
Define an objective function J(W ) that we could minimize in order to
obtain good estimates for Rory’s next problem, even with very little
data."

0.945

Classifiers Generated Question: “Consider a binary classification problem with two
classes, +1 and -1. Assume that the training data is linearly separable.
Consider the following two models:
Model 1: g(x) = sgn(wTx)
Model 2: g(x) = sgn(wTx+ b)
Assume that the training data is linearly separable. Which model is more
likely to overfit?

Closest Question: “In some cases, we will have a validation set
in addition to training and test sets. Assume the validation set is
approximately the same size as the test set. This validation set is often
used to tune hyperparameters such as λ. Imagine we have trained a
classifier using regularization, with λ chosen based on performance on
the training set. Which will have the highest accuracy the training set,
the validation set or the test set?"

0.782
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Table 9: Generating new questions: example of a new question for each topic automatically generated and the closest
question in the dataset based on cosine similarity of the questions embeddings.

Topic Question Similarity

Logistic Regression Generated Question: “In logistic regression, we use the sigmoid function
to "squish" the output of our linear function to be between 0 and 1. What
is the output of the sigmoid function when the input is 0?"

Closest Question: “Consider the simplest of all neural networks,
consisting of a single unit with a sigmoid activation function:
h(x;w = σ(w0 + w1x) where σ(z) = (1 + exp(−z))−1 Let’s start
with a classifier defined by w0 = −1 and w1 = 1. Which range of input
values x are classified as positive? Which as negative?"

0.810

Features Generated Question: “You are working on a project to predict how
successful a given Kickstarter campaign will be, based on information
about the campaign (such as the amount of money pledged, the number
of backers, the category of the project, the country where the project is
based, and so forth). One of the features you want to use is the project’s
title. What is a good way to encode the project’s title for use in a
machine-learning predictor?"

Closest Question: “Mac O’Larnin is considering selling an app
on Frugal Play. You have a friend with inside info at Frugal, and they’re
able to share data on how previous apps have performed on the store.
Mac decides that he will learn a neural network with no hidden layer
(i.e., consisting only of the output layer). He needs help in figuring out
the precise formulation for machine learning. What is the best way
to encode the app characteristic ’Suitable for people ages (2–4, 5–10,
11–15, 16 and over)’ as a feature for an input to the neural network?
Choose from among the following: multiple unary features (one-hot
encoding), multiple binary features (thermometer encoding), an integer
or real-valued feature. Also give the exact function that maps each input
to its corresponding feature(s)."

0.761
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Table 9: Generating new questions: example of a new question for each topic automatically generated and the closest
question in the dataset based on cosine similarity of the questions embeddings.

Topic Question Similarity
Loss Functions Generated Question: “We have a data set of images, each of which is

either a picture of a dog or a picture of a cat. We want to train a binary
classifier to distinguish between the two classes. Which of the following
is a better choice of loss function for this task:
(a) The 0-1 loss, which gives a loss of 1 if the classifier predicts the
wrong class and a loss of 0 otherwise.
(b) The cross-entropy loss, which is given by -log(p) if the correct class
is predicted and -log(1-p) otherwise, where p is the predicted probability
of the correct class.
(c) The hinge loss, which is given by max(0, 1-s) if the correct class is
predicted and max(0, 1+s) otherwise, where s is the predicted score for
the correct class."

Closest Question: “Consider the following 2D dataset in (x,y) format:
((1,-1), +1), ((1,1), +1), ((1,2.5),+1), ((2,-2),-1), ((2,1),+1),((2,3),+1),((5,-
1),-1),((5,-2),-1). Break ties in distance by choosing the point
with smaller x1 coordinate, and if still tied, by smaller x2 coordi-
nate. Compute the leave-one-out cross validation accuracy of the
3-nearest-neighbor learning algorithm on this dataset."

0.790

Neural Networks Generated Question: “Consider a neural network with two hidden layers,
each with two units. The input layer has two units, and the output layer
has one unit. The hidden layers use the sigmoid activation function, and
the output layer uses the linear activation function. The weights from the
input layer to the first hidden layer are w11 = 1, w12 = 1, w21 = 1, and
w22 = 1. The weights from the first hidden layer to the second hidden
layer are w11 = 1, w12 = 1, w21 = 1, and w22 = 1. The weights from
the second hidden layer to the output layer are w11 = 1, w21 = 1. The
bias terms are all zero.
What is the output of the neural network for the input x1 = 1, x2 = 1?"

Closest Question: “A neural network is given as Z1 = X ∗ W 1,
A1 = f1(Z1), Z2 = W 2 ∗ A1, ŷ = f2(Z2). Specifically, the input X
is a 4× 1 column vector, ŷ is a 1× 1 scalar. W 2 is a 3× 1 vector. We
also know that, Z1 = (W 1)TX and Z2 = (W 2)TA1. What are the
dimensions of Z2?"

0.880

CNNs Generated Question: “Suppose we have a 3x3 image and we use a 2x2
filter with stride 1. What are the dimensions of the output image?"

Closest Question: “A neural network is given as Z1 = X ∗ W 1,
A1 = f1(Z1), Z2 = W 2 ∗ A1, ŷ = f2(Z2). There is only one data
point which is: X = [1, 1, 1, 1]T and y = [1]. If W 1 and W 2 are both
matrices/vectors of all ones, what is the resulting Loss where the Loss =
(y − ŷ)2?"

0.895
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Table 9: Generating new questions: example of a new question for each topic automatically generated and the closest
question in the dataset based on cosine similarity of the questions embeddings.

Topic Question Similarity
MDPs Generated Question: “Consider an MDP with four states, called A,B,C,

and D, and with two actions called Move and Stay. The discount factor
γ = 0.9. Here is a reminder of the Q-learning update formula, based on
experience tuple (s, a, r, s′) :

Q(s, a) := (1− α)Q(s, a) + α
(
r + γmax

a′
Q (s′, a′)

)
Let α = 1. Assume we see the following state-action-reward sequence:
A, Move, 0 B, Move, 0 C, Move, 1 A, Move, 0 B, Move, 0 C, Move, 1
With Q-values all starting at 0, we run the Q-learning algorithm on that
state-action sequence. Provide the q-learning value for Q(C, Move)."

Closest Question: “Consider an MDP with four states, called
A,B,C, and D, and with two actions called Move and Stay. The
discount factor γ = 0.9. Here is a reminder of the Q-learning update
formula, based on experience tuple (s, a, r, s′) :

Q(s, a) := (1− α)Q(s, a) + α
(
r + γmax

a′
Q (s′, a′)

)
Let α = 1. Assume we see the following state-action-reward sequence:
A, Move, 0 B, Move, 0 C, Move, 1 A, Move, 0 With Q-values all starting
at 0, we run the Q-learning algorithm on that state-action sequence.
Provide the q-learning value for Q(A, move).”

0.988

RNNs Generated Question: “Consider the following RNN: st =
tanh(w1xt + w2st−1 + b) , yt = w3st + b2 . Assume s0 = 0 and
b2 = 0. What values of w1, w2, w3 and b would generate output
sequence [0, 0, 0, 1, 1, 1, 1] given input sequence [0, 0, 0, 1, 0, 1, 0]”

Closest Question: “Ronnie makes a simple RNN with state dimension 1
and a step function for f1, so that st = step(w1xt +w2st−1 + b) where
step(z) = 1 if z > 0.0 and equals 0 otherwise, and where the output

yt = st .

Assuming s0 = 1, we want to generate output sequence [0, 0, 0, 1, 1, 1, 1]
given input sequence [0, 0, 0, 1, 0, 1, 0]. Rennie thinks this is not possible
using Ronnie’s architecture. Rennie makes an argument based on the
relationships in the table above. Is Rennie right?"

0.907

Reinforcement Learning Generated Question: “What is the tabular Q-learning update equation,
based on experience tuple (s, a, r, s′)?"

Closest Question: “b is the bias for classifier network. What
are dimensions of b for multi k-class classification?"

0.796
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Table 9: Generating new questions: example of a new question for each topic automatically generated and the closest
question in the dataset based on cosine similarity of the questions embeddings.

Topic Question Similarity
Clustering Generated Question: “Suppose that we have a dataset with n data points,

k clusters, and d features. After running the k-means algorithm, the
within-cluster sum of squared errors (WCSS) is given by:

1

n

n∑
i=1

∥xi − µyi
∥2

where yi is the cluster label of the ith data point, and µyi is the cluster
center associated with the ith data point. The within-cluster sum of
squared errors (WCSS) is a measure of how well the clusters fit the data.
Suppose that we have two datasets, X1 and X2, where X1 has n1 data
points and X2 has n2 data points. We run the k-means algorithm on
both datasets. We find that the WCSS for X1 is smaller than the WCSS
for X2. Does this imply that the clusters for X1 are better than the
clusters for X2? Why or why not?"

Closest Question: “Consider the following 2D dataset in (x,y) format:
((1,-1), +1), ((1,1), +1), ((1,2.5),+1), ((2,-2),-1), ((2,1),+1),((2,3),+1),((5,-
1),-1),((5,-2),-1). We will construct a tree using a greedy algorithm
that recursively minimizes weighted average entropy. Recall that the
weighted average entropy of a split into subsets A and B is: (fraction
of points in A) · H

(
RA

j,s

)
+ ( fraction of points in B) · H

(
RB

j,s

)
where the entropy H (Rm) of data in a region Rm is given by
H (Rm) = −

∑
k P̂mk log2 P̂mk. The P̂mk is the empirical probability,

which is in this case the fraction of items in region m that are of class
k. Some facts that might be useful to you: H(0) = 0, H(3/5) = 0.97,
H(3/8) = 0.95, H(3/4) = 0.81, H(5/6) = 0.65, H(1) = 0. Draw the
decision tree that would be constructed by our tree algorithm for this
dataset. Clearly label the test in each node, which case (yes or no) each
branch corresponds to, and the prediction that will be made at each leaf.
Assume there is no pruning and that the algorithm runs until each leaf
has only members of a single class."

0.767

Decision Trees Generated Question: “The Gini score is a measure of how often
a randomly chosen element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the subset. It
ranges from 0 to 1, with 0 meaning that there are no mislabeled elements
and 1 meaning that the subset is perfectly mixed. Explain whether or not
it would be a good idea to use the Gini score as a scoring function for
pruning decision trees."

Closest Question: “There are different strategies for pruning de-
cision trees. We assume that we grow a decision tree until there is one or
a small number of elements in each leaf. Then, we prune by deleting
individual leaves of the tree until the score of the tree starts to get worse.
The question is how to score each possible pruning of the tree. Here is a
definition of the score: The score is the percentage correct of the tree on
a separate validation set. Explain whether or not it would be a good idea
and give a reason why or why not."

0.867
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