
Under review as a conference paper at ICLR 2023

KNOW YOUR BOUNDARIES: THE ADVANTAGE OF
EXPLICIT BEHAVIORAL CLONING IN OFFLINE RL

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce an offline reinforcement learning (RL) algorithm that explicitly clones
a behavior policy to constrain value learning. In offline RL, it is often important to
prevent a policy from selecting unobserved actions, since the consequence of these
actions cannot be presumed without additional information about the environment.
One straightforward way to implement such a constraint is to explicitly model a
given data distribution via behavior cloning and directly force a policy not to select
uncertain actions. However, many offline RL methods instantiate the constraint
indirectly—for example, pessimistic value estimation—due to a concern about
errors when modeling a potentially complex behavior policy. In this work, we
argue that it is not only viable but beneficial to explicitly model the behavior policy
for offline RL because the constraint can be realized in a stable way with the
explicitly cloned model. We first suggest a theoretical framework that allows us to
incorporate behavior-cloned models into value-based offline RL methods, enjoying
the strength of both explicit behavior cloning and value learning. Then, we propose
a practical method utilizing a score-based generative model for behavior cloning
to better handle the complicated behaviors that an offline RL dataset might contain.
The proposed method shows state-of-the-art performance on several datasets within
the D4RL and Robomimic benchmarks and achieves competitive performance
across all datasets tested.

1 INTRODUCTION

The goal of offline reinforcement learning (RL) is to learn a policy purely from pre-generated data.
This data-driven RL paradigm is promising since it opens up a possibility for RL to be widely applied
to many realistic scenarios where large-scale data is available.

Two primary targets need to be considered in designing offline RL algorithms: maximizing reward
and staying close to the provided data. Finding a policy that maximizes the accumulated sum of
rewards is the main objective in RL, and this can be achieved via learning an optimal Q-value function.
However, in the offline setup, it is often infeasible to infer a precise optimal Q-value function due
to limited data coverage (Levine et al., 2020; Liu et al., 2020); for example, the value of states not
shown in the dataset cannot be estimated without additional assumptions about the environment. This
implies that value learning can typically be performed accurately only for the subset of the state (or
state-action) space covered by a dataset. Because of this limitation, offline RL algorithms should
implement some form of imitation learning objectives that can force a policy to stay close to the
given data. Because of this limitation, some form of imitation learning objectives that can force a
policy to stay close to the given data warrants consideration in offline RL.

Recently, many offline RL algorithms have been proposed that instantiate an imitation learning
objective without explicitly modeling the data distribution of the provided dataset. For instance, one
approach applies the pessimism under uncertainty principle in value learning (Buckman et al., 2020;
Kumar et al., 2020; Kostrikov et al., 2021a) in order to prevent out-of-distribution actions from being
selected. While these methods show promising practical results for certain domains, it has also been
reported that such methods fall short compared to simple behavior cloning methods (Mandlekar et al.,
2021; Florence et al., 2021) which only model the data distribution without exploiting any reward
information. We hypothesize that this deficiency occurs because the imitation learning objective in
these methods is only indirectly realized without explicitly modeling the data distribution (e.g. by

1

Under review as a conference paper at ICLR 2023

pessimistic value prediction). Such an indirect realization could be much more complicated than
simple behavior cloning for some data distributions since it is often entangled with unstable training
dynamics caused by bootstrapping and function approximation. Hence, implicit methods are prone to
over-regularization (Kumar et al., 2021) or failure, and they may require delicate hyperparameter
tuning to prevent this deficiency (Emmons et al., 2022). Yet, at the same time, it is obvious that
simple behavior cloning cannot extract a good policy from a data distribution composed of suboptimal
policies.

To this end, we ask the following question in this paper: Can offline RL benefit from explicitly
modeling the data distribution via behavior cloning no matter what kind of data distribution is given?
Previously, there have been attempts to use an explicitly trained behavior cloning model in offline
RL (Wu et al., 2019; Kumar et al., 2019; Fujimoto et al., 2019; Liu et al., 2020), but we argue that two
important elements are missing from existing algorithms. First, high-fidelity behavior cloning has not
been achieved, despite the need in offline RL for precise estimation of behavior policy (Levine et al.,
2020). First, high-fidelity generative models have not been integrated with offline RL algorithms even
though inaccurate estimation of behavior policy could limit the final performance of the algorithm
(Levine et al., 2020). Florence et al. (2021) have tried an energy-based generative model, but the
proposed method is an imitation learning that does not incorporate a value function. Second, the
trained behavior cloning models have only been utilized with heuristics or proxy formulations that
are only empirically justified (Wu et al., 2019; Kumar et al., 2019). Second, the trained behavior
cloning models have only been utilized with certain limited forms, such as KL (Wu et al., 2019) or
MMD (Kumar et al., 2019) divergence between the cloned policy and an actor policy. Therefore, we
tackle these two problems by: first, incorporating a state-of-the-art score-based generative model
(Song & Ermon, 2019; 2020; Song et al., 2021) to fulfill the high-fidelity required for offline RL,
and second, by proposing a theoretical framework, direct Q-penalization (DQP), that provides a
mechanism to integrate the trained behavior model into value learning. Furthermore, DQP can
provide an integrated view of different offline RL algorithms, helping to analyze the possible failures
of these algorithms.

We evaluate our algorithm on various benchmark datasets that differ in quality and complexity, namely
D4RL and Robomimic. Our method shows not only competitive performance across different types
of datasets but also state-of-the-art results on complex contact-rich tasks, such as the transport and
tool-hang tasks in Robomimic. The results demonstrate the effectiveness of the proposed algorithm
as well as the practical advantage of explicit behavior cloning, which was previously considered a
bottleneck that would limit the final offline RL performance (Levine et al., 2020) unnecessary or
infeasible.

To summarize, our contributions are: (1) We provide a theoretical framework for offline RL, DQP,
which provides a unified view of previously disparate offline RL algorithms; (2) Using DQP, we
suggest a principled offline RL formulation that incorporates an explicitly trained behavior cloning
model; (3) We propose a practical algorithm that instantiates the above formulation, leveraging a
score-based generative model; and (4) we achieve competitive and state-of-the-art performance across
a variety of offline RL datasets.

2 RELATED WORKS

The end goal of offline RL is to extract the best possible policy from a given dataset, regardless of
the quality of the trajectories that compose the dataset (Ernst et al., 2005; Riedmiller, 2005; Lange
et al., 2012; Levine et al., 2020). One of the simplest approaches to tackle this problem is imitation
learning (IL) (Schaal, 1999; Florence et al., 2021) hoping to recover the performance of the behavior
policy which generated the dataset. However, simple imitation would fail to achieve the end goal of
offline RL since one cannot outperform the behavior policy by just imitating it.

This problem is commonly addressed with value learning, trying to resolve the distribution shift
problem that arises in the offline setup. Since distribution shift commonly results in overestimation
of values, offline RL algorithms try to estimate values pessimistically for out-of-distribution inputs
(Kumar et al., 2020; Goo & Niekum, 2021), sometimes by explicitly quantifying the certainty with
a trained transition dynamics model (Yu et al., 2020; Kidambi et al., 2020), a generative model
(Rezaeifar et al., 2021), or a pseudometric (Dadashi et al., 2021). The distribution shift is also
commonly addressed by constraining a policy to be close to the behavior one. Specifically, based on

2

Under review as a conference paper at ICLR 2023

how the constraint is instantiated, policy-constraint methods can be further categorized into implicit
methods, which constrain a policy via weighted behavior cloning or linear gradient combination
(Peng et al., 2019; Wang et al., 2020; Kostrikov et al., 2021b; Brandfonbrener et al., 2021; Fujimoto
& Gu, 2021; Wang et al., 2022), and explicit methods (Fujimoto et al., 2019; Kumar et al., 2019;
Wu et al., 2019; Liu et al., 2020), which constrain the policy learning via value penalty or policy
regularization.

We generally follow the learning structure of the explicit policy-constraint method. Especially, our
offline RL algorithm is closely related to the works of Fujimoto et al. (2019); Wu et al. (2019);
Liu et al. (2020) in which a behavior policy β is explicitly cloned first, and the cloned policy is
directly used to instantiate the policy-constraint. However, we try to enhance its performance by first,
suggesting a principled policy-constraining method that utilizes the cloned policy, and second, using
a powerful generative model for explicit behavior cloning that can greatly reduce the BC error and
thereby allow precise policy regularization.

Concurrent with our work, Wang et al. (2022) propose an offline RL algorithm that leverages a
diffusion-based generative model. Their method is based on the works of Fujimoto & Gu (2021)
in which the ordinary actor loss is linearly combined with behavior cloning loss. The proposed
algorithm is simple and minimalistic, but the theoretical justification of the approach has not been
fully addressed.

3 PRELIMINARIES

We use a Markov Decision Process (MDP) as a foundation for our mathematical framework. An
MDP is defined by a tupleM = (S,A, T, d0, r, γ); a set of states s ∈ S, a set of actions a ∈ A,
transition dynamics T = p(s′|s, a), an initial state distribution d0(s0), a reward function r(s, a), and
a discount factor γ. In this setup, the goal of reinforcement learning is to find an optimal policy
π∗(a|s) that maximizes the expected sum of discounted reward (return) J(π):

π∗ = argmax
π

J(π) = argmax
π

Eτ∼ρπ

[
H∑
t=0

γtr(st, at)

]
, (1)

where τ is a sequence of states and actions (s0, a0, · · · , sH , aH) of length H , and ρπ is a trajectory
distribution of a policy π, which can be represented as ρπ(τ) = d0(s0)

∏H
t=0 π(at|st)T (st+1|st, at).

We can directly optimize the return when we can compute the gradients of J(πϕ) with respect to
the policy parameters ϕ (Williams, 1992; Schulman et al., 2017; 2015), but this approach is not
straightforwardly extend to an offline setting since on-policy data is typically required to compute
the gradient. Instead, it is more common for offline RL methods to extend dynamic programming
approaches which are formed around the action value function Qπ(s, a) which is formally defined
as: Qπ(st, at) = Eτ∼ρπ(st,at)

[∑H
t′=t γ

t′−tr(st′ , at′)
]
. The Q function of a certain policy πk

always implies a greedy policy πk+1, which is better than or equal to the evaluation target policy πk.
Therefore, an optimal policy can be found by iteratively evaluating a Q function for a new greedy
policy πk+1 until convergence:{

Qπk = limn→∞
(
Bπk

)n
Qπk−1 (policy evaluation),

πk+1(a|s) = argmaxa Qπk(s, a) (policy improvement),
(2)

where Bπ is the Bellman operator, which has the ground truth Qπ as a unique fixed point (Lagoudakis
& Parr, 2003). This algorithm is called policy iteration. Although the convergence of the algorithm is
restricted to the scenario where the unique fixed point is reachable (Sutton & Barto, 2018), policy
iteration has been widely used as a backbone for most offline RL algorithms due to its extensibility
to off-policy data; policy evaluation can be done with off-policy data using bootstrapping. When
the value function and the policy are represented with parameters θ and ϕ respectively, the policy
iteration algorithm with bootstrapping has the following form:

θk+1 ← argminθ Es,a,r,s′∼D
[
d
(
Qθ(s, a), r + γEa′∼πk(a′|s′)Qk(s

′, a′)
)]

ϕk+1 ← argmaxϕ Es∼D,a∼πϕ(a|s)

[
Qk+1(s, a)

] (3)

3

Under review as a conference paper at ICLR 2023

where k is an update step, d is a distance metric such as squared l2 or Huber loss, and D is a provided
(offline) dataset that contains transition tuples D = (s, a, r, s′). For the brevity of notation, we denote
Qθk := Qk and πϕk

:= πk.

4 METHOD

In this paper, we consider offline RL algorithms that utilize the policy iteration scheme shown in
Eq. 3, which covers several offline RL methods (Kumar et al., 2020; 2019; Wu et al., 2019). In
this family of methods, the correctness of the value function becomes the major concern since the
policy evaluation could diverge due to the data restriction imposed by the offline setup. Specifically,
divergence can happen because of the bootstrapping and the function approximation; when some
estimates are erroneously high due to poor generalization, the over-estimated values are likely to
be picked up on the policy improvement step and feed back to policy evaluation via bootstrapping,
completing a vicious cycle that causes training to diverge. Therefore, offline RL methods focus on
solving the overestimation problem with different regularization methods, such as policy constraints
(Kumar et al., 2019; Wu et al., 2019) or pessimism (Kumar et al., 2020; Goo & Niekum, 2021).

One straightforward solution to the over-estimation problem is directly penalizing Q estimation (Reza-
eifar et al., 2021; Dadashi et al., 2021) with a penalty function p(s, a): Q̃θ(s, a) = Qθ(s, a)−p(s, a).
This can be a solution because this penalty function, if chosen carefully, can reduce erroneously
high values and prevent them from being propagated via bootstrapping. We refer to this family of
algorithms as Direct Q penalization (DQP).

In DQP, we can easily observe that the penalty function that describes the oracle Q estimation error
(i.e. p(s, a) = Qθ − Qπϕ) is the best solution. Therefore, we want to design a penalty function
that resembles the oracle error. Since the estimation error is likely to occur more often for out-of-
distribution state-action pairs (s, a′) /∈ D, a few ad-hoc methods have been proposed for the purpose
of measuring the eestimation error or epistemic uncertainty of Qθ; the aleatoric uncertainty of the
transition dynamics model is suggested as a proxy for the epistemic uncertainty of Qθ (Yu et al.,
2020), and generative models (Rezaeifar et al., 2021) or pseudometrics (Dadashi et al., 2021) are
proposed with the purpose of distinguishing whether a particular (s, a) is in-distribution or not.

However, it has not been thoroughly investigated how penalty functions affect the policy iteration
process, nor what penalty functions are best for offline RL. Without answers to these questions,
DQP methods can only be understood as ad-hoc methods in which heuristically designed penalty
functions are used to prevent the overestimation. DQP provides a unified way to represent different
offline RL algorithms in terms of penalty functions. However, in order for a unified perspective
to provide a better understanding of offline RL algorithms and thereby be useful for developing
better offline RL algorithms, it is necessary to investigate the effect of the penalty function under the
policy iteration scheme. To this end, we address the following questions: (1) What is the effect of
direct Q-penalization in the context of the policy iteration framework?; (2) How can we design an
appropriate penalty function based on this analysis?; (3) How can we instantiate the penalty function
and achieve strong performance across different offline RL datasets?

4.1 THEORETIC BACKGROUND ON DIRECT Q-PENALIZATION

We describe a theorem that answers the first question: soft policy iteration (Haarnoja et al., 2018)
with a penalized value function Q̃ is equivalent to policy iteration regularized by DKL

(
π(s)∥πp(s)

)
where πp(a|s) := softmax

(
− p(s, a)

)
. This theorem is a generalized version of the theorem shown

in (Rezaeifar et al., 2021), which does not require unnecessary assumptions on the penalty function.

Theorem 1 (Equivalence between KL-policy regularization and DQP). The following two algorithms
are equivalent.
Policy iteration w/ KL-policy regularization:

θk+1 ← argminθ Es,a,r,s′∼D
[
d
(
Q(s, a), r + γ⟨πk, Qk⟩(s′)− γDKL

(
πk(s

′)∥πp(s′)
))]

ϕk+1 ← argmaxϕ Es∼D
[
⟨πϕ, Qk+1⟩(s)−DKL

(
πϕ(s)∥πp(s)

)]
.

4

Under review as a conference paper at ICLR 2023

Soft policy iteration (Haarnoja et al., 2018) w/ penalty:
θk+1 ← argminθ Es,a,r,s′∼D

[
d

(
Q(s, a), r + γ

(
⟨πk, Qk − p⟩(s′)− Z(s′) + H

(
πk(s

′)
)))]

ϕk+1 ← argmaxϕ Es∼D
[
⟨πϕ, Qk+1 − p⟩(s) + H

(
πϕ(s)

)]
where d is a distance metric, ⟨u1, u2⟩ :=

∑
a u1(·, a)u2(·, a), and Z(s) = ln

∑
a exp

(
− p(s, a)

)
.

Proof. The common term in KL policy regularization can be rearranged as follows:

⟨π,Q⟩(s)−DKL

(
π(s)∥πp(s)

)
= ⟨π,Q⟩(s)− ⟨π, lnπ − lnπp⟩(s)
= ⟨π,Q+ lnπp⟩(s)− ⟨π, lnπ⟩(s)
= ⟨π,Q− p⟩(s)− Z(s) + H

(
π(s)

)
.

Then, we can get the equivalence when we replace the term with the rearranged term. Note that the
normalization term Z(s) can be dropped in the policy update step since Z(s) is not a function of ϕ.
Also, we can safely ignore Z(s) in the policy evaluation step when |Z(s)− Z(s′)| < ϵ for any pair
of (s, s′) ∈ S × S , because it does not affect the policy improvement step.

The theorem is straightforward since it describes a special case of regularized policy iteration Geist
et al. (2019), namely KL-control (Peters et al., 2010; Schulman et al., 2015), in which the policy is
regularized through KL-divergence with respect to another policy. Yet, the theorem shows a way
to interpret any penalty function from the point of view of KL-control and vice versa. Therefore,
by using the theorem, we can have a unified view of previously disparate offline RL algorithms.
In Table 1, we compare different offline RL algorithms in terms of the penalty function that each
algorithm uses.

4.2 WHAT MAKES A GOOD PENALTY FUNCTION?

Theorem 1 shows the connection between a penalty function and its effect as a policy regularizer,
and can help to guide the construction of an effective, principled penalty function. Specifically, we
propose a penalty function that can instantiate the support set constraint (Kumar et al., 2019; Liu
et al., 2020), which restricts the action space of a trained policy to be in the support set of the behavior
policy β(a|s). The support set constraint is an effective way to solve the offline RL problem in that
the suboptimality caused by the constraint is bounded (Kumar et al., 2019; Liu et al., 2020). While
previous works express the constraint in terms of the distribution-constrained Bellman operator, we
represent the constraint via a penalty function since it allows us to compare different offline RL
algorithms under the same viewpoint, helping to analyze the possible failures of these algorithms.

The following penalty function instantiates the support set constraint:

p(s, a) =

{
0 for {(s, a)|β(a|s) ≥ ϵ}
∞ otherwise

(4)

where ϵ is a threshold hyperparameter to decide whether (s, a) is considered out-of-support or not.
The penalty function carries the same effect as the filtration operator in (Liu et al., 2020) under the
policy iteration scheme. This is because the function prevents out-of-support actions from being
chosen by the policy while it imposes no preference over in-support actions; a rare action that has not
occurred often in a dataset can be selected as long as it provides a high Q value. This indifference is
a desirable property when good trajectories compose only a small portion of a dataset, since good
actions could be drowned out by more frequent actions if the penalty function is designed to prefer
more frequent actions.

We can also confirm the characteristics of the penalty function by observing the flip side: the penalty-
induced policy πp and the KL-constraint DKL(π∥πp). Since the reverse KL term makes π seek
a mode of πp which is the uniform distribution for the in-support actions, the policy π is guided
to select one of the actions in the support set while there is no preference over actions in the set.
Therefore, the penalty function instantiates the support set constraint.

5

Under review as a conference paper at ICLR 2023

Given the proposed penalty function, the similarity between different offline RL methods can be
observed. For instance, we can see that BRAC-KL and CQL penalize the out-of-support actions
infinitely: when β(a|s) is zero, the penalty becomes infinite. However, some discrepancies can also
be noted, and this provides some hints on how and why other methods could fail due to excessive or
insufficient pessimism.

First, BRAC-KL could fail because it prefers actions that are more frequently executed by the behavior
policy. This can be easily seen from the KL-policy regularization perspective. Since πp(s) = β in
BRAC-KL, the penalty would make a policy to seek the mode of β(a|s) when the KL regularization
term dominates the policy update. Therefore, the algorithm could work like behavior cloning that
disregards rare but good actions in the provided dataset. CQL could also exhibit a similar problem
since the penalty function is defined with β. Like BRAC-KL, when the value function implied policy
µk selects an action that is infrequent in β, it will be harshly penalized. Especially when CQL is
tuned to strongly penalize the out-of-support action (i.e., αk is large), it could force the policy to
mimic the dataset (Kumar et al., 2021). Similarly, TD3+BC and Diffusion RL (Wang et al., 2022)
could suffer from the same problem when the penalty strength α is not properly tuned.

Another common problem that arises in other penalty functions is their use of proxies and their formu-
lation that replace the β(a|s); for example, a conditional variational autoencoder (CVAE)(Rezaeifar
et al., 2021), a pseudometric (Dadashi et al., 2021), or a transition dynamics model (Yu et al., 2020)
are estimated instead of the behavior policy β, and penalty functions are designed heuristically with
the proxy estimates. While such formulations could show some positive correlation to the suggested
penalty function, there is no clear connection that allows us to interpret the penalty in terms of β or
the support set.

BEAR, on the other hand, is designed to implement the support set constraint as ours, so it could
avoid the problem of BRAC-KL or CQL that prefers more frequent actions. However, BEAR could
be inaccurate since they instantiate the constraint without explicitly modeling the behavior policy
β. Especially, they resort to maximum mean discrepancy (MMD) distance since it can be computed
only using the samples from a dataset, but the use of the distance metric is only empirically justified
(Kumar et al., 2019). In contrast, we directly instantiate the support set constraint by explicitly
modeling the behavior policy.

4.3 PRACTICAL IMPLEMENTATION

We now propose a practical algorithm that instantiates the penalty function designed above. Essen-
tially, the designed penalty function serves to determine whether an action a at a certain state s is
likely to be executed by the behavior policy β. Therefore, we can implement the penalty function
simply by cloning the behavior policy explicitly and checking the likelihood β(a|s) with the cloned
model.

There have been other research works that have tried to model a behavior policy using generative
models, such as variational auto-encoders (VAEs) (Fujimoto et al., 2019; Rezaeifar et al., 2021).
However, the performance of these approaches is limited compared to methods that do not explicitly
clone the behavior policy β. We presume that the reason for this failure is the limited expressivity of
the generative model; since the behavior policy β can be complex, discontinuous, and multi-modal,
only a very expressive model can successfully model the policy. To this end, we chose to use a

Table 1: The penalty functions of different offline RL algorithms.

p(s, a) Remark

BRAC-KL − log β(a|s)
BRAC-MMD2 MMD2(πk, β)
TD3+BC −α(a− β(s))2 Wang et al. (2022) is also similar.
Anti-Exploration α|a− Dec(Enc(s, a))|22 Enc and Dec are conditional VAE.
PLOFF α1Qk(s, a) exp(−α2 D(s, a)) D is pseudometric.
MOPO α|Σ(s, a)| Σ is the std. of the trained T .
CQL αk[

µk

β − 1] µk is the soft-policy given Qk.

6

Under review as a conference paper at ICLR 2023

score-based generative model (Song & Ermon, 2019; 2020; Song et al., 2021), which has recently
shown great success in generating high-quality images. Furthermore, the score-based generative
model allows an exact likelihood computation which is essential in instantiating the penalty function.
We briefly examine the ability of the score-based generative model using four discontinuous multi-
modal distributions, and the results are shown in Figure A.1. In all four cases, the inferred probability
distribution is very sharp, and its log probability resembles the penalty function we proposed.

In the score-based generative model, a target distribution p(x) is indirectly expressed and trained
in the form of the gradient of a log probability density function ∇x log p(x), often referred to as
the (Stein) score function (Liu et al., 2016). When we approximate the score function of a behavior
policy β(a|s) accurately via score-matching algorithm (i.e. sψ(a|s) ≈ ∇aβ(a|s)) (Song & Ermon,
2019), we can instantiate the penalty function with a hyperparameter ϵ which decides whether a
certain action a given s is considered to be sufficiently in-support or not. While this formulation
allows direct instantiation of the penalty function that can be plugged into the DQP framework, it is
computationally prohibitive. This is because, first, we need to run an iterative algorithm to compute
the log-likelihood from the score function, and second, it could hurt the generalization performance
of the value function since Q has to output an extremely wide range of values including negative
infinity. Therefore, we propose a practical approximation of the policy iteration algorithm that utilizes
the proposed penalty function.

The key observation is that the policy trained on top of the penalized value function will never select
out-of-support actions due to penalization. This allows two modifications to the original policy
iteration algorithm: First, we can perform policy evaluation only considering in-support state-action
pairs; i.e., we can bootstrap from one of the samples from β(a|s), and we can skip the penalty
computation since the penalty is zero for in-support data-points under the suggested penalty function.
While sampling using the score function also requires expensive iterative computation, we can greatly
reduce the computation by prepopulating samples for states that exist in the dataset and repeatedly
using it in the policy evaluation step. Specifically, the policy evaluation is done with the following
loss function:

Lpolicy-eval = Es,a,r,s′∼D
[
d

(
Qθ(s, a), r + γ K-th

a′∈ŝupp(β(s′))

[
Qθ̃(s

′, a′)
])]

(5)

where Qθ̃ is a slowly updated target network, ŝupp(β) is a set of samples approximating supp(β),
and K-th is an operator that selects the K-th item among candidates. When K = 1, it becomes max
operator. Both Qθ̃ and K-th operators are adapted to stabilize the learning.

Second, we can skip the policy improvement step since policy evaluation is done with pre-generated
samples, not depending on any parameterized policy. Instead, we can define an implicit policy using
the last Qθ and sψ:

π(a|s) =
exp

(
αQθ(s, a)

)∑
a′∈ŝupp(β) exp

(
αQθ(s, a′)

) or
exp

(
αA(s, a)

)∑
a′∈ŝupp(β) exp

(
αA(s, a′)

) (6)

where A(s, a) = Qθ(s, a) − 1
|ŝupp(β)|

∑
a′∈ŝupp(β) Qθ(s, a

′) is an advantage function, and α is a
temperature parameter that controls the policy softness with regard to the Q or A; when α is zero or
infinity, the resulting policy becomes β(a|s) or greedy with regard to Qθ, respectively. To sample an
action from the policy π, we can sample one action from an empirical action distribution consisting
of samples generated from β on the fly. Alternatively, we can also train parameterized policy πϕ(a|s)
using advantage-weighted regression (AWR) (Neumann & Peters, 2008; Peng et al., 2019) with the
advantage function A(s, a).

The resulting algorithm can be regarded as one special type of Q-learning in which we restrict
the domain of the maximum operator to in-support actions. We refer to this algorithm as Action-
Restricted Q-learning (ARQ). The pseudocode of ARQ is shown in Algorithm 1. Also, ARQ can be
seen as an extension of MBS-QI (Liu et al., 2020) in that it makes the existing algorithm applicable
to MDP with a continuous action space. Note that ARQ is one way to instantiate the penalty function,
mainly due to the expensive computational cost of the score-based generative model. We discuss
about other possible instantiations in the discussion section.

7

Under review as a conference paper at ICLR 2023

Algorithm 1: Action-Restricted Q-learning (ARQ)
Input :Dataset D = {(s, a, r, s′)}, Hyperparameter N , ϵ, K, α
Initialize sψ(a|s), Qθ(s, a), and πϕ(a|s) (if needed)
Train sψ with a score matching algorithm (Song et al., 2021)
Sample N in-support actions for s ∈ D (i.e., βψ(a|s) > ϵ)
while until convergence do

Update θ with∇θLpolicy-eval (Eq. 5)
while until convergence do

Update ϕ with∇ϕ − Es,a∼D
[
eαA(s,a) log πϕ(a|s)

]
; AWR

return sψ , Qθ, and πϕ

5 EXPERIMENTS

Our empirical goal is to design an algorithm that enjoys the strength of both explicit behavior cloning
and value learning. Therefore, the main goal of the experiments is to check whether the proposed
algorithm ARQ achieves competitive performance on different types of datasets, ranging from a
dataset that consists of near-optimal data in which explicitly cloning a behavior is adequate, to a
dataset containing various suboptimal trajectories in which learning a value function is necessary.

The implementation of ARQ consists of four steps: score-based generative model sψ learning,
sampling, Q-learning Qθ, and optional explicit policy πϕ training. As for the hyperparameters, we
tune the hyperparameters K and α for each group of datasets using random search while we use
N = 30 and ϵ = e−5 (i.e., 30 samples are generated and dropped if the likelihood is lower than
ϵ = e−5) all across the datasets tested. For the detailed implementation details and hyperparameters,
please refer Appendix A.2 or the provided code 1.

The proposed method is evaluated on various simulated benchmark datasets from simple low-
dimensional locomotion tasks to complex contact-rich manipulation tasks. Specifically, we use
locomotion (Brockman et al., 2016), Adroit (Rajeswaran et al., 2018), Kitchen (Gupta et al., 2019),
and Antmaze tasks in D4RL (Fu et al., 2020), and six manipulation tasks in Robomimic (Mandlekar
et al., 2021). We use medium-replay, medium, expert, and medium-expert datasets of the locomotion
task. We use machine-generated (mg.), proficient-human (ph.), and multi-human (mh.) datasets
of Robomimic, each of which consists of a replay buffer of an SAC training run, trajectories of a
proficient human demonstrator, and trajectories of multiple human demonstrators with different levels
of proficiency.

We compare the proposed method to behavior cloning baselines, specifically ordinary BC and implicit
behavior cloning (Florence et al., 2021), and prior state-of-the-art offline RL methods. Namely, we
compare the performance of our method with TD3+BC (Fujimoto & Gu, 2021), Decision Transformer
(DT) (Chen et al., 2021), One-step RL (Brandfonbrener et al., 2021), CQL (Kumar et al., 2020), and
IQL (Kostrikov et al., 2021b). The aggregated results are displayed in Table 2.

The proposed algorithm ARQ shows competitive performance on all ranges of datasets, from near-
optimal ones in which simple behavior cloning is sufficient, to suboptimal datasets in which value
learning is necessary. Also, ARQ exhibits state-of-the-art performance on complex and contact-rich
tasks, such as adroit, kitchen, and Robomimic datasets. The results indicate the practical effectiveness
of the proposed algorithm, as well as the advantage of performing behavior cloning explicitly with
high-fidelity models.

To examine the importance of each component in ARQ, we run two ablations; we evaluate an implicit
policy defined only with sψ without any value function, and an implicit policy incorporating Qβ

instead of ARQ. The results of the ablations affirm our hypotheses. First, when the dataset is near-
optimal (e.g., adroit-human or proficient-human datasets), explicitly modeling the behavior policy
can address the problem, and similar performance is obtained when we use ARQ. Next, we confirm
the necessity of value learning and the ability of ARQ in leveraging the explicitly cloned behavior
model in learning a value function. Especially in the tasks where trajectory stitching is required (e.g.,
kitchen and antmaze datasets), we can see performance improvement from sψ and Q(β) + sψ to
ARQ+sψ , and we achieve state-of-the-art performance with the help of the explicit models.

1Please see the attached supplementary files. The code will be disclosed to public upon publication.

8

Under review as a conference paper at ICLR 2023

Table 2: Aggregated performance of prior methods, ours, and two ablations (sψ and Q(β) + sψ) on
D4RL (Fu et al., 2020) and Robomimic (Mandlekar et al., 2021) datasets. Each number represents
the mean relative performance over 100 episodes. 0 and 100 represent the performance of random
and expert policy, respectively. Unless noted as (ours) or (repro.), all the numbers are borrowed from
Kostrikov et al. (2021b); Fujimoto & Gu (2021); Mandlekar et al. (2021). The numbers generated by
us are averaged over 3 different random seeds. We run IQL on Robomimic by ourselves using the
author-provided implementation.

Without reward With Qβ With reward / value function

BC Impl.
BC

sψ
(ours)

One-
step

Q(β)
+sψ

(ours)
DT TD3

+BC CQL IQL
ARQ
+πϕ

(ours)

ARQ
+sψ

(ours)
locomtion-v2 (total) 739 521 639 911 992 996 1007 1000 947

adroit-v0 (total) 105 116 160 94 118 95 161
human-v0 (total) 67 99 87 - 89 - - 52 77 45 90
cloned-v0 (total) 37 - 29 62 71 - - 42 41 50 71

kitchen-v0 (total) 155 160 170 186 145 160 126 204
complete 65 85 74 - 75 - - 44 63 37 77

partial 38 38 45 - 59 - - 50 46 50 70
mixed 52 38 51 - 52 - - 51 51 39 57

antmaze-v0 (total) 100 121 125 215 112 164 304 378 416 327

umaze 55 - 58 64 81 59 79 74 88 97 94
umaze-div. 46 - 61 61 62 53 71 84 62 62 58
med.-play 0 - 1 0 25 0 11 61 71 80 69
med.-div. 0 - 1 0 45 0 3 54 70 82 65
large-play 0 - 0 0 1 0 0 16 40 37 18
large-div. 0 - 0 0 1 0 0 15 48 58 23

D4RL (total) 1,099 1,046 1,472 1,538 1,663 1,637 1,639

BC⋆ sψ
(ours)

Q(β)
+sψ

(ours)
BCQ⋆ CQL⋆ IQL

(repro.)

ARQ
+πϕ

(ours)

ARQ
+sψ

(ours)
robomimic (total) 701 644 749 592 281 342 659 750

mg.-lift 65 29 86 91 64 79 79 82
mg.-can 65 19 55 75 1 62 76 60
ph.-lift 100 99 100 100 93 58 100 98
ph.-can 95 95 93 89 38 26 92 95

ph.-square 79 66 72 50 5 24 44 69
ph.-transport 17 27 28 7 0 1 29 30
ph.-toolhang 29 70 64 0 0 3 3 71

mh.-lift 100 96 94 100 57 51 99 95
mh.-can 86 84 89 63 22 25 90 86

mh.-square 53 44 51 14 1 12 31 51
mh.-transport 11 15 17 3 0 0 16 13

D4RL + robomimic 1,799 1,690 2,221 1,818 2,005 2,296 2,389
⋆ represents that the best performance during training iterations is picked a posteriori.

It is also noteworthy that the ablated method with Qβ shows competitive results on a large number
of benchmarks. Echoing prior research (Goo & Niekum, 2021; Brandfonbrener et al., 2021), these
results indicate that the vast majority of offline RL benchmarks can be resolved without iterative
value learning, while most offline RL algorithms tackle problems that arise from it. Therefore, in
order to fairly evaluate the offline RL algorithms and thereby foster the advance of the offline RL
field, it is essential to focus on environments that require value learning (e.g., antmaze) or develop
new benchmarks.

6 DISCUSSION

We investigate an offline RL algorithm that combines explicit behavior cloning and value learning. We
provide a theoretical framework, DQP, which enables various offline RL algorithms to be expressed
in terms of different penalty functions, and we derive a principled penalty function that can leverage
a behavior cloning model. Then, we provide a practical algorithm, ARQ, which realizes the derived

9

Under review as a conference paper at ICLR 2023

penalty function. We implement the algorithm with a powerful generative model to maximize the
full potential of ARQ. As a result, the proposed algorithm shows competitive results on most of the
D4RL and Robomimic benchmarks and yields state-of-the-art results in several tasks. This indicates
that the common presumption—that it is unnecessary or infeasible to estimate a behavior policy in
offline RL—is likely incorrect. These results indicate that explicitly cloning a behavior policy can be
actually advantageous, which has been avoided because of the performance limitations that can arise
from inaccurate modeling of the policy.

The major drawback of the proposed algorithm is the computationally expensive sampling procedure.
While it needs to be computed only once before the value learning step, it can take several hours to
generate samples (90K samples are generated per hour on our in-house workstation with an Nvidia
GTX 1080 Ti). Therefore, future research may examine how to reduce computational burden, for
instance, by using different generative models for behavior cloning. Or, it may be possible to devise
a method that directly utilizes the score function under the actor-critic framework; since the actor
update step with the penalized Q function (Q̃ = Q− p) only requires a gradient of p, not an exact
penalty value, the computational bottleneck may be avoided if the gradient of the penalty function
can be computed directly from the score function.

REFERENCES

David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without
off-policy evaluation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=LU687itn08w.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in fixed-dataset
policy optimization. arXiv preprint arXiv:2009.06799, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34, 2021.

Robert Dadashi, Shideh Rezaeifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, and Matthieu
Geist. Offline reinforcement learning with pseudometric learning. In ICML, pp. 2307–2318, 2021.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline RL via supervised learning? In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=S874XAIpkR-.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6, 2005.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In 5th
Annual Conference on Robot Learning, 2021. URL https://openreview.net/forum?
id=rif3a5NAxU6.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In International Conference on Machine Learning, pp. 2160–2169. PMLR, 2019.

10

https://openreview.net/forum?id=LU687itn08w
https://openreview.net/forum?id=LU687itn08w
https://openreview.net/forum?id=S874XAIpkR-
https://openreview.net/forum?id=rif3a5NAxU6
https://openreview.net/forum?id=rif3a5NAxU6

Under review as a conference paper at ICLR 2023

Wonjoon Goo and Scott Niekum. You only evaluate once: a simple baseline algorithm for offline
RL. In 5th Annual Conference on Robot Learning, 2021. URL https://openreview.net/
forum?id=GIgsuWifgIi.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. Conference on
Robot Learning (CoRL), 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1861–1870, 2018. URL http://proceedings.mlr.press/
v80/haarnoja18b.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
21810–21823. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774–5783. PMLR, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021b.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems 32, pp. 11784–11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for offline
model-free robotic reinforcement learning. In 5th Annual Conference on Robot Learning, 2021.
URL https://openreview.net/forum?id=fy4ZBWxYbIo.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4:1107–1149, 2003.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pp. 45–73. Springer, 2012.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-of-fit tests.
In International conference on machine learning, pp. 276–284. PMLR, 2016.

11

https://openreview.net/forum?id=GIgsuWifgIi
https://openreview.net/forum?id=GIgsuWifgIi
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.neurips.cc/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://openreview.net/forum?id=fy4ZBWxYbIo

Under review as a conference paper at ICLR 2023

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, 2020.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
human demonstrations for robot manipulation. In 5th Annual Conference on Robot Learning, 2021.
URL https://openreview.net/forum?id=JrsfBJtDFdI.

Gerhard Neumann and Jan Peters. Fitted q-iteration by advantage weighted re-
gression. In Advances in Neural Information Processing Systems, volume 21,
2008. URL https://proceedings.neurips.cc/paper/2008/file/
f79921bbae40a577928b76d2fc3edc2a-Paper.pdf.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-Fourth
AAAI Conference on Artificial Intelligence, 2010.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement
Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS), 2018.

Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier
Pietquin, and Matthieu Geist. Offline reinforcement learning as anti-exploration, 2021.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In European conference on machine learning, pp. 317–328. Springer, 2005.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):
233–242, 1999.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pp. 11895–11907, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, USA, 2018. ISBN 978-0262039246. URL http://www.incompleteideas.
net/book/the-book-2nd.html.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

12

https://openreview.net/forum?id=JrsfBJtDFdI
https://proceedings.neurips.cc/paper/2008/file/f79921bbae40a577928b76d2fc3edc2a-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/f79921bbae40a577928b76d2fc3edc2a-Paper.pdf
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

Under review as a conference paper at ICLR 2023

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas.
Critic regularized regression. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 7768–7778. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
588cb956d6bbe67078f29f8de420a13d-Paper.pdf.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint arXiv:2005.13239,
2020.

13

https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 SCORE-BASED GENERATIVE MODEL (SONG & ERMON, 2019; 2020; SONG ET AL., 2021)

In the score-based generative model, a target distribution p(x) is indirectly expressed and trained
in the form of the gradient of a log probability density function ∇x log p(x), often referred to as
the (Stein) score function (Liu et al., 2016). This method circumvents several problems of other
generative models. The main advantages are, first, we can circumvent the problem of the inferring
normalizing constant that arises in likelihood-based methods (Kingma & Welling, 2013; LeCun et al.,
2006), and second, we can train the score function without worrying about training instability that
arises in adversarial training Goodfellow et al. (2014) via score-matching algorithms Hyvärinen &
Dayan (2005); Vincent (2011); the score-matching algorithm minimizes the gap between ground-
truth score function and the estimates: Lscore-matching = Ep(x)[∥∇x log p(x) − sψ(x)∥]22]. Since the
objective is essentially regression with l2 loss, the loss function does not require any assumptions on
the parameterized function sψ, unlike the energy-based model LeCun et al. (2006) in which strong
regularization is often required for stable training. These advantages make it possible to model a
complex behavior policy β with the high fidelity that offline RL requires. We briefly examine the
ability of the score-based generative model using four discontinuous multi-modal distributions, and
the results are shown in Figure A.1. In all four cases, the inferred probability distribution is very
sharp, and its log probability resembles the penalty function we proposed.

A.2 IMPLEMENTATION DETAILS

The implementation of ARQ consists of four steps: score-based generative model sψ learning,
sampling, Q-learning, and optional explicit policy πϕ training. For the score-based generative model,
sampling, and likelihood computation, we generally follow the implementation of (Song et al.,
2021) which trains a time-dependent neural network that approximates the reverse-time stochastic
differential equations (SDE); a neural network learns to reverse the progressive diffusion process
that turns a data point into random noise. Specifically, we use a value-preserving SDE (VPSDE)
with a neural network having residual connections (He et al., 2015) with the embedding size of 256,
and we stack 3 residual blocks. We use swish for nonlinearity. Since our target distribution is
conditional (i.e., conditioned on a state) unlike the original formulation, we extend a time-dependent
neural network to be a function of a state, an action, and time. We train the network with Adam with
a learning rate of 1e-4 and batch size of 512, and we apply an exponential moving average with an
average coefficient of 0.999. Since the number of training data samples varies across datasets, we
tested the different number of training iterations and ensembles to prevent overfitting. For training
iterations, we tested 150,000, 300,000, and 1 million steps, and for ensemble, we tried single and 3
ensemble models. For ensemble training, we train each model with different random samples from
the same data pool. The dataset-specific hyperparameters are shown in Table A.1.

The second step of the ARQ algorithm is prepopulating samples for value learning. We use a
predictor-corrector algorithm (Song et al., 2021) to generate samples by solving a reverse SDE. Again,
we followed the implementation of Song et al. (2021), which uses the Euler-Maruyama method
as a predictor and Langevin dynamics as a corrector. We discretize the time domain [1e-3,1] of

Figure A.1: The probability estimated by the trained score-based generative model for complex,
discontinuous, and multi-modal conditional distributions β(a|s). The state and action spaces are
one-dimensional, and the conditional probability estimated using the model sψ is represented with a
color map. Red x marks represent the training samples.

14

Under review as a conference paper at ICLR 2023

Table A.1: Dataset-specific hyperparameters used in training a score function sψ .

D4RL Robomimic
Locomotion Kitchen Adroit AntMaze MG PH, MH

Training Iterations 1,000,000 300,000 300,000 1,000,000 1,000,000 150,000
Ensembles 1 1 3 1 3 3

sψ into 500 steps, and we execute a single corrector step for every predictor step. For Langevin
dynamics, we dynamically adjust the noise scale using the norm of the score; we use a score-to-noise
ratio of 0.16 as used in Song et al. (2021). Since the suggested penalty function is defined based on
its probability β(a|s), we need to compute the likelihood of generated samples using sψ. For the
likelihood computation, we use an instantaneous change-of-variable formula on top of the ordinary
differential equation induced from the SDE. To solve the inverse problem of ODE, we use the RK45
algorithm of scipy. For the detailed formulation and algorithmic detail regarding SDE, we refer to the
original paper (Song & Ermon, 2019; 2020; Song et al., 2021) or our code. We use ϵ = e−5 across
all experiments, and we drop any samples that show a lower probability than the given threshold ϵ.
We generate 30 samples for both ARQ and the implicit policy using sψ .

For ARQ training, we use an MLP with 2 layers and 256 activation nodes to parameterize the value
function Qθ, and we apply ReLU nonlinear activation. Also, we shape the reward function of datasets
following (Kostrikov et al., 2021b); for the locomotion tasks, the reward is normalized by multiplying
the ratio of returns between the worst and the best trajectories in the dataset, and for the antmaze tasks,
the reward is set to -1 except the goal state. Similarly, we densify the reward function of Robomimic
using the same technique used for the antmaze. For stability, we train two Q functions and a slowly
moving target network with a polyak coefficient of 0.995. We train 1 million timesteps using Adam
optimizer and batch size of 512. We perform a rough random search with the following range of
values for the following hyperparameters: K ∈ [3, 6, 9], a learning rate ∈ [3e-4,1e-4]. The chosen
hyperparameters are shown in Table A.2. For the Qβ used in the ablation study, we use the same
parameterization of the value function, but we train a single Q function with a slowly moving target
network. The value function is trained 1 million time steps using Adam with a learning rate of 1e-4
and batch size of 512.

Table A.2: Dataset-specific hyperparameters used or in ARQ.

D4RL Robomimic
Locomotion Kitchen Adroit AntMaze MG PH, MH

Learning rate 3e-4 1e-4 1e-4 3e-4 1e-4 1e-4
K-th 9 9 9 3 9 9
Reward Normalized Original Original -1 except goal -1 except goal

For the implicit policy that is based on the samples of sψ , we first generate 30 samples using sψ , then
we resample an action from the categorical distribution that treats advantages as logits. Similarly,
for the explicit policy, we train a policy using weighted behavior cloning (Peng et al., 2019) where
the weight is computed using the advantage. We use state-independent stochastic policy used in
(Kostrikov et al., 2021b) for the locomotion, kitchen, and adroit tasks of D4RL datasets, which
predicts the mean µ(a|s) and the state-independent standard deviation σ(a) of a Gaussian distribution.
We use a 2-layer MLP having 256 hidden units with ReLU activations. For the antmaze tasks, we use
the deterministic policy that omits the standard deviation prediction. Similarly, a deterministic policy
is used for the Robomimic datasets, but we use dense Resnet blocks for the parameterization. We
stack 4 ResNet blocks, each of which has 2048 embedding dimensions. We tried Gaussian Mixture
Network (GMM) as suggested in (Mandlekar et al., 2021), but we could not replicate the reported
performance in the BC setting. For D4RL and Robomimic, we train a policy for 1 million and 300,000
steps respectively, using the Adam optimizer with a learning rate of 3e-4. The key hyperparameter
for the policy is the temperature term α. We tested the following range of values: [0.1, 1.0, 10.0,
30.0], and we display the chosen values in Table A.3 along with other hyperparameters.

15

Under review as a conference paper at ICLR 2023

Table A.3: Dataset-specific hyperparameters used in the implicit policy and the explicit policy πϕ.

D4RL Robomimic
Locomotion Kitchen Adroit AntMaze MG PH, MH

α for Qβ + sψ 1 1 10 10 1 0.1
α for ARQ + sψ 1 1 10 10 1 0.1

πϕ
State-independent

stochastic Det. Det.-ResNet

Training Iterations 1,000,000 300,000
α for ARQ + πϕ 1 1 10 10 10 0.1

A.3 FULL EXPERIMENT RESULTS

We display the full experiment results in Table A.4.

Table A.4: Performance of prior methods and ours on D4RL(Fu et al., 2020) and
RobomimicMandlekar et al. (2021) datasets. Each number represents the performance relative
to a random policy as 0 and an expert policy as 100. Unless noted as (ours) or (repro.), all the
numbers are borrowed from Kostrikov et al. (2021b), Fujimoto & Gu (2021), and Mandlekar et al.
(2021). The numbers generated by us are averaged over 3 different random seeds. The standard
deviations of multiple runs are also displayed.

Without reward With Qβ With reward / value function

BC Impl.
BC

sψ
(ours) σ

One-
step

Q(β)
+sψ

(ours)
σ DT AWAC TD3

+BC CQL IQL
ARQ
+πϕ

(ours)
σ

ARQ
+sψ

(ours)
σ

expert-v2 hopper 112 110 89 (5.1) 99 (2.1) 85 108 111 110 111 (0.2) 98 (0.8)
walker 56 82 106 (0.6) 107 (0.4) 57 110 104 110 109 (0.4) 108 (0.1)
halfchtah 105 78 81 (0.2) 84 (1.1) 79 97 82 95 94 (0.2) 85 (0.5)

medium-v2 hopper 53 75 38 (1.3) 60 55 (0.6) 68 57 59 59 66 61 (0.4) 58 (0.8)
walker 75 15 63 (1.6) 82 79 (0.6) 74 72 84 73 78 81 (0.7) 81 (0.2)
halfchtah 43 35 40 (0.3) 48 43 (0.0) 43 44 48 44 47 45 (0.3) 45 (0.2)

med.-exp.-v2 hopper 53 28 45 (0.4) 103 88 (4.1) 108 56 98 105 92 110 (0.9) 93 (2.5)
walker 108 16 74 (2.8) 113 107 (0.2) 108 75 110 109 110 109 (0.5) 107 (0.4)
halfchtah 55 35 46 (0.4) 93 77 (1.8) 87 43 91 92 87 91 (0.7) 82 (0.3)

med.-rep.-v2 hopper 18 14 11 (0.3) 98 62 (0.9) 83 37 61 95 95 81 (24.2) 78 (3.2)
walker 26 10 20 (0.3) 50 69 (2.0) 67 27 82 77 74 66 (7.0) 71 (1.2)
halfchtah 37 25 26 (0.8) 38 41 (0.3) 37 41 45 46 44 42 (0.3) 41 (0.1)

human-v0 pen 64 84 76 (6.0) 73 (1.9) 38 72 44 (5.2) 74 (1.3)
door 2 14 9 (0.9) 11 (1.4) 10 4 0 (0.4) 10 (4.9)
relocate 0 0 0 (0.0) 0 (0.0) 0 0 0 (0.0) 0 (0.1)
hammer 1 1 2 (0.4) 5 (1.2) 4 1 1 (0.7) 6 (1.0)

cloned-v0 pen 37 26 (4.3) 60 57 (2.3) 39 37 48 (7.1) 55 (2.7)
door 0 2 (0.4) 0 11 (2.0) 0 2 1 (0.4) 12 (4.4)
relocate 0 0 (0.0) 0 0 (0.0) 0 0 0 (0.0) 0 (0.0)
hammer 1 1 (0.2) 2 3 (0.3) 2 2 1 (0.3) 4 (2.6)

kitchen-v0 complete 65 85 74 (3.7) 75 (1.2) 44 63 37 (14.2) 77 (1.8)
partial 38 38 45 (2.7) 59 (4.9) 50 46 50 (5.0) 70 (2.7)
mixed 52 38 51 (1.1) 52 (1.1) 51 51 39 (9.4) 57 (2.9)

antmaze-v0 umaze 55 58 (2.1) 64 81 (4.5) 59 57 79 74 88 97 (0.8) 94 (1.7)
umaze-div. 46 61 (1.4) 61 62 (3.3) 53 49 71 84 62 62 (12.1) 58 (7.0)
med.-play 0 1 (0.5) 0 25 (13.3) 0 0 11 61 71 80 (8.3) 69 (6.6)
med.-div. 0 1 (0.5) 0 45 (5.3) 0 1 3 54 70 82 (6.1) 65 (15.6)
large-play 0 0 (0.0) 0 1 (0.5) 0 0 0 16 40 37 (17.7) 18 (1.7)
large-div. 0 0 (0.0) 0 1 (0.5) 0 1 0 15 48 58 (6.2) 23 (5.0)

BC⋆ sψ
(ours)

Q(β)
+sψ

(ours)
BCQ⋆ CQL⋆ IQL

(repro.)

ARQ
+πϕ

(ours)

ARQ
+sψ

(ours)

machine gen. lift 65 29 (2.4) 86 (0.5) 91 64 79 79 (1.2) 82 (0.5)
can 65 19 (2.4) 55 (6.5) 75 1 62 76 (0.5) 60 (1.2)

pro. human lift 100 99 (0.8) 100 (0.5) 100 93 58 100 (0.0) 98 (0.0)
can 95 95 (0.8) 93 (2.4) 89 38 26 92 (2.2) 95 (0.8)
square 79 66 (2.9) 72 (4.0) 50 5 24 44 (2.2) 69 (3.4)
transport 17 27 (2.5) 28 (8.7) 7 0 1 29 (5.0) 30 (5.4)
tool-hang 29 70 (4.2) 64 (2.9) 0 0 3 3 (1.7) 71 (5.9)

multi. human lift 100 96 (1.7) 94 (3.6) 100 57 51 99 (1.4) 95 (2.5)
can 86 84 (1.2) 89 (1.6) 63 22 25 90 (1.2) 86 (1.7)
square 53 44 (1.7) 51 (4.9) 14 1 12 31 (4.2) 51 (4.8)
transport 11 15 (3.1) 17 (2.6) 3 0 0 16 (4.9) 13 (1.7)

⋆ represents that the best performance during training iterations is picked a posteriori.

16

	Introduction
	Related Works
	Preliminaries
	Method
	Theoretic Background on Direct Q-penalization
	What makes a good penalty function?
	Practical Implementation

	Experiments
	Discussion
	Appendix
	Score-based Generative Model
	Implementation Details
	Full Experiment Results

