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Abstract

Language models, characterized by their black-001
box nature, often hallucinate and display sensi-002
tivity to input perturbations, causing concerns003
about trust. To enhance trust, it is imperative004
to gain a comprehensive understanding of the005
model’s failure modes and develop effective006
strategies to improve their performance. In this007
study, we introduce a methodology designed008
to examine how input perturbations affect lan-009
guage models across various scales, including010
pre-trained models and large language mod-011
els (LLMs). Utilizing fine-tuning, we enhance012
the model’s robustness to input perturbations.013
Additionally, we investigate whether exposure014
to one perturbation enhances or diminishes015
the model’s performance with respect to other016
perturbations. To address robustness against017
multiple perturbations, we present three dis-018
tinct fine-tuning strategies. Furthermore, we019
broaden the scope of our methodology to en-020
compass large language models (LLMs) by021
leveraging a chain of thought (CoT) prompt-022
ing approach augmented with exemplars. We023
employ the Tabular-NLI task to showcase how024
our proposed strategies adeptly train a robust025
model, enabling it to address diverse perturba-026
tions while maintaining accuracy on the origi-027
nal dataset. Code and Data to be released upon028
acceptance.029

1 Introduction030

Language models (LMs), which have become in-031

creasingly integrated into various aspects of daily032

lives, hold immense potential to revolutionize how033

we interact with technology. Their ubiquity un-034

derscores the importance of thoroughly examining035

their robustness and generalizability, which will be036

instrumental in fostering trust among users. One037

notable challenge is their sensitivity to even slight038

changes in input. For instance, while a human039

can easily interpret and understand a statement re-040

gardless of minor alterations, LMs struggle (Wang041

et al., 2023; Nie et al., 2020). This inconsistency042

Case Closed
Written Takahiro Arai
Publish Shogakukan
Eng. Publish SG Shogakukan Asia
Demographic Shonen
Magazine Weekly Shonen Sunday
Orig. Run May 9, 2018 - present
Volumes 2 (List of volumes)

H1: Takahiro Arai wrote ‘Case Closed’ comic series. (E)
H

′
1: Takahiro Arai wotte ‘Case Closed’ comci series. (E)

H2: ‘Case Closed’ is a long-term comic series.(E)
H

′
2:‘Case Closed’ isn’t a long-term comic series.(C)

H3:‘Case Closed’ became the anime Detective Conan (N)
H

′
3:Detective Conan is ‘Case Closed’ anime version. (N)

H4:‘Case Closed’ has run over 5 years.(E)
H

′
4:‘Case Closed’ has run over 10 years.(C)

H5: Shogakukan Asia published ‘Case Closed’ (Eng). (E)
H

′
5:Shogakukan UK published ‘Case Closed’ (Eng). (C)

Figure 1: An example of tabular premise and hy-
potheses from INFOTABS (Gupta et al., 2020).
Original hypotheses (H1,H2,H3,H4,H5) and perturbed
hypothesis (H

′

1,H
′

2,H
′

3,H
′

4,H
′

5) representing charac-
ter,negation,paraphrasing,numeric and location per-
turbations respectively. Labelled as Entailment,
Contradiction or Neutral. The bold entries in the first
column are the keys, and the corresponding entries in
the second column are their values.

becomes notably apparent when minor perturba- 043

tions to the input, which do not inherently modify 044

the underlying meaning, result in a marked decline 045

in the performance of the model (Shankarampeta 046

et al., 2022; Glockner et al., 2018). Examples of 047

such perturbations for the task of tabular inference 048

Gupta et al. (2020), is illustrated in Figure 1. 049

Addressing these sensitivities to input pertur- 050

bation is crucial for the advancement and relia- 051

bility of LMs in real-world applications. Empir- 052

ical evidence supports the effectiveness of fine- 053

tuning models using perturbed input samples from 054

challenge sets (Jiang et al., 2022; Fursov et al., 055

2021). For instance, Wang et al. (2020); Liu et al. 056

(2019a) showcased that a pre-trained language 057

model (PLM) utilizing Masked Language Mod- 058

eling (MLM) and trained for a specific NLP task 059
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becomes significantly robust to input perturbations060

when further fine-tuned using a small set of per-061

turbed examples. However, the ability of these062

models to generalize across different types of per-063

turbations is still a subject of investigation (Liu064

et al., 2020). The implications of fine-tuning a065

model on a particular challenge/perturbation set,066

especially concerning its impact on handling other067

perturbations, warrant further exploration (refer068

to Figure 2). It remains unclear if a model’s in-069

creased robustness to character perturbations post-070

fine-tuning extends to addressing challenges from071

other perturbations, like paraphrasing.072

Figure 2: Language Models Sensitivity to Input Per-
turbations. Language models trained on Tabular-NLI
(Task A) with Original Hypothesis(Dataset D) are not
reliable for perturbed hypotheses (Dataset D’ for charac-
ter, paraphrasing, or numeric perturbations examples).

In this study, we address LMs robustness to in-073

put perturbations, seeking to answer the following074

two questions: How does fine-tuning a model on075

one perturbation set affect performance on other076

types of perturbations? Is it possible to guarantee077

consistent robustness across multiple distinct per-078

turbation sets? In particular, we extend the single-079

set inoculation approach of Liu et al. (2019a), to a080

more generic multi-sets robustness, which we re-081

fer to as multi-set inoculation. To the best of our082

knowledge, we are the first to introduce and ex-083

tensively study the robustness of LMs to multiple084

perturbations.085

Our proposed methodology is adept at handling086

both (a) transformer-based pre-trained language087

models (PLMs) such as BERT (Devlin et al., 2018)088

and ROBERTA (Liu et al., 2019c) , which are089

amenable to direct fine-tuning, and (b) large gener-090

ative language models such as gpt-3.5-turbo(GPT-091

3.5) (Brown et al., 2020), GPT-4, and LLaMA,092

LLaMA-2 (Touvron et al., 2023), Flan-T5(Chung093

et al., 2022; Kanakarajan and Sankarasubbu, 2023)094

etc, which can’t be fine-tuned freely. For these gen-095

erative models, we leverage the few-shot Chain of096

Thought (Wei et al., 2023) as an alternative to tradi-097

tional fine-tuning. This methodology circumvents098

Figure 3: Multi-Set Inoculation Framework. High-
level flowchart describing the proposed frameworks for
PLMs (via fine-tuning) and LLMs (via prompt design).

the computational intricacies inherent in the fine- 099

tuning of LLMs. It proficiently manages the tuning 100

of a multitude of model parameters using a limited 101

constrained set of training samples. To the best 102

of our knowledge, we are the first to study Inocu- 103

lation with LLM, prior studies Liu et al. (2019c); 104

Wang et al. (2021a); Liu et al. (2019b) have been 105

limited to traditional BERT style models.Within 106

our framework, we investigate three distinct multi- 107

set fine-tuning methods, each designed to enhance 108

model robustness across diverse perturbation sets. 109

Our study makes the following contributions: 110

• We introduce Multi-set Inoculation, which ex- 111

amines the implications of fine-tuning across 112

multiple perturbation sets. We assess three 113

unique multi-set fine-tuning approaches, each 114

showing concurrent robustness to multiple per- 115

turbation sets. 116

• We evaluate the efficacy of our framework 117

across a spectrum of models, ranging from tra- 118

ditional pre-trained language models (PLMs) 119

like RoBERTa to expansive large language 120

models (LLMs) such as GPT-3.5 and LLaMA- 121

2, among others, in the context of the Tabular 122

NLI task. 123

2 Proposed Methodology 124

In this section, we detail the methodology for Mul- 125

tiset Inoculation. We evaluate the robustness of 126

the model by subjecting it to different input per- 127

turbations. Subsequently, we introduce multiset 128

fine-tuning techniques, which improve the model’s 129

performance on diverse perturbed datasets. Figure 130

3 shows a high-level flowchart of our methodology. 131

Terminology. Given a pre-trained language 132

model (PLM) denoted as M, fine-tuned on the orig- 133

inal (unperturbed) training set O = {(xi, yi)}Ni=1 134

for a natural language processing (NLP) task T. 135

Let {πj}mj=1 represent input perturbations, where 136
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m is the number of distinct perturbations available.137

For each perturbation j, let OSj = {(xi, yi)}
nj

i=1138

be a subset Sj of the original training set O, where139

nj ≪ N . Let πj represent an input perturbation ap-140

plied only to OSj , producing the perturbation/chal-141

lenge set ΠSj

j = {πj(xi), πj(yi)}
nj

i=1. This results142

in m perturbation sets {ΠSj

j }mk=1, where perturba-143

tion πj is applied to subset Sj , respectively. We use144

Pj as shorthand for the final perturbation set ΠSj

j .145

We evaluate the performance of model M on held-146

out perturbation set samples Qj for j = 1, . . . ,m.147

Each Qj serves as the test set specifically tailored148

for perturbation πj .149

2.1 Multi Model Single Set Inoculation150

We fine-tune our PLM model using K samples ex-151

tracted from a challenge set Pj . This fine-tuning152

across each Pj sets, results in an array of robust153

models each designated as RMj . We subsequently154

evaluate these models’ performances across held-155

out challenge test sets, Qj for every j ∈ N . This156

evaluation probes the efficacy of inoculating mod-157

els on a singular set in enhancing—or possibly158

undermining—performance on test sets and differ-159

ent challenge/pertubation sets. While this multi160

model single set framework generates multiple ro-161

bust models, a clear downside emerges: as the vari-162

ety of perturbation types grows, managing multiple163

models becomes impractical.164

2.2 Single Model Multi Set Inoculation165

To alleviate the complexity of managing multiple166

robust models, we propose cultivating a universal167

robust model(RM) that remains immune to various168

perturbations in input data. We put forth three169

distinct fine-tuning strategies for the same:170

Sequential (SEQ): The model is fine-tuned us-171

ing K samples from each challenge set Pj sequen-172

tially (specified by fixed ORDER), resulting into a173

final robust model RM.174

Mixed-Training (MIX): In this strategy, a com-175

posite dataset, termed PM , is fashioned by ran-176

domly selecting K samples from all challenge sets ,177

{Pj}mj=1. Subsequently, the model M is fine-tuned178

using the aggregated PM . In our implementation,179

we adopt a uniform, random sampling approach.180

Dynamic Mix-Training (DYNMIX): This ap-181

proach mirrors mixed-training but introduces vari-182

ability in sample sizes across different challenge183

sets, denoted as K1, K2, and so on. Additionally,184

the sampling method can be unique (e.g. uniform185

or weighted) for each perturbation challenge set. 186

Given that all three finetuning outlined strategies 187

revolve around data sampling and culminate in a 188

singular robust model RM, we refer this as the 189

single model multi set paradigm. 190

2.3 Inoculation via. Prompting for LLM 191

Fine-tuning LLMs on challenge sets is costly. In 192

contrast, prompt tuning is quicker and more ef- 193

fective for many NLP tasks (Shin et al., 2023). 194

Therefore, we use prompt finetuning for robustness 195

evaluation of LLMs. 196

Original Prompt (OP). We design a prompt 197

encapsulating the task description. We also add 198

illustrative instances (as exemplars) from original 199

sets (O) which serve as main guiding posts (a.k.a 200

few shot). Each exemplar is enriched with a ratio- 201

nale, mirroring a chain of thought CoT prompting 202

(Wei et al., 2023). This allows us to investigate 203

the effectiveness of the perturbations πj on LLMs 204

as a baseline under input perturbations. Here, we 205

consider two variants of LLM prompting: (a) Zero- 206

shot (OPZS). We create a prompt template con- 207

sisting of only the description of the task, without 208

any exemplars or reasoning chains. (b) Few-shot 209

with CoT (OPCOT). Here, we consider NLI task 210

description along with few shot exemplars taken 211

from the original set O their reasoning chains a.k.a. 212

COT. 213

Single Exemplars Multiple Prompts (SEMP): 214

For each perturbation type, denoted as πj , we con- 215

struct a prompt that combines the task description, 216

respective perturbation description, and exemplars 217

from O and Pj . The exemplars are accompanied by 218

corresponding labels and a reasoning chain (CoT). 219

This results in multiple prompts, each tailored to 220

a specific perturbation πj . We call this approach 221

single exemplars multiple prompts, similar to multi 222

model single set in sec. 2.1. 223

Multiple Exemplars Single Prompt (MESP) : 224

Here, we consider descriptions and exemplars of all 225

perturbations (∀πj) in a single prompt. We create 226

a prompt by combining multiple exemplars corre- 227

sponding to each perturbation πj , sampled from 228

Pj , similar to single model multi set in section 2.2. 229

Here, the prompt contains the task description, a de- 230

scription of all perturbations, and exemplars from 231

the original set O and each of the challenge sets 232

(∀j Pj). Given token length constraints, tradeoff 233

between the detail of perturbation descriptions and 234

the number of perturbation exemplars results in 235
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two variants: (a) Mixed-Prompting-Instructional236

(MESPMPI) : In this prompt, the perturbation de-237

scription is emphasized while reducing the num-238

ber of exemplars. Mixed-Prompting-Exemplar239

(MESPMPE): Here more perturbation exemplars240

are sampled and each perturbation’s description is241

shortened.242

3 Case Study on Tabular Inference243

Original Dataset (O). We utilize the tabular-NLI244

dataset, INFOTABS (Gupta et al., 2020), along245

with its adversarial perturbations, as detailed in246

Shankarampeta et al., 2022. The INFOTABS247

dataset features a wide range of table domains, cat-248

egories, and keys, covering various entity types249

and forms. It includes three test splits: α1 (original250

test set), α2 (adversarial set), and α3 (zero-shot or251

out-of-domain set).252

Perturbed Challenge Datasets (P, Q). Our253

dataset incorporates perturbations from Shankaram-254

peta et al., 2022, enhanced using tools such as255

TextAttack (Morris et al., 2020a) and NLP Check-256

list (Ribeiro et al., 2020), alongside manual adjust-257

ments. Each perturbation specifically targets the258

hypothesis of an input sample. For every perturba-259

tion type, we create challenge sets of up to 1,500260

samples. Only those samples that are pertinent261

post-perturbation are selected. When the number262

of such samples exceeds 1500, we narrow down263

to the most diverse 1500 samples using Fixed-Size264

Determinantal Point Processes (k -DPPs) (Kulesza265

and Taskar, 2011). Perturbations used for Tabular-266

NLI tasks are Character-level perturbation (char,267

C), Negation-type perturbation (neg, N), Numeric268

perturbation (num, M), Location perturbation (loc,269

L) and Paraphrasing perturbation (stan, S) (refer270

Figure 1).271

Train/Test. (a.) BERT Based Models (PLM) :272

For any perturbation type, we represent Qj consist-273

ing of 1000 examples for testing and Pj consisting274

of 500 examples for fine-tuning. We define the275

union of all challenge test sets as Q = {∪m
j Qj}276

and the training set as P = {∪m
j Pj}. (b.) Large277

Language Models (LLM) : As LLMs inference is278

costly we limit our evaluations to 300 random sam-279

ples from Qj , where Qj contains original premise280

and perturbed hypothesis using perturbation πj .281

Q’j contains the original premise along with the282

corresponding unperturbed hypothesis as pairs. We283

evaluate performance on both Q’j and Qj to ac-284

cess if the LLM model forgets the original input285

distribution after fine-tuning on perturbation sets. 286

Table Representation. In line with Neeraja 287

et al., 2021, we employed alignment techniques 288

in Yadav et al., 2020 to eliminate distracting rows 289

(DRR). We selected the top-8 rows for table repre- 290

sentation as a premise (DRR@8), enhancing accu- 291

racy through evidence-based grounding of relevant 292

information for hypothesis labeling. 293

Evaluation Metric. We use accuracy which is 294

equivalent to the micro-f1 score for the NLI task 295

where the label for each example can be only one 296

of entailment E, contradiction C, neutral N. The 297

improvement over the multi-challenge sets is con- 298

sidered by taking the average of the improved per- 299

formance over each challenge set Qj and this is 300

used as the score(µ) for multi-perturbation setting. 301

Implementation and hyperparameter details for all 302

experiments are mentioned in Appendix A.3. 303

3.1 Fine-tuning BERT Based Model 304

We use ROBERTA-LARGE (Liu et al., 2019c) as 305

the baseline model fine-tuned on INFOTABS train 306

set. This baseline model is henceforth referred to as 307

ROBERTAINTA. We test the baseline model on test 308

sets from O and Q. By testing on Q we attempt to 309

demonstrate the effect of the different perturbations 310

πC , πN , πM , πL, πS on ROBERTAINTA. 311

Multi Model Single Set Inoculation. 312

ROBERTAINTA is further fine-tuned on dif- 313

ferent types of challenge sets(Pj), resulting in 314

multiple robust models. 315

Single Model Multi Set Inoculation. We pro- 316

pose three different strategies: 317
• Sequential (SEQ): We perform sequential 318

fine-tuning of ROBERTAINTA across various 319

challenge sets. The training order (ORDER) 320

for fine-tuning is based on average baseline 321

model performance across challenge sets. Our 322

sequencing strategy aims to minimize the po- 323

tential for catastrophic forgetting (Kirkpatrick 324

et al., 2017; Goodfellow et al., 2013) induced 325

by subsequent fine-tuning on challenge sets. 326

• Mixed-Training (MIX): Here, the 327

ROBERTAINTA is fine-tuned samples ob- 328

tained by mixing K instances drawn from each 329

of the challenge sets PM , PN , PL, PC , PS . 330

Here, K is an hyper-parameters, set equal to 331

500 examples, as discussed in section 3.1. 332

• Dynamic Mix-Training (DYNMIX): This is 333

similar to MIX, except the number of samples 334

drawn from each of the challenge sets is dif- 335

ferent. The number of samples is determined 336
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by the inverse of the baseline (higher base-337

line metrics results in lower number of sam-338

ples) accuracy for ROBERTAINTA for chal-339

lenge sets Pj .340

3.2 LLM Prompting341

We used GPT-3.5 with low temperature of342

0.3, LLaMA-2 after quantization using QLoRA343

(Dettmers et al., 2023), and Flan-T5 series. We344

develop methodologies for LLMs that rely solely345

on prompting and exclude fine-tuning (except for346

GPT-3.5 where we also report fine-tuning results).347

The LLM prompt design for our experiments, is348

detailed in Table 1, comprises five sections, with349

demonstration section being optional.350

Broad Prompt Template
NLI Task Ex-
planation

In this task, we will ask you to make an inference about the
information presented as the premise. We will show you a
premise and a hypothesis...

Perturbation
Awareness

The concept of numeric and character typos in questions is
important for maintaining the integrity and meaning of a
sentence...

Description of
Limitation

It is very important and critical that you do not use infor-
mation other than the premise that you may know if you
believe that it is not generally known...

Answering (Restriction for Answering) Answer with an explanation in
the following format, restricting the answer to only one of
the following: "yes" or "no" or "it is not possible to tell" +
Answering Format

Demonstrations Demonstrations from different sets with reasoning (CoT).

Table 1: Prompt Structure used in LLMs

Original Prompt (OP). This is the original351

prompt zero shot (OPZS) setting with NLI task352

description. In CoT setting (OPCOT), we define353

our few shot setting, where exemplars are sampled354

from original training dataset O.355

Single Exemplars Multiple Prompts (SEMP).356

For a designated perturbation πj from the set357

{πC , πN , πM , πL, πS}, our prompts integrate the358

NLI task outline, a brief on the perturbation πj ,359

and its Chain of Thought (CoT) exemplars sourced360

from the respective challenge set Pj .361

Multiple Exemplars Single Prompt362

(MESP). These prompts contain NLI task363

description, description of all perturbations364

πj ∈ {πC , πN , πM , πL, πS} and exemplars365

sampled from each challenge set Pj ∈366

{PM , PN , PL, PC , PS}. Here , we consider367

two different prompts settings MESPMPI and368

MESPMPE, as described earlier in section 2.3.369

4 Results and Analysis370

Our experiments answer the following questions:-371

• Do input perturbations pose a challenge for372

Language Models(PLMs and LLMs)?373

• How does the approach of single model fine- 374

tuning on multiple perturbation sets compare 375

to multiple models fine-tuning on a single per- 376

turbation set in terms of inoculation? 377
• Do details perturbation descriptions, multi- 378

ple exemplars, and Chain of Thought (CoT) 379

prompts enhance LLM robustness? 380
• What holds greater importance for LLM 381

prompting: the quality of descriptions or the 382

quantity of exemplars? 383

4.1 Results: Bert Style Models (PLM) 384

Multi Model Single Set Inoculation. The base- 385

line performance of ROBERTAINTA original and 386

challenge sets is shown in Table 2. We also report 387

the performance after fine-tuning each challenge 388

set in the same table. 389

Original Test Sets Challenge Test Sets
Train/ Test α1 α2 α3 char neg num loc stan
baseline 72.72 64.83 62.33 57.30 46.90 67.20 70.20 67.10
char 75.28 63.83 63.33 59.20 43.70 64.30 66.00 68.30
neg 66.94 64.56 58.06 52.80 71.90 69.60 69.70 62.40
num 62.06 60.83 52.50 47.30 49.60 85.40 83.00 57.60
loc 55.78 58.67 49.67 47.40 53.90 84.60 86.10 53.50
stan 73.56 62.61 60.44 58.30 40.80 70.30 67.80 66.80

Table 2: Multi-model Uniset Inoculation:
ROBERTAINTA when fine-tuned on one of the
challenge sets (Pj), but tested on all challenge sets (Qj)
with number of sample used equal 500.

Analysis. (a.) Baseline performance of 390

ROBERTAINTA on challenge sets is notably lower 391

than on original sets, emphasizing PLMs’ vulner- 392

ability to input perturbations. (b.) Fine-tuning 393

via single-set inoculation significantly bolsters 394

the model against specific perturbations, improv- 395

ing negation accuracy by +25 points from base- 396

line. (c.) Despite fine-tuning, the model’s robust- 397

ness to paraphrasing remains largely unchanged. 398

(d.) While the fine-tuned model excels against spe- 399

cific perturbations, it struggles with others. In- 400

terestingly, character perturbations inadvertently 401

boost its proficiency in challenges like paraphras- 402

ing. (e.) Inoculation effects vary: character set 403

inoculation enhances performance on original test 404

sets, while number and location decrease perfor- 405

mance in both original and challenge test sets. 406

Single Model Multi Set Inoculation. We present 407

results on Sequential training (SEQ), Mixed Train- 408

ing (MIX), and Dynamic Mixed Training (DYN- 409

MIX) in Table 3. 410

SEQ. Table 3 presents the results using Se- 411

quential Training (SEQ). The method trains 412

ROBERTAINTA on varied challenge sets in distinct 413
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Original Sets Challenge Sets
K/SEQ-Type α1 α2 α3 char neg num loc stan µ

baseline 72.72 64.83 62.33 57.30 46.90 67.20 70.20 67.10 -

S
E

Q

COL-ASC 61.67 60.94 50.11 48.80 54.60 85.40 85.40 56.60 4.42
COL-DSC 74.67 62.72 60.44 58.90 57.30 56.10 65.30 68.00 -0.62
ROW-ASC 55.00 58.11 47.22 46.80 50.90 84.50 85.90 51.30 2.14
ROW-DSC 73.44 63.39 57.44 56.50 45.10 60.00 71.60 65.80 -1.94

M
IX

100 70.40 65.16 59.48 56.00 58.48 78.78 78.50 66.04 5.82
200 70.42 65.06 59.21 56.86 59.50 80.94 80.36 64.68 6.73
300 71.92 64.54 59.49 56.50 61.30 81.22 79.68 65.12 7.02
400 72.11 64.48 59.78 56.58 63.70 81.60 80.38 64.64 7.64
500 72.62 64.34 59.20 56.98 66.06 82.02 80.52 65.64 8.50

D
Y

N
M

IX 500 71.28 64.42 60.39 56.26 59.22 77.84 76.24 65.38 5.25
1000 71.07 64.72 59.60 57.04 63.24 79.94 79.06 65.50 7.22
1500 72.07 64.81 59.73 56.50 65.42 80.84 79.54 65.64 7.85

Table 3: Single Model Multi Set Fine tuning Strategies Results: For SEQ Results , ROBERTAINTA is Sequential
Trained with 500 samples from each Pj . Here, COL-ASC: CSNLM, COL-DSC: MLNSC, ROW-ASC: SCNML, ROW-
DSC: LMNCS are the sequence types and µ is the average improvement. For MIX Results, ROBERTAINTA fine-tuned
on K equal samples from different perturbation sets Pj . For DYNMIX Results, ROBERTAINTA fine-tuned on total
of K samples taken from Pj in ratios mentioned in the DYNMIX SECTION BELOW.

sequences. For instance, ORDER MNLCS with K414

samples implies training sequentially on subsets of415

{PM , PN , PL, PC , PS} of size K. This is denoted416

as SEQMNLCS.417

Terminology. To define the sequence we consider418

(a.) Column Wise Average. This configuration as-419

sesses the aggregate impact of fine-tuning across all420

perturbations on each individual perturbation., (b.)421

Row Wise Average. This configuration evaluates422

the aggregate impact of fine-tuning on an individ-423

ual perturbation against all other perturbations. For424

more details on the metrics refer to Appendix A.3.425

We compute both COL and ROW values for each426

perturbation. By sorting these values, we derive se-427

quences in ascending and descending order, yield-428

ing the COL-ASC, COL-DSC, ROW-ASC, ROW-DSC429

as the ORDER sequences.430

Analysis. Sequential training introduces the for-431

getting issue (He et al., 2021; Chen et al., 2020a),432

where models forget sets trained on earlier in the433

sequence. (a.) With column-wise averages, we434

capture how easy a perturbation πj is to learn by435

fine-tuning on other perturbations by testing im-436

provement in accuracy on set Qj . Therefore in the437

ORDER COL-ASC, an "easier" perturbation appears438

later and hence improves the average performance.439

(b.) With row-wise averages, we capture how much440

fine-tuning on Pj improves the overall performance441

of other perturbation types. Hence, in the ORDER442

ROW-ASC with samples from Pj wherein πj has443

a higher score appearing later, benefit other better444

perturbation effectively.445

MIX. Table 3 presents the outcomes from multi-446

set inoculation using mixed training.447

Analysis. Models trained via mixed training out-448

perform those from SEQ. As we increase the num- 449

ber of samples for fine-tuning, we notice consistent 450

gains across most challenge sets and original test 451

sets. The most prominent improvements are seen 452

in the negation and location sets. While there’s a 453

minor performance dip in some original and chal- 454

lenge sets, it’s less pronounced compared to results 455

from single-set inoculation and SEQ. 456

DYNMIX. Table 3 displays the results from 457

dynamic mixed training. The sample ratio of 458

0.223 : 0.278 : 0.171 : 0.156 : 0.172 for 459

C : N : M : L : S was determined based on the 460

inverse of baseline performance values (i.e., poorer 461

baseline performance warrants more samples from 462

that perturbation set). 463

Analysis. Though the dynamic mixed training 464

surpasses SEQ, it only edges out the mixed training 465

approach when utilizing a total of 1000 and 1500 466

samples for fine-tuning for K = 200, 300. This 467

shows that dynamically altering challenge set size 468

improves single model multi-set inoculation. In 469

conclusion, multi-set inoculation produces robust 470

models than single-set. Further, the MIX and DYN- 471

MIX strategies for fine-tuning stand out as more 472

resilient compared to SEQ. 473

Ablation Experiments. (a) Fine tuning on sub- 474

set of Perturbation. Above MIX and DYNMIX re- 475

quires access to all perturbation during fine-tuning, 476

which increasing dataset and computation cost. To 477

access whether robust models can be obtained via 478

fine-tuning on a subset of perturbation sets, we ran 479

experiments using subset of perturbations. The 480

results are shown in Appendix A.1. Our results 481

show that although there are performance improve- 482

ments while fine-tuning on subsets of perturbation. 483
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Nevertheless, the optimal subset of available per-484

turbations for the task remains elusive and cannot485

be found empirically. (b) Results on Out of Distri-486

bution Perturbations. Assessing the model’s per-487

formance against unseen perturbations is vital for488

robustness. Such evaluation reveals the model’s489

ability to adapt to new and unexpected changes.490

We created approximately 100 samples (with nearly491

equal numbers of E, C, N labels) of a new WORD-492

SWAP perturbation type. The results are shown in493

Appendix A.1. We observe fine-tuning with more494

samples using the MIX strategy enhances model495

robustness against unseen perturbations, further496

validating our approach.497

4.2 Results: Large Language Models (LLMs)498
Original Prompt. Table 4 shows the results for499

OPZS and OPCOT, respectively. Results on other500

open source models in Appendix A.1.3.501

Model char neg num loc stan avg.

O
P Z

S

Q
’ Flan-t5-XXL 70.60 77.30 69.00 74.00 79.00 73.98

LLaMA-2-70b 59.00 63.60 64.60 67.00 60.00 62.84
GPT-3.5 68.00 69.00 68.66 71.60 70.00 69.45

Q

Flan-t5-XXL 63.00 70.00 63.00 65.00 69.30 66.06
LLaMA-2-70b 54.00 51.60 49.60 57.00 54.30 53.30
GPT-3.5 51.00 53.00 62.66 61.00 60.30 57.59

O
P C

O
T Q

’ LLaMA-2-13b 63.67 69.33 66.33 61.00 61.00 64.27
LLaMA-2-70b 68.6 72.3 76.3 67.3 69.6 70.82
GPT-3.5 68.30 76.30 68.00 73.00 75.30 72.18

Q

LLaMA-2-13b 61.33 57.00 57.67 59.33 60.00 59.07
LLaMA-2-70b 63.00 60.00 63.00 61.30 66.00 62.66
GPT-3.5 63.00 69.60 59.30 61.00 68.00 64.18

Table 4: (a) Zero Shot (OPZS): Baseline Accuracies
on original and perturbed sets for prompts in zero-shot
setting. (b) Few-shot with CoT (OPCOT): Results using
CoT prompting with exemplars sampled from O.

Analysis. On the Original Zero-Shot Prompts502

we observe that, (a.) Comparing the results of chal-503

lenge datasets Qj and their unperturbed version504

sets Q’j reveals that LLMs similar to PLMs are505

also sensitive to input data perturbations. (b.) How-506

ever, the Flan-T5 series, specifically XL and XXL,507

performs significantly better than other LLMs as508

it’s fine-tuned specifically for the NLI task (Chung509

et al., 2022). Even the drop in performance due to510

data perturbation is relatively less. (c.) The poor511

performance of relatively smaller LLMs, such as512

LLaMA-2-13b, demonstrates the ineffectiveness of513

such models in responding to an instruction prompt.514

(d.) One reason for performance on original numer-515

ical set (Q’M ), is due to model inability to handle516

mathematical reasoning (Wallace et al., 2019; Min517

et al., 2021; Hendrycks et al., 2021; Imani et al.,518

2023). Additionally, we find that all models en-519

hanced with CoT (Table 4) outperform those using520

Zero Shot original prompts. This suggests that521

simply adding exemplars can enhance a model’s 522

resilience to perturbations. 523

Single Exemplars Multiple Prompts (SEMP): 524

Table 5a presents results for GPT-3.5, with diagonal 525

elements as an analogue to single set inoculation. 526

LLaMA-2 results are in Table 5b. 527

Pr/ Test char neg num loc stan Q′

baseline 51.00 53.00 62.66 61.00 60.30 69.05
char 67.60 65.30 66.00 69.00 67.60 68.05
neg 60.30 64.60 58.00 59.60 63.30 71.62
num 62.30 66.30 61.00 60.60 64.30 70.24
loc 62.60 63.60 61.00 59.30 64.00 71.30
stan 59.00 67.60 61.30 61.00 67.30 73.76

(a) SEMP Results on GPT-3.5
Type πj char neg num loc stan

BASE Q′
j 59.00 63.60 64.60 67.00 60.00

Qj 54.00 51.60 49.60 57.00 54.30

SEMP Q′
j 69.00 71.00 72.00 72.30 68.60

Qj 53.00 58.00 62.00 62.00 68.30

(b) SEMP Results on LLaMA-2-70b

Table 5: SEMP Results: (a) The last column is the
average performance on all sets of Q′ (b) Self-testing
on perturbation πj with prompt for πj and test on Qj

and Q′
j .

Analysis. From Tables 5a and 5b, it’s evident 528

that incorporating an input perturbation explanation 529

within the prompt enhances the model’s accuracy. 530

The results in Table 5a suggest that even a singu- 531

lar perturbation explanation prompts the model to 532

anticipate other perturbations, essentially priming 533

it for a noisy environment. This adaptability is 534

especially pronounced for character perturbations, 535

where improvements span across all challenge sets. 536

Comparisons with instructional prompts and few- 537

shot results show that demonstrations with pertur- 538

bation explanations improve performance. 539

Strategy char neg num loc stan R′

L
L

aM
A

-2 Base 39.67 39.33 45.67 56.67 44.67 45.20

MESPMPI 58.33 51.33 59.67 55.00 62.33 62.53

MESPMPE 60.97 56.67 59.33 60.67 62.00 65.67

G
PT

-3
.5 Base 51.00 53.00 62.66 61.00 60.30 69.45

MESPMPI 59.60 65.30 62.00 59.00 59.60 68.76

MESPMPE 70.00 63.60 58.30 60.00 66.80 72.52

Table 6: MESP Results on LLaMA-2-13b and GPT-
3.5.LLaMA-2 refers to LLaMA-2-13b.

Multiple Exemplars Single Prompts (MESP): 540

The results for MPI and MPE are in Table 6. 541

Analysis. Both models show marked improve- 542

ment with mixed prompting, indicating that LLMs, 543

when guided with perturbation descriptions and ex- 544

amples, yield more stable outputs. The superior 545

performance of MPE over MPI suggests that includ- 546

ing more examples in prompts is more beneficial 547

than detailed perturbation descriptions. 548
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In conclusion, LLMs too face challenges with549

input perturbations. Simply explaining one pertur-550

bation primes the LLM to consider others. Our551

findings show that a mixed prompting approach552

with several perturbation instances and brief expla-553

nations improves robustness.554

Fine-tuning on LLMs. While our paper primar-555

ily focuses on in-context learning for LLMs, we556

also examine the effects of fine-tuning LLMs on557

perturbation sets, results shown in Table 7. We558

can see that for Mixtral and GPT-3.5 the fine tun-559

ing with the perturbation set using the mix train-560

ing approach increases the models’ performance.561

Whereas for the Flan-T5-L model the fine tuning562

does not improve the model’s performance.

Model char neg num loc stan avg.

BA
SE

Flan-t5-L 63.00 70.00 63.00 65.00 69.30 66.06
Mistral 44.01 39.66 23.67 41.34 39.67 37.67
GPT-3.5 51.00 53.00 62.66 61.00 60.30 57.59

FT

Flan-t5-L 51.71 27.77 45.31 42.71 58.70 45.24
Mistral 43.67 39.00 61.67 45.67 44.34 46.87
GPT-3.5 71.67 78.33 66.67 67.33 71.00 71.00

Table 7: Fine tuning results for Flan-T5-L-0.8b, Mistral-
7b-instruct-v0.2 and GPT-3.5-turbo on perturbed sets
and average of performance. FT refers to Fine-Tuning
results and BASE refers to OPZS results.

563

5 Related Works564

Model Robustness Issues. Deep learning mod-565

els in vision and language domains have exhib-566

ited sensitivity to adversarial examples and input567

distribution shifts, as highlighted in prior studies568

(Mahmood et al., 2021; Elsayed et al., 2018; Chang569

et al., 2021; Ren et al., 2019; McCoy et al., 2019;570

Wang et al., 2021a; Gupta et al., 2023; Zheng and571

Saparov, 2023; Zhu et al., 2023). The search for572

model robustness in language processing has led to573

work on contrast sets (Li et al., 2020a), Checklist574

(Ribeiro et al., 2020), and attack algorithms (Li575

et al., 2020b, 2018). Ensuring model robustness is576

crucial (Wang et al., 2022, 2020), as minor input577

changes can significantly impact performance due578

to model complexity and distribution overfitting579

(Glockner et al., 2018; Rice et al., 2020; Zhu and580

Rao, 2023; Moradi and Samwald, 2021). Recently,581

Zhu et al. (2023) introduce adversarial prompts to582

analyse model robustness to perturbatin in prompts.583

Our paper focuses on analyzing model performance584

with clean prompt across several perturbations/at-585

tacks on input samples simultaneously.586

Improving Model Robustness. Utilizing adver-587

sarial examples during training provides a degree588

of mitigation (Tong et al., 2022; Liu et al., 2019a;589

Yuan et al., 2023; Kotha et al., 2023; Liu et al., 590

2023), it falls short of a comprehensive solution for 591

achieving widespread robustness, as it deals only 592

with one facet, i.e., single-set inoculation. Our 593

proposed framework is adept at evaluating model 594

robustness across multiple challenge sets. Our re- 595

search complements and extends the work on ro- 596

bustness explored in (Liu et al., 2023; Lu, 2022; 597

Zheng and Saparov, 2023). While (Liu et al., 2023) 598

integrates consistency loss and data augmentation 599

during training, our framework applies to models 600

already in use or deployed. Similarly, Lu (2022) 601

addresses dataset artifacts in natural language infer- 602

ence (NLI) with a multi-scale data augmentation 603

method. In contrast, our work focuses on limited 604

fine-tuning of pre-trained models and expands to 605

additional dimensions of robustness. Meanwhile, 606

Zheng and Saparov (2023) examines LLM robust- 607

ness to perturbed inputs by increasing noisy exem- 608

plars. Our study offers a broader framework for as- 609

sessing the robustness of both PLMs and LLMs, us- 610

ing fine-tuning, improving instruction quality, and 611

enhancing exemplars in both diversity and quantity. 612

6 Conclusion and Future Works 613

We demonstrate that input perturbation poses dif- 614

ficulties for LMs at all scales. While fine-tuned 615

models on a single challenge set can produce ro- 616

bust models, their generalizability to unfamiliar 617

perturbations remains questionable. This motivates 618

the problem of multi-set inoculation, aiming to 619

train a singular model resilient to a myriad of dis- 620

tinct perturbations. We introduce a comprehensive 621

framework to systematically evaluate LM robust- 622

ness against multiple input perturbations. In addi- 623

tion, we propose three strategies to fine-tune the 624

model on multiple challenge sets. Our results un- 625

derscore the superiority of mixed fine-tuning in 626

training robust models. Furthermore, we expend 627

our framework to LLMs, leveraging a COT prompt- 628

ing enriched with exemplar demonstrations. 629

Future Directions: We consider the following 630

future directions: (a.) Complex Sample Selec- 631

tion: Future plans include adopting advanced sam- 632

ple selection strategies to boost model robustness 633

during fine-tuning, inspired by Roh et al. (2021); 634

Swayamdipta et al. (2020). (b.) Composite Pertur- 635

bation: We aim to explore the successive applica- 636

tion of multiple perturbations on a single sample, 637

represented as πi(πj(x)), to understand their com- 638

bined impact on model performance. 639
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Limitations640

While our framework exhibits promising results for641

language models at different scales, there are sev-642

eral limitations to consider. We study five different643

perturbations in our framework. The effectiveness644

of our method, however, is contingent on the avail-645

ability of data and definitions of these perturbations,646

which may not be available for unique unencoun-647

tered perturbations. In addition, the process of648

sequential fine-tuning presents a challenge in terms649

of catastrophic forgetting. This necessitates main-650

taining a repository of both current and historical651

data and perturbations, which in turn leads to an652

increase in computational storage. Although our653

system performs well for tasks in English, pro-654

cessing and adapting to multilingual input data655

and accompanying models is an area that has to656

be researched further. We also recognize the op-657

portunity for investigating parameter-efficient fine-658

tuning and other domain adaptation strategies to659

potentially enhance the robustness of the model.660

Finally, it is pertinent to note that the current evalu-661

ation of our framework has been limited to specific662

natural language processing tasks. Its performance663

in other tasks, such as question-answering and sen-664

timent classification, has not yet been explored.665

These limitations underscore the need for further666

research to address these challenges.667
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We, the authors of this work, affirm that our work669

complies with the highest ethical standards in re-670
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available datasets and comply with the ethical stan-678
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work. The claims in the paper match the exper-682
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stochasticity is expected with black-box large lan-684

guage models, which we attempt to minimize by685

keeping a fixed temperature. We describe in the686

fullest detail the annotations, dataset splits, models687

used, and prompting methods tried, ensuring the re-688

producibility of our work. For grammar correction,689

we use AI-based writing assistants, and for coding, 690

we utilized Copilot. It’s important to note that the 691

genesis of our ideas and the conduct of our research 692
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A Appendix1114

A.1 Additional Results1115

A.1.1 PLM results on Perturbation Subsets1116

Fine-tuning on the entire set of possible pertur-1117

bations necessitates access to all possible pertur-1118

bations, which is infeasible. Moreover, it would1119

demand substantial computational resources to fine-1120

tune a robust model using strategies like MIX or1121

DYNMIX. However, we see that there is a positive1122

correlation between char/stan and num/loc pertur-1123

bations and negative correlation between neg and1124

other perturbations as shown in Table 2. To reduce1125

computational and annotation costs, fine-tuning the1126

model on a subset of perturbations can enhance1127

overall performance across all perturbations.1128

Using performance correlation analysis from Ta-1129

ble 2, we create two training subsets (a) (neg, num,1130

loc) type perturbations (Table 8a) and (b) (char,1131

num) type perturbations (Table 8b).(a) We selected1132

’char’ and ’num’ due to their positive correlation,1133

which also positively impacts other perturbation1134

sets. (b) For ’neg’, ’num’, and ’loc’, we chose ’neg’ 1135

because it’s negatively correlated with all other sets, 1136

while ’loc’ and ’num’ are positively correlated with 1137

’char’ and ’stan’. With this set, we aimed to an- 1138

alyze the impact of negatively correlated sets in 1139

fine-tuning. 1140

From Table 8a, the bias detected in the mean 1141

score reveals a complex picture: as the overall 1142

mean score rises, we see an improvement in perfor- 1143

mance on perturbation types targeted during fine- 1144

tuning. However, this is contrasted by a simultane- 1145

ous decrease in performance on other perturbation 1146

types. This pattern emphasizes the exclusivity of 1147

these specific perturbations and clearly illustrates 1148

the presence of a negative correlation. 1149

From Table 8b we notice that training both num 1150

and char together is not improving char perturba- 1151

tion accuracy. We don’t see improvement in para- 1152

phrasing as well but we don’t see a consistent de- 1153

crease well (likely because num type perturbation 1154

dominates during fine-tuning process). From the 1155

above analysis it can be observed that predicting 1156

behaviour on smaller perturbation subsets is poten- 1157

tially complex. 1158

Conclusion: These further experiments under- 1159

score the importance of selecting appropriate per- 1160

turbation sets for training. By applying single set 1161

cross-testing, as shown in Table 2, we can identify 1162

sets that are positively and negatively correlated. 1163

An effective approach could be to train on nega- 1164

tively correlated sets and sample from positively 1165

correlated ones, which helps in reducing the total 1166

number of sets needed, without sacrificing on per- 1167

formance (i.e. maintaining similar performance). 1168

However, it’s important to note that this selection 1169

strategy may initially demand significant compu- 1170

tational resources. This initial computational cost 1171

stems from the need to establish performance cor- 1172

relations between perturbation sets, as referenced 1173

in Table 2. 1174

A.1.2 PLM results on Out of Distribution 1175

Perturbation 1176

MIXOOD Assessing the model’s performance 1177

against unseen perturbations is vital for robustness. 1178

Such evaluation reveals the model’s ability to adapt 1179

to new and unexpected changes. We created ap- 1180

proximately 100 samples (with nearly equal num- 1181

bers of E, C, N labels) of a new WORD-SWAP 1182

perturbation type. This involves selecting words 1183

for replacement with others, as illustrated in the 1184

example below: 1185
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In-distribution Out-distribution Original Test sets
K neg num loc char stan alpha1 alpha2 alpha3 µ
baseline 46.90 67.20 70.20 57.30 67.10 72.72 64.83 62.33 -
100 60.4 83.2 81.4 49.6 59.6 63.6 62.8 56.1 5.10
200 61.9 85.6 83.0 49.2 58.0 61.3 61.9 53.0 5.79
300 62.1 85.8 83.2 48.8 55.7 59.4 62.3 51.9 5.39
400 66.3 85.1 83.5 47.5 54.3 58.4 61.5 51.1 5.61
500 68.0 86.0 84.1 47.8 53.9 58.0 61.2 50.1 6.23

(a) Fine Tuning on Perturbation Subset (neg, num, loc). Model fine tuned using MIX strategy using only 3 perturbations.
Performance reported on out of distribution perturbation and alpha test sets.

In-distribution Out-distribution Original Test sets
K char num neg loc stan alpha1 alpha2 alpha3 µ
baseline 57.30 67.20 46.90 70.20 67.10 72.72 64.83 62.33 -
100 56.3 80.1 50.3 74.6 65.4 71.0 63.2 60.1 3.61
200 57.2 82.8 47.9 76.3 65.3 70.9 63.5 59.2 4.15
300 57.0 83.1 47.0 77.1 65.2 71.1 63.1 58.1 4.13
400 58.0 84.1 48.5 78.0 64.4 70.8 63.8 58.4 4.86
500 57.0 84.1 46.7 77.7 64.4 70.9 63.2 58.0 4.25

(b) Fine Tuning on Perturbation Subset (char, num). Model fine tuned using MIX strategy using only 2 perturbations.
Performance reported on out of distribution perturbation and alpha test sets.

Table 8: In-distribution represents perturbation types used for training, Out-distribution are the other perturbation
types. K is the number of samples used for each perturbation during training. µ is the average improvement over
the baseline of all perturbation sets.

Original Hypothesis: Josh Groban was born inside of the
US.
Perturbed Hypothesis: Josh Groban was inside born of the
US.

1186

Our word-swap perturbation generation prioritizes1187

swapping words closer in proximity and with a1188

higher product of their lengths. Additionally, we1189

conduct manual reviews of the results to ensure1190

coherence and interpretability. Notably, proper1191

nouns are excluded from the swapping process.1192

The out-of-the-box accuracy for WORD-SWAP on1193

ROBERTAINTA is 0.79 (i.e., without fine-tuning on1194

any perturbation set). The model’s performance1195

on WORD-SWAP after mix training on all 5 pertur-1196

bation types, indicating out-of-distribution perfor-1197

mance, is summarized in Table 91198

K 100 200 300 400 500
Acc. 73.4 73.2 71.6 74.0 74.6

Table 9: Performance of model on WORD-SWAP Per-
turbation with MIX training. Acc. is the accuracy on
WORD-SWAP type perturbation and K is the number of
samples.

A.1.3 Additional Results on Zero-shot1199

The Table 10 shows zero shot (OPZS) accuracy for1200

different language models.1201

A.2 Related Works:- Tabular Datasets and 1202

Models. 1203

Research on semi-structured tabular data has 1204

delved into tasks like tabular natural language in- 1205

ference, fact verification (Chen et al., 2020b; Gupta 1206

et al., 2020; Zhang and Balog, 2019), and more. 1207

Techniques for improving tabular inference include 1208

pre-training methods (Yu et al., 2018, 2021; Eisen- 1209

schlos et al., 2020; Neeraja et al., 2021). More- 1210

over, recently shared tasks such as SemEval’21 1211

Task 9 (Wang et al., 2021b) and FEVEROUS’21 1212

(Aly et al., 2021) have expanded upon these topics. 1213

A.3 Implementation Details 1214

For RoBERTA-LARGE : For creating a base- 1215

line model the RoBERTA-LARGE model is fine- 1216

tuned on INFOTABS for 10 epochs with a learning 1217

rate of 1e−5 with batch size of 4 and adagrad op- 1218

timizer. (Shankarampeta et al., 2022; Jain et al., 1219

2021). For fine-tuning on challenge set Pi, we 1220

use a learning rate of 3e−5. This learning is se- 1221

lected after experimenting with various learning 1222

rates(specifically 5e−4, 1e−4, 5e−5, 3e−5, 1e−5, 1223

5e−6, 1e−6) and observing their performance on 1224

single set inoculation for various training dataset 1225

sizes(specifically 100, 300 and 500). We have 1226

used NVIDIA RTX A5000(24 GB), NVIDIA RTX 1227

A6000(48 GB) and Google Colab GPU(A100) for 1228

conducting different experiments. For the mix fine- 1229

tuning we ran the evaluation for 5 different random 1230

14



Set Model char neg num loc stan avg.

U
N

P
E

R
T

U
R

B
E

D
Q

’ Flan-T5-small 39.30 48.60 39.30 59.60 47.00 46.76
Flan-T5-base 55.60 63.60 55.60 68.00 58.60 60.28
Flan-T5-large 70.60 75.00 64.60 77.00 71.60 71.76
Flan-T5-XL 72.30 76.30 66.70 78.60 75.30 73.84

Flan-T5-XXL 70.60 77.30 69.00 74.00 79.00 73.98
LLaMA-2-13b 51.33 54.00 49.67 62.33 53.00 54.07
LLaMA-2-70b 59.00 63.60 64.60 67.00 60.00 62.84

GPT-3.5 68.00 69.00 68.66 71.60 70.00 69.45
P

E
R

T
U

R
B

E
D

Q Flan-T5-small 33.00 40.00 49.30 71.00 47.00 48.06
Flan-T5-base 44.00 54.00 55.60 68.60 58.00 56.04
Flan-T5-large 54.00 66.00 62.30 65.00 67.60 62.98
Flan-T5-XL 63.00 68.00 64.00 66.00 71.30 66.46

Flan-T5-XXL 63.00 70.00 63.00 65.00 69.30 66.06
LLaMA-2-13b 39.67 39.33 45.67 56.67 44.67 45.20
LLaMA-2-70b 54.00 51.60 49.60 57.00 54.30 53.30

GPT-3.5 51.00 53.00 62.66 61.00 60.30 57.59

Table 10: Zero Shot Results (OPZS): Baseline accuracy for LLMs for Original prompts in zero-shot setting.

seeds for each challenge set combination. Average1231

metrics for calculating the final accuracy of mix1232

training to avoid random noise.1233

SEQ Metrics. Column Wise Average. and Row1234

Wise Average metrics evaluation:1235

• Column Wise Average. The column-wise av-1236

erage (COL) for a given perturbation πd is1237

the average performance improvement over1238

the baseline on Qj (Table 2) for models fine-1239

tuned on all other perturbation Pj , FOR j ̸= d1240

(except itself).1241

• Row Wise Average. The row-wise average1242

(ROW) for a given perturbation πd is the aver-1243

age performance improvement over the base-1244

line performance (Table 2) for the model fine-1245

tuned on Pd on other challenge dataset sets1246

Qj , FOR j ̸= d.1247

Sj is sampled randomly from the original dataset1248

O. Furthermore, we only consider samples which1249

can be easily perturbed with standard tools such1250

as TextAttack (Morris et al., 2020b), NLP Check-1251

list (Ribeiro et al., 2020) and manual perturbations1252

supported with paraphrasing tools such as Parrot1253

(Zhao et al., 2023).1254

From Sj (|Sj | >= 1500), we sampled Pj (|Pj |1255

= 1000) the training perturbation set and Qj (|Qj |1256

= 500) the testing perturbation set. To make the1257

sampling diverse and ensure full coverage of the1258

original set, we utilise the Determinantal Point Pro-1259

cesses algorithm (DPP) (Kulesza and Taskar, 2011).1260

Determinantal Point Processes (DPPs) are proba-1261

bilistic models that allow for non-repetitive sam-1262

pling (diverse & repulsed) of subsets from a larger1263

set of items. k-DPP is a variant of DPP that con- 1264

ditions the process with a cardinality k, meaning 1265

it samples a specific number of items k from the 1266

larger set. We use the efficient k-DPP algorithm 1267

(Kulesza and Taskar, 2011) for our sampling, k- 1268

DPP is a variant of DPP that conditions the process 1269

with a cardinality k, meaning it samples a specific 1270

number of items k from the larger set. Note: we 1271

ensure that the sample in |Pj | and |Qj | are mutually 1272

exclusive. 1273

For LLMs: We used GPT-3.5 model and 1274

LLaMA-2 models for our experiments. GPT-3.5 1275

has been used with a temperature setting of 0.3 (to 1276

preserve reproducibility) and 1000 maximum new 1277

tokens. LLaMA-2 model has been used after quan- 1278

tization with QLoRA (Dettmers et al., 2023), with 1279

nf4 4-bit quantization. Double quantization has 1280

been employed and torch.bfloat16 has been used 1281

for computations during the quantization. For API 1282

calls on GPT-3.5, we have used CPU only. The 1283

cost for fine-tuning is: $0.008 for training,$0.012 1284

for usage input, $0.016 for usage output for 1k 1285

tokens. The cost for prompting is $0.008 for 1k 1286

tokens. The number of examples are highlighted in 1287

the Section 3 and 4.2. 1288

An interesting observation for LLaMA-2 was 1289

made which led to the empirical observation that 1290

too many examples within the system prompt may 1291

also hurt model performance as evidenced from 1292

examples here and here (anonymized for submis- 1293

sion). This observation influenced our decision 1294

to demonstrate the model using its past conversa- 1295

tional history and to limit the system prompt to 1296

instructions specific to the model. 1297

For SEMP, we utilized three demonstrations 1298
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from the challenge set and three from the origi-1299

nal set. We used six demonstrations for OPCOT.1300

We use ten demonstrations for GPT-3.5 in the1301

MESPMPI setting and fifteen in the MESPMPE set-1302

ting. We ensure that for MESPMPI at least one1303

exemplar is sampled from each perturbation and1304

, for MESPMPE the brief description captures the1305

core logic of the perturbation.1306

For LLaMA-2, we used eight demonstrations1307

in MESPMPI setting and eleven in the MESPMPE1308

setting. There are minor differences in the NLI1309

Task Explanation for prompts chosen for GPT-3.51310

and LLaMA-2 models, these can be found in the1311

corresponding data and examples are given below.1312

This was done as LLaMA-2 performs better with1313

labelling neutral examples as "it is not possible to1314

tell" instead of "neutral".1315

For the Flan-T5 series, the model has been pre-1316

trained on the NLI/RTE task. We used the same1317

format for getting the results for zero shot setting1318

(OPZS) as used in Huggingface inference API ex-1319

ample for premise-hypothesis.1320

For Large Language Model (LLM), we adopted1321

the same selection strategy as for Pre-trained Large1322

Models (PLM, RoBERTa) to select Pj i.e. 5001323

examples. To select 50 samples, we employed a1324

random uniform sampling method across the set Pj1325

for each perturbation type. Additionally, we chose1326

50 unperturbed examples totally exclusive (never1327

perturbed) from the original dataset. This resulted1328

in a total training set size of 300 samples. Further-1329

more, we took meticulous steps to ensure that the1330

samples labelled as ’entailment’, ’contradiction’,1331

and ’neutral’ were evenly balanced across all three1332

categories.1333

Example for OPZS on Flan-T5 series
Premise: At my age you will probably have learnt one lesson.

Hypothesis: It’s not certain how many lessons you’ll learn
by your thirties.

Does the premise entail the hypothesis?

1334

1335

Fine-Tuning on GPT-3.5: The system prompt1336

was provided with the NLI task explaination and1337

mixed perturbation awareness prompt consisting1338

of a brief explanation of all the perturbation types1339

as used in MESPMPI for the model gpt-3.5-turbo-1340

0613. The answering scheme does not require an1341

explaination here. A total of 300 samples are used1342

for fine-tuning. Auto hyper-parameters yielded a1343

batch size of 1, 3 epochs and learning rate multi-1344

plier of 21. 1345

An example is given below: 1346

Listing 1: Example for fine-tuning GPT-3.5

literateliterate 1347
literateliterate literate{ 1348
literateliterate literate"messages ": [ 1349
literateliterate literate{ 1350
literateliterate literate"role": "system", 1351
literateliterate literate"content ": "In this task , we will 1352
literateliterate literateask you to make an inference 1353
literateliterate literateabout the information 1354
literateliterate literatepresented as the premise ..."( 1355
literateliterate literatePrompt containing NLI task 1356
literateliterate literatedescription , perturbation 1357
literateliterate literateawareness and Description of 1358
literateliterate literatelimitation adepted from 1359
literateliterate literateMESPMPI as in GPT -3.5). 1360
literateliterate literate}, 1361
literateliterate literate{ 1362
literateliterate literate"role": "user", 1363
literateliterate literate"content ": "Premise: The region 1364
literateliterate literateof WIMA is Worldwide. WIMA 1365
literateliterate literatewas founded in 1950. The 1366
literateliterate literatelocation of WIMA is the 1367
literateliterate literateUnited States. The website 1368
literateliterate literateof WIMA is www.wimaworld.com. 1369
literateliterate literateHypothesis: WIMA is located 1370
literateliterate literatein Gambia ."." 1371
literateliterate literate}, 1372
literateliterate literate{ 1373
literateliterate literate"role": "assistant", 1374
literateliterate literate"content ": "Answer: No" 1375
literateliterate literate} 1376
literateliterate literate] 1377
literateliterate literate} 1378
literateliterate

1379

A.3.1 MESP Prompting Example 1380

Below an example prompt for LLaMA-2 for 1381

MESPMPE. 1382

NLI Task Explanation
In this task, we will ask you to make an inference about the
information presented as the premise. We will show you
a premise and a hypothesis. Using only the premise and
what you believe most people know about the world, you
should choose one of the following options for the premise-
hypothesis pair:
1."yes": Based on the information in the premise and what is
commonly known, the hypothesis is definitely true, in such a
case respond with "yes".
2."no": Based on the information in the premise and what is
commonly known, the hypothesis is definitely false, in such
a case respond with "no".
3."it is not possible to tell": Based on the premise, the hy-
pothesis could be true, but could also be false. We need
additional information that is neither commonly known, nor
explicitly mentioned in the premise which makes us come
to a conclusion. We cannot make an inference about the
hypothesis in such a case respond with "it is not possible to
tell".

1383

The next part, perturbation awareness contains 1384

the brief explanation of the respective perturba- 1385

tions. Explanation for one of the perturbation is as 1386

1More details can be found on the openAI documentation
for fine-tuning.
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below. We have mentioned the prompt for other1387

perturbations later in this section.1388

Perturbation Awareness
About Typos: When labelling sentences based on a premise,
it’s crucial to recognize and address errors and typos that may
occur during hypothesis writing. Typos encompass mistakes
like spelling errors and punctuation errors that commonly
appear in written content. While numeric typos, involving
number replacements, should generally be left uncorrected
as they may still make sense in context, character typos,
such as misspellings or incorrect word formations, should be
corrected to ensure clarity. Maintaining this distinction is es-
sential for preserving hypothesis meaning and readability. It
is very important that if you suspect a typo in the hypothesis,
attempt correction using premise hints without prompting
the user and then attempt to label it yourself.
About Attention to Numbers: ...
About the Concept of Negation: ...
About Attention to Locations: ...
About Paraphrasing: ...

1389

Description of limitation It is critical that you do

not use information other than the premise. Take the premise

to be ground truth and known to be correct. Use no external

knowledge.

1390

Answering
Answer with an explanation in the following format, restrict-
ing the answer to only one of the following: "yes" or "no" or
"it is not possible to tell"
E: <explanation>
A: <answer>

1391

There are multiple demonstrations based on the1392

method. We have specified the number of demon-1393

strations used in the implementation details section.1394

In case of the MESP, the demonstrations contains1395

instance of unperturbed as well as perturbed hy-1396

pothesis NLI tasks. A single instance of a demon-1397

stration is shown below, seeDemostrations:1398

We have shown the prompt in the raw text for-1399

mat but depending on the model the prompt may be1400

changed to adapt to the model’s specific behaviour.1401

For example in case of LLaMA-2 model, the NLI1402

task explanation, Perturbation awareness and De-1403

scription of limitation section are provided as the1404

system prompt, which is consistent with the paper1405

Touvron et al. 2023.1406

The only difference between MESPMPE and1407

MESPMPI is that the former has more number of1408

CoT examples of each perturbation in the demon-1409

stration section whereas the later has more detailed1410

description of each perturbation in the perturbation1411

awareness section. The perturbation awareness for1412

each type of perturbation for both of the method is1413

at the end of this section.1414

Demonstrations
Premise: The official languages of Hong Kong Special Ad-
ministrative Region of the People’s Republic of China are
Chinese, English. The regional language of Hong Kong Spe-
cial Administrative Region of the People’s Republic of China
is Cantonese. The official scripts of Hong Kong Special Ad-
ministrative Region of the People’s Republic of China are
Traditional Chinese, English alphabet. The government of
Hong Kong Special Administrative Region of the People’s
Republic of China is Devolved executive-led system within
a socialist republic.
Hypothesis: The Hong Kong Special Administrative Region
of the People’s Republic of China grants official status to
more than one language.
E: To make an inference about the hypothesis, we need to
either know directly or deduce how many languages are of-
ficial in Hong Kong Special Administrative Region of the
People’s Republic of China. We can see in the premise that
There are two official languages: English and Chinese. As
the hypothesis says "more than one". As two is more than
one, the answer is Yes.
A: yes
Premise: ...
Hypothesis: ...
E: ...
A: ...
.
.
.

1415

A.3.2 SEMP Prompting 1416

For the SEMP method, the perturbation aware- 1417

ness section contains only description of only one 1418

kind of perturbation adapted from the perturbation 1419

awareness section as in MESPMPI and the demon- 1420

stration section contains demonstrations of only 1421

one type of perturbation demonstration and with 1422

unperturbed demonstrations. 1423

A.3.3 OPZS Prompting 1424

In case of zero-shot prompting we only explain the 1425

NLI task to the model briefly and provide it with 1426

the answering format. We have provided example 1427

of OPZS below as used in GPT-3.5: 1428

NLI Task Explanation for GPT-3.5
In this task, we will ask you to make an inference about the
information presented as the premise. We will show you
a premise and a hypothesis. Using only the premise and
what you believe most people know about the world, you
should choose one of the following options for the premise-
hypothesis pair:
Based on the information in the premise and what is com-
monly known, the hypothesis is definitely true, in such a case
respond with Yes.
Based on the information in the premise and what is com-
monly known, the hypothesis is definitely false, in such a
case respond with No.
Based on the premise, the hypothesis could be true, but could
also be false. We need additional information that is neither
commonly known, nor explicitly mentioned in the premise
which makes us come to a conclusion, in such a case respond
with Neutral.

1429
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In the OPZS the perturbation awareness part is1430

not given. So, model is not made aware of any1431

perturbations explicitly.1432

Description of limitation
Avoid using information that you may know if you believe
that it is not generally known.

1433

Answering
Now classify the following Premise-Hypothesis pair. Answer
only with one word: Yes or No or Neutral.

1434

As this is the zero-shot prompting no demonstra-1435

tion is provided.1436

A.3.4 OPCOT Prompting1437

In case of the few-shot with CoT prompt-1438

ing(OPCOT), we will also provide examples of the1439

NLI task on unperturbed examples along with its1440

chain of thought explanation as a part of demon-1441

strations. The prompt for OPCOT on GPT-3.5.1442

NLI Task Explanation
Same as in for OPZS.

1443

Note, that there is no perturbation awareness for1444

CoT prompts.1445

Description of limitation
It is very important and critical that you do not use infor-
mation other than the premise that you may know if you
believe that it is not generally known. This restriction should
not prevent you from exploring the premise repeatedly and
making some assumptions and deeper inferences from the
information within the premise.

1446

Demonstration
Here are some examples:
Premise: Jerusalem is a city. The jewish of Jerusalem is 64%.
The time zone of Jerusalem is UTC+02:00 (IST, PST). The
area code of Jerusalem is +972-2.
Hypothesis: Christians comprise a big part of the population
of Jerusalem.
To make an inference about the hypothesis, we need to either
know directly or deduce the population division in Jerusalem.
As stated in the premise, Jewish (religion) constitutes 64
percent of the population in Jerusalem. Hence the hypothesis
must be false as the Christians(religion) can’t possibly con-
stitute a big part of the population, as the majority is taken
up by the Jewish. The answer is No.
Premise: ...
Hypothesis: ...
CoT with answer: ...

.

1447

Note that in all of the methods the premise-1448

hypothesis pair for NLI task will be at the end of1449

the prompt which will be appended with the shown1450

prompt of each method.1451

A.3.5 Detailed perturbation awareness 1452

prompts 1453

Prompts for perturbation awareness MESPMPI: 1454

Perturbation Awareness
About typos: When performing a labelling task on sentences
based on a premise, it’s important to understand that errors
and typos can occur during the writing of questions. Typos
are mistakes made when typing or printing, which can in-
clude spelling errors and punctuation errors. These errors
can commonly appear in written content and can sometimes
affect the clarity and accuracy of a question. The concept
of numeric and character typos in questions is important
for maintaining the integrity and meaning of a sentence or
premise: Numeric typos, where a number is accidentally re-
placed by another number, should generally not be corrected.
This is because the new number may still make sense in the
context and altering it could change the question’s meaning
significantly. It’s crucial to recognize that the typo might
convey a different question altogether. On the other hand,
character typos, such as misspellings or incorrect word for-
mations, should be corrected. These typos often result in
words that have no meaning or make the question unclear.
Correcting character-based typos is essential to ensure the
question remains coherent and can be understood by the
reader. Maintaining this distinction is vital for ensuring that
the question retains its intended meaning and readability.
Numeric typos, although errors, can sometimes add unique
value to a question, whereas character typos usually hinder
comprehension and should be rectified whenever possible.
While numeric typos (errors in numbers) may not always
need correction, character-based typos (errors in letters or
characters) should be corrected. Numeric typos when a num-
ber is replaced by another number, shouldn’t be corrected
as this can mean a different question altogether where the
new number still makes sense. Character typos where the
newly formed word (after a typo) has no meaning, should
be corrected and attempted to be reformed to the original
word hints of the original word may also be made from the
premise. The reason typos happen during typing is because
our brains focus on conveying meaning rather than the fine
details of individual characters. This phenomenon can lead
to errors slipping through. In a labelling task, it’s crucial to
be vigilant about character-based typos as they can affect the
interpretation of the premise and the accuracy of labelling.

1455

About attention to locations: Here is some additional in-
formation which may help. Prioritize Location Accuracy:
In this labelling task, it is of utmost importance to ensure
the precise handling of location-related information. Pay
close attention to locations and prioritize accuracy over other
details. Use Abbreviations and Basic General Knowledge:
Allow for the use of abbreviations like "NY" (New York)
or "IND" (Indianapolis or India either may work depend-
ing on context). Basic general knowledge about locations,
such as their geographical features and neighboring regions,
is acceptable. However, do not include historical facts or
general events about the place. Verify with External Re-
sources: Encourage the utilization of external resources for
verification when dealing with critical location data. When-
ever possible, cross-reference the provided information with
reliable sources such as maps, atlases, or official websites to
ensure correctness. Review and Edit Meticulously: Empha-
size the importance of reviewing and editing location-related
responses meticulously before finalizing the answer. Double-
check the spelling, coordinates, and other location-specific
details to guarantee precision.

1456
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About attention to numbers: Please pay meticulous atten-
tion to numerical information. When performing labelling
tasks, it is crucial to handle numerical data with precision.
Ensure that the responses contain specific numerical values
and context. Emphasize the importance of self-rechecking
critical numerical information, and remind yourself to thor-
oughly review and edit numerical responses for accuracy
before finalizing the answer.
In labelling tasks, the hypotheses may contain numerical
values. When encountering such cases, carefully identify the
numerical data and ensure that it is accurately labelled. Pay
close attention to the context and surrounding words as well
as arithmetic operators (e.g., +, -, *, /) that may influence the
meaning of the numerical value.
Your goal is to provide labels that infer the answer from
correct numerical values and comparisons and also reflect
the nuanced inferences made from the presence of more or
less types of words and arithmetic operators. This entails
understanding the role of numerical data in the context of the
hypothesis and accurately capturing its significance in the
labels.
Remember that precision and accuracy in handling numerical
information are paramount in labelling tasks. Take your
time to review and edit your numerical responses, double-
checking for any potential errors or omissions to ensure the
highest quality labelling results.

1457

About paraphrasing: When performing a labelling task
where you need to analyze a sentence or a piece of text, it’s
crucial to understand that the question posed may not always
be presented in the exact same words as the information you
are reading. This is where the concept of paraphrasing comes
into play.
Paraphrasing involves rephrasing a sentence or passage while
retaining its original meaning. It’s a common practice in vari-
ous contexts, including academic writing, as it allows for the
expression of the same idea in different words. Paraphrasing
can help you better understand and articulate information,
and it’s especially important when dealing with labelling
tasks where the wording might not match exactly.
In the context of a labelling task, you should be aware that
the question you’re trying to answer might be a paraphrased
version of the information presented in the text or a sentence
in the premise. This paraphrasing may not be perfect, and
there could be slight variations or synonyms used. Therefore,
it’s essential to carefully read and analyze the text, looking
for similarities in meaning rather than relying solely on iden-
tical phrasing. By doing so, you can effectively identify and
label the relevant information, even if it’s not presented ver-
batim. Paraphrasing skills are valuable in such tasks as they
allow you to recognize the core concepts and convey them
accurately, regardless of the wording used in the question.
If you feel like the hypothesis may have a typo, you should
attempt to correct it yourself by taking hints from the premise
to guess the actual hypothesis and then attempt to label it.
Do not prompt the user to correct the hypothesis, attempt it
yourself.

1458

About the concept of negation: It may also be necessary
to understand the concept of negation to make correct infer-
ences. Negation in sentences is the process of expressing
the opposite or denial of something. When someone has to
pay close attention to statements, understanding negation
is crucial because it can change the meaning of a sentence
significantly.
Single Negation: In a sentence with a single negation, a
negative word like "not" or "no" is used to express a negative
statement. For example, "I do not like ice cream" means the
person dislikes ice cream.
Double Negation: While less commonly used than single
negation, this occurs when two negative words are used in a
sentence, such as "I don’t want no ice cream." In this case, the
double negative creates an affirmative or positive meaning,
so the sentence means "I want ice cream.
Triple Negation: While used very rarely, triple negation in-
volves the use of three negative words in a sentence, like
"I don’t need no help." In this case, it also conveys a posi-
tive meaning, indicating that the person doesn’t require any
assistance.
For someone paying close attention to statements, it’s es-
sential to recognize double or triple negations to accurately
understand the speaker’s intended meaning. These construc-
tions often appear in colloquial speech, so close attention to
context and word usage is necessary to avoid misinterpreta-
tion.

1459

All prompts for perturbation awareness for 1460

MESPMPE: 1461

Find below the prompt for perturbation awareness 1462

description for different perturbations. 1463

Perturbation Awareness
About Typos: already shown in the MESP prompt.

1464

About Attention to Numbers: Precise handling of numeri-
cal information is paramount in labelling tasks. Be diligent
in ensuring numerical data accuracy, considering context,
surrounding words, and arithmetic operators. Labels should
reflect nuanced inferences drawn from numerical values and
word usage. It is very important to recheck numeric calcula-
tions and arithmetic and mathematical operations.

1465

About the Concept of Negation: Understanding negation is
crucial as it can significantly alter sentence meaning. Single
negation involves using negative words like "not" to express
negativity, while double negation can turn a negative state-
ment into a positive one. Triple negation is rare but also
conveys a positive meaning. Close attention to context is
essential to avoid misinterpretation.

1466

About Attention to Locations: Location accuracy is a top
priority in labelling tasks. Use abbreviations and basic loca-
tion knowledge, but avoid historical facts. Verify location
data with external resources when critical. Meticulously
review and edit location-related responses for precision.

1467

About Paraphrasing: In labelling tasks, hypotheses may
not mirror the premise’s wording exactly. Paraphrasing, or
rephrasing with the same meaning, is common. Carefully
analyze premise for similar meanings and core concepts,
even if phrasing varies. Paraphrasing skills help identify and
label relevant information accurately.

1468
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A.4 LLM Answer Extraction Module1469

The outputs of the large language models are not1470

necessarily in the required format even after ex-1471

plicitly specifying the format. Thus, we needed to1472

design a method to extract out the answer from the1473

very verbose outputs of the model. So, we have1474

shown the flow of the answer extraction module in1475

the Fig 4. The module begins by removing non-1476

essential elements such as emojis from the text,1477

enhancing text clarity for analysis. It then searches1478

for a key marker (‘A:’), indicating the start of a1479

relevant response. Upon identification, this section1480

is isolated for evaluation.1481

Figure 4: Flowchart for answer extraction

The module’s functionality is centered on cat-1482

egorizing responses into affirmative, negative, or1483

neutral based on specific phrases. In cases where1484

the marker is missing, it reassesses the entire text,1485

ensuring comprehensive analysis. If the response1486

remains ambiguous, the module raises an error.1487

A.5 Confusion Graphs1488

The confusion graph below represents the confu-1489

sion matrix values for char, neg, num, loc, stan1490

perturbation for a particular method in the results1491

section. This results provide the insights on which1492

type of hypothesis out of entailment, contradiction1493

and neutral are more difficult for the model with1494

given method. The arrow from A to B represents1495

the percentage of examples which has true label A1496

and has been predicted as B. All the graphs are on1497

perturbed sets.1498
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Figure 11: Confusion graph SEMPSTAN for GPT-3.5 on
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