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ABSTRACT

Modern large language models (LLMs) demonstrate strong capabilities in planning
and social reasoning when evaluated separately. However, solving problems in
social environments typically requires the integration of both reasoning and social
skills, posing a greater challenge. We present TradeCraft, a flexible and extensible
multi-agent environment that embeds strict reasoning and planning requirements
into socially grounded tasks. TradeCraft integrates trading, negotiation, and multi-
step item crafting, supporting two rule sets: a Minecraft-inspired system, and a
Little Alchemy 2–inspired system, each with about 1000 items and over 1000 for-
mulas. The environment provides both a web-based GUI for human participation
and a text-based API (compatible with gymnasium) for LLM agents, enabling di-
verse forms of human–AI and multi-agent interaction. To catalyze further research,
we introduce a workflow-based LLM agent that leverages task-specific prompting
and ReAct mechanisms for trading and crafting, while exhibiting configurable
social preferences ranging from cooperative to competitive. We further conduct
a nine-dimensional evaluation through self-play experiments, analyzing cooper-
ation, goal alignment, information utilization, theory of mind, and other aspects
across multiple LLMs and strategy-guidance settings. TradeCraft is open source at
https://github.com/TradeCraft-team/TradeCraft.

1 INTRODUCTION

Human intelligence is marked by its strength in reasoning, planning, and social cognition. Recent
advances show that large language models (LLMs) have begun to approach, and in some cases surpass,
human-level performance in these domains when evaluated separately. For multi-step reasoning and
planning, benchmarks in mathematics (Cobbe et al., 2021; Sun et al., 2025) and interactive task-
planning (Xie et al., 2024; Zhou et al., 2023) are widely used, while general techniques (Wei et al.,
2022; Yao et al., 2023b;a), and special methods (Wang et al., 2023; Han et al., 2024), have proven
effective in enhancing performance. In terms of social intelligence, (Strachan et al., 2024) reports that
GPT-4 exceeds human performance on a variety of Theory of Mind (ToM) tasks, and (Street et al.,
2024) provides evidence that LLMs can master higher-order ToM tasks in human-level performance.

Despite these promising results, limitations remain. Real-world applications rarely demand a single,
isolated ability; instead, they require a dynamic combination of reasoning, planning, and social
intelligence. For instance, (Wang et al., 2024) shows that models excelling in individual subtasks of
ToM may underperform when required to solve the full integrated task in logical / geometric contexts.
To better capture these complexities, recent work has turned to richer evaluation environments such
as Diplomacy (Bakhtin et al., 2023), MineDojo (Fan et al., 2022), CivRealm (Qi et al., 2024), and
MSCoRe (Lei et al., 2025). However, these settings face trade-offs: some are overly simplified with
static cooperation or competition , while others (e.g., CivRealm (Qi et al., 2024)) are so complex
that the behavioral signals of LLMs become too unstructured to reliably extract and evaluate. Indeed,
researchers have noted a persistent gap: there is “a lack of multi-agent benchmarks for open-world
environments” (Allen et al., 2024) that would allow diverse, realistic social interactions to unfold.

With the purpose of balancing the trade-off between complexity and diversity of LLM-Agent’s
evaluation, we introduce TradeCraft, a new multi-agent benchmark environment designed to probe
high-order Theory of Mind, social reasoning, and strategic planning in both AI and human agents.
Unlike existing platforms, TradeCraft offers an open-ended social sandbox where heterogeneous
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Trade Craft

TradeCraft 

Steve’s Mind: I need only one        , 
but I must hide my real target and 
claim another crafting route. I can 
request        for safety concern. Alex 
may agree if it is not really 
necessary for his target. 

×𝟏

×𝟏

Steve
Has

Want

×𝟏

×𝟏 →	 ×𝟒	

×𝟐 →	 ×𝟒	

I achieve my 
target!

Steve Crafts:

×𝟏 +	 ×𝟐 →	 ×𝟏	

×𝟏 →	 ×𝟐	

×𝟏 +	 ×𝟐 +	 ×𝟐 →	 ×𝟏	

Have

×𝟏 Want

Makeena
Has

×𝟑

×𝟏

×𝟏

Alex Has

×𝟏 Want

×𝟏

×𝟏

×𝟏

Want×𝟏

×𝟑

×𝟐

Makeena
Has

×𝟏

×𝟑

Steve
Has

Want

Alex Has

×𝟏 Want

×𝟏

×𝟏

×𝟏

Makeena’s Mind: Steve’s target is 
iron sword. He is sincere as he offers 
three       . I need one for my target. 
His offer is not trap-like, as he is still 
defending me.  And I need his offer 
of        and       next round.

Steve’s Mind: Equivalently, a 
equals two       and four      , and        
      can be used as fuel! Nobody 
know that         is my real intention. 
I need nothing more and I am 
WINNING this turn!

Makeena Crafts:
×𝟏 +	 ×𝟏/𝟖 →	 ×𝟏	

×𝟏 +	 ×𝟏/𝟖 →	 ×𝟏	

×𝟏 +	 ×𝟏/𝟖 →	 ×𝟏	

Makeena’s Mind: I will offer Steve 
the two         for his sword, but he 
must pay        and      for iron! As he 
claims so, I guess he will have them 
in his hand next turn, then we will 
both have our targets crafted!

Turn (N)

Steve Alex Makeena
Steve Alex Makeena

From: Steve
To: Makeena (Invisible to Alex)
Offer:          ×𝟑
Request:       ×𝟏 +	 ×𝟏
Message: Hi Alex, please help me smelt the       . I need them for       
. I must keep your        and       for 1 turn in case your target is       
or        . I will offer you        and      later.

From: Makeena
To: Steve
Message: I accept!

Figure 1: TradeCraft involves social interaction, deep reasoning, long-term planning, and fine-grained control.
Players engage in social negotiation and trading, then synthesize target items through long-term planning and
precise control. Achieving success requires high-order theory of mind: reasoning about others’ intentions,
inventory states, and synthesis strategies under goal-directed contexts.

agents must negotiate, trade, and craft to pursue their goals. At its core is a general-purpose composi-
tional crafting system, inspired by open-world games (cf. Minecraft (Fan et al., 2022), Little Alchemy
2 (Brändle et al., 2023)), which supports complex dependency structures and long-horizon objectives.

A distinctive feature of TradeCraft is its rule variability: both goals and mechanics can be random-
ized or customized across matches. This prevents rote memorization, provides a direct measure of
adaptability and learning efficiency and enables a full control of task complexity. Social interaction is
equally central because no single agent can succeed alone, agents must plan strategically, cooperate or
compete, and engage in trade-based exchanges. Trading naturally gives rise to rich behaviors such as
negotiation, trust building, deception, and higher-order belief modeling, offering a principled testbed
for social reasoning.

By supporting both AI and human participants, TradeCraft enables human-in-the-loop evaluation
and comparative studies of social intelligence. Through its combination of cooperation, competition,
open-world crafting, economic exchange, and configurable scenarios, TradeCraft establishes a unified
benchmark that fills a long-standing gap in the study of adaptive multi-agent intelligence.

In summary, our contributions are as follows: (1) TradeCraft Environment: We propose TradeCraft, a
novel open-ended multi-agent environment with a compositional crafting and trading system, which
explicitly targets the evaluation of complex social reasoning capabilities together with long-term
planning in agents. Our platform supports both AI and human players, facilitating rigorous human-AI
comparison studies.

(2) A basic evaluation paradigm: We define a suite of benchmark tasks within TradeCraft that involve
both social and planning abilities. We demonstrate how these abilities in different fields are evaluated
and see whether ability integration brings new challenge to AI agents.

(3) Benchmark Results of LLMs: We release the initial evaluation protocols and baseline results,
laying the groundwork for the community to develop and benchmark more agents on TradeCraft.

2 THE TradeCraft ENVIRONMENT

2.1 THE GAME DESIGN

TradeCraft is a turn-based multiplayer online game designed as a testbed for long-term strategic
social reasoning and planning, supporting both human and LLM agents. In each game session,
players maintain a collection of items through bartering with other participants and crafting based on
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(a) (b)

Figure 2: (a) Pipeline of the TradeCraft game. (b) Distribution of task difficulty in our game set, defined by the
combined complexity of craft chain length and required trade interactions, together with a case study of game
initial state and the crafting route.

predefined formulas. Example crafting formulas are illustrated in Figure. 1. The system currently in-
corporates item sets and rule systems from Minecraft Java-v1.20 and LittleAlchemy2, while allowing
straightforward modification, replacement, or extension of game rules and items (see Section B). Each
game involves two or more players, each possessing a hand of items (with multiplicity) and being
assigned a private target item to craft. While all players’ hands are fully visible to all participants,
each player’s target item remains private. The objective for each player is to be the first to craft their
designated target item. Since initial hands are typically insufficient for direct target item crafting,
players must acquire necessary components through trading with other players.

The game runs in turns, each turn consists of two phases: the trade phase and the craft phase, see
Figure. 1. In the trade phase, one player (called the proposer of this turn) chooses another player and
makes a proposal for trading, together with a text message; the chosen player decides to accept or
to reject the proposal. If a proposal is accepted, then the hands of the two trading players change
accordingly. If rejected, the proposal will be invisible to any other players. After one trial of the
one-on-one trading, the trade phase ends. The proposer rotates to the next player at the end of the
turn. The players act as the proposer in a fixed order. The craft phase follows the trade phase, where
each player starts to craft items at the same time. It is possible to craft several times in a single craft
phase until they choose to finish crafting. The hand changes will not be revealed to others until all
players are done with crafts, and during the craft phase, items can be used in a number of rational
numbers (fractions), and at the end of the craft phase, all non-integer amounts are rounded down.

2.2 GAME IMPLEMENTATION AND INTERFACES

The TradeCraft implementation consists of a server and two types of user-interfaces.

The Server. The server hosts all the game state and dynamics, manages the login users and game.
multiple games with different player amounts or rules can be hosted on a single server. Server is
written in Python with package flask, MongoDB database are used to save game state and logs.

Web-GUI The web-based GUI integrates all game functions together with built-in assistance and
crafting support, human users can reach through web-browsers (see Appendix Figure. 7.)

Lang-API The language-based API mirrors the functionality of the Web-GUI in text modal,
designed to comply with gymnasium for agent integration. Observations are provided in language,
and actions are executed via langchain tools. There is a set of standard tools provided together
with the environment, shown in Figure. 2(a), while expansion with customized tools are supported.

In gymnasium, a “observation-action” loop is maintained. In each cycle, an agent reads observa-
tions and chooses an action with arguments. In the API, observations are provided in text format.
Conducted by game-dynamics module, language interpreter module translates system messages into
text generates the observations, both modules are highly extensible and customizable. Observations
contain all the facts that web-GUI contains. Actions are in langchain tool format, accepting
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(a) (b)

Figure 3: Methods. Left: the multi-role agent design, where roles Router, Proposer, Decision Maker, Planner and
Crafter are integrated in a whole pipeline. Right: The evaluation pipeline for various dimensions we designed.

an argument dictionary. The end-of-phase tools affects the game state, containing submit proposal,
submit decision, make craft, etc., while within-phase tools are for querying information, such as item
info, game history, available crafts, etc. Using a tool leads to a new observation about change of game
state or the response to a query.

2.3 INITIAL GAME STATES

A game state is the hand items and targets of all players at some time. Since all target items must be
craftable from the union of all players’ hand items, initial states (referred to as initials) that are not
carefully designed tend to be invalid or trivial. For the Minecraft ruleset, we provide 40 predefined
initial setups for the 1-vs-1 game mode, covering a range of difficulty levels (Figure 2(b)). The initials
can be easily maintained by editing JSON files, and new game modes can be introduced by adding
corresponding directories and adjusting configuration settings (see Section B). The difficulty of an
initial setup is assessed along two dimensions: the length of the crafting chain and the minimum
number of trading steps required. In designing these setups, we follow the principle that the union
of all players’ initial items must suffice to craft each player’s target individually; however, it is
not guaranteed that all targets can be crafted simultaneously (For instance, the total pool may
contain only 3 stones, while two players each require 2 stones). To promote strategic competition
and planning, initial hand items are not of exact amount to craft all goals. Redundant items helps
introduce alternative crafting routes or provides distracts or deceiving targets. This design enhances
the complexity of the game and allows for better evaluation of the model’s intelligence.

3 METHODS

3.1 CONSTRUCTION OF TradeCraft AGENT

Our agent is built on the gymnasiumAPI and operates by selecting actions based on the observations
made during each loop cycle. The agent follows a multi-role architecture, with each role adhering
to the ReAct framework, maintaining an individual context, and performing specific tasks. To align
with the game’s different phases, we have designed distinct roles: the Router, which activates other
roles, and the active roles of Proposer, Decision Maker, and Crafter, each corresponding to specific
phases of the game. Additionally, a Planner is responsible for generating actionable plans that guide
the Crafter’s actions, as illustrated in Figure 3(a). Furthermore, a “game history” is maintained as a
list of logs, which informs the decision-making process of each role. This history is refined at each
turn to prevent exceeding the context window.

The ReAct workflow within each role generates rich, intermediate thoughts, which are effectively
utilized by tools either during the working steps or as the final output. We group these logs for further
evaluation and analysis.
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Table 1: Three groups of evaluation metrics derived from TradeCraft gameplay logs. Group 1 consists of
outcome-oriented heuristic indicators directly measurable from logs; group 2 captures higher-level social and
strategic qualities, scored by LLM; group 3 specifies to detect signals of ToM in various orders, scored by LLM.

Group Metrics and Description

Heuristic,
outcome-oriented
signals

Win–Loss Record: success in achieving the designated target item.
Invalid Behavior per Turn: frequency of protocol-violating actions (e.g., infeasible
trades, empty proposals).
Average Game Turns: mean number of turns to complete a game (lower indicates
higher efficiency).
Proposal Rejection Rate: proportion of trade proposals rejected by the opponent.

Model-based
social and strategic
qualities

Goal Alignment: consistency of actions and proposals with the designated target.
Cooperation: pursuit of mutual benefit (e.g., equitable trades, shared progress).
Adaptability: flexibility in response to dynamic states and opponent behavior.
Intention Concealment: deliberate obfuscation of goals via selective disclosure or
misdirection.
Strategic Planning: evidence of long-horizon reasoning, resource management, and
contingency planning.
Self-Interested Behavior: prioritization of individual payoff relative to collective
benefit.
Information Utilization: effectiveness in leveraging signals such as opponent ac-
tions and resource states.
Persuasion: ability to influence opponents through communication or structured
proposals.

Model-based
ToM
of various
orders

1st order: Reasoning about the opponent’s current beliefs or goals. E.g., “I think
they want X.”
2nd order: Reasoning about what the opponent believes about oneself. E.g., “I think
she thinks that I want more resources.”
3rd or higher: Deeper recursive belief reasoning across three or more levels. E.g.,

“I guess she thinks that I know she will reject the proposal.”

3.2 EVALUATIONS

The gameplay logs generated by agents in TradeCraft comprise both behaviors (i.e., observable
actions) and thoughts (i.e., internal reasoning traces such as chain-of-thought logs). To systematically
analyze these materials, we consider two complementary groups of indicators, heuristic and model-
based, each reflecting different aspects of strategy and outcome.

As summarized in Table 1, the first two groups of metrics are complementary while the third is
extracted from the second as a special part. The heuristic outcome-oriented signals provide direct,
quantitative evidence of task performance in terms of success, efficiency, and rule adherence. In
contrast, the model-based social and strategic qualities capture more nuanced aspects of behavior,
such as cooperation, persuasion, and long-term planning, which are not directly measurable from
raw outcomes but are critical for understanding strategic competence in social interaction settings.
As ToM is multi-dimensionally structured and plays an important role in capturing recursive belief
reasoning central to negotiation, they are taken out from group 2 and form a single group.

In sum, these metrics allow us to evaluate LLMs in a holistic manner—linking basic performance out-
comes, social-cognitive reasoning, and role-driven behavioral traits—thus offering a comprehensive
basis for subsequent analysis.

4 EXPERIMENTS

We evaluate our agents in TradeCraft using the defined metrics, focusing on a controlled two-player
setting though our system allows more. This choice reduces design complexity and highlights ToM
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signals, which become more probable to be trivial in larger groups where higher-order ToM on two
agents induces self-reflection and thus more variable social behaviors (Wang et al., 2024).

As described in Section 2.3, our benchmark includes five initial game states of varying difficulty. For
each state, we perform cross-play between agents driven by pairs of LLMs instantiated with different
social preferences: cooperative, competitive, and unprimed. Gameplay data, including both behaviors
and reasoning traces, are exported from MongoDB in JSON format.

For evaluation, we employ Gemini-1.5-Pro as the assessor. As shown in Figure 3(b), records are
reconstructed into per-turn utterances, actions, proposals, and server responses. The assessor assigns
per-turn scores in r0, 1s for metrics in groups 2, and identifies ToM levels using dedicated prompts.
Player-level scores are obtained by averaging across turns and across repeated games or seeds. We
report both per-case results and macro-averages, further stratified by persona and role to analyze how
style conditions influence strategy, social behavior, ToM, and ultimately win/loss outcomes.

4.1 MODEL-LEVEL BEHAVIORAL COMPARISON

We conducted pairwise matchups between agnets driven by GPT-4o, Claude-3.7-Sonnet, and Gemini-
1.5-Pro to systematically analyze the performance variance among the models. As an agent’s behavior
is not independent of its opponent’s behavioral pattern, Figures 4(a)-(c) present radar plots based on
specific pairwise interactions, rather than aggregating scores across all games for a single agent.

From the overall results (Figure 2(a)), we observe that the Claude-3.7-Sonnet–based agent demon-
strates a clear advantage over GPT-4o and Gemini-1.5-Pro across multiple model-based evaluation
dimensions. Claude also shows relatively uniform scores across metrics, suggesting a stable and bal-
anced decision pattern. In contrast, GPT-4o reveals a distinct bias—scoring lower in Cooperation but
higher in Intention Concealment—indicating a strategy that prioritizes goal preservation and strategic
ambiguity over collaboration. Gemini-1.5-Pro, by comparison, performs weakest in Persuasion and
Intention Concealment, making it the most transparent and least deceptive of the three.

Pairwise contexts reveal additional dynamics. Gemini tends to behave more cooperatively against
GPT-4o, yet its Cooperation score drops notably when facing Claude. Conversely, GPT-4o conceals
intentions strongly when paired with Gemini, but this tendency diminishes against Claude. These
findings suggest that model behavior is highly context-dependent, shaped not only by internal policies
but also by the opponent’s behavioral profile or social orientation.

Heuristic metrics complement these observations. GPT-4o records the highest rate of invalid actions
and rejects nearly 90% of trade proposals, reinforcing its uncooperative tendencies. Gemini frequently
accepts proposals, aligning with its cooperative orientation. Meanwhile, the Average Game Turn
metric highlights strategic differences: GPT-4o tends to finish games quickly, reflecting aggressive
goal pursuit, whereas Claude’s longer interactions suggest a more cautious, deliberative style. To-
gether, these divergences underscore the value of studying LLMs’ social orientations in interactive
environments.

Figure 5(a) summarizes outcomes across all pairwise matchups. GPT-4o and Claude-3.7-Sonnet show
strategic parity (4:4 win-lose), while GPT-4o dominates Gemini-1.5-Pro (7:3) with no mutual wins or
losses, suggesting strong exploitation of weaker strategies. Claude also outperforms Gemini (4:2),
but the presence of four mutual-loss games points to potential instability or risk-prone decisions.
Gemini-1.5-Pro, by contrast, fails to secure dominance in any pairing.

Those analysis above suggests that GPT-4o might prefer a more competitive and aggressive strategy in
TradeCraft, whereas Gemini-1.5-Pro tends to exhibit more cooperative behavior. Although Claude-3.7
demonstrates the most well-rounded behavioral profile according to our model-based evaluation,
its inability to consistently secure wins against less adversarial opponents highlights a potential
limitation in effectively capitalizing on cooperative dynamics.

4.2 TOM IN TRADECRAFT

And regarding Theory of Mind, we also evaluated the pairwise interaction logs across different
foundation models. Our updated results show that none of the three models exhibits any ToM behavior
beyond the first order:
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(a) GPT-4o vs. Claude (b) Gemini vs. GPT-4o (c) Gemini vs. Claude

(d) competitive vs. competitive (e) cooperative vs. cooperative (f) unprimed vs unprimed

(g) competitive vs. cooperative (h) unprimed vs. cooperative (i) competitive vs. unprimed

(j) Different Models (k) Different Social Preference

Figure 4: Evaluation results across all agent settings. (a-c) : Pairwise comparisons between different foundation
models (GPT-4o, Claude-3.7-Sonnet, and Gemini-1.5-Pro). (d-f) : Matchups between agents with the same
social preference (competitive, cooperative, and unprimed), revealing internally consistent behavioral patterns.
(g-i): Interactions between agents with differing social preferences, highlighting behavioral asymmetries such as
intention concealment and cooperation. (j-k): Heuristic evaluation metrics aggregated by model type and social
preference, respectively.

Overall, all three models demonstrate relatively strong first-order ToM ability—being able to infer
or speculate about the opponent’s immediate goals and intentions. However, we find no evidence of
second-order or higher-order ToM reasoning, i.e., recursive mental-state attribution such as “I
think she thinks that I want more resources.”

These observations suggest that in TradeCraft-style game-based tasks, LLMs may not spontaneously
display Theory-of-Mind behaviors without specific prompts to elicit them, even though such reason-
ing is central to human-like negotiation, deception detection, and perspective-taking. Importantly,
TradeCraft provides a systematic setting to explore this gap.
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Figure 5: Outcome head-to-head comparisons. (a) results of model comparisons; (b) results of social preference
comparisons. Bar of same color with name represents winning counts, green for both win and red for both lose.

Model 1st-Order ToM 2nd-Order ToM 3rd-or-Higher ToM

Claude-3.7-Sonnet 0.867 0.0 0.0
GPT-4o 0.736 0.0 0.0
Gemini-1.5-Pro 0.840 0.0 0.0

Table 2: Observed Theory-of-Mind levels across three LLMs in TradeCraft.

We will release our detailed ToM evaluation methodology together with the raw logs in our repository
upon approval, and update the corresponding sections in the revised manuscript.

4.3 IMPACT OF SOCIAL PREFERENCES ON GAME OUTCOME

Having established how different models behave under a shared task, we next examine how inten-
tional prompt design—specifically manipulating an agent’s social preference—shapes behavior and
outcomes. To this end, we modify the agent prompts to induce distinct social orientations. Alongside
the baseline Gemini-Unprimed, which follows only the gameplay objective of crafting its assigned
target item, we define two variants: Gemini-Cooperative, which emphasizes collaboration and
mutual benefit, and Gemini-Competitive, which promotes adversarial behavior and goal obstruction.
Table 3 summarizes the detailed prompts for each agent type.

Table 3: Agent assigned with different social preference (Driven only by Gemini)

Agent Name Specified Social Preferences

Unprimed You do not need to consider the other team’s goal—treat them as neutral trading partners.
Cooperative Support your opponent’s progress through information-sharing and fair trade.
Competitive Attempt to disrupt or delay your opponent’s progress toward their target.

Figure 4(d–i, k) reports the evaluation results for agents under different social orientations. Agents
sharing the same orientation exhibit relatively consistent behavioral patterns when paired against each
other (Figure 4(d–f)). By contrast, subplots (g–i), which show cross-orientation matchups, reveal
clear asymmetries: Competitive agents tend to conceal intentions more deliberately and display
stronger Self-Interested Behavior, whereas Cooperative agents consistently achieve higher scores in
Cooperation.

Interestingly, the Cooperative orientation enhances more than just collaboration. Compared to other
types, Cooperative agents also achieve higher scores in Goal Alignment, Strategic Planning, Adapt-
ability, and Information Utilization. Heuristic metrics reinforce this pattern: Cooperative agents
commit fewer invalid actions and accept nearly all incoming trade proposals. We hypothesize that
this stems from an underlying “helper-agent” bias in LLMs, which are often trained to assist and
align with user intent by default.

Figure 5(b) further summarizes head-to-head outcomes across the three orientations. Diagonal entries
(i.e., matches with the same social orientation) show near-even win rates, reflecting the fairness and
stability of our evaluation setup. Across cross-orientation matchups, Cooperative agents achieve
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the highest overall win rates. In particular, both Cooperative and Unprimed agents outperform
Competitive ones (with win ratios of 5:1 and 4:2, respectively).

These findings not only demonstrate the multifaceted influence of different social orientations on
LLM behavior, but also highlight TradeCraft as a benchmark environment capable of systematically
revealing such orientation-driven dynamics.

4.4 CORRELATING EVALUATION DIMENSIONS WITH TASK SUCCESS

Building on the finding that social orientations shape agent behavior and outcomes, we next examine
which specific behavioral dimensions are most predictive of successful task completion.

More concretely, we ask: Which of the eight model-based evaluation dimensions best predict whether
an agent ultimately succeeds in crafting its target item? We aggregated all 60 game records from
the previous experiments, identified winners and losers in each game, and compared their average
model-based evaluation scores. The results are shown in Figure 6.

(a) Winners (b) Losers (c) Delta

Figure 6: The model-based evaluation results for (a) all winners (b) all losers and (c) the delta.

From the Delta values (∆ “
|Winner’s Score´Loser’s Score|

Loser’s Score ) in Figure 6(c), we find little difference between
winners and losers in behavioral dimensions such as Cooperation and Intention Concealment. By
contrast, winners score notably higher in strategy-oriented dimensions, including Goal Alignment,
Strategic Planning, and Information Utilization.

This suggests that in TradeCraft, social orientation influences outcomes only indirectly, whereas task-
focused abilities—planning and execution toward assigned goals—are the more direct determinants
of success. Still, cooperative prompting may enhance adaptability and planning, indirectly boosting
win rates.

Importantly, these results highlight TradeCraft as a benchmark that not only reveals outcome differ-
ences, but also disentangles the strategic and social factors underlying LLM performance.

5 CONCLUSION

TradeCraft provides a rigorous benchmark with structured tasks and dynamic interactions for evalu-
ating social intelligence through strategic reasoning, planning, and Theory of Mind. For a detailed
discussion of related work, see Appendix A. Evaluations of large language models highlight current
limitations and guide future progress toward socially intelligent agents.
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A RELATED WORK

A.1 THEORY OF MIND AND STRATEGIC SOCIAL REASONING

Theory of Mind (ToM)—the ability to infer others’ beliefs, intentions, and desires—is a cornerstone
of social intelligence. Classic models formalize ToM via Bayesian inference (Baker et al., 2011) or
recursive belief modeling in I-POMDPs (Gmytrasiewicz & Doshi, 2005). More recent approaches
like ToMnet (Rabinowitz et al., 2018) use meta-learning to predict agent behavior from limited
observations. These methods demonstrate success in simple gridworlds but remain limited in general-
izability. In multi-agent reinforcement learning, ToM-inspired models have improved coordination
and competition via policy modeling (He et al., 2016; Raileanu et al., 2018). SymmToM (Sclar
et al., 2022) further explores this in a communication-rich environment, yet still falls short of oracle
performance. As agents acquire ToM, complex behaviors such as deception and strategic communica-
tion emerge. TradeCraft builds on this foundation by embedding high-order ToM reasoning into a
compositional, dynamic benchmark that explicitly tests belief modeling, negotiation, and strategic
planning in cooperative-competitive contexts.

A.2 BENCHMARKS FOR SOCIAL INTELLIGENCE AND MIXED-MOTIVE INTERACTION

Benchmarks like Hanabi (Bard et al., 2020), Diplomacy (Bakhtin et al., 2022), and Melting Pot
(Leibo et al., 2021) evaluate agents’ abilities in belief inference, negotiation, and social generalization.
Others, such as Overcooked-AI (Carroll et al., 2019), highlight challenges in human-AI collaboration
and ad-hoc teamwork. Hide-and-Seek (Baker et al., 2019) reveals emergent strategies from self-play
in competitive settings. However, most existing environments target isolated facets (e.g., implicit
communication, collaboration) and assume static rules. In contrast, TradeCraft introduces a unified,
grounded environment where agents must engage in long-horizon planning, resource management,
and flexible social strategies under dynamic rule changes. Its hybrid-motive design (collaboration
+ bartering + competition) supports the emergence of context-sensitive cooperation and deception,
offering a more comprehensive testbed for evaluating strategic social intelligence.

A.3 LLMS FOR MULTI-AGENT REASONING AND HUMAN-AI INTERACTION

Large language models (LLMs) have shown promise in social reasoning tasks. Generative Agents
(Park et al., 2023) simulate social behaviors through LLMs enhanced with memory and reflection.
ProAgent (Zhang et al., 2024) and Hypothetical Minds (Wu et al., 2024) integrate modular ToM
reasoning with LLM planners, achieving strong performance on Melting Pot tasks. Meanwhile, Cicero
(Bakhtin et al., 2022) combines LLM dialogue with planning to play Diplomacy at human level.
Despite these advances, current evaluations focus on simulated text environments or fixed games.
TradeCraft offers a grounded alternative: it evaluates LLMs in embodied multi-agent scenarios with
real-time interaction, compositional objectives, and rule variability. Crucially, it supports human-AI
interaction, enabling research into ad-hoc collaboration and ToM reasoning against humans—an
underexplored frontier in LLM-based multi-agent learning.

B TRADECRAFT GAME

We construct a configurable multi-player environment in which agents collaborate or compete to
achieve item synthesis objectives through trading and crafting. The environment is designed to support
multiple synthesis rule systems, most notably those derived from Minecraft and Little Alchemy 2,
enabling researchers to investigate agent behavior under varying levels of combinatorial complexity,
structural constraints, and long-horizon planning demands. This multi-rule setting allows for a
systematic analysis of agent capabilities. The Minecraft-inspired configuration employs grid-based
crafting logic with explicit recipe tables and strict input requirements. Each crafting operation requires
precise item combinations and, in many cases, auxiliary fuel resources (e.g., coal for smelting). This
setup emphasizes local planning, resource management, and deterministic action validation.

In contrast, the Little Alchemy 2-based system features a significantly more permissive and ex-
ploratory synthesis mechanism. Items can be combined in various orders and through long synthesis
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chains, with minimal structural constraints. This configuration emphasizes long-horizon reasoning,
abstraction, and adaptability to open-ended composition paths.

Beyond crafting, the environment incorporates a structured trading phase, wherein agents may
exchange items based on their beliefs, needs, or inferred goals. This component enables the evaluation
of social reasoning, such as goal inference, negotiation strategies, and basic forms of theory of mind.
Agents must not only plan for item synthesis but also engage in cooperative behavior, anticipate their
partner’s intentions, and adapt their strategy accordingly.

The environment supports seamless switching between rule systems and allows for custom rule
definitions, thereby functioning as a general platform for evaluating both synthesis-centric reasoning
and socially situated decision-making in multi-agent scenarios.

Each turn consists of a sequence of structured phases, involving trade negotiation, decision-making,
and item synthesis. The overall process is as follows:

Initialization.At the beginning of the game, each agent is assigned an initial inventory of items.
These items are drawn from a predefined item pool governed by the selected rule system (e.g.,
Minecraft-style or Little Alchemy 2-style rules). Initialization occurs only once, before the first turn.

Proposal Phase.In each turn, one agent is designated as the proposer and enters the proposal phase.
The proposer constructs a trade proposal consisting of:a set of items to offer, a set of items to request,
and an optional message conveying intent or context.

Decision Phase.The target agent receives the proposal and evaluates it based on the content of the
proposal message, the current items, and its goals. The agent makes a binary decision to either accept
or reject the proposal. If accepted, the proposed trade is executed, and both agents’ inventories are
updated accordingly. If rejected, no exchange occurs.

Craft Phase: After the decision phase, both agents independently attempt to synthesize new items
using their current inventories. Crafting actions are validated against the active rule system using the
tools. Only combinations that satisfy the system-defined synthesis constraints are permitted. After all
crafting operations are complete, the resulting item quantities are floored to the nearest integer.

Once the crafting phase concludes, the environment transitions to the next turn, and a new agent is
selected to initiate the proposal phase. The game continues for a predefined number of turns or until
specific task objectives are achieved.

B.1 FORMAT OF A CRAFTING FORMULA

We follow strictly the Minecraft-Java-1.20 crafting recipe settings. Common crafting recipeslooks
like:

Shapeless items: wooden_button.json

{
"type": "minecraft:crafting_shapeless",
"category": "redstone",
"group": "wooden_button",
"ingredients": [

{
"item": "minecraft:jungle_planks"

}
],
"result": {

"item": "minecraft:jungle_button"
}

}
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Figure 7: Crafting and trading interface designed based on Minecraft rules. The system restores the original fuel
mechanism and incorporates a strict validation process to ensure the correctness of item synthesis. At the end of
the crafting phase, the quantities of all items are rounded down to the nearest integer.

Shaped items: diamond_hoe.json

{
"type": "minecraft:crafting_shaped",
"category": "equipment",
"key": {

"#": {
"item": "minecraft:stick"

},
"X": {
"item": "minecraft:diamond"

}
},
"pattern": [

"XX",
" #",
" #"

],
"result": {

"item": "minecraft:diamond_hoe"
},
"show_notification": true

}

These files locate at /tradeCraft/src/craft_rules/rule_sets/ruleset/recipes.

B.2 FORMAT OF AN INITIAL GAME STATE (A PROBLEM)

A JSON file with a single problem lookes like:
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Figure 8: Interface designed based on the rules of Little Alchemy 2. Compared to Minecraft, this environment
features more flexible crafting paths and significantly longer synthesis chains, posing greater challenges for
agents in terms of long-term planning and situational adaptability.

problem.json

[
{

"hands": [
{

"minecraft:cherry_planks": 1,
"minecraft:coal": 1,
"minecraft:iron_ingot": 1,
"minecraft:raw_copper": 1,
"minecraft:cobblestone": 1

},
{

"minecraft:oak_planks": 1,
"minecraft:raw_iron": 5,
"minecraft:cobblestone": 1,
"minecraft:raw_copper": 2

}
],
"targets": [

{
"minecraft:shears": 1

},
{

"minecraft:torch": 1
}

]
}

]

where adding new elements in the outer list extends the problem set. The above is a two-player game
setting, adding one new entry on both “hands” and “targets” will make it a three-player problem.
Note that three-player and two-player problems belong to different game modes, their files should be
copied to correct paths to avoid exceptions!

B.3 HOW TO ADD A NEW RULESET

To add a new ruleset, one may follow the following instructions:
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1. Copy the existing ones at /tradeCraft/src/craft_rules/rule_sets/ and
change ruleset name. Copy recipes, tags, item_icons into corresponding folders
and remove all temp files.

2. Copy problem sets to
/tradeCraft/src/craft_rules/TC_GAMES/ruleset-name/game-mode,
the detailed structure please refer to the existing ones.

3. Modify configuration file: /tradeCraft/settings.yaml, change
craft_rule_choice, craft_rule_prefix (if in your recipe files items
have a prefix, such as “minecraft:” in item “minecraft:stick”), and icon_format into
appropriate ones.

4. Rerun the file /tradeCraft/run_server.py in path /tradeCraft/.

C DETAILS OF MODEL-BASED EVALUATION PROMPTS

C.1 THEORY OF MIND (TOM) EVALUATION

For the evaluation of Theory of Mind (ToM), we designed a structured prompt that instructs the
assessor LLM to examine every turn in the game logs and determine whether each player demonstrates
first-, second-, or third-order ToM reasoning. The assessment is binary for each dimension: true
(1) if the behavior is detected, and false (0) otherwise. The final score for a given ToM order is
computed as the ratio of turns with positive detection to the total number of turns (see Table 3 in the
main text).

Below is an excerpt from a real evaluation case, showing how ToM reasoning is detected for a single
turn:

Game Log (Turn 8 excerpt)

Player 2 THINKS:
"I notice my opponent has stone_bricks,
which might be valuable to them.

Since my goal is to craft a stone shovel,
I could offer raw_copper in exchange.

Since my opponent mentioned they’re trying to craft a bucket,
they might need iron."
[First-order ToM]

Model Evaluation Output

{
"Turn 8": [

{
"user": "player 2",
"justification": "Player 2 considers what the other
player needs--first-order ToM.",
"first_order_tom": true,
"second_order_tom": false,
"third_or_higher_tom": false

},
{
"user": "player 1",
"justification": "Player 1 only evaluates based on their
own crafting goals--no ToM reasoning.",
"first_order_tom": false,
"second_order_tom": false,
"third_or_higher_tom": false

}
]

}

C.2 OTHER MODEL-BASED DIMENSIONS

For the other eight model-based dimensions (e.g., Goal Alignment, Cooperation, Persuasion), we
used a similar evaluation pipeline. The assessor LLM receives the complete game log and assigns a
score in r0, 1s to each player for each dimension at every turn, with justifications. Final scores are
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averaged across turns and games. Representative aggregated results are reported in Figures 3(a–i) and
Figure 4 of the main text.

Unlike ToM evaluation (binary detection per order), these dimensions are graded continuously,
enabling us to capture finer variations in social and strategic behavior.

C.3 HUMAN VALIDATION OF MODEL-BASED EVALUATION

To validate the reliability of our model-based evaluation pipeline, we conducted a small-scale
human study. Specifically, we examined three representative dimensions—Theory of Mind (ToM),
Persuasion, and Adaptability—where subjective interpretation could play a critical role. A subset of
game logs was sampled, and human raters were asked to perform the same evaluations.

Unlike the model-based evaluation, where the entire game log is processed at once, we presented
the records to human annotators on a turn-by-turn basis. This design reduced cognitive load and
avoided potential fatigue, ensuring that participants could focus on evaluating each player’s behavior
within a single turn. For each turn, annotators judged (i) the presence of first-/second-/higher-order
ToM reasoning (binary), (ii) the strength of persuasion, and (iii) the degree of adaptability (both
scored in r0, 1s).

The comparison between human annotations and model-based scores is summarized below:

• ToM judgment consistency: 86.3% agreement (flattened across ToM levels), indicating
strong alignment between human and LLM-based judgments.

• Persuasion: Mean Absolute Error (MAE) = 0.236 (score range: 0–1).
• Adaptability: MAE = 0.281 (score range: 0–1).

These results suggest that the automated evaluation pipeline is reasonably consistent with human
judgments, particularly in ToM detection, where alignment exceeded 85%. For more graded dimen-
sions such as persuasion and adaptability, the moderate MAE values indicate that while the assessor
LLM may not perfectly mirror human perception, it nonetheless provides a reliable approximation.
This strengthens confidence in the validity of our model-based evaluation framework and supports its
use for large-scale, systematic assessment of LLM behaviors in TradeCraft.
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