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RELITTRELLIS: LIGHTING-HOMOGENIZED STRUC-
TURED 3D LATENTS FOR RELIGHTABLE 3D GENER-
ATION

Anonymous authors
Paper under double-blind review
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Figure 1: Relightable 3D generation results. From left to right: target lighting conditions, input images,
ground truth, HuanYuan3D-2.1 results, and our results (including two novel views). Our method achieves more
accurate relighting compared to existing approaches, particularly in preserving material properties and lighting
consistency across views.

ABSTRACT

Generating relightable 3D assets from a single image is fundamentally ill-posed:
geometry, material, and lighting are deeply entangled, making both principle-
driven decomposition and end-to-end neural generation brittle or inconsistent.
We propose RelitTrellis, a homogenize-then-synthesize framework built on a
Lighting-Homogenized Structured 3D Latent (LH-SLAT). LH-SLAT attenu-
ates shadows and unstable highlights while preserving geometry-consistent dif-
fuse cues, providing a well-conditioned substrate for relighting. From a casually
lit input, RelitTrellis first derives LH-SLAT and then synthesizes 3D Gaussian
parameters conditioned on target illumination, efficiently capturing higher-order
light–material interactions such as soft shadows and indirect reflections. Experi-
ments on Digital Twin Category, Aria Digital Twin, and Objaverse benchmarks
show that RelitTrellis achieves state-of-the-art quality, strong cross-object and
cross-illumination generalization, consistent multi-view rendering, and real-time
feed-forward inference without per-object optimization.

1 INTRODUCTION

Generating relightable 3D assets from a single image is a challenging problem in vision and graph-
ics, with applications in virtual commerce, XR, and digital twins. The difficulty stems from en-
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tangled geometry, material, and lighting in a single RGB observation, which makes standard PBR
decomposition brittle and end-to-end neural relighting inconsistent.

The first is principle-driven rendering based on physically-based rendering (PBR) decomposi-
tion Zhao et al. (2025); Liang et al. (2025). These methods follow a decomposition pipeline: regress
albedo, roughness, and metallic maps, then re-render under novel illumination. While interpretable
and editable, the inverse problem is highly ill-posed: real images embed diffuse shading, cast shad-
ows, inter-reflections, and view-dependent highlights that do not map cleanly into isotropic BRDFs.
Small estimation errors—such as mistaking shadows for low albedo—are amplified nonlinearly dur-
ing re-rendering, leading to baked-in shadows or distorted reflections.

The second is data-driven rendering, which leverages large generative models to directly map images
to relighted results Jin et al. (2024); Zhang et al. (2025). Such models capture complex global light
transport and can synthesize visually compelling outputs. However, they face critical limitations:
representations are black-box with little controllability, training requires massive paired relighting
data that are scarce in practice, diffusion-based inference is slow and stochastic, and multi-view
consistency remains unresolved.

Both families struggle with a common barrier: the input image itself is imprinted with arbitrary,
scene-specific illumination that entangles material and lighting, complicating consistent relighting.
To address this, we argue that before decomposition or generation, a crucial step is to homogenize
illumination. The goal is to map a casually lit observation into a canonical representation in which
shadows and unstable specularities are attenuated while geometry-aligned diffuse cues remain. From
the perspective of problem formulation, this step fundamentally differs from the ill-posed inverse
estimation in PBR decomposition: instead of disentangling multiple entangled factors at once, light
homogenization provides a more stable and well-conditioned transformation. At the same time,
compared to purely generative mappings, introducing an intermediate structured latent enhances
controllability and interpretability, offering a principled substrate for subsequent synthesis. Inspired
by the principle of Vasluianu et al. (2024), we introduce a Lighting-Homogenized Structured 3D
Latent (LH-SLAT), which suppresses shadows and unstable highlights while preserving geometry-
consistent diffuse cues essential for faithful relighting as shown in Figure 2.

Render ShadowAO

Base Color

Random light

Nomalized Light

Figure 2: Visualization of ren-
ders under random lighting and
homogenized illumination.

Building on LH-SLAT, we propose RelitTrellis, a homogenize-
then-synthesize framework for single-image relightable 3D asset
generation. From a casually lit input, RelitTrellis first extracts a
canonical structured latent under homogenized illumination. This
removes scene-specific illumination patterns that traditionally hin-
der material–lighting separation. Then, a lightweight decoder con-
ditions on target environment lighting and a dedicated light-ray en-
coding to synthesize 3D Gaussian parameters and appearance, ef-
ficiently capturing higher-order light–material interactions such as
soft shadows and indirect reflections.

This design enables a maximized setup: unlike prior neural-based
rendering approaches that suffer from slow and stochastic diffusion
sampling and multi-view inconsistency, our homogenize-then-synthesize pipeline scales to diverse
inputs, generalizes across objects and lighting, and achieves real-time inference without per-object
optimization.

Experiments on various datasets confirm that RelitTrellis achieves state-of-the-art quality with
strong generalization across objects and lighting, faithful reproduction of specular and shadow ef-
fects, and real-time inference without per-object optimization.

Our contributions are:

1. We introduce a lighting-homogenized structured latent (LH-SLAT) that suppresses shad-
ows and unstable highlights while retaining geometry-consistent diffuse cues.

2. We design a homogenize-then-synthesize pipeline that couples LH-SLAT extraction with
light-conditioned synthesis of 3D Gaussian parameters and appearance.

3. We conduct extensive experiments and ablations on various datasets, demonstrating state-
of-the-art or improved quality, cross-object and cross-illumination generalization, multi-
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view consistency, and real-time feed-forward relighting (up to 48 FPS) without per-object
tuning.

2 RELATED WORKS

2.1 IMAGE RELIGHTING AND INVERSE RENDERING

Image relighting and inverse rendering sit at the intersection of geometry, material estimation, and
light transport, and have been studied from both physics-driven and data-driven perspectives Jin
et al. (2024). Classical inverse rendering methods (e.g., SIRFS) recover interpretable PBR maps
(albedo, roughness, normals) via optimization and hand-crafted priors Barron & Malik (2013).
These pipelines are interpretable and editable, but the inverse problem is highly ill-posed in real
scenes: shadows, inter-reflections and view-dependent highlights easily bias the recovered materials
and produce baked-in artifacts under re-rendering (see Sec. 1).

Recent learning-based relighting approaches fall into two broad families. The first family focuses
on physically-structured decomposition into PBR components and subsequent re-rendering Zhao
et al. (2025); Liang et al. (2025). Decomposition-based methods are well suited for relightable asset
creation because they produce interpretable, editable material maps; however, the inverse problem is
ill-posed from casual single-view inputs and robustness often requires multi-view data or per-object
optimization.

The second family targets direct, often diffusion-based, image relighting and editing: methods
such as SPOTLIGHT, DiLightNet, IC-Light and LightLab exploit the generative power of diffusion
priors to produce high-fidelity relit images and offer fine-grained light control Fortier-Chouinard
et al. (2024); Zeng et al. (2024a); Zhang et al. (2025); Magar et al. (2025). While visually com-
pelling, these approaches are typically computationally expensive, stochastic at inference, require
large paired data, and do not naturally provide multi-view consistent 3D assets.

In this work we take a middle path: instead of directly solving a brittle PBR inversion or relying on
black-box diffusion sampling, we first homogenize the input illumination into a canonical represen-
tation (LH-SLAT) and then synthesize a relightable 3D field in a feed-forward manner (Sec. 2). This
homogenize-then-synthesize strategy stabilizes downstream decoding and improves controllability.

2.2 DIFFUSION PRIORS AND 3D CONTENT GENERATION

Diffusion priors and score-distillation techniques have catalyzed rapid progress in 3D synthesis from
2D models Poole et al. (2022); Tang et al. (2023); Shi et al. (2023). DreamFusion and follow-up
works transfer 2D generative knowledge to 3D via SDS, improving fidelity at the cost of expen-
sive iterative optimization. More recent efforts push for faster or feed-forward 3D reconstruction
and native 3D generation by training on 3D datasets, or by designing architectures that decouple
geometry and appearance Hong et al. (2023); Xiang et al. (2024); Zhang et al. (2024a). These na-
tive or decoder-first approaches tend to provide better cross-view consistency and faster inference
than optimization-based SDS pipelines, but aligning geometry and high-fidelity appearance remains
challenging. Our method builds on this line: we adopt a structured 3D latent representation and a
decoder that directly predicts a relightable 3D Gaussian Splatting (3DGS) field, trading expensive
optimization for a real-time, multi-view-consistent synthesis.

2.3 RELIGHTABLE 3D ASSET SYNTHESIS

Producing relightable 3D assets requires models to represent both intrinsic surface properties and
lighting-dependent transport (shadows, speculars, interreflections). Prior works condition NeRFs,
Gaussian splats or meshes on lighting inputs to enable relighting-aware outputs Zeng et al. (2023);
Jin et al. (2024); Li et al. (2023); Gao et al. (2024); Bi et al. (2024). Many approaches either use
volumetric neural renderers that are costly at inference, or attempt to estimate PBR maps without
lighting supervision, which leads to poor disentanglement Qiu et al. (2024); Liu et al. (2024); Shim
et al. (2024). Recent models explore large inverse-rendering architectures to predict PBR properties
from sparse views, but computational cost and per-object optimization remain bottlenecks Li et al.
(2025b); Zhang et al. (2024b).
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Figure 3: Pipeline of RelitTrellis. Stage 1: Light Homogenization extracts a Lighting-Homogenized
Structured 3D Latent (LH-SLAT) from a casually lit input image. Stage 2: Relightable 3DGS
Syntehsis generates a relightable 3D Gaussian Splatting (3DGS) field conditioned on the LH-SLAT,
target illumination, and target viewpoint. The decoded 3DGS encodes geometry, appearance, and
light–material interactions, and is rendered into the final relit image.

In contrast, our homogenize-then-synthesize pipeline explicitly removes unstable, scene-specific il-
lumination before decoding. This reduces the ill-posedness of PBR inversion and enables a single
feed-forward decoder to produce relightable 3DGS with real-time rendering and improved multi-
view consistency (see Sec. 1 and Sec. 3). The design occupies an intermediate point between in-
terpretable PBR pipelines and powerful but costly diffusion-based renderers, combining stability,
controllability, and practical speed for relightable asset creation.

3 PRELIMINARY

3D Gaussian Splatting (3DGS). 3DGS Kerbl et al. (2023) represents a breakthrough in neural
rendering by employing anisotropic 3D Gaussians as explicit scene representations. Each Gaussian
is parameterized by its center x ∈ R3, opacity σ ∈ [0, 1], and covariance Σ ∈ R3×3, which is
decomposed into a rotation quaternion r and scaling vector s:

Σ = RSSTRT . (1)

For rendering, Gaussians are projected to 2D via the covariance transformation:

Σ′ = JV ΣV TJT , (2)

where J is the Jacobian of projection and V is the view matrix. Pixel color is computed via alpha
blending:

C(p) =
∑
i∈N

Tiαici, αi = σie
− 1

2 (p−µi)
TΣ′−1(p−µi), (3)

where p is the pixel coordinate, µi is the projected Gaussian center, N is the ordered list of Gaus-
sians intersecting the ray, and Ti =

∏i−1
j=1(1 − αj) is the transmittance. This formulation enables

differentiable, real-time rendering.

Structured 3D Latents (SLAT). SLAT Xiang et al. (2024) provides a compact yet expressive rep-
resentation for 3D content generation. Unlike dense voxels, SLAT encodes only surface-adjacent
regions. We denote the SLAT collection by Z = {(zi,pi)}Li=1, where each token feature zi ∈ RC

is associated with a position pi ∈ {0, 1, . . . , N − 1}3, and L ≪ N3. A decoder D can generate
3DGS, radiance fields, or meshes from the same SLAT, making it well-suited for relighting tasks.

4 METHOD

The challenge in single-image 3D relighting lies in disentangling lighting from intrinsic object prop-
erties, since shadows, highlights, and interreflections entangle with geometry. To avoid unstable
PBR inversion and black-box neural generation, we propose a homogenize-then-synthesize frame-
work: first extract a Lighting-Homogenized SLAT (LH-SLAT), then decode a relightable 3DGS.
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Our framework consists of two stages:

Stage 1: Light Homogenization — LH-SLAT Extraction. A rectified flow model fθ maps the
casually lit input image Iin into a lighting-homogenized latent Zlh:

Zlh = fθ(Iin). (4)
Zlh suppresses unstable shadows and highlights while preserving geometry-consistent cues.

Stage 2: Relightable 3DGS Synthesis. A feed-forward decoder D generates a relightable Gaussian
field G conditioned on Zlh, the target view vtarget, and target illumination Ltarget encoded by El:

G = D
(
Zlh,vtarget, El(Ltarget)

)
. (5)

The final relighted image is rendered by a differentiable rasterizer M:
Itarget = M(G,vtarget). (6)

In the following, we describe Stage 1 (Sec. 4.1) and Stage 2 (Sec. 4.2) in detail.

4.1 LH-SLAT EXTRACTION & GENERATION

The first stage generates a Lighting-Homogenized Structured 3D Latent (LH-SLAT) Zlh from a
single input image Iin captured under unknown illumination. LH-SLAT serves as a stable substrate
for downstream synthesis.

Lighting Homogenization. We define the homogenized light as a uniform, white ambient envi-
ronment illumination. This eliminates hard shadows and promotes a more uniform distribution of
diffuse and specular reflection energy (Figure 2). We extract SLAT features under this lighting to
create an intermediate representation suitable for relighting.

LH-SLAT Extraction. To train fθ, we prepare paired data (Iin, Zlh) via multi-step rendering of 3D
assets under homogenized lighting. As shown in 4, we first generate the ground-truth homogenized
latents Zlh: (1) for each 3D asset, we render N views under our defined homogenized illumination;
(2) we extract dense 2D visual features using a pre-trained DINOv2 model; (3) these features are
back-projected into a sparse 3D voxel grid; (4) finally, this sparse grid is compressed by a pre-
trained SLAT VAE encoder to obtain Zlh. Second, to create the corresponding input Iin, we render
M additional images of the same asset under diverse, random lighting conditions and camera poses.

Optionally, for highly reflective materials, we extract Basecolor SLAT Zbc from multi-view basec-
olor renderings, concatenating with Zlh to retain base color information.

Figure 4: The pipeline for LH-SLAT generation.

LH-SLAT Generation. As shown in 4, we
use a rectified flow model fθ to generate the
lighting-homogenized SLAT Zlh from the input
image Iin. The rectified flow model is trained
to learn the mapping between the arbitrarily lit
image and the corresponding latent represen-
tation under our homogenized lighting condi-
tions. Specifically, we fine-tune a pre-trained
SLAT rectified flow model Xiang et al. (2024)
using LoRA Hu et al. (2022). The loss function
for training is the conditional flow matching loss Lstage1:

Lstage1 = Et,z0,ϵ∥vθ(z, t)− (ϵ− z0)∥22, (7)
where z(t) = (1− t)z0 + tϵ is the linear interpolation between the data sample z0 and noise ϵ, and
vθ approximates the time-dependent vector field. If the optional basecolor SLAT zbc is used, it is
concatenated with zlh to provide additional color information to the subsequent stage.

4.2 RELIGHTABLE 3DGS SYNTHESIS

The second stage synthesizes a relightable 3D Gaussian Splatting (3DGS) field G from LH-SLAT,
conditioned on target illumination and viewpoint. Unlike iterative optimization approaches Gao
et al. (2024); Bi et al. (2024), we employ an efficient feed-forward decoder with two key modules:
the Intrinsic Aware Decoder (IAD) and the Environment Aware Renderer (EAR).
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4.2.1 INTRINSIC AWARE DECODER (IAD)

The goal of IAD is to process latent representations Zlh and generate a view-independent and
illumination-invariant intrinsic feature h = {(hi,pi)}Li=1, where hi ∈ R768. This sparse fea-
ture field h effectively decodes the underlying geometric structure and material properties of the
scene. To achieve this, IAD employs a Transformer architecture akin to TRELLIS Xiang et al.
(2024), leveraging stacked self-shifted window attention blocks to exploit the inherent locality of
structured 3D latent sequences. To further enhance the model’s comprehension of global structural
relationships and lighting context, a register cross-attention layer is incorporated into each block.
Specifically, 16 learnable register tokens are appended to each object’s corresponding SLAT token
sequences. These tokens encode global scene information and potentially attenuate high-frequency
noise within the embeddings Darcet et al. (2024); Li et al. (2025a). Finally, these register tokens
are injected into the decoder via a global cross-attention mechanism, facilitating information ex-
change between the register tokens and all latent variable tokens, thereby enabling the generation of
a coherent and globally consistent intrinsic representation.

4.2.2 ENVIRONMENT AWARE RENDER (EAR)

EAR receives the intrinsic feature h and synthesizes 3D Gaussian Splatting (3DGS) parameters G
by incorporating view embeddings and light conditions, as illustrated in Figure 3.

Observe view embedding. Since specular highlights vary under different viewing angles, we aban-
don the commonly used spherical harmonics and instead inject the observed view information into
the learning process of EAR from the outset to enhance the model’s perception of specular high-
lights. Along the camera ray to each voxel pi in the world coordinate system, we record the distance
x = {(li,pi)}Li=1, where li ∈ R, and the ray direction dw = {(dw

i,pi)}Li=1. We then trans-
form dw to the camera coordinate system using the extrinsic matrix, denoted as d = {(di,pi)}Li=1,
where di ∈ R3. We apply NeRF positional encoding and learnable positional encoding to d and l
voxel-wise, respectively, ultimately obtaining the view embedding

ev = {ed, el} = {(edi ,pi), (e
l
i,pi)}Li=1, ei ∈ R768.

Then, we add ed and el voxel-wise to h to obtain hv , which serves as the input to EAR.

HDR lighting condition. We encode the environment map E as lighting conditions using an HDRI
encoder El. Similar to previous works Jin et al. (2024); Liang et al. (2025); He et al. (2024), we obtain
the low dynamic range (LDR) image Eldr through Reinhard tone mapping, compute the normalized
log-intensity map Elog = log(E+ 1)/Emax, and generate the direction encoding Edir ∈ RH×W×3

in the camera coordinate system. Differently from using a VAE encoder to compress E, we employ
ConvNeXt to extract multi-scale visual features from the LDR image Eldr and the normalized log-
intensity map Elog. A key innovation is that we avoid directly compressing the direction encoding
Edir. Instead, we first encode it through (NeRF) position embedding and then fuse it with visual
features at multiple scales using the Spatial Cross Attention. The spatial cross attention acts as
a learnable positional encoding, modulating the visual features at different scales via Edir and em-
bedding directional information into the visual representation. These multi-scale features are then
concatenated along the channel dimension, further processed with positional encoding, and passed
through three self-attention blocks to form the corresponding lighting condition CL ∈ R4096×768.
This design allows us to edit Edir when switching views and lighting directions.

EAR primarily consists of stacked cross-attention blocks. The lighting condition CL is injected
into the intrinsic feature hv via cross-attention layers, enabling the network to be aware of the
environment lighting conditions. Similar to IAD, to enhance the perception of global illumination,
we incorporate a register cross-attention layer in each block. After EAR, we obtain the lighting-
aware sparse feature he.

3D Gaussian Decoding. We utilize 3D GS as the final relighting representation. Specifically, after
view encoding and EAR, we obtain the lighting-independent feature hv and the lighting-dependent
feature he. The 3D GS decoding process can be represented as:

{(hv
i ,pi)}Li=1 → {{(ok

i , b
k
i , γ

k
i ,m

k
i , s

k
i , α

k
i , r

k
i )}Kk=1}Li=1, {(he

i ,pi)}Li=1 → {{(fk
i , ŝ

k
i , σ

k
i )}Kk=1}Li=1 (8)

At each voxel location pi, we decode the intrinsic feature hv
i into the parameters of K Gaussians,

including position offset o, base color b, roughness γ, metallic m, scale s, opacity α, and rotation r.
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Table 1: Quantitative comparison against state-of-the-art methods across four sub-tasks.

ADT DTC Objaverse data Glossy Synthetic dataset

LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑

G-Buffers Forward Rendering

DiffusionRenderer 0.0802 24.41 0.9172 0.0560 27.16 0.9354 0.0616 27.09 0.9288 0.0707 25.46 0.9126
Ours 0.0488 29.15 0.9484 0.0458 31.59 0.9586 0.0490 32.23 0.9627 0.0475 30.47 0.9594

Random-lit Single-image Reconstruction

RGB↔X 0.1605 15.15 0.8445 0.1349 15.48 0.8624 0.1199 16.09 0.8801 0.1271 14.29 0.8612
DiLightNet 0.0949 21.11 0.8947 0.0650 23.53 0.9147 0.0507 25.65 0.9300 0.0523 24.09 0.9213
DiffusionRenderer 0.0767 22.50 0.9105 0.0579 23.70 0.9234 0.0516 24.81 0.9285 0.0547 23.40 0.9163
Ours 0.0819 22.85 0.9006 0.0551 24.35 0.9095 0.0407 26.24 0.9252 0.0371 25.02 0.9224

Unknown-lit Single-image Relighting

DiLightNet 0.1037 20.59 0.8813 0.0729 22.63 0.8913 0.0657 23.87 0.9011 0.0622 22.40 0.9059
NeuralGrafferer 0.2675 14.31 0.7839 0.2548 14.22 0.7943 0.2108 14.68 0.8238 0.1767 15.67 0.8200
DiffusionRenderer 0.0916 21.91 0.8960 0.0691 22.99 0.9078 0.0609 23.75 0.9169 0.0632 22.13 0.9062
Ours 0.1020 21.75 0.8857 0.0664 23.12 0.9123 0.0587 23.96 0.9234 0.0486 22.19 0.9216

Novel-view Relighting

3DTopia-XL 0.1754 17.24 0.8013 0.1051 21.56 0.8674 0.0769 23.22 0.8989 0.0857 20.89 0.8807
Stable-Fast-3D 0.1028 19.43 0.8881 0.0616 22.07 0.9154 0.0666 22.26 0.9112 0.0747 20.17 0.8943
MeshGen 0.0939 20.15 0.8879 0.0661 22.87 0.9101 0.0509 24.15 0.9306 0.0637 21.43 0.9071
Hunyuan3D-2.1 0.0727 22.30 0.9017 0.0481 24.89 0.9255 0.0479 25.47 0.9328 0.0533 22.26 0.9119
Ours 0.0702 22.67 0.8983 0.0503 25.32 0.9278 0.0462 25.78 0.9379 0.0514 22.79 0.9088

For the opacity α, we use a tanh activation function to support negative density and enhance expres-
sive power Zhu et al. (2025). We use the lighting-dependent feature he

i to decode each Gaussian’s
48-dimensional color feature f , lighting-related scale ŝ and shadow σ. The final center position of
each Gaussian is xk

i = pi + tanh(ok
i ). We calculate the shortest axis based on the scale ŝ, and

use it as the normal vector for each Gaussian primitive. Finally, we employ a simple shallow MLP
network that combines the positional encoding of the normal vector and the color feature f . This
network uses ReLU activation functions in its intermediate layers and an ELU activation function in
its final layer to predict the radiance values for each Gaussian. Through the rasterization operation
M, we obtain the 2D HDR prediction Ihdrtarget. We also render 2D base color, roughness, metallic,
shadow images Ib, Ir, Im, Is.

Loss Function. We supervise the training by calculating the reconstruction loss Lhdr between
the rendered reference HDR image and the predicted HDR result consists of L1, LPIPS Zhang
et al. (2018), and D-SSIM. Following Zeng et al. (2025), to prevent minor errors in the high-light
areas from dominating the L1 loss, we apply a logarithmic transformation to the images. Then, we
compute the LPIPS and DSSIM losses on the tonemapped versions of the two images (clamp(log I
/ log 2, 0, 1)). Furthermore, we calculate L1 losses between the rendered reference and predicted
results for material properties (including base color, roughness, and metalness) and shadows to aid
in training. The total loss is a weighted sum of each individual loss, represented as: Lstage2 =
Lhdr + λpbrLpbr + λshadowLshadow. For more details refer to the appendix.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

More training details refer to the Appendix. A.1.

Training data. Our training dataset comprises 87K 3D assets with physically-based rendering
(PBR) textures, curated from the Objaverse-XL dataset. These assets are illuminated using 2,000
High Dynamic Range Images (HDRIs), each at 4K resolution, used as environment maps. We
normalized the assets to fit within a bounding box of [−0.5, 0.5]. The first training stage involves
rendering 150 viewpoints under normalized lighting to extract illumination-invariant structural la-
tent representations. For input images under unknown illumination, camera poses are sampled with
yaw within ±45 degrees and pitch from -10 to 45 degrees, oriented towards the object’s center, and
with field of view (FOV) and radius following Xiang et al. (2024). Unknown illumination is mod-
eled with (1) six area lights uniformly distributed on a sphere, (2) 1-3 area lights randomly sampled
within the camera’s hemisphere, or (3) a random, Z-axis-rotated environment map. Area light inten-
sities are sampled uniformly between 300 and 700 (units), distances between 5 and 8 units. In the
second stage, we re-light objects using randomly rotated environment maps, with a fixed FOV of 40
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Diff. Renderer Ours GTG-buffer

Figure 5: Visual comparison of Diffusion Ren-
derer with Gbuffer/LH-SLAT for image relight-
ing.

Diff. Renderer OursRGB     X Input & GTDiLightNet

Figure 6: Visual comparison of image recon-
struction.

DiLightNet Diff. RendererInput OursNeural Graffer GT Relit

Figure 7: Visual comparison of relighting.

degrees and camera positions uniformly sampled on a sphere of radius 2. Across both stages, each
object is rendered from 12 viewpoints, each under 16 illuminations, using Blender EEVEE Next
Team (2025).

Task definitions and baselines. We evaluate our method on two fundamental tasks: single-view
forward rendering and novel view relighting from single-image to Relightable 3D. We evaluate
the consistency between the rendered outputs and the ground truth reference images. The former
involves single-view forward rendering with input G-buffers (such as normals, material, and depth
information), image reconstruction from a single-image under random lighting, and relighting of
a single image under unknown lighting. For single-view forward rendering, we compare against
recent state-of-the-art neural rendering methods RGB↔X Zeng et al. (2024b), neural-gaffer Jin
et al. (2024), DiLightNet Zeng et al. (2024a), and Diffusion-render Liang et al. (2025). For novel
view relighting, we compare against recent open-source methods that support single-image to 3D
generation with PBR materials, including Huyuan3D-2.1 Zhao et al. (2025), MeshGen Chen et al.
(2025), 3DTopia-XL Chen et al. (2024), and SF3D Boss et al. (2024).

Evaluation metric. We use PSNR, SSIM Wang et al. (2004) and LPIPS Zhang et al. (2018) to
measure the quality of the rendering.

Evaluation datasets. We randomly select 800 objects from the training data to create a test set, en-
suring that these objects were not seen by the model during training. To validate the generalizability
of our method, we utilize the Aria Digital Twin (ADT) Pan et al. (2023) and Digital Twin Catalog
(DTC) Dong et al. (2025) datasets as out-of-domain datasets. These datasets provide comprehensive
resources for 3D object modeling, featuring a vast library of highly detailed, photorealistic models
with sub-millimeter accuracy. We further incorporate the Glossy Synthetic dataset Liu et al. (2023),
which provides 3D assets, and expand it with additional assets sourced from the BlenderKit 1. We
also modify rendering nodes to utilize the Principled BSDF shader 2.

5.2 SINGLE-VIEW FORWARD RENDERING

G-buffers forward rendering. As shown in Fig. 5, we compare against Diffusion Renderer us-
ing ground truth G-buffers and LH-Slat (with Base Color SLAT), bypassing the single-image-to-
intermediate representation step. Our method demonstrates superior accuracy in shadow and high-
light distribution (e.g., the toy’s specular highlight and the sculpture’s shadow detail), likely due to
our explicit 3D structural information. Furthermore, we accurately capture material reflections of
ambient light, as illustrated by the stainless steel. Quantitatively, our method significantly outper-
forms baselines across four datasets in Fig. 6.

1https://www.blenderkit.com/
2https://www.blender.org/
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Table 2: Ablation study on the number of
blocks for DE .

Num PSNR SSIM LPIPS Param. FPS

1 31.56 0.9608 0.0508 12.65M 48
3 32.35 0.9635 0.0474 31.55M 38
6 32.54 0.9649 0.0442 59.8M 30
9 32.56 0.9645 0.0439 88.23M 23

Table 3: Ablation study on decoder input
types.

Input types PSNR SSIM LPIPS

base color 30.38 0.9541 0.0564
LH 32.02 0.9631 0.0494
LH + base color 32.54 0.9649 0.0442
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Figure 8: Different component designs for the
feedforward network D.

Table 4: Performance Comparison of Different
Architectures.

Arch PSNR SSIM LPIPS

a + e + f 29.82 0.9472 0.0642
a + e + g 30.66 0.9524 0.0515
a + d + g 31.96 0.9597 0.0492
b + d + g 32.43 0.9628 0.0472
c + d + g (ours) 32.54 0.9649 0.0442

Random-lit single-image reconstruction. As shown in Fig. 6, our method provides improved
image reconstruction compared to the baseline and outperforms the Diffusion Renderer’s estimated
intrinsic property approach. Quantitative evaluations in Tab. 1 demonstrate our method’s advantage
across the majority of metrics.

Unknown-lit single-image relighting. Our method achieves more accurate highlights and color in
relit images with unknown lighting, compared to other methods, as shown in Fig. 7. For example,
observe the highlights on the speaker cones (first row) and the teapot color (second row). Tab. 1
further demonstrates our method’s improved generalization performance

Novel-view Relighting. We compared our method for novel view relighting and reconstruction
against state-of-the-art image-to-3D methods supporting PBR materials. Given a single image, we
generate a 3D Gaussian or Mesh and use neural rendering for relighting, while other methods recon-
struct the 3D model and use Blender. Fig. 1 shows that, with the same mesh, our method achieves
more accurate lighting and material interactions than Hunyuan3D. Our quantitative results in Tab. 1
demonstrate significant improvements over other 3D generation methods.

5.3 ABLATION STUDY.

We perform ablation studies on our test set, investigating the depth of DE , input types, and network
architecture. Increasing the number of layers in DE improves performance but decreases inference
speed; we select 6 layers for a balance between performance and accuracy (Tab. 2). LH-SLAT,
containing richer information, performs better than base color SLAT alone; however, base color
SLAT complements LH-SLAT, further improving performance when used together (Tab. 3). Pro-
viding view information early, followed by lighting information, ensures better performance and
generalization for DE (Fig. 8, Tab. 4).

6 CONCLUSION

We propose a compact multi-stage framework for relightable 3d generation, enabling consistent
high-fidelity reconstruction and realistic relighting. Experiments show improved quantitative and
perceptual results over strong baselines, and ablations confirm each component’s contribution. Al-
though evaluated on controlled captures with moderate compute, the approach suggests clear direc-
tions for in-the-wild and dynamic scenes and for efficiency and generalization improvements. We
hope this work advances practical neural relighting and reconstruction.
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ETHICS STATEMENT.

This work does not involve human subjects, personally identifiable information, or sensitive data.
The datasets used in this study are publicly available and widely adopted in the machine learning
community. All experiments were conducted using standard computational resources without en-
vironmental or societal harm. The methodology does not introduce discriminatory biases, and the
model’s potential applications are aligned with responsible AI principles. The authors have reviewed
the ICLR Code of Ethics and confirm that this submission adheres to its guidelines.

REPRODUCIBILITY STATEMENT.

For reproducibility, we provide a comprehensive description of our model architecture, training,
and evaluation in the main paper. Further implementation details, including data preprocessing and
hyperparameters, are available in the Appendix. We aim to enable independent replication of our
results through clear and thorough documentation
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A APPENDIX

A.1 MORE DETAILS.

Training details. The training pipeline is executed on 4 NVIDIA H100 80GB HBM3 GPUs. The
initial stage involves training the flow model, where we employ LoRA initialized using the PEFT
Mangrulkar et al. (2022). The LoRA configuration consists of a rank of 512 and a scaling factor
of 512. LoRA is applied to the query, key-value, output projection, and the combined query-key-
value modules within the attention mechanism. The AdamW optimizer Loshchilov & Hutter (2019)
is used with a learning rate of 1.0 × 10−4. The first stage requires approximately one day for
completion. In the second stage, we utilize the AdamW Loshchilov & Hutter (2019) optimizer with
a batch size of 48 and a linear warmup learning rate of 1.0 × 10−4 over 5,000 steps, followed by a
cosine decay schedule. An end-to-end joint training of the IAD, EAR, and El is performed. Training
acceleration is achieved through the implementation of Flash-Attention 3 Shah et al. (2024) and the
gsplat Ye et al. (2025). Initially, the model is trained with all loss components for 400K iterations,
requiring approximately 8 days. Subsequently, the PBR rendering loss is removed, and training
continues for an additional 100K iterations, taking approximately 2 days.

B LLM USAGE

We acknowledge large language models (LLMs) in the preparation of this manuscript. Specifically,
we utilized LLMs for text polishing, grammar correction, and improving the clarity. The core ex-
perimental results and scientific contributions remain entirely our own work.
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