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Figure 1. REVIVE3D. Generating high-fidelity 3D models from flat-colored images

Abstract

We introduce REVIVE3D, a retrieve-and-edit framework
for single image-to-3D generation. Our method is designed
for flat-colored images such as cartoons and drawings with
minimal shading. Instead of 2D preprocessing, REVIVE3D
first retrieves a shape-aligned 3D prior and then edits it di-
rectly in a 3D latent space. The edit is guided by the visual
difference between the input image and an aligned render
of the retrieved prior. This direct 3D operation injects the
missing volumetric cues and preserves the global structure
of the shape. The method is plug-and-play and requires
no retraining. It produces results in approximately 2 min-
utes using only 0.6 GB of memory on a single GPU. On the
Art3D test set, REVIVE3D achieves state-of-the-art image-
to-3D alignment and consistently reconstructs complete ge-
ometry with fine details, while also performing well on stan-
dard images. These results demonstrate that direct latent
editing of a retrieved 3D prior is an effective and practical
route to high-fidelity 3D from flat-colored images.

2Corresponding author.

1. Introduction

The creation of 3D assets from 2D images is crucial for var-
ious applications, including virtual reality, video games and
animations. While manual modeling achieves high qual-
ity, it is a time-consuming and labor-intensive process that
creates a significant bottleneck in content production. To
address this challenge, numerous high-performance mod-
els for automatic single image-to-3D generation have been
developed [11, 12, 17, 18, 27, 28, 33]. However, a com-
mon limitation of existing image-to-3D models is their in-
ability to effectively handle flat-colored images such as car-
toons, line drawings, and flat-shaded art. This creates a sig-
nificant domain gap, as these images present several dis-
tinct challenges for photorealistically-trained models, in-
cluding: (1) strong view-dependent contour lines often mis-
interpreted as texture, (2) flat-color regions that offer no
shading cues for inferring volume, and (3) exaggerated or
physically implausible geometries. As shown in Fig. 2,
these factors cause state-of-the-art methods like Wonder3D
[18] and Hunyuan3D-2.1 [12] to struggle with these inputs.
Both methods fail to generate sufficient volume and com-
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Figure 2. Normal map comparison for 3D reconstruction from
flat-colored image. While state-of-the-art methods like Won-
der3D [18] and Hunyuan3D-2.1 [12] yield results lacking volu-
metric completeness and fine-grained details, our method success-
fully reconstructs a complete and detailed 3D shape.

pletely miss fine-grained details such as the eyes, nose, and
mouth, resulting in incomplete geometry.

Prior works have attempted to address this challenge by
performing an explicit 2D-to-2D transformation to make
the ambiguous input more compatible with standard gener-
ators. For example, Art3D [6] uses a VLM-generated cap-
tion to synthesize a new 2D proxy image based on depth and
Canny edge conditions. DrawingSpinUp [35] takes a simi-
lar approach by first removing artistic contour lines that can
confuse pre-trained models. Although these methods aim to
inject 3D information, their reliance on this 2D preprocess-
ing step is often insufficient, as the transformed images can
still lack the consistency needed to generate a complete 3D
shape.

Our approach bypasses such 2D transformations entirely.
Instead of reconstructing a shape from ambiguous 2D cues,
our framework is designed to edit a complete 3D reference
until it matches the input’s visual details. To achieve this,
our REVIVE3D framework directly addresses the afore-
mentioned challenges. First, by retrieving a similar 3D ref-
erence, we provide a robust geometric foundation that com-
pensates for flat colors and exaggerated structures. Second,
by editing this reference directly in its 3D latent space using
visual difference, we resolve geometric ambiguities arising
from flat colors and misleading contour lines. This pro-
cess also allows us to incorporate fine details without the
information loss inherent in 2D-based methods. Our result-
ing framework is training-free and highly efficient (0.6 GB
memory, 2 mins/result), and as our evaluations show, it not
only excels on ambiguous inputs but also generalizes to pro-
duce more detailed results on standard images.

2. Related Work
2.1. Stylized Image-to-3D Generation

Generating 3D assets from stylized single images like draw-
ings or cartoons is a unique and significant challenge.
These inputs often lack the photorealistic cues that standard
image-to-3D models rely on, leading to common failures

such as collapsed geometry. Prior works have attempted to
bridge this domain gap through two main strategies.

The first strategy involves preprocessing the 2D input to
make it more compatible with standard generators. These
methods explicitly transform the stylized image, for in-
stance by adding synthetic depth and edge cues (Art3D [6]),
or by removing artistic contour lines that can cause ambi-
guity (DrawingSpinUp [35], PAniC-3D [4]). The second
strategy, particularly for characters, involves fitting a para-
metric 3D model or canonicalizing the input. Methods like
RaBit [19] and MagiCartoon [25] learn a controllable char-
acter model, while CharacterGen [23] aligns the input to a
neutral A-pose before reconstruction.

While these approaches can improve results, they are of-
ten limited. Preprocessing in 2D can lead to information
loss, and fitting to a generic template may not capture the
unique style of the input. In contrast, our retrieve-and-edit
method provides a high-quality 3D prior for each input,
avoiding these limitations by editing directly in 3D.

2.2. Retrieval-Based 3D Generation

Retrieval-augmented generation, which leverages an exter-
nal 3D model as a structural prior, is a promising direction
for improving 3D consistency. However, state-of-the-art
methods still process this 3D information through 2D-based
processes. For instance, Retrieval-Augmented Score Distil-
lation [24] uses the retrieved asset to guide the gradients of a
2D diffusion model during optimization, while Phidias [26]
converts the 3D reference into 2D conditional maps to guide
a multi-view image generator. In both approaches, the 3D
reference acts as an indirect guide for a 2D synthesis task,
which results in an incomplete transfer of its geometric in-
formation. In contrast, our pipeline operates more directly
by using the retrieved reference as the primary 3D prior and
explicitly deforming it in its latent space. This direct 3D
operation bypasses the limitations of 2D-based guidance,
preserving the geometric consistency of the prior while ac-
curately incorporating the input’s details.

2.3. 3D Shape Deformation

Once a 3D reference is retrieved, the core challenge be-
comes how to directly deform this prior to match the in-
put image, avoiding the limitations of indirect 2D synthe-
sis. Prior work has explored this deformation in two main
domains: direct mesh deformation and latent space editing.

A common strategy is direct mesh deformation, which
edits vertices using either CLIP-similarity objectives [5, 20,
21] or Jacobian-based guidance from 2D diffusion priors
[1, 8, 14]. However, these techniques are unsuitable for
flat-colored images. Similar to the generation methods dis-
cussed previously, their reliance on indirect 2D signals like
text prompts and novel-view synthesis is often insufficient
and leads to distorted geometry.
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Figure 3. Retrieve-and-edit pipeline. We first retrieve a Source 3D model that is similar to the input Target Image. The model is then
edited using the visual difference between the Target Image and a rendered Source Image, allowing it to reflect the target’s fine details

while preserving its global structure.

To better preserve 3D structure, an alternative is to per-
form edits in a latent space. Prior works like SHAP-
EDITOR and Michelangelo [2, 32] have shown this is effec-
tive, typically by learning to align latents with text or image
prompts. However, the key limitation is that while these
methods align the latent space to inject 3D information, the
alignment target is too generic. It lacks the specific geomet-
ric information required to precisely reconstruct the unique
structure of the input image. In contrast, our training-free
approach edits directly on the latent space of a retrieved ref-
erence, using the visual difference between the input and
reference to preserve instance-specific geometry.

3. Method

To address the flat-colored images, our approach for 3D re-
construction is a retrieve-and-edit framework. We first re-
trieve a 3D shape from a database to serve as a structural
prior, using the input image as a query (Sec. 3.2). We then
edit this reference shape in its latent space, guided by the
visual difference between a render of the 3D shape and the
target image (Sec. 3.3). The method thereby preserves the
reference’s 3D structure while accurately capturing the de-
tails and style of the input. Fig. 3 provides an overview of
our pipeline.

3.1. Background

3D Latent Representation. To efficiently generate com-
plex 3D shapes, many recent models [3, 30-33] first com-
press high-dimensional geometric data, such as a point
cloud X, into a compact latent representation zg = Epc(X).

To achieve a high-fidelity latent that captures fine ge-
ometric details, our method employs the ShapeVAE from
Hunyuan3D-2.0 [33], which uses a dual-sampling strategy.
This combines a uniformly sampled point cloud for overall
structure with an importance-sampled one that concentrates
on complex regions like edges and corners. This richer rep-

resentation provides a robust foundation for our editing pro-
cess.

Difference-based Latent Editing. A powerful method
for latent space editing is to guide a generative process us-
ing the difference between conditional predictions [9, 16].
Given a denoising model ®(z,,t | ¢), the update direction
Ay is computed as the difference between its outputs condi-
tioned on a target (cy,,) and a source (cgc):

Ay = (I)(Ztvt | Ctar) - (I)(Ztyt | Csrc) (1
Iteratively updating a latent along this direction transforms
a shape toward the target state by capturing their difference
while preserving shared global information. This princi-
ple has proven highly effective in the 2D domain for tasks
like text-guided image editing. However, its application to
direct 3D shape modification remains largely unexplored.
Therefore, a key contribution of our work is to adapt this
powerful 2D editing approach to the 3D latent space, using
visual differences between images to guide the modification
process.

3.2. Image-Based 3D Reference Retrieval

Our approach to handling flat-colored images is to provide
them with instance-specific geometric cues by retrieving a
structurally similar 3D reference (hereafter, the source 3D).
We retrieve this source 3D from a database of 40K ob-
jects from Objaverse [7], selecting the asset with the high-
est cross-modal similarity to ensure it is a relevant prior.
Following the methodology of Phidias [26], we measure
this by computing the cosine similarity between the input
image’s feature embedding (from OpenCLIP [13]) and the
pre-computed 3D embeddings of all assets in the database
(from Uni3D [34]). The selected asset, M.f , thus serves as
the initial geometric prior for the editing stage.
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Figure 4. Visualization of the 3D reference retrieval process.
Given a Target Image (left), we retrieve a similar 3D shape (Source
3D, right) and render it from an aligned viewpoint to generate the
Source Image (middle), which serves as the starting point for our
editing stage.

The editing stage is guided by the visual difference be-
tween the input image and a 2D rendering of the source 3D
(M,er). For this difference to be meaningful, the source 3D
must be rendered from a viewpoint that is precisely aligned
with the input. We therefore produce the source image, I,
by rendering the source 3D from a manually aligned view-
point (see Fig. 4). This carefully prepared source image
then provides the initial visual condition for our shape mod-
ification process.

3.3. Latent Space Editing via Visual Difference

With the source 3D (M.f) and its rendered image (Ig.) pre-
pared, we can now proceed to the core of our method: edit-
ing the shape in its latent space to match the target image(
Iiar). To do this, we first obtain a comprehensive initial la-
tent representation using the Hunyuan3D-2.0 [33] Shape-
VAE encoder, Ej.. This encoder applies a dual-sampling
strategy to the source 3D, processing both a uniformly sam-
pled and an importance sampled point cloud. The resulting
latent, z°, thus faithfully captures the complete geometry
of the source 3D. This is because while uniform samples
provide the overall structure, the importance samples offer
more complete information for complex regions like edges
and corners, enabling the latent to better represent intricate
details. This detail-rich latent serves as the starting point for
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Figure 5. Justification for Difference-Based Editing. A com-
parison between a naive Target Only approach and our difference-
based method (Target - Source). The target-only guidance yields a
distorted shape that fails to capture the target’s features, while our
method produces a high-fidelity result.

our editing state, initialized as Zg = z{°.

Our editing process uses the visual difference between
the source and target images to preserve the source’s global
structure while incorporating the target’s fine-grained de-
tails. Computing this difference requires first extracting rich
visual features from each image that capture both high-level
semantics and fine-grained details. For this purpose, we em-
ploy the powerful pre-trained DINOv2-giant [22] model as
our vision encoder (Eyision)- The resulting feature vectors
serve as our conditioning vectors: cge = Eyision(lsre) and
Car = Evision(Itar). These conditions, containing the essen-
tial visual information, then guide the denoising process of
our generative model, ®, which we implement using the
Hunyuan3D-2.0 [33] DiT backbone.

We iteratively refine the latent state Z, by progressively
injecting the visual information from the target image at
each step. A naive approach would be to guide this pro-
cess using only the target condition (cy). However, as
shown in Fig.5 (Target Only), this method is often insuf-
ficient. The model’s strong geometric priors can lead to a
distorted shape that incorrectly blends features from both
the source and the target, failing to faithfully capture the in-
tended geometry. To enable more accurate edits, we instead
guide the process using the difference between the source-
and target-conditioned predictions. As seen in Fig.5 (Tar-
get - Source), this approach effectively isolates the desired
changes from the shared information, resulting in a high-
fidelity edit that successfully modifies the shape’s specific
features while preserving overall structural coherence. To
implement this, we adapt the general update direction from
Eq. (1) with a regularization mechanism, formulating the
final update as:

A =(Zy + Zi° — 2%t | car) — (LYt | Cae)  (2)

where Zirc is the source latent noised to timestep ¢. The in-
put to the first term, Z; + Z3* — z§°, anchors the current



editing state to the source’s noise trajectory, acting as a ge-
ometric anchor. This anchoring mechanism is particularly
effective because our initial latent z§°, derived from dual
sampling, provides a comprehensive geometric foundation.
The uniform samples ensure the latent robustly encodes the
global structure, which this term helps to preserve. Con-
currently, the update direction A; is guided by the visual
difference, which effectively performs a type of implicit in-
version. Instead of a separate inversion step, this allows
us to directly guide the sampling process to modify latent
features that correspond to the fine-grained details initially
captured by the importance samples. By applying this di-
rectional guidance A; at each step of a pre-defined sched-
ule, we obtain a final latent that balances the reference’s
3D structure with the target’s distinctive appearance and de-
tails.

4. Experiments

In this section, we conduct a comprehensive evaluation of
our proposed method for 3D generation from flat-colored
images. We perform both qualitative and quantitative com-
parisons against a diverse set of baselines. These in-
clude models specifically designed for character genera-
tion [23, 35], a retrieval-augmented method [26], a latent-
aligned model [32], and state-of-the-art generalist models
[12, 33].

4.1. Experimental Setup

Dataset Publicly available datasets focusing exclusively
on flat, stylized images are scarce. Therefore, for our eval-
uation, we utilize the test set released by Art3D [6], which
is specifically curated for this task and consists of over 100
images. As a consistent preprocessing step for all methods,
we remove the background from each image using the Seg-
ment Anything Model [15] to ensure a clean and uniform
input.

Evaluation metrics To assess the quality and semantic
alignment of the final 3D mesh with the input 2D image,
we compute cross-modal similarity scores using both ULIP
[29] and Uni3D [34]. These models are specifically de-
signed to learn a unified feature space by aligning 3D point
cloud representations with image and text features. We
therefore leverage their powerful encoders to extract a fea-
ture embedding from the input image and another from the
generated mesh. A high cosine similarity between these em-
beddings indicates a strong semantic alignment, as a higher
score means the generated 3D mesh is more semantically
consistent with the input image. In addition, we follow [10]
and use the Average LPIPS (A-LPIPS) metric to measure
the multi-view consistency of the generated shapes. This is
calculated by rendering 100 views of each mesh by rotating

the azimuth at a fixed vertical angle of 20° and then averag-
ing the LPIPS between adjacent frames, reported using both
VGG and AlexNet backbones. Finally, to specifically ana-
lyze the editing process for retrieval-based methods, we also
measure the feature distance between the initial retrieved
3D reference and the final generated mesh, allowing for a
direct comparison of the modification’s impact.

Implementation details. Our method is entirely training-
free. For the core components of our framework, we uti-
lize the memory-efficient Mini versions of the ShapeVAE
and DiT from the Hunyuan3D-2.0 [33] baseline. This
lightweight configuration, with a memory footprint of only
0.6 GB, enables our model to generate a high-quality 3D
result from a single image in approximately 2 minutes on a
single NVIDIA RTX 6000 Ada GPU.

For all baseline models, we use their officially released
code and pre-trained weights following the recommended
settings. For Phidias, which also employs a retrieval mech-
anism, we retrieve the same number of 3D candidates as our
method. To ensure a fair comparison, we then select and
report the result from the candidate that yields the highest
Uni3D score with the input image.

4.2. Qualitative Evaluation

Fig. 6 presents a qualitative comparison of our method
against several state-of-the-art baselines on a diverse set of
flat images from the Art3D test set, including animals, char-
acters and line drawings.

State-of-the-art generalist models like Hunyuan3D-
2.0[33] struggle significantly with these flat-colored im-
ages, often producing collapsed meshes that fail to infer
a plausible 3D structure. CharacterGen[23], which is spe-
cialized for generating humanoids in an A-pose, exhibits a
strong prior bias; it fails to adapt to the varied poses and
non-human subjects in the test set, often defaulting to a
generic A-posed human shape regardless of the input. We
note that while it performs poorly on these examples, its
performance on its target domain is strong, as shown in
Fig. 10.

DrawingSpinUp[35], which infers volume by first re-
moving the input’s outlines, produces results with high
variance. ~While this approach can occasionally yield
impressive volumetric shapes, it often leads to severe
artifacts and unnatural deformations in the final mesh.
Michelangelo[32], which aligns a 3D latent space, consis-
tently produces voluminous shapes. However, it often fails
to preserve the identity and specific structure of the input
image, resulting in generic shapes that do not match the
source. The retrieval-based baseline, Phidias[26], leverages
a 3D reference to achieve good volumetric results. How-
ever, its 2D-based application of 3D information struggles
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Figure 6.
DrawingSpinUp[35], Michelangelo[32], and Phidias[26]. For each example, the leftmost column shows the 2D input image and its re-
trieved 3D reference. The subsequent columns display the output meshes from our method and the baselines, each rendered from two

Qualitative comparison of our method with several baselines, including Hunyuan3D[33], CharacterGen[23],

viewpoints.

to fully transfer the reference’s structure, leading to geomet-
rically inconsistent shapes.

In summary, all baseline methods exhibit critical fail-
ures, whether in inferring volume, preserving the input’s
identity, or avoiding artifacts. Most are unable to recon-
struct fine details such as facial features. In contrast, our
method consistently produces high-quality results across all
categories. By retrieving a suitable 3D reference and per-
forming editing directly in the 3D latent space, our approach
generates meshes that are both structurally sound and rich
in detail, faithfully capturing the essence of the input image
from its overall volume to its distinctive features.

4.3. Quantitative Evaluation

We quantitatively evaluate our method by measuring both
the alignment of the generated mesh to the input image and
its internal 3D consistency.

Image-Mesh Alignment. Tab. | shows the similarity
scores between the input image and the output mesh, eval-
uated using Uni3D-I and ULIP-I. Our method significantly

Uni3D-1(1) ULIP-I(?)
Hunyuan3D-2.1 0.3039 0.1044
Hunyuan3D-2.0 (Original) 0.2574 0.1020
Hunyuan3D-2.0 (Mini) 0.2384 0.0926
DrawingSpinUp 0.2217 0.0933
CharacterGen 0.2076 0.0945
Phidias 0.2075 0.1352
Michelangelo 0.2784 0.0989
REVIVE3D (Ours) 0.3537 0.1599

Table 1. Quantitative comparison of image-to-mesh alignment.
This table evaluates how faithfully each model embeds the infor-
mation from the input 2D image into the final 3D mesh.

outperforms all baselines, achieving the highest scores of
0.3537 in Uni3D-I and 0.1599 in ULIP-I. Baselines with
specific failure modes score lower; for instance, Draw-
ingSpinUp is penalized for its high result variance, while
CharacterGen performs poorly on non-humanoid charac-
ters. Hunyuan3D series show progressive improvement



Input(Image + 3D) Ours

Hunyuan3D-2.0(Mini) Ours

Hunyuan3D-2.0(Mini)

=
N4

ey
Sy
-
\
>

Figure 7. Generalization to standard (non-flat) images. A qualitative comparison of our method and the Hunyuan3D-2.0 (Mini) baseline
on official example images from the Hunyuan3D project. Our method successfully generates high-quality 3D shapes and often captures
finer surface details than the baseline, such as the lettering on the wizard hat and the correct number of toes on the dragon’s foot.

across versions, yet our method still demonstrates a sub-
stantial improvement of approximately 0.12 in Uni3D-I and
0.07 in ULIP-I over our direct baseline, Hunyuan3D-2.0
(Mini).

Uni3D(gen - ref) ULIP(gen - ref)

Phidias
REVIVE3D (Ours)

-0.0365
0.0960

0.0320
0.0412

Table 2. Modification distance from the initial 3D reference.
This table quantifies the change between the initial retrieved refer-
ence and the final generated mesh, measured by the difference in
Uni3D and ULIP similarity scores.

A potential concern is that high scores could arise from
simply finding a good 3D reference. To verify that our
performance gain comes from effective editing, not just
good retrieval, Tab. 2 measures the modification distance:
the change in similarity scores after our editing process.
While Phidias shows minimal improvement or even degra-
dation, our method demonstrates a significant increase in
both scores. This demonstrates our performance gain comes
from our effective latent editing, not just the initial retrieval.

3D Consistency. Tab. 3 presents the A-LPIPS results for
multi-view consistency, where our method reports higher
scores than some baselines like DrawingSpinUp. We argue
this is a characteristic of the A-LPIPS metric when applied



A-LPIPS(])
VGG Alex
Hunyuan3D-2.1 0.0408  0.0435

Hunyuan3D-2.0 (Original) 0.0405 0.0461
Hunyuan3D-2.0 (Mini) 0.0411 0.0486

DrawingSpinUp 0.0315 0.0371
CharacterGen 0.0462  0.0392
Phidias 0.0405 0.0428
Michelangelo 0.0473  0.0464
REVIVE3D (Ours) 0.0418 0.0410

Table 3. Quantitative comparison of multi-view consistency.
This table reports the multi-view consistency of the generated
meshes, measured using the Average LPIPS (A-LPIPS) metric
with both VGG and AlexNet backbones.
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on standard, non-flat images to test its generalization capa-
bilities. We conduct a qualitative comparison against our
baseline, Hunyuan3D-2.0 (Mini), using several official ex-
ample images from the Hunyuan3D project.

Input Result1 Result2

Figure 9. Limitation of Semantic vs. Shape-based Retrieval. This
figure illustrates a failure case of our semantic-based retrieval. For the
input image (left), an ideal retrieval would provide a reference with a
similar pose and shape (middle). Instead, our current method retrieves
a semantically related but geometrically dissimilar 3D model (right),
which provides a poor initialization for our editing process.

As shown in Fig. 7, our method not only produces high-
quality 3D shapes comparable to the baseline but often ex-
cels in reconstructing fine-grained details. For instance,
when generating the wizard hat, our model successfully
captures the intricate detail of the lettering on the texture,
a feature that is lost or blurred in the baseline’s output. This
suggests that our direct latent editing mechanism is a robust
and general approach that can enhance detail preservation

Figure 8. Visual analysis of A-LPIPS scores. A comparison of our
detailed reconstructions (middle) against the smoother results from
DrawingSpinUp (right). The higher fidelity to fine-grained geometric
details in our results leads to higher A-LPIPS scores, despite strong
visual consistency.

to highly detailed meshes, and Fig. 8 provides a visual ex-
planation. For the top example in the figure, our detailed
reconstruction scores 0.0580 / 0.0627 (VGG / Alex), while
DrawingSpinUp’s smoother mesh achieves lower scores of
0.0255 /0.0298. This pattern holds for the bottom example,
where our model reconstructs the complex donut charac-
ter and scores 0.0580 / 0.0553, compared to the baseline’s
0.0241 / 0.0214. These results demonstrate that our higher
A-LPIPS scores are not due to a lack of consistency, but are
a direct consequence of successfully reconstructing high-
frequency geometric details, which cause larger variations
between adjacent rendered views.

4.4. Generalization to Standard Images

While our method is specifically designed to address the
challenges of flat images, we also evaluate its performance

for a wide range of input images, not just flat ones.

5. Conclusion

In this work, we have presented a novel retrieve-and-edit
framework that demonstrates significant advancements in
generating 3D shapes from flat-colored images. By oper-
ating directly on a 3D representation, our method bypasses
the information loss inherent in 2D-centric approaches, suc-
cessfully handling ambiguous inputs. The quality of our
editing process fundamentally depends on the initial re-
trieved reference. Our current semantic retrieval can pro-
vide geometrically dissimilar priors (Fig. 9), which moti-
vates the development of more advanced, shape-aware re-
trieval methods. Nevertheless, our framework introduces a
robust solution that is plug-and-play, training-free, and re-
markably efficient. It generates high-quality results in ap-
proximately 2 minutes using only 0.6 GB of memory. Our
framework provides a practical and efficient pathway for
generating high-fidelity 3D from flat-colored images, offer-
ing a valuable contribution and opening up new possibilities
for content creation from the diverse world of 2D stylized
art.
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A. Additional Results

This appendix provides supplementary qualitative results
and explains the texture application process used for our
main paper’s visual comparisons.

A.1. Additional Qualitative Results

We present an extended gallery of generated meshes to
complement the results in the main paper. Fig. 10 illustrates
additional results, focusing on the challenging subcategory
of humanoid characters from our flat-colored image test set.

A.2. Texture Application Details

The qualitative comparisons in the main paper (Fig. 6,
Fig. 7) focus on the geometry of the generated meshes. To
provide a comprehensive evaluation of appearance, this ap-
pendix presents the corresponding textured results. The tex-
turing process varies across the compared methods. Base-
lines such as CharacterGen, DrawingSpinUp, and Phidias
utilize their native, end-to-end texture generation pipelines.
For the remaining methods (Ours, Hunyuan3D-DiT, and
Michelangelo), which primarily focus on geometry, we
painted the output meshes using the Hunyuan3D-2.0 Paint
model to ensure a fair and consistent comparison of tex-
turing quality. The final textured results for various flat
and standard images are presented in Fig. 12, Fig. 13 and
Fig. 14.
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Figure 10. Geometry-only results for humanoid characters on flat-colored images.
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Figure 11. Additional geometry-only results on standard images.
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Figure 12. Textured qualitative results on flat-colored images.
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