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ABSTRACT

Despite being the cornerstone of deep learning, backpropagation is criticized for
its inherent sequentiality, which can limit the scalability of very deep models.
Such models faced convergence issues due to vanishing gradient, later resolved
using residual connections. Variants of these are now widely used in modern ar-
chitecture. However, the computational cost of backpropagation remains a major
burden, accounting for most of the training time. Taking advantage of residual-like
architectural designs, we introduce Highway backpropagation, a parallelizable it-
erative algorithm that approximates backpropagation, by alternatively i) accumu-
lating the gradient estimates along the residual path, and ii) backpropagating them
through every layer in parallel. This algorithm is naturally derived from a decom-
position of the gradient as the sum of gradients flowing through all paths and is
adaptable to a diverse set of common architectures, ranging from ResNets and
Transformers to recurrent neural networks. Through an extensive empirical study
on a large selection of tasks and models, we evaluate Highway-BP and show that
major speedups can be achieved with minimal performance degradation.

1 INTRODUCTION

Often copied but never matched, the backpropagation algorithm (Rumelhart et al., 1986) is still
at the heart of deep-learning optimization, coupled with the gradient descent. However, while the
model size grows over and over, its memory overhead and computational time become more and
more prohibitive. This was especially the case for recurrent neural networks (RNN) (Elman, 1990;
Hochreiter & Schmidhuber, 1997; Cho et al., 2014). Considered as state of the art for sequence
processing (e.g. natural and spoken language), the time required to run the backpropagation through
time for stacked RNNs (Sutskever et al., 2014) has motivated the design of transformers (Vaswani
et al., 2017) that process the sequence in parallel. However, with the advent of deeper and larger
models in NLP (Kaplan et al., 2020; Hoffmann et al., 2022) and computer vision (Dosovitskiy,
2020; Dehghani et al., 2023), the problem persists: the sequential aspect of backpropagation implies
a computational cost that clearly limits further advancements in model design and scalability.

Frugal alternatives to backpropagation, such as forward-only methods (Hinton, 2022; Nøkland,
2016) and exact parallel backpropagation (Lim et al., 2024; Danieli et al., 2023), have shown promis-
ing results, but often involve impractical trade-offs between speed and task performance. More-
over, these methods often do not to leverage the recent advances that made the success of modern
deep-learning models, like Batch and Layer-normalization (Ioffe & Szegedy, 2015; Ba et al., 2016).
Another important example is the widespread use of residual connections, which enables efficient
gradient propagation across layers, prevents vanishing gradients, and significantly improves training
convergence in very deep models (Srivastava et al., 2015; He et al., 2016). Most contemporary deep
models incorporate residual paths that connect the loss to intermediate layers.

In this work, we focus on deep sequential models, i.e. models that rely on a large and sequential
computational graph like RNNs, ResNets, and Transformers. We introduce Highway backpropaga-
tion (Highway-BP), an iterative algorithm to transmit the error signal backward through the network.
Derived from an original approach, Highway-BP leverages residual paths to instantly backpropagate
gradient estimates to earlier layers. By varying the number of iterations, our method allows us to
readily trade the level of approximation of the gradient for speed-up and precision, which lets the
user choose a dedicated optimization strategy in the context of a limited computational budget.
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Our main contributions are the following:

• We introduce Highway-BP, a parallelizable iterative algorithm that approximates backprop-
agation for accelerating the training of deep sequential models.

• By leveraging architecture-aware components such as residual connections, Highway-BP
is highly efficient and can be directly adapted to many different architectures.

• The algorithm is motivated by an intuitive decomposition of the gradient. In particular,
the speed versus accuracy trade-off of the algorithm can be controlled by stopping after k
iterations, resulting in an interpretable approximation.

• We evaluate Highway-BP on a large range of models and tasks, including ResNets, Trans-
formers, and RNNs, and empirically show that it converges to the exact gradient in only a
handful of iterations.

2 RELATED WORK

2.1 RESIDUAL CONNECTIONS

Gradient descent is the fundamental method for training deep learning models, but very deep net-
works encounter significant challenges, including vanishing and exploding gradients (Bengio et al.,
1994; Pascanu et al., 2013; Zucchet & Orvieto, 2024). To address these problems, network architec-
tures have been modified with connections that bypass intermediate layers. Residual connections,
first introduced in ResNets (He et al., 2015) and later adopted in transformers (Vaswani et al., 2017;
Radford & Narasimhan, 2018), are one such solution. Similar concepts are found in Highway net-
works (Srivastava et al., 2015) and the gated mechanisms of LSTMs (Hochreiter & Schmidhuber,
1997) and GRUs (Chung et al., 2014).

In addition to mitigating vanishing gradients, residual connections (Srivastava et al., 2015; He et al.,
2016) help address the shattering gradient effect, where gradients in deep networks become noisy
and uncorrelated, leading to poor signal-to-noise ratios during backpropagation (Balduzzi et al.,
2017). By introducing shortcut paths that allow gradients to flow more effectively, residual con-
nections preserve meaningful signals across layers and simplify learning by enabling networks to
approximate identity mappings when needed. This facilitates the optimization of deep models and
allows networks to scale in depth without suffering from performance degradation.

Veit et al. (2016) in particular observe that residual models actually behave like an ensemble of
shallow models. They show that the gradient that goes through many residual connections has the
most impact in the training. This is precisely the motivation behind our work, where we provide an
algorithm to compute these gradients, faster than backpropagating through the entire model.

2.2 PARALLELIZING BACKPROPAGATION

Exact parallel backpropagation Backpropagation can be computed exactly in parallel, with com-
plexity in O(log2 L), where L is the number of layers. This is done using prefix scan algorithms
(Hillis & Steele, 1986; Blelloch, 1990). However, while this seems attractive, there are serious limi-
tations in practice since the algorithm involves i) computing the Jacobian matrices of all layers, and
ii) many matrix-matrix multiplications, both of which are extremely time and memory-consuming.
In particular, matrix-matrix multiplications lead to the algorithm’s true time complexity being in
O(Bd3 log2 L) and memory in O(Bd2L), where B is the batch size and d the hidden dimension
of the model. The cubic complexity with respect to the dimension completely prevents the use of
this algorithm for large models. Still, DeepPCR and DEER (Danieli et al., 2023; Lim et al., 2024)
obtained significant speedups for small-sized models. Gonzalez et al. (2024) also proposed ELK as
a more stable and scalable improvement of DEER, in particular by approximating the Jacobians with
diagonal matrices, which reduces the time and memory complexities to match that of backpropaga-
tion. Our method uses the same prefix scan algorithm but leverages the structure of the Jacobians to
keep a low complexity.

Backpropagation as a system of equations Backpropagating through a sequential model can be
seen as solving a system of equations of the form ∂L

∂hi
= ∂L

∂hi+1

∂hi+1

∂hi
,∀i. This leads to multiple
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(a) (b)

Figure 1: (a) Illustration of a layer fi decomposed as the composition of a block gi and a residual
function ri. We show the forward pass (top) and the backpropagation through the layer (bottom).
Red terms correspond to intermediate losses that are only present in RNNs. (b) Illustration of the
gradient decomposition (Theorem 1) as the sum of the gradients flowing through only the residual
connections (k = 0 in blue), through only one block (k = 1, in yellow, orange and red), and so on
for k = 2, 3, ... until k = L.

works applying solvers to accelerate training. Günther et al. (2020) and Moon & Cyr (2022) use
ODE interpretations of ResNets and GRUs respectively to use the parallel MGRIT solver (Falgout
et al., 2014). Similarly, Wang & Ragni (2021) reformulate backpropagation in RNNs as finding
a fixed point, which they compute iteratively. The method works well because each hidden state
has its own local loss, which has more importance than losses further down the sequence. This
however does not scale well to sequence classification and sequential models, which is why Trinh
et al. (2018) introduce local auxiliary losses along the sequence, akin to pre-training in language
modeling, to keep good performance even when truncating the gradients.

Accelerating the forward pass Some of the aforementioned methods are also applied to approx-
imate the forward pass: Lim et al. (2024); Danieli et al. (2023); Gonzalez et al. (2024); Wang &
Ragni (2021); Günther et al. (2020). While this is out of the scope of this paper, our method is
orthogonal as it only approximates backpropagation, and any method could be used concurrently to
accelerate the forward pass.

Our approach differs from the system of equations and ODE interpretations, as we introduce
Highway-BP through an intuitive decomposition of the gradient. Each element of the decompo-
sition is progressively recovered at each iteration, giving a clear interpretation of the estimate after
any k iterations. Drawing inspiration from Danieli et al. (2023); Lim et al. (2024), we generalize
their use of a scan algorithm and leverage architecture-aware components to make the computation
much more efficient and scalable.

3 NOTATIONS AND ASSUMPTIONS

We consider a sequential model composed of L layers f1, f2, . . . , fL, each parameterized by θi. We
note hi = fi(hi−1) the hidden state after layer i, with x = h0 being the input of the model. We
also define a loss function L to be minimized. While most of the time the loss is only a function of
the last hidden state hL, we build our framework using a more general formulation, with a loss of
the form: L(h1, . . . , hL) =

∑L
i=1 Li(hi). Allowing the loss to depend on each intermediate state

allows the framework to handle more models and tasks (e.g. RNNs and transformers).

Main assumption. We suppose that the layers fi can be expressed as the composition of two func-
tions gi and ri:

fi(x) = ri(x, gi(x)) (1)
leading to the following Jacobian:

∂fi
∂x

= Ji +Ki (2)
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where:

• Ji =
∂ri(x,z)

∂z
∂gi(x)
∂x is computationally expensive to compute and can only be multiplied

by a vector (e.g. Jacobian of a convolution),

• Ki =
∂ri(x,z)

∂x is computationally cheap to compute and multiply (e.g. a diagonal matrix).

This general formulation allows us to consider a wide range of architectures and models. For in-
stance, in a simple residual model, we would choose gi to be the residual block (e.g. convolutions),
and ri(x, z) = x + z would be the residual connection. Table 1 provides more examples including
ResNets, Transformers (either pre- or post-layernorm), as well as recurrent neural networks like
GRU and LSTM. Figure 1 also illustrates of the decomposition of fi into gi and ri.

Note that there is no requirement for the residual function ri to be linear. For instance, ResNets use a
ReLU activation after the residual connection. This opens up our method to a wider class of models
that may have more elaborate residual-like connections. Throughout the paper, we will designate
any such architectural design as a residual connection or residual path.

Table 1: Examples of decomposition of the layers fi of common models as the composition of an
expensive block gi(x) and a cheap residual connection ri(x, z), as in Equation 1.

Model fi(x) gi(x) ri(x, z)

Pre-activation ResNet x+ Block(x) Block(x) x+ z

ResNet ReLU(x+ Block(x)) Block(x) ReLU(x+ z)

Transformer (Pre-LN) x+ Layer(LN(x)) Layer(LN(x)) x+ z

Transformer (Post-LN) LN(x+ Layer(x)) [a(x), b(x)] z1 ⊙ x+ z2

GRU a(x)⊙ x+ b(x) [a(x), b(x)] z1 ⊙ x+ z2

LSTM [a(x)⊙ x+ b(x), c(x)] [a(x), b(x), c(x)] [z1 ⊙ x+ z2, z3]

4 HIGHWAY BACKPROPAGATION

Our method is based on a gradient decomposition into terms corresponding to different paths (The-
orem 1). Based on a recursive relation, we introduce an iterative algorithm, which progressively
includes gradients from longer paths (Theorem 2). Finally, we describe how an iteration can be
parallelized, and applications of the algorithm to specific architectures. We provide proofs of the
theorems in Appendix A.

4.1 GRADIENT DECOMPOSITION

At each layer fi one part of the gradient is backpropagated using Ji and the other using Ki. This
leads to 2L different paths. The following theorem states that the gradient ∂L

∂hi
is the sum of the

gradients backpropagated through each path. The different paths are depicted in Figure 1.

Theorem 1 (Decomposition of the gradient over all paths). Given a starting index i, a target index
j ≥ i, and a set of indices J , we define Gij(J ) as the gradient backpropagated from Lj(hj) to hi,
going through the Jacobian Jk of the residual blocks for k ∈ J and otherwise through the residual
connections with Kk (see Figure 1 for a visual example). It can be expressed as:

Gij(J ) :=
∂Lj

∂hj

j−i−1∏
k=0

({
Jj−k if j − k ∈ J
Kj−k otherwise

)
. (3)

Then, for any hidden state hi, its gradient ∂L
∂hi

is the sum over all paths starting at index i:

∂L
∂hi

=
∑

i≤j≤L
J⊆[i+1,j]

Gij(J ). (4)

4
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4.2 ITERATIVE ALGORITHM

Using the previous decomposition of the gradient, we can design an iterative process to compute it,
as described in the following theorem:
Theorem 2 (Iterative computation of the gradient). Let us define wk

i as the sum of the gradients of
all paths starting from i going through at most k Jacobians Jj , which we obtain by truncating the
sum in Equation 4:

wk
i :=

∑
i≤j≤L

J⊆[i+1,j]
|J |≤k

Gij(J ) (5)

Then, wk
i can be computed iteratively using the recursive relation:

w0
i =

L∑
j=i

∂Lj

∂hj
KjKj−1 . . .Ki+1 (6)

wk+1
i = w0

i +
L∑

j=i+1

wk
j JjKj−1Kj−2 . . .Ki+1 (7)

In particular, for k ≥ L− i we get the exact gradient wk
i = ∂L

∂hi
.

Following this theorem, after k = L iterations, we obtain wL
i = ∂L

∂hi
. It is then straightforward to

finalize backpropagation and get the gradient with respect to the parameters: ∂L
∂θi

= ∂L
∂hi

∂fi
∂θi

.

4.3 PARALLEL COMPUTATION

Breaking down Equation 7, we can see how it can be computed in two steps:

1. A parallel backpropagation through the expensive Jacobians Ji:

vk+1
i = wk

i+1Ji+1 ∀i ∈ [0, L− 1] (8)

2. A sequential backpropagation through the residual path, which is also parallelizable effi-
ciently given our assumptions about Ki: wk+1

i = w0
i + uk+1

i , where:

uk+1
i =

L−1∑
j=i

vk+1
j KjKj−1 . . .Ki+1 = vk+1

i + uk+1
i+1Ki+1 (9)

While it is clear that step 1 is parallelizable, this is less obvious in step 2. This is however possible
using prefix scan algorithms (Blelloch, 1990; Boehm et al., 2019). A prefix scan aggregates a series
of values (e.g. vectors) using an associative operator (e.g. sum), which is a general formulation that
has many applications, including solving linear recurrences like the one we have in Equation 9. We
use Hillis and Steele’s parallel algorithm (Hillis & Steele, 1986) in our experiments, and we indicate
a pseudocode of this algorithm adapted to our needs in Appendix B (Algorithm 1). We denote this
algorithm as CumSumProd as in Boehm et al. (2019), and use it to rewrite Equations 6 and 7:

w0
i = CumSumProd

((
∂Li

∂hi

)L

i=1
, (Ki)

L
i=1

)
i

(10)

wk+1
i = w0

i + CumSumProd
((

wk
i+1Ji+1

)L−1

i=1
, (Ki)

L−1
i=1

)
i

(11)

with: CumSumProd(a,M)i :=
∑
j≥i

ajMjMj−1 . . .Mi+1 (12)

On a single process, the parallel version of CumSumProd has a O(L logL) time complexity, how-
ever as the inner loop is parallelizable the effective computation time grows inO(logL). In addition,
it can be implemented using in-place operations for optimal memory efficiency.

An important note is that the parallel CumSumProd algorithm relies on all the Ki being computed
ahead, and involves matrix-matrix multiplications between the Ki. This is not an issue in our case

5
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Table 2: Summary of the models and datasets used in our experiments. L is the number of skip-
connections for sequential models, and the sequence length for RNNs.

Dataset Model Layers Params L Intermediate losses
CIFAR10 Pre-act ResNet32 32 464k 15 ✗
CIFAR10 ResNet110 110 1.7M 54 ✗
Wikitext103 GPT-2 12 14.5M 24 ✗
MNLI RoBERTa 12 124M 24 ✗
Wikitext103 – char LSTM 1 2.3M 256 ✓
Wikitext103 – char GRU 1 1.8M 256 ✓
Wikitext103 GRU 3 21.1M 256 ✓
CIFAR10 – pixel level GRU 1 29.8k 1024 ✗

as we decompose the layer fi into gi and ri precisely such that Ki behaves nicely (e.g. scalar,
identity, diagonal, low-rank). Lim et al. (2024) also uses CumSumProd but replaces Ki with the
Jacobian of the whole layer, which is extremely inefficient in time and memory for large models.
Also note that Highway-BP could still be applied to situations where Ki prevents the use of the
parallel CumSumProd algorithm, as it is always possible to solve sequentially the recursive relation
in Equation 9, which only involves vector-Jacobian products.

4.4 APPROXIMATING BACKPROPAGATION

While the iterative process from Theorem 2 converges to the exact gradient after L iterations, we
propose to stop after a small number k of iterations and use the current estimate wk instead of the
exact gradient wL to update the model’s parameters.

The number of Highway-BP iterations k becomes a hyperparameter, and allows users to freely
control the tradeoff between the speed and accuracy of the algorithm. Moreover, at any iteration
k the current estimate is interpretable by design: wk is the sum of all gradients flowing through at
most k blocks gi (and goes through the residual connections ri everywhere else).

It is reasonable to expect that gradients going through fewer blocks are statistically more useful
for learning. The reason why residual connections are so effective at improving training is that
gradients can flow directly from the loss to any intermediate layer. All layers can learn at the same
time, which greatly improves convergence. This suggests that the most important part of the gradient
comes from the residual connection (or at least at the beginning of the training). Veit et al. (2016)
have shown that this is the case for ResNet models. We also empirically confirm this throughout all
of our experiments, described in section 5.

This leads to Highway-BP only requiring k iterations, each havingO(log2 L) substeps for the Cum-
SumProd operation, thus reducing the computation time T from TBP = Tforward + Tbackward to:

THighway-BP = Tforward +
k

L
Tbackward +O(k log2 L) (13)

5 EXPERIMENTS

The Highway-BP framework and notations have been designed to be highly flexible, and in particu-
lar to handle both deep sequential models and recurrent neural networks. We evaluate Highway-BP
on such models and with several tasks, which we summarize in Table 2.

5.1 DEEP SEQUENTIAL MODELS

We evaluate Highway-BP on image classification with two ResNet versions, as well as language
modeling tasks by pre-training and fine-tuning two transformer models. The models greatly vary in
size and depth, ranging from 464k to 124M parameters.
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Figure 2: Final performance of deep sequential models versus the number k of Highway-BP itera-
tions used for training (red), compared to backpropagation (black).

5.1.1 EXPERIMENTAL SETUP

The first ResNet model is a ResNet32 with pre-activations as introduced by He et al. (2016). They
are simpler to handle since we have ri(x, z) = x + z and Ki = I . We also use a ResNet110
with the original architecture (He et al., 2015), which applies a ReLU activation after the residual
connection: ri(x, z) = ReLU(x + z). We train these models on CIFAR10 (Krizhevsky, 2009) for
image classification. We only modified the downsampling layers as described in Appendix G to
simplify the use of Highway-BP.

We also pre-train a small transformer model (Vaswani et al., 2017) for language modeling on the
Wikitext103 dataset. The model is based on the GPT-2 architecture (Radford et al., 2019) with 12
layers but a smaller hidden dimension. Finally, we fine-tune a pre-trained RoBERTa model (Liu
et al., 2019) on the MNLI dataset (Williams et al., 2018), which involves predicting the entailment
information of a pair of sentences and is part of the GLUE benchmark (Wang et al., 2018). Note
that for both transformers, we split the layers into two sublayers – self-attention and feedforward –
which means we have L = 24 for 12 layers.

When applying Highway-BP to any of these models, we define gi and ri as described in Ta-
ble 1. However, for both transformer models, we used slightly different choices as described in
Appendix C.3. This is done after observing that transformer layers tend to learn to cancel part of
their residual connection.

5.1.2 RESULTS

We report the results in Figure 2, where we compare models trained either with backpropagation or
with Highway-BP using different numbers of iterations. As expected, more iterations increase the
performance of the models. However, the quality of training is good even with very small values
of k compared to L. This is especially impressive for the ResNet110 model, which requires only
k = 4 iterations to match backpropagation, while L = 54. This confirms our intuition that most of
the gradient in deep residual models goes through the residual layers.

Surprisingly, performing k = 0 iterations already leads to very reasonable performances (e.g. 85%
on CIFAR10). By definition of Highway-BP using Equation 4, the estimate after k = 0 corresponds
to only backpropagating the gradient from the classification head through the residual path. Each
layer then receives the gradient ∂L

∂hL
at its output, and uses this to update its weights. This is very

similar to boosting (Freund & Schapire, 1999), where many small models are summed together, and
each one of them learns to compensate for the errors of the previous models.

The training curves of the GPT-2 model are shown in Figure 3, for different values of k. Even when
k is too low and deteriorates the model’s performance, it still makes the model learn smoothly at the
same speed, only converging to a higher loss.
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Figure 3: Validation loss during training for the GPT-2 model, with different algorithms.

5.2 RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) also fit our framework: instead of considering a sequence of
layers along the depth dimension, we consider a repetition of the same cell along the time dimension.
More formally, for an input sequence (xi)

L
i=1, we can see each cell as a layer fi parameterized by

θi = [θ, xi] (the parameter θ common to all cells, and the external input xi). The input state h0 is
the initial state of the RNN.

Some RNNs such as LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Chung et al., 2014)
possess a long-term memory that is updated by each cell using a linear gating. This memory allows
the model to keep information for long distances and helps with gradient issues (Zucchet & Orvieto,
2024). Akin to residual connections in deep models, we can take advantage of this architecture
design with Highway-BP. We show in Table 1 how LSTM and GRU cells can be represented using
the gi and ri functions.

5.2.1 EXPERIMENTAL SETUP

As baselines to compare the performance of Highway-BP on RNNs, we use i) backpropagation, and
ii) fixed-point iteration (FPI), which is the method used by Wang & Ragni (2021) to approximate
the backward pass of RNNs, and simply consists of repeating k backpropagations through all layers
in parallel. FPI is a special case of Highway-BP with gi = fi and ri(x, z) = z. Note that this
algorithm can only perform well if there are intermediate losses at each time step, otherwise, this is
equivalent to backpropagation only through the last k cells, which can be seen as a form of extreme
machine learning (Huang et al., 2006).

We train one layer of LSTM and GRU on a language modeling task at the character level on Wiki-
text103, as well as 3 GRU layers stacked trained on Wikitext103 at the word level (same task as the
GPT-2 transformer in the previous section). Finally, we use a task from Long Range Arena (Tay
et al., 2021): image classification on CIFAR10 using the flattened image, i.e. a sequence of 1024
3-dimensional pixel vectors.

5.2.2 RESULTS

Similarly to sequential models, we show in Figure 4 the performances of models trained with dif-
ferent algorithms, and for different numbers of iterations k. Highway-BP constantly outperforms
the fixed-point iteration algorithm in terms of convergence speed, while the algorithms are practi-
cally identical in terms of computations performed. As mentioned in the previous section, FPI is a
special case of our method when we do not consider the residual connection at all (gi(x) = fi(x)
and ri(x, z) = z). Highway-BP uses additional knowledge about the architecture to improve the
convergence speed over naive, model-agnostic approaches.
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Figure 4: Final performance of RNNs versus the number k of Highway-BP iterations used for
training (red), compared to backpropagation (black) and fixed-point iteration (blue).

Table 3: Speedup of training with Highway-
BP vs. backpropagation for the RNN experi-
ments (more details in Table 6).

Model L k = 0 k = 5 k = 10

LSTM ×1 256 ×3.0 ×1.7 ×1.2
GRU ×1 256 ×3.2 ×1.8 ×1.3
GRU ×3 256 ×2.9 ×1.8 ×1.3
GRU ×1 1024 ×3.5 ×3.1 ×2.9
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Figure 5: Loss vs. runtime of the 3-layer
GRU RNN, for different algorithms.

The pixel-level CIFAR10 is an especially hard task, as the model needs to learn features from all
parts of a very long sequence (1024 pixels). Moreover, the gradient is sparse as the prediction
is made using the last hidden state h1024, which means the gradient needs to be backpropagated
through long distances. While FPI fails to do so as expected, Highway-BP reaches the same accuracy
as backpropagation with k = 10 iterations.

We additionally report the speedup obtained with Highway-BP in Table 3. We observe that using
the optimal number of iterations, all model trainings get a speedup between ×2 and ×3. Moreover,
the gains get more significant for longer sequences.

Finally, in Figure 5 we show the training curves of the largest RNN model, the 3-layer GRU, using
the real training time for the x-axis. It can be seen how k controls the tradeoff between training
speed and model performance.

5.3 TRAINING DYNAMICS ANALYSIS

In this section, we investigate how the convergence of Highway-BP evolves during training. Intu-
itively, at initialization, all the layers start learning using the residual connection. As the layers start
using relevant features from earlier layers, they start working together and we expect the contribution
of high values of k to increase over training.

In Figure 6, we analyze how Highway-BP behaves throughout training. The top row reports the
cosine similarity between the estimated gradient and the true gradient, which seems to require more
iterations at the end of training to reach 1. The bottom row also validates this claim, as it shows how
the contribution of each iteration slowly shifts toward higher values of k. The transformer seems to
be the most consistent model, as the cosine similarity stays mostly constant during training.

The special case k = 0, which corresponds to only backpropagating through the residual connection,
slowly decreases in accuracy over time for all models. Still, its contribution to the total norm remains
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gradient ∂L

∂θ versus the approximation using k Highway-BP iterations. (Bottom) Norm of the k-th
Highway-BP iteration step (relative to the total norm).

high during all the training, which suggests that residual connections play a key part in training deep
models, and not only at the beginning of the training.

6 DISCUSSION AND CONCLUSION

We introduce Highway-BP as an architecture-aware algorithm for approximating backpropagation
in deep sequential models. Its parallelizability and effectiveness unlock new possibilities, for in-
stance, in training RNNs over long sequences or large models in a layer-distributed setting. We
show through a decomposition of the gradient that each algorithm iteration adds another component
to the estimate, until it completely reconstructs the gradient. As such, each intermediate estimate
is interpretable as the sum of the gradients associated with paths going through at most k residual
blocks.

Empirical findings show that our method can replicate backpropagation with much lower time com-
plexity, as it often converges in a few iterations. We observe this for all models, with promising
results on deep models and RNNs on long sequences. As recently shown by Beck et al. (2024),
when scaling LSTMs to billions of parameters, these models perform favorably in terms of perfor-
mance compared to state-of-the-art Transformers, showcasing superior expressivity. Our framework
could thus be applied to allow fast training of very large RNNs, with billions of parameters.

Our general framework allows us to use the same generic code to train all models using Highway-BP.
However, simplicity comes at the cost of less optimization, and we believe that architecture-specific
implementations must be done to benefit the most from Highway-BP. In addition, our main purpose
in this paper is to demonstrate the high training quality of Highway-BP, almost matching backprop-
agation with a few iterations. We leave its practical implementation for training large models in a
distributed setting for future work. We however show that RNNs can be sped up considerably on a
single GPU, as all cells share the same weights. Still, we believe the prefix scan algorithm could be
much more optimized, using a custom CUDA kernel for instance.

Finally, the tradeoff between training speed and quality can be adjusted at any time. While low
numbers of iterations are enough at the beginning of training, it is possible to increase the number
of iterations during training and end with an exact backpropagation. This versatility not only allows
us to perform increasingly more accurate optimization steps to speed up training while attaining
the same performance, but also allows the user to choose a dedicated optimization strategy in the
context of a limited computational budget.
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A PROOFS

A.1 PROOF OF THEOREM 1

The result is obtained by completely expanding the product of Jacobians obtained with the chain
rule:

∂L
∂hi

=

L∑
j=i

∂Lj

∂hj

∂hj

∂hi

=

L∑
j=i

∂Lj

∂hj
(Jj +Kj)(Jj−1 +Kj−1) . . . (Ji+1 +Ki+1)

=

L∑
j=i

∑
J⊆[i+1,j]

∂Lj

∂hj

j−i−1∏
k=0

(Jj−k if j − k ∈ J else Kj−k)

=
∑

i≤j≤L
J⊆[i+1,j]

Gij(J )
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A.2 PROOF OF THEOREM 2

From the definition of wk
i :

wk+1
i =

∑
i≤j≤L

J⊆[i+1,j]
|J |≤k+1

Gij(J )

=

L∑
j=i

Gij
∅ +

∑
i≤j≤L

J⊆[i+1,j]
1≤|J |≤k+1

Gimin(J )(J \ {min(J )})Jmin(J )Kmin(J )−1 . . .Ki+2Ki+1

= w0
i +

L∑
m=i+1

( ∑
m≤j≤L

J⊆[m+1,j]
|J |≤k

Gmj(J )
)
JmKm−1 . . .Ki+2Ki+1

= w0
i +

L∑
j=i+1

wk
j JjKj−1 . . .Ki+2Ki+1

In particular, from Theorem 1 we have that wk
i = ∂L

∂hi
for k ≥ L− i.

B PSEUDOCODE OF THE PARALLEL PREFIX SCAN ALGORITHM FOR
CUMSUMPROD

Algorithm 1 (Parallel CumSumProd) Parallel cumulative sum-product algorithm (reversed)

Inputs:
a sequence of L vectors (vi)Li=1 with vi ∈ Rdi ,
a sequence of L matrices (Ki)

L
i=1 with Ki ∈ Rdi×di−1

Output: (ui)
L
i=1 such that ui =

∑L
j=i vjKj . . .Ki+1

u(0) ← v
P (0) ← K
M ← ⌈log2 L⌉
for m← 0 to M − 1 do

for i← 1 to L in parallel do
if i ≤ L− 2m then

u
(m+1)
i ← u

(m)
i + u

(m)
i+2m · P

(m)
i

P
(m+1)
i ← P

(m)
i+2m · P

(m)
i

else
u
(m+1)
i ← u

(m)
i

P
(m+1)
i ← P

(m)
i

end if
end for

end for
return u(M)

C EXPERIMENTAL SETUP DETAILS

C.1 TRAINING SCHEME

Most models are trained using the Adam optimizer (Kingma & Ba, 2014). In case of weight decay,
we use the AdamW variation (Loshchilov & Hutter, 2017). We also use a cosine learning rate
scheduler to decrease the learning rate to a tenth of its initial value. Additionally, the first 10%
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of the training is performed with a linear warmup. For both ResNet experiments, however, we
use a training scheme close to the original paper (He et al., 2015), which uses an SGD optimizer
with momentum and divides the learning rate by 10 twice during training. All experiments were
conducted on single GPUs, either Nvidia A100, A40, or RTX A6000.

C.2 DATASETS

CIFAR10 The CIFAR10 (Krizhevsky, 2009) dataset contains 50k images with 10 classes. Each
image is 32 by 32 with 3 channels for the RGB values. We normalize the images to have zero mean
and unit variance. Additionally, for the ResNet models, we apply the same data-augmentation tech-
niques as in the original ResNet paper (He et al., 2015): horizontal flipping and random cropping.

CIFAR10 pixel-level In Long Range Arena (Tay et al., 2021), CIFAR10 images are flattened as
sequences of 3-dimensional vectors. Sequence models such as RNNs can then be applied to image
classification.

Wikitext103 Wikitext103 is a dataset containing texts extracted from Wikipedia. We used two
variants depending on the tokenizer used to convert the text into token indices: character-level (the
210 most common characters in the dataset) and word-level (a BPE tokenizer with 16k token, trained
on the dataset as in GPT-2).

MNLI The Multi-Genre Natural Language Inference dataset (Williams et al., 2018) is a task from
the GLUE benchmark (Wang et al., 2018). It contains 433k sentence pairs, labelled with entailment
information. The model has to predict whether the two sentences are an entailment, a contradiction,
or neutral. For evaluation, we use the validation split with domains matching the training set.

C.3 MODELS

Pre-act ResNet We use the same architecture as the original ResNet for CIFAR10 (He et al.,
2015), using pre-activations as in (He et al., 2016). We only modify the downsampling layers as
described in Appendix G. We use:

gi(x) = Upsamplei(Blocki(Downsamplei(x))) ri(x, z) = x+ z (14)

ResNet Similarly, we use the same architecture as the original ResNet for CIFAR10 (He et al.,
2015), and we only modify the downsampling layers as described in Appendix G. We use:

gi(x) = Upsamplei(Blocki(Downsamplei(x))) ri(x, z) = ReLU(x+ z) (15)

GPT-2 We use a transformer model following the original GPT-2 architecture (Radford et al.,
2019), with only smaller dimensions and vocabulary size. Note that GPT-2 uses pre-normalization,
i.e. the layer-norm is applied at the beginning of all layers, and the residual connection is purely
linear. This implies that the residual connection is linear:

gi(x) = Blocki(x)) ri(x, z) = x+ z (16)

However, the above choice for gi and ri is not suited and makes Highway-BP diverge. We believe
this is because the layers learn to cancel part of their residual connection. Taking this into account,
in our experiments we used:

gi(x) = Blocki(x)) + γx ri(x, z) = (1− γ)x+ z (17)

where we picked γ = 0.15 with minimal tuning. Finding better ways of choosing γ, understanding
why it is necessary, and studying how this impacts Highway-BP, are future works that could help to
considerably improve Highway-BP on such models.

Note that the two equations are mathematically equivalent when doing backpropagation, but the
latter greatly improves the convergence of Highway-BP. In particular, γ = 0 is equivalent to the
previous equation, and γ = 1 makes Highway-BP behave exactly like the fixed-point iteration
baseline.
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Table 4: Hyperparameters used in the deep models experiments. In language modeling tasks, the
last input dimension is the vocabulary size.

Model Pre-act ResNet32 ResNet110 GPT-2 RoBERTa
Dataset CIFAR10 CIFAR10 Wikitext103 MNLI
Optimizer SGD SGD AdamW AdamW
Epochs 200 200 5.3 2
Learning rate 0.1 0.1 1e-3 3e-5
Batch size 128 128 128 32
Warmup steps 0 0 2k 2.5k
Momentum 0.9 0.9 0.9 0.9
Adam β2 – – 0.98 0.999
Weight decay 1e-4 1e-4 0.1 0.1
Gradient clipping – – 1.0 1.0
Input shape (32, 32, 3) (32, 32, 3) (256, 16k) (128, 50k)
Hidden dim 16→ 64 16→ 64 256 768
Layers 32 110 12 12
Params 464k 1.7M 14.5M 124M

RoBERTa We finetune the pre-trained RoBERTA-base model introduced by Liu et al. (2019).
Compared to GPT-2, RoBERTA uses post-layernorm, i.e. applies a LayerNorm layer after each
residual connection.

fi(x) = LNi(x+ Blocki(x)) (18)

=
x+ Blocki(x)−

µi(x)︷ ︸︸ ︷
E[x+ Blocki(x)]√

Var(x+ Blocki(x)) + ϵ︸ ︷︷ ︸
σi(x)

⊙ αi + βi (19)

= x⊙ αi

σi(x)︸ ︷︷ ︸
ai(x)

+(Blocki(x)− µi(x))⊙
αi

σi(x)
+ βi︸ ︷︷ ︸

bi(x)

(20)

= x⊙ ai(x) + bi(x) (21)

Which leads to the natural choice for gi and ri:

gi(x) = [ai(x), bi(x)] ri(x, z) = x⊙ z1 + z2 (22)

However, similarly to the GPT-2 experiment with Equation 17, we introduce a small change to
improve the convergence of Highway-BP:

gi(x) = [(1− γ)ai(x), bi(x) + γx⊙ ai(x)] ri(x, z) = x⊙ z1 + z2 (23)

This comes naturally when, instead of splitting x+ Blocki(x) into x and Blocki(x), we split it into
(1 − γ)x and γx + Blocki(x). We found γ = 0.8 to be a good choice, however again we believe
there are still many things to understand with a lot of room for improvement, which we leave as
future work.

RNNs The RNN models contain a linear layer to project the input to the hidden dimension, fol-
lowed by the RNN layers, and then a classifier. The classifier is linear for language modeling
(Wikitext103), and is a two-layer MLP for sequence classification (CIFAR10 pixel-level). In addi-
tion, when stacking multiple RNN layers, we introduce residual connections which greatly improve
convergence speed.

C.4 HYPERPARAMETERS

We report the hyperparameters used for sequential models in Table 4, and for RNNs in Table 5.
Parameters that are not showed are set using their default values.
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Table 5: Hyperparameters used in the RNN experiments. In language modeling tasks, the input
dimension is the vocabulary size.

RNN type LSTM GRU GRU GRU
Dataset Wikitext103 char Wikitext103 char Wikitext103 CIFAR10
Training steps 10k 10k 10k 2.5k
Learning rate 1e-3 1e-3 1e-3 1e-3
Batch size 128 128 128 128
Warmup steps 1k 1k 1k 250
Sequence length 256 256 256 1024
Input dim 210 210 16k 3
Hidden dim 512 512 512 64
Layers 1 1 3 1
Params 2.3M 1.8M 21.1M 29.8k

D MEMORY ANALYSIS

In this section we perform a simplified estimation of the memory usage of backpropagation and
Highway-BP. Backpropagation requires the following memory for each layer:

MBP =Mweights +Mcache + 2Mhi
(24)

whereMweights is the size of the layer weights,Mcache is the space taken by the intermediate vari-
ables kept in memory for backpropagation,Mhi

is the size of the hidden state hi (and of its gradi-
ent).

A Highway-BP iteration involves a few variables per layer:

• wk
i (the current gradient estimate): it plays the same role as ∂L

∂hi
in backpropagation, as it

is backpropagated through the residual block gi, so it does not take additional memory.

• vk+1
i : similarly, plays the same role as ∂L

∂hi−1
in backpropagation.

• w0
i (the initial estimate): this variable needs to be stored.

• Ki (the Jacobian of the residual connection): already included in the intermediary variables
stored by backpropagation.

• CumSumProd operation: we see from Algorithm 1 that it requires two tensors per layer if
we use inplace operations. The first tensor is P (m)

i : the product of the Ki (if Ki = I as in
transformers for instance, there is nothing to store) which usually takes the same space as
hi (e.g. if Ki is diagonal). The second tensor is u(m)

i , for which we can reuse the memory
allocated to vk+1

i using inplace operations.

This leads to only two additional tensors to store (w0
i and P

(m)
i ):

MHighway-BP =Mweights +Mcache + 4Mhi
(25)

Note that in practice Mcache is what takes most of the memory. In transformers for instance,
Mcache ≈ 17Mhi

. Nevertheless, there can be a non-negligible memory overhead for models with
small residual blocks.

E PRACTICAL CONSIDERATIONS IN A DISTRIBUTED SETTING

While Highway-BP is a new way of speeding up training, it has to be noted that is also does not
conflict with the standard techniques used in distributed training. The most widespread technique
is data parallel, which splits the input bach across devices to process each part in parallel. This can
still be used with Highway-BP, since our algorithm is only used for computing (or approximating)
the gradient. In a layer parallel (or pipeline parallel) setting, layers are on different devices, which
is exactly where Highway-BP would be useful.
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The way Highway-BP may conflict with other distributed modes is if the number of devices is
constrained. One would then have to decide which devices should be used either for increasing the
batch size (data parallel) or speeding up backpropagation (Highway-BP).

Regarding the potential communication overhead, the main difference with backpropagation is the
CumSumProd operation which performs a prefix scan of tensors stored on all devices (one per
layer). While the algorithm is parallel, it is nontrivial to implement efficiently and there can be
different strategies. With a fully distributed strategy, there will be more communications since a
layer needs to send its tensor to two other layers at each iteration. Another approach is a centralized
strategy, where all tensors are gathered together, CumSumProd is computed locally, and the results
are sent back to the layers, which reduces the number of communications between devices. Finding
out which implementation is better is an important future work. Note as well that there are multiple
parallel prefix scan algorithms, each with different advantages.

F SPEED COMPARISON BETWEEN TRAINING ALGORITHMS FOR RNNS

Table 6: Computation times for different RNN tasks, algorithms, and k values.

Task Algorithm Training step time (ms) w.r.t. k
0 1 2 3 5 10 20

1 LSTM layer (L=256) Backpropagation 261 — — — — — —
Fixed-point iteration 81 92 99 111 128 173 262

Highway-BP 87 101 114 125 154 218 347

1 GRU layer (L=256) Backpropagation 209 — — — — — —
Fixed-point iteration 62 69 73 79 92 119 176

Highway-BP 66 77 88 97 118 166 266

3 GRU layers (L=256) Backpropagation 687 — — — — — —
Fixed-point iteration 226 243 260 281 316 400 573

Highway-BP 240 268 300 332 389 538 839

1 GRU layer (L=1024) Backpropagation 715 — — — — — —
Fixed-point iteration 191 207 204 203 209 216 241

Highway-BP 205 210 210 210 230 248 292

G HIGHWAY-BP AND DOWNSAMPLING LAYERS IN RESNETS

For Highway-BP to be effective on ResNet models, we need to adapt the downsampling layers
from the original architecture. Indeed, they are not convenient to handle in our framework since
the downsampling occurs in the residual connection, and the default downsampling layers have no
simple way of computing and factorizing their Jacobians.

We take inspiration from i-RevNet (Jacobsen et al., 2018), in which the downsampling layers are
invertible: the image is split into blocks of size s× s, which are then flattened to produce one vector
per block. This is already much easier to handle in Highway-BP, for instance in a pre-activation
ResNet this means Ki is simply a permutation. Furthermore, they are also easily factorizable, since
downsampling with block size s1 and then s2 is equivalent to doing it once with block size s1s2.
However, a limitation is that when this layer divides the width and height by s, it also increases the
vector dimension by s2, as opposed to the original ResNet where the dimension increases by s. This
leads to the number of parameters exploding.

The above downsampling layer can be modified to fix this issue. Before flattening the blocks, we
perform an average over their height dimension. We thus obtain rows of s vectors, which once
flattened produce vectors scaled by s instead of s2. We used this modification in our implementation.

Note that the i-RevNet downsampling and ours are right-invertible, i.e. we can define an Upsample
function such that Downsample(Upsample(x)) = x. We take advantage of such properties in our
implementation by wrapping all residual blocks by a downsample layer and an upsample layer, using
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the same block sizes as the original ResNets, instead of placing the downsample layers in the residual
connections. This way, the residual connections are even simpler, since we have Ki = I . For pre-
activation ResNets, this is mathematically equivalent to the original implementation. For ResNets
with ReLU between blocks, this is slightly different since Downsample(ReLU(Upsample(x))) ̸= x,
but has no noticeable impact.
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