
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ACCELERATED TRAINING THROUGH ITERATIVE
GRADIENT PROPAGATION ALONG THE RESIDUAL PATH

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite being the cornerstone of deep learning, backpropagation is criticized for
its inherent sequentiality, which can limit the scalability of very deep models.
Such models faced convergence issues due to vanishing gradient, later resolved
using residual connections. Variants of these are now widely used in modern ar-
chitecture. However, the computational cost of backpropagation remains a major
burden, accounting for most of the training time. Taking advantage of residual-like
architectural designs, we introduce Highway backpropagation, a parallelizable it-
erative algorithm that approximates backpropagation, by alternatively i) accumu-
lating the gradient estimates along the residual path, and ii) backpropagating them
through every layer in parallel. This algorithm is naturally derived from a decom-
position of the gradient as the sum of gradients flowing through all paths and is
adaptable to a diverse set of common architectures, ranging from ResNets and
Transformers to recurrent neural networks. Through an extensive empirical study
on a large selection of tasks and models, we evaluate Highway-BP and show that
major speedups can be achieved with minimal performance degradation.

1 INTRODUCTION

Often copied but never matched, the backpropagation algorithm (Rumelhart et al., 1986) is still
at the heart of deep-learning optimization, coupled with the gradient descent. However, while the
model size grows over and over, its memory overhead and computational time become more and
more prohibitive. This was especially the case for recurrent neural networks (RNN) (Elman, 1990;
Hochreiter & Schmidhuber, 1997; Cho et al., 2014). Considered as state of the art for sequence
processing (e.g. natural and spoken language), the time required to run the backpropagation through
time for stacked RNNs (Sutskever et al., 2014) has motivated the design of transformers (Vaswani
et al., 2017) that process the sequence in parallel. However, with the advent of deeper and larger
models in NLP (Kaplan et al., 2020; Hoffmann et al., 2022) and computer vision (Dosovitskiy,
2020; Dehghani et al., 2023), the problem persists: the sequential aspect of backpropagation implies
a computational cost that clearly limits further advancements in model design and scalability.

Frugal alternatives to backpropagation, such as forward-only methods (Hinton, 2022; Nøkland,
2016) and exact parallel backpropagation (Lim et al., 2024; Danieli et al., 2023), have shown promis-
ing results, but often involve impractical trade-offs between speed and task performance. More-
over, these methods often do not to leverage the recent advances that made the success of modern
deep-learning models, like Batch and Layer-normalization (Ioffe & Szegedy, 2015; Ba et al., 2016).
Another important example is the widespread use of residual connections, which enables efficient
gradient propagation across layers, prevents vanishing gradients, and significantly improves training
convergence in very deep models (Srivastava et al., 2015; He et al., 2016). Most contemporary deep
models incorporate residual paths that connect the loss to intermediate layers.

In this work, we focus on deep sequential models, i.e. models that rely on a large and sequential
computational graph like RNNs, ResNets, and Transformers. We introduce Highway backpropaga-
tion (Highway-BP), an iterative algorithm to transmit the error signal backward through the network.
Derived from an original approach, Highway-BP leverages residual paths to instantly backpropagate
gradient estimates to earlier layers. By varying the number of iterations, our method allows us to
readily trade the level of approximation of the gradient for speed-up and precision, which lets the
user choose a dedicated optimization strategy in the context of a limited computational budget.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Our main contributions are the following:

• We introduce Highway-BP, a parallelizable iterative algorithm that approximates backprop-
agation for accelerating the training of deep sequential models.

• By leveraging architecture-aware components such as residual connections, Highway-BP
is highly efficient and can be directly adapted to many different architectures.

• The algorithm is motivated by an intuitive decomposition of the gradient. In particular,
the speed versus accuracy trade-off of the algorithm can be controlled by stopping after k
iterations, resulting in an interpretable approximation.

• We evaluate Highway-BP on a large range of models and tasks, including ResNets, Trans-
formers, and RNNs, and empirically show that it converges to the exact gradient in only a
handful of iterations.

2 RELATED WORK

2.1 RESIDUAL CONNECTIONS

Gradient descent is the fundamental method for training deep learning models, but very deep net-
works encounter significant challenges, including vanishing and exploding gradients (Bengio et al.,
1994; Pascanu et al., 2013; Zucchet & Orvieto, 2024). To address these problems, network architec-
tures have been modified with connections that bypass intermediate layers. Residual connections,
first introduced in ResNets (He et al., 2015) and later adopted in transformers (Vaswani et al., 2017;
Radford & Narasimhan, 2018), are one such solution. Similar concepts are found in Highway net-
works (Srivastava et al., 2015) and the gated mechanisms of LSTMs (Hochreiter & Schmidhuber,
1997) and GRUs (Chung et al., 2014).

In addition to mitigating vanishing gradients, residual connections (Srivastava et al., 2015; He et al.,
2016) help address the shattering gradient effect, where gradients in deep networks become noisy
and uncorrelated, leading to poor signal-to-noise ratios during backpropagation (Balduzzi et al.,
2017). By introducing shortcut paths that allow gradients to flow more effectively, residual con-
nections preserve meaningful signals across layers and simplify learning by enabling networks to
approximate identity mappings when needed. This facilitates the optimization of deep models and
allows networks to scale in depth without suffering from performance degradation.

Veit et al. (2016) in particular observe that residual models actually behave like an ensemble of
shallow models. They show that the gradient that goes through many residual connections has the
most impact in the training. This is precisely the motivation behind our work, where we provide an
algorithm to compute these gradients, faster than backpropagating through the entire model.

2.2 PARALLELIZING BACKPROPAGATION

Exact parallel backpropagation Backpropagation can be computed exactly in parallel, with com-
plexity in O(log2 L), where L is the number of layers. This is done using prefix scan algorithms
(Hillis & Steele, 1986; Blelloch, 1990). However, while this seems attractive, there are serious limi-
tations in practice since the algorithm involves i) computing the Jacobian matrices of all layers, and
ii) many matrix-matrix multiplications, both of which are extremely time and memory-consuming.
In particular, matrix-matrix multiplications lead to the algorithm’s true time complexity being in
O(Bd3 log2 L) and memory in O(Bd2L), where B is the batch size and d the hidden dimension
of the model. The cubic complexity with respect to the dimension completely prevents the use of
this algorithm for large models. Still, DeepPCR and DEER (Danieli et al., 2023; Lim et al., 2024)
obtained significant speedups for small-sized models. Gonzalez et al. (2024) also proposed ELK as
a more stable and scalable improvement of DEER, in particular by approximating the Jacobians with
diagonal matrices, which reduces the time and memory complexities to match that of backpropaga-
tion. Our method uses the same prefix scan algorithm but leverages the structure of the Jacobians to
keep a low complexity.

Backpropagation as a system of equations Backpropagating through a sequential model can be
seen as solving a system of equations of the form ∂L

∂hi
= ∂L

∂hi+1

∂hi+1

∂hi
,∀i. This leads to multiple

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

(a) (b)

Figure 1: (a) Illustration of a layer fi decomposed as the composition of a block gi and a residual
function ri. We show the forward pass (top) and the backpropagation through the layer (bottom).
Red terms correspond to intermediate losses that are only present in RNNs. (b) Illustration of the
gradient decomposition (Theorem 1) as the sum of the gradients flowing through only the residual
connections (k = 0 in blue), through only one block (k = 1, in yellow, orange and red), and so on
for k = 2, 3, ... until k = L.

works applying solvers to accelerate training. Günther et al. (2020) and Moon & Cyr (2022) use
ODE interpretations of ResNets and GRUs respectively to use the parallel MGRIT solver (Falgout
et al., 2014). Similarly, Wang & Ragni (2021) reformulate backpropagation in RNNs as finding
a fixed point, which they compute iteratively. The method works well because each hidden state
has its own local loss, which has more importance than losses further down the sequence. This
however does not scale well to sequence classification and sequential models, which is why Trinh
et al. (2018) introduce local auxiliary losses along the sequence, akin to pre-training in language
modeling, to keep good performance even when truncating the gradients.

Accelerating the forward pass Some of the aforementioned methods are also applied to approx-
imate the forward pass: Lim et al. (2024); Danieli et al. (2023); Gonzalez et al. (2024); Wang &
Ragni (2021); Günther et al. (2020). While this is out of the scope of this paper, our method is
orthogonal as it only approximates backpropagation, and any method could be used concurrently to
accelerate the forward pass.

Our approach differs from the system of equations and ODE interpretations, as we introduce
Highway-BP through an intuitive decomposition of the gradient. Each element of the decompo-
sition is progressively recovered at each iteration, giving a clear interpretation of the estimate after
any k iterations. Drawing inspiration from Danieli et al. (2023); Lim et al. (2024), we generalize
their use of a scan algorithm and leverage architecture-aware components to make the computation
much more efficient and scalable.

3 NOTATIONS AND ASSUMPTIONS

We consider a sequential model composed of L layers f1, f2, . . . , fL, each parameterized by θi. We
note hi = fi(hi−1) the hidden state after layer i, with x = h0 being the input of the model. We
also define a loss function L to be minimized. While most of the time the loss is only a function of
the last hidden state hL, we build our framework using a more general formulation, with a loss of
the form: L(h1, . . . , hL) =

∑L
i=1 Li(hi). Allowing the loss to depend on each intermediate state

allows the framework to handle more models and tasks (e.g. RNNs and transformers).

Main assumption. We suppose that the layers fi can be expressed as the composition of two func-
tions gi and ri:

fi(x) = ri(x, gi(x)) (1)
leading to the following Jacobian:

∂fi
∂x

= Ji +Ki (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

where:

• Ji =
∂ri(x,z)

∂z
∂gi(x)
∂x is computationally expensive to compute and can only be multiplied

by a vector (e.g. Jacobian of a convolution),

• Ki =
∂ri(x,z)

∂x is computationally cheap to compute and multiply (e.g. a diagonal matrix).

This general formulation allows us to consider a wide range of architectures and models. For in-
stance, in a simple residual model, we would choose gi to be the residual block (e.g. convolutions),
and ri(x, z) = x + z would be the residual connection. Table 1 provides more examples including
ResNets, Transformers (either pre- or post-layernorm), as well as recurrent neural networks like
GRU and LSTM. Figure 1 also illustrates of the decomposition of fi into gi and ri.

Note that there is no requirement for the residual function ri to be linear. For instance, ResNets use a
ReLU activation after the residual connection. This opens up our method to a wider class of models
that may have more elaborate residual-like connections. Throughout the paper, we will designate
any such architectural design as a residual connection or residual path.

Table 1: Examples of decomposition of the layers fi of common models as the composition of an
expensive block gi(x) and a cheap residual connection ri(x, z), as in Equation 1.

Model fi(x) gi(x) ri(x, z)

Pre-activation ResNet x+ Block(x) Block(x) x+ z

ResNet ReLU(x+ Block(x)) Block(x) ReLU(x+ z)

Transformer (Pre-LN) x+ Layer(LN(x)) Layer(LN(x)) x+ z

Transformer (Post-LN) LN(x+ Layer(x)) [a(x), b(x)] z1 ⊙ x+ z2

GRU a(x)⊙ x+ b(x) [a(x), b(x)] z1 ⊙ x+ z2

LSTM [a(x)⊙ x+ b(x), c(x)] [a(x), b(x), c(x)] [z1 ⊙ x+ z2, z3]

4 HIGHWAY BACKPROPAGATION

Our method is based on a gradient decomposition into terms corresponding to different paths (The-
orem 1). Based on a recursive relation, we introduce an iterative algorithm, which progressively
includes gradients from longer paths (Theorem 2). Finally, we describe how an iteration can be
parallelized, and applications of the algorithm to specific architectures. We provide proofs of the
theorems in Appendix A.

4.1 GRADIENT DECOMPOSITION

At each layer fi one part of the gradient is backpropagated using Ji and the other using Ki. This
leads to 2L different paths. The following theorem states that the gradient ∂L

∂hi
is the sum of the

gradients backpropagated through each path. The different paths are depicted in Figure 1.

Theorem 1 (Decomposition of the gradient over all paths). Given a starting index i, a target index
j ≥ i, and a set of indices J , we define Gij(J) as the gradient backpropagated from Lj(hj) to hi,
going through the Jacobian Jk of the residual blocks for k ∈ J and otherwise through the residual
connections with Kk (see Figure 1 for a visual example). It can be expressed as:

Gij(J) :=
∂Lj

∂hj

j−i−1∏
k=0

({
Jj−k if j − k ∈ J
Kj−k otherwise

)
. (3)

Then, for any hidden state hi, its gradient ∂L
∂hi

is the sum over all paths starting at index i:

∂L
∂hi

=
∑

i≤j≤L
J⊆[i+1,j]

Gij(J). (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4.2 ITERATIVE ALGORITHM

Using the previous decomposition of the gradient, we can design an iterative process to compute it,
as described in the following theorem:
Theorem 2 (Iterative computation of the gradient). Let us define wk

i as the sum of the gradients of
all paths starting from i going through at most k Jacobians Jj , which we obtain by truncating the
sum in Equation 4:

wk
i :=

∑
i≤j≤L

J⊆[i+1,j]
|J |≤k

Gij(J) (5)

Then, wk
i can be computed iteratively using the recursive relation:

w0
i =

L∑
j=i

∂Lj

∂hj
KjKj−1 . . .Ki+1 (6)

wk+1
i = w0

i +
L∑

j=i+1

wk
j JjKj−1Kj−2 . . .Ki+1 (7)

In particular, for k ≥ L− i we get the exact gradient wk
i = ∂L

∂hi
.

Following this theorem, after k = L iterations, we obtain wL
i = ∂L

∂hi
. It is then straightforward to

finalize backpropagation and get the gradient with respect to the parameters: ∂L
∂θi

= ∂L
∂hi

∂fi
∂θi

.

4.3 PARALLEL COMPUTATION

Breaking down Equation 7, we can see how it can be computed in two steps:

1. A parallel backpropagation through the expensive Jacobians Ji:

vk+1
i = wk

i+1Ji+1 ∀i ∈ [0, L− 1] (8)

2. A sequential backpropagation through the residual path, which is also parallelizable effi-
ciently given our assumptions about Ki: wk+1

i = w0
i + uk+1

i , where:

uk+1
i =

L−1∑
j=i

vk+1
j KjKj−1 . . .Ki+1 = vk+1

i + uk+1
i+1Ki+1 (9)

While it is clear that step 1 is parallelizable, this is less obvious in step 2. This is however possible
using prefix scan algorithms (Blelloch, 1990; Boehm et al., 2019). A prefix scan aggregates a series
of values (e.g. vectors) using an associative operator (e.g. sum), which is a general formulation that
has many applications, including solving linear recurrences like the one we have in Equation 9. We
use Hillis and Steele’s parallel algorithm (Hillis & Steele, 1986) in our experiments, and we indicate
a pseudocode of this algorithm adapted to our needs in Appendix B (Algorithm 1). We denote this
algorithm as CumSumProd as in Boehm et al. (2019), and use it to rewrite Equations 6 and 7:

w0
i = CumSumProd

((
∂Li

∂hi

)L

i=1
, (Ki)

L
i=1

)
i

(10)

wk+1
i = w0

i + CumSumProd
((

wk
i+1Ji+1

)L−1

i=1
, (Ki)

L−1
i=1

)
i

(11)

with: CumSumProd(a,M)i :=
∑
j≥i

ajMjMj−1 . . .Mi+1 (12)

On a single process, the parallel version of CumSumProd has a O(L logL) time complexity, how-
ever as the inner loop is parallelizable the effective computation time grows inO(logL). In addition,
it can be implemented using in-place operations for optimal memory efficiency.

An important note is that the parallel CumSumProd algorithm relies on all the Ki being computed
ahead, and involves matrix-matrix multiplications between the Ki. This is not an issue in our case

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 2: Summary of the models and datasets used in our experiments. L is the number of skip-
connections for sequential models, and the sequence length for RNNs.

Dataset Model Layers Params L Intermediate losses
CIFAR10 Pre-act ResNet32 32 464k 15 ✗
CIFAR10 ResNet110 110 1.7M 54 ✗
Wikitext103 GPT-2 12 14.5M 24 ✗
MNLI RoBERTa 12 124M 24 ✗
Wikitext103 – char LSTM 1 2.3M 256 ✓
Wikitext103 – char GRU 1 1.8M 256 ✓
Wikitext103 GRU 3 21.1M 256 ✓
CIFAR10 – pixel level GRU 1 29.8k 1024 ✗

as we decompose the layer fi into gi and ri precisely such that Ki behaves nicely (e.g. scalar,
identity, diagonal, low-rank). Lim et al. (2024) also uses CumSumProd but replaces Ki with the
Jacobian of the whole layer, which is extremely inefficient in time and memory for large models.
Also note that Highway-BP could still be applied to situations where Ki prevents the use of the
parallel CumSumProd algorithm, as it is always possible to solve sequentially the recursive relation
in Equation 9, which only involves vector-Jacobian products.

4.4 APPROXIMATING BACKPROPAGATION

While the iterative process from Theorem 2 converges to the exact gradient after L iterations, we
propose to stop after a small number k of iterations and use the current estimate wk instead of the
exact gradient wL to update the model’s parameters.

The number of Highway-BP iterations k becomes a hyperparameter, and allows users to freely
control the tradeoff between the speed and accuracy of the algorithm. Moreover, at any iteration
k the current estimate is interpretable by design: wk is the sum of all gradients flowing through at
most k blocks gi (and goes through the residual connections ri everywhere else).

It is reasonable to expect that gradients going through fewer blocks are statistically more useful
for learning. The reason why residual connections are so effective at improving training is that
gradients can flow directly from the loss to any intermediate layer. All layers can learn at the same
time, which greatly improves convergence. This suggests that the most important part of the gradient
comes from the residual connection (or at least at the beginning of the training). Veit et al. (2016)
have shown that this is the case for ResNet models. We also empirically confirm this throughout all
of our experiments, described in section 5.

This leads to Highway-BP only requiring k iterations, each havingO(log2 L) substeps for the Cum-
SumProd operation, thus reducing the computation time T from TBP = Tforward + Tbackward to:

THighway-BP = Tforward +
k

L
Tbackward +O(k log2 L) (13)

5 EXPERIMENTS

The Highway-BP framework and notations have been designed to be highly flexible, and in particu-
lar to handle both deep sequential models and recurrent neural networks. We evaluate Highway-BP
on such models and with several tasks, which we summarize in Table 2.

5.1 DEEP SEQUENTIAL MODELS

We evaluate Highway-BP on image classification with two ResNet versions, as well as language
modeling tasks by pre-training and fine-tuning two transformer models. The models greatly vary in
size and depth, ranging from 464k to 124M parameters.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0 1 2 3 4 5 6 7
k

70

75

80

85

90

95

100

A
cc

ur
ac

y

(a) Pre-act ResNet32
CIFAR10

0 1 2 3 4 5 6 7
k

70

75

80

85

90

95

100

A
cc

ur
ac

y

(b) ResNet110
CIFAR10

0 1 2 3 4 5
k

10

20

30

40

50

60

Pe
rp

le
xi

ty

(c) GPT-2
Wikitext103

0 1 2 3 4 5 6 7 8 9 10
k

60

70

80

90

100

A
cc

ur
ac

y

Backpropagation
Highway-BP

(d) RoBERTa
MNLI

Figure 2: Final performance of deep sequential models versus the number k of Highway-BP itera-
tions used for training (red), compared to backpropagation (black).

5.1.1 EXPERIMENTAL SETUP

The first ResNet model is a ResNet32 with pre-activations as introduced by He et al. (2016). They
are simpler to handle since we have ri(x, z) = x + z and Ki = I . We also use a ResNet110
with the original architecture (He et al., 2015), which applies a ReLU activation after the residual
connection: ri(x, z) = ReLU(x + z). We train these models on CIFAR10 (Krizhevsky, 2009) for
image classification. We only modified the downsampling layers as described in Appendix G to
simplify the use of Highway-BP.

We also pre-train a small transformer model (Vaswani et al., 2017) for language modeling on the
Wikitext103 dataset. The model is based on the GPT-2 architecture (Radford et al., 2019) with 12
layers but a smaller hidden dimension. Finally, we fine-tune a pre-trained RoBERTa model (Liu
et al., 2019) on the MNLI dataset (Williams et al., 2018), which involves predicting the entailment
information of a pair of sentences and is part of the GLUE benchmark (Wang et al., 2018). Note
that for both transformers, we split the layers into two sublayers – self-attention and feedforward –
which means we have L = 24 for 12 layers.

When applying Highway-BP to any of these models, we define gi and ri as described in Ta-
ble 1. However, for both transformer models, we used slightly different choices as described in
Appendix C.3. This is done after observing that transformer layers tend to learn to cancel part of
their residual connection.

5.1.2 RESULTS

We report the results in Figure 2, where we compare models trained either with backpropagation or
with Highway-BP using different numbers of iterations. As expected, more iterations increase the
performance of the models. However, the quality of training is good even with very small values
of k compared to L. This is especially impressive for the ResNet110 model, which requires only
k = 4 iterations to match backpropagation, while L = 54. This confirms our intuition that most of
the gradient in deep residual models goes through the residual layers.

Surprisingly, performing k = 0 iterations already leads to very reasonable performances (e.g. 85%
on CIFAR10). By definition of Highway-BP using Equation 4, the estimate after k = 0 corresponds
to only backpropagating the gradient from the classification head through the residual path. Each
layer then receives the gradient ∂L

∂hL
at its output, and uses this to update its weights. This is very

similar to boosting (Freund & Schapire, 1999), where many small models are summed together, and
each one of them learns to compensate for the errors of the previous models.

The training curves of the GPT-2 model are shown in Figure 3, for different values of k. Even when
k is too low and deteriorates the model’s performance, it still makes the model learn smoothly at the
same speed, only converging to a higher loss.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 2500 5000 7500 10000 12500 15000 17500 20000
Training steps

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

V
al

id
at

io
n

lo
ss

Backpropagation
Highway-BP (k = 0)
Highway-BP (k = 1)
Highway-BP (k = 2)
Highway-BP (k = 3)
Highway-BP (k = 5)

Figure 3: Validation loss during training for the GPT-2 model, with different algorithms.

5.2 RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) also fit our framework: instead of considering a sequence of
layers along the depth dimension, we consider a repetition of the same cell along the time dimension.
More formally, for an input sequence (xi)

L
i=1, we can see each cell as a layer fi parameterized by

θi = [θ, xi] (the parameter θ common to all cells, and the external input xi). The input state h0 is
the initial state of the RNN.

Some RNNs such as LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Chung et al., 2014)
possess a long-term memory that is updated by each cell using a linear gating. This memory allows
the model to keep information for long distances and helps with gradient issues (Zucchet & Orvieto,
2024). Akin to residual connections in deep models, we can take advantage of this architecture
design with Highway-BP. We show in Table 1 how LSTM and GRU cells can be represented using
the gi and ri functions.

5.2.1 EXPERIMENTAL SETUP

As baselines to compare the performance of Highway-BP on RNNs, we use i) backpropagation, and
ii) fixed-point iteration (FPI), which is the method used by Wang & Ragni (2021) to approximate
the backward pass of RNNs, and simply consists of repeating k backpropagations through all layers
in parallel. FPI is a special case of Highway-BP with gi = fi and ri(x, z) = z. Note that this
algorithm can only perform well if there are intermediate losses at each time step, otherwise, this is
equivalent to backpropagation only through the last k cells, which can be seen as a form of extreme
machine learning (Huang et al., 2006).

We train one layer of LSTM and GRU on a language modeling task at the character level on Wiki-
text103, as well as 3 GRU layers stacked trained on Wikitext103 at the word level (same task as the
GPT-2 transformer in the previous section). Finally, we use a task from Long Range Arena (Tay
et al., 2021): image classification on CIFAR10 using the flattened image, i.e. a sequence of 1024
3-dimensional pixel vectors.

5.2.2 RESULTS

Similarly to sequential models, we show in Figure 4 the performances of models trained with dif-
ferent algorithms, and for different numbers of iterations k. Highway-BP constantly outperforms
the fixed-point iteration algorithm in terms of convergence speed, while the algorithms are practi-
cally identical in terms of computations performed. As mentioned in the previous section, FPI is a
special case of our method when we do not consider the residual connection at all (gi(x) = fi(x)
and ri(x, z) = z). Highway-BP uses additional knowledge about the architecture to improve the
convergence speed over naive, model-agnostic approaches.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 1 2 3 4 5 6 7 8 9 10
k

3.5

3.6

3.7

3.8

Pe
rp

le
xi

ty

(a) LSTM ×1
Wikitext103 char-level

0 1 2 3 4 5 6 7 8 9 10
k

3.3

3.4

3.5

3.6

3.7

3.8

Pe
rp

le
xi

ty

(b) GRU ×1
Wikitext103 char-level

0 1 2 3
k

45

50

55

60

65

70

Pe
rp

le
xi

ty

(c) GRU ×3
Wikitext103

0 1 2 3 4 5 6 7 8 9 10
k

10

20

30

40

A
cc

ur
ac

y

Backpropagation
Fixed-point iteration
Highway-BP

(d) GRU ×1
CIFAR10 pixel-level

Figure 4: Final performance of RNNs versus the number k of Highway-BP iterations used for
training (red), compared to backpropagation (black) and fixed-point iteration (blue).

Table 3: Speedup of training with Highway-
BP vs. backpropagation for the RNN experi-
ments (more details in Table 6).

Model L k = 0 k = 5 k = 10

LSTM ×1 256 ×3.0 ×1.7 ×1.2
GRU ×1 256 ×3.2 ×1.8 ×1.3
GRU ×3 256 ×2.9 ×1.8 ×1.3
GRU ×1 1024 ×3.5 ×3.1 ×2.9

0h 1h 2h 3h
Runtime (hours)

3.75

4.00

4.25

4.50

4.75

5.00

5.25

V
al

id
at

io
n

lo
ss

Backpropagation
Highway-BP (k = 0)
Highway-BP (k = 1)
Highway-BP (k = 2)
Highway-BP (k = 3)

Figure 5: Loss vs. runtime of the 3-layer
GRU RNN, for different algorithms.

The pixel-level CIFAR10 is an especially hard task, as the model needs to learn features from all
parts of a very long sequence (1024 pixels). Moreover, the gradient is sparse as the prediction
is made using the last hidden state h1024, which means the gradient needs to be backpropagated
through long distances. While FPI fails to do so as expected, Highway-BP reaches the same accuracy
as backpropagation with k = 10 iterations.

We additionally report the speedup obtained with Highway-BP in Table 3. We observe that using
the optimal number of iterations, all model trainings get a speedup between ×2 and ×3. Moreover,
the gains get more significant for longer sequences.

Finally, in Figure 5 we show the training curves of the largest RNN model, the 3-layer GRU, using
the real training time for the x-axis. It can be seen how k controls the tradeoff between training
speed and model performance.

5.3 TRAINING DYNAMICS ANALYSIS

In this section, we investigate how the convergence of Highway-BP evolves during training. Intu-
itively, at initialization, all the layers start learning using the residual connection. As the layers start
using relevant features from earlier layers, they start working together and we expect the contribution
of high values of k to increase over training.

In Figure 6, we analyze how Highway-BP behaves throughout training. The top row reports the
cosine similarity between the estimated gradient and the true gradient, which seems to require more
iterations at the end of training to reach 1. The bottom row also validates this claim, as it shows how
the contribution of each iteration slowly shifts toward higher values of k. The transformer seems to
be the most consistent model, as the cosine similarity stays mostly constant during training.

The special case k = 0, which corresponds to only backpropagating through the residual connection,
slowly decreases in accuracy over time for all models. Still, its contribution to the total norm remains

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

0.7

0.8

0.9

1.0

C
os

in
e

si
m

ila
ri

ty

0 2 4 6 8 10
k

0.0

0.2

R
el

at
iv

e
st

ep
no

rm

(a) GRU
Wikitext103 char-level

0.8

0.9

1.0

0 2 4 6 8 10
k

0.0

0.2

0.4

0.6

(b) Pre-act ResNet32
CIFAR10

0.6

0.8

1.0

0 2 4 6 8 10
k

0.0

0.2

0.4

(c) GPT-2
Wikitext103

0%

25%

50%

75%

100%

Training progress

Figure 6: Convergence analysis of Highway-BP for different number k of iterations and at different
times during training (from 0% in blue, to 100% in red). (Top) Cosine similarity between the true
gradient ∂L

∂θ versus the approximation using k Highway-BP iterations. (Bottom) Norm of the k-th
Highway-BP iteration step (relative to the total norm).

high during all the training, which suggests that residual connections play a key part in training deep
models, and not only at the beginning of the training.

6 DISCUSSION AND CONCLUSION

We introduce Highway-BP as an architecture-aware algorithm for approximating backpropagation
in deep sequential models. Its parallelizability and effectiveness unlock new possibilities, for in-
stance, in training RNNs over long sequences or large models in a layer-distributed setting. We
show through a decomposition of the gradient that each algorithm iteration adds another component
to the estimate, until it completely reconstructs the gradient. As such, each intermediate estimate
is interpretable as the sum of the gradients associated with paths going through at most k residual
blocks.

Empirical findings show that our method can replicate backpropagation with much lower time com-
plexity, as it often converges in a few iterations. We observe this for all models, with promising
results on deep models and RNNs on long sequences. As recently shown by Beck et al. (2024),
when scaling LSTMs to billions of parameters, these models perform favorably in terms of perfor-
mance compared to state-of-the-art Transformers, showcasing superior expressivity. Our framework
could thus be applied to allow fast training of very large RNNs, with billions of parameters.

Our general framework allows us to use the same generic code to train all models using Highway-BP.
However, simplicity comes at the cost of less optimization, and we believe that architecture-specific
implementations must be done to benefit the most from Highway-BP. In addition, our main purpose
in this paper is to demonstrate the high training quality of Highway-BP, almost matching backprop-
agation with a few iterations. We leave its practical implementation for training large models in a
distributed setting for future work. We however show that RNNs can be sped up considerably on a
single GPU, as all cells share the same weights. Still, we believe the prefix scan algorithm could be
much more optimized, using a custom CUDA kernel for instance.

Finally, the tradeoff between training speed and quality can be adjusted at any time. While low
numbers of iterations are enough at the beginning of training, it is possible to increase the number
of iterations during training and end with an exact backpropagation. This versatility not only allows
us to perform increasingly more accurate optimization steps to speed up training while attaining
the same performance, but also allows the user to choose a dedicated optimization strategy in the
context of a limited computational budget.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? In Proceed-
ings of the 34th International Conference on Machine Learning (ICML), pp. 342–350. PMLR,
2017.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Y. Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, 5:157–66, 02 1994. doi: 10.1109/72.279181.

Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, School of
Computer Science, Carnegie Mellon University, November 1990.

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald. Efficient data-parallel cumu-
lative aggregates for large-scale machine learning. In BTW, pp. 267–286, 2019.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. As-
sociation for Computational Linguistics. URL http://www.aclweb.org/anthology/
D14-1179.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Y. Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. 12 2014.

Federico Danieli, Miguel Sarabia, Xavier Suau Cuadros, Pau Rodriguez, and Luca Zap-
pella. Deeppcr: Parallelizing sequential operations in neural networks. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 47598–47625. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/948d8ba4e30c8c3a800cf436b31f376e-Paper-Conference.pdf.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990. doi: 10.1016/
0364-0213(90)90002-E. URL http://groups.lis.illinois.edu/amag/langev/
paper/elman90findingStructure.html.

R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder. Parallel time
integration with multigrid. SIAM Journal on Scientific Computing, 36(6):C635–C661, 2014. doi:
10.1137/130944230. URL https://doi.org/10.1137/130944230.

Yoav Freund and Robert E. Schapire. A short introduction to boosting. 1999. URL https:
//api.semanticscholar.org/CorpusID:9621074.

Xavier Gonzalez, Andrew Warrington, Jimmy T.H. Smith, and Scott W. Linderman. Towards
scalable and stable parallelization of nonlinear rnns. ArXiv, abs/2407.19115, 2024. URL
https://api.semanticscholar.org/CorpusID:271534277.

11

https://arxiv.org/abs/1607.06450
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
https://proceedings.neurips.cc/paper_files/paper/2023/file/948d8ba4e30c8c3a800cf436b31f376e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/948d8ba4e30c8c3a800cf436b31f376e-Paper-Conference.pdf
http://groups.lis.illinois.edu/amag/langev/paper/elman90findingStructure.html
http://groups.lis.illinois.edu/amag/langev/paper/elman90findingStructure.html
https://doi.org/10.1137/130944230
https://api.semanticscholar.org/CorpusID:9621074
https://api.semanticscholar.org/CorpusID:9621074
https://api.semanticscholar.org/CorpusID:271534277

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Stefanie Günther, Lars Ruthotto, Jacob B. Schroder, Eric C. Cyr, and Nicolas R. Gauger. Layer-
parallel training of deep residual neural networks. SIAM Journal on Mathematics of Data Sci-
ence, 2(1):1–23, 2020. doi: 10.1137/19M1247620. URL https://doi.org/10.1137/
19M1247620.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.
URL https://api.semanticscholar.org/CorpusID:206594692.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision
– ECCV 2016, pp. 630–645, Cham, 2016. Springer International Publishing. ISBN 978-3-319-
46493-0.

William D. Hillis and Guy L. Steele. Data parallel algorithms. Commun. ACM, 29:1170–1183,
1986. URL https://api.semanticscholar.org/CorpusID:2315965.

Geoffrey E Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
https://doi.org/10.1162/neco.1997.9.8.1735.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Au-
relia Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Lau-
rent Sifre. An empirical analysis of compute-optimal large language model training. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 30016–30030. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: Theory and
applications. Neurocomputing, 70(1):489–501, 2006. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2005.12.126. URL https://www.sciencedirect.com/science/
article/pii/S0925231206000385. Neural Networks.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard Oyallon. i-revnet: Deep invertible
networks. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=HJsjkMb0Z.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Yi Heng Lim, Qi Zhu, Joshua Selfridge, and Muhammad Firmansyah Kasim. Parallelizing
non-linear sequential models over the sequence length. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
E34AlVLN0v.

12

https://doi.org/10.1137/19M1247620
https://doi.org/10.1137/19M1247620
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:2315965
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0925231206000385
https://www.sciencedirect.com/science/article/pii/S0925231206000385
https://openreview.net/forum?id=HJsjkMb0Z
https://openreview.net/forum?id=HJsjkMb0Z
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://openreview.net/forum?id=E34AlVLN0v
https://openreview.net/forum?id=E34AlVLN0v

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019. URL https://api.semanticscholar.org/
CorpusID:198953378.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017. URL https://api.semanticscholar.org/
CorpusID:53592270.

Gordon Euhyun Moon and Eric C. Cyr. Parallel training of gru networks with a multi-grid solver
for long sequences, 2022. URL https://arxiv.org/abs/2203.04738.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In Advances
in neural information processing systems, 2016.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, pp. III–1310–III–1318. JMLR.org, 2013.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018. URL https://api.semanticscholar.org/CorpusID:49313245.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986. URL https://api.semanticscholar.
org/CorpusID:205001834.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep net-
works. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems
(NIPS) 27, pp. 3104–3112. 2014. URL http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=qVyeW-grC2k.

Trieu H. Trinh, Andrew M. Dai, Thang Luong, and Quoc V. Le. Learning longer-term depen-
dencies in rnns with auxiliary losses. ArXiv, abs/1803.00144, 2018. URL https://api.
semanticscholar.org/CorpusID:4760632.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Andreas Veit, Michael Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, pp. 550–558, Red Hook, NY, USA, 2016. Curran
Associates Inc. ISBN 9781510838819.

13

https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://arxiv.org/abs/2203.04738
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://api.semanticscholar.org/CorpusID:4760632
https://api.semanticscholar.org/CorpusID:4760632
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupała, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446.

Zhengxiong Wang and Anton Ragni. Approximate fixed-points in recurrent neural networks, 2021.
URL https://arxiv.org/abs/2106.02417.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Marilyn Walker, Heng Ji, and Amanda Stent
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1101. URL https://aclanthology.org/N18-1101.

Nicolas Zucchet and Antonio Orvieto. Recurrent neural networks: vanishing and exploding gra-
dients are not the end of the story. ArXiv, abs/2405.21064, 2024. URL https://api.
semanticscholar.org/CorpusID:270199968.

A PROOFS

A.1 PROOF OF THEOREM 1

The result is obtained by completely expanding the product of Jacobians obtained with the chain
rule:

∂L
∂hi

=

L∑
j=i

∂Lj

∂hj

∂hj

∂hi

=

L∑
j=i

∂Lj

∂hj
(Jj +Kj)(Jj−1 +Kj−1) . . . (Ji+1 +Ki+1)

=

L∑
j=i

∑
J⊆[i+1,j]

∂Lj

∂hj

j−i−1∏
k=0

(Jj−k if j − k ∈ J else Kj−k)

=
∑

i≤j≤L
J⊆[i+1,j]

Gij(J)

14

https://aclanthology.org/W18-5446
https://arxiv.org/abs/2106.02417
https://aclanthology.org/N18-1101
https://api.semanticscholar.org/CorpusID:270199968
https://api.semanticscholar.org/CorpusID:270199968

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.2 PROOF OF THEOREM 2

From the definition of wk
i :

wk+1
i =

∑
i≤j≤L

J⊆[i+1,j]
|J |≤k+1

Gij(J)

=

L∑
j=i

Gij
∅ +

∑
i≤j≤L

J⊆[i+1,j]
1≤|J |≤k+1

Gimin(J)(J \ {min(J)})Jmin(J)Kmin(J)−1 . . .Ki+2Ki+1

= w0
i +

L∑
m=i+1

(∑
m≤j≤L

J⊆[m+1,j]
|J |≤k

Gmj(J)
)
JmKm−1 . . .Ki+2Ki+1

= w0
i +

L∑
j=i+1

wk
j JjKj−1 . . .Ki+2Ki+1

In particular, from Theorem 1 we have that wk
i = ∂L

∂hi
for k ≥ L− i.

B PSEUDOCODE OF THE PARALLEL PREFIX SCAN ALGORITHM FOR
CUMSUMPROD

Algorithm 1 (Parallel CumSumProd) Parallel cumulative sum-product algorithm (reversed)

Inputs:
a sequence of L vectors (vi)Li=1 with vi ∈ Rdi ,
a sequence of L matrices (Ki)

L
i=1 with Ki ∈ Rdi×di−1

Output: (ui)
L
i=1 such that ui =

∑L
j=i vjKj . . .Ki+1

u(0) ← v
P (0) ← K
M ← ⌈log2 L⌉
for m← 0 to M − 1 do

for i← 1 to L in parallel do
if i ≤ L− 2m then

u
(m+1)
i ← u

(m)
i + u

(m)
i+2m · P

(m)
i

P
(m+1)
i ← P

(m)
i+2m · P

(m)
i

else
u
(m+1)
i ← u

(m)
i

P
(m+1)
i ← P

(m)
i

end if
end for

end for
return u(M)

C EXPERIMENTAL SETUP DETAILS

C.1 TRAINING SCHEME

Most models are trained using the Adam optimizer (Kingma & Ba, 2014). In case of weight decay,
we use the AdamW variation (Loshchilov & Hutter, 2017). We also use a cosine learning rate
scheduler to decrease the learning rate to a tenth of its initial value. Additionally, the first 10%

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

of the training is performed with a linear warmup. For both ResNet experiments, however, we
use a training scheme close to the original paper (He et al., 2015), which uses an SGD optimizer
with momentum and divides the learning rate by 10 twice during training. All experiments were
conducted on single GPUs, either Nvidia A100, A40, or RTX A6000.

C.2 DATASETS

CIFAR10 The CIFAR10 (Krizhevsky, 2009) dataset contains 50k images with 10 classes. Each
image is 32 by 32 with 3 channels for the RGB values. We normalize the images to have zero mean
and unit variance. Additionally, for the ResNet models, we apply the same data-augmentation tech-
niques as in the original ResNet paper (He et al., 2015): horizontal flipping and random cropping.

CIFAR10 pixel-level In Long Range Arena (Tay et al., 2021), CIFAR10 images are flattened as
sequences of 3-dimensional vectors. Sequence models such as RNNs can then be applied to image
classification.

Wikitext103 Wikitext103 is a dataset containing texts extracted from Wikipedia. We used two
variants depending on the tokenizer used to convert the text into token indices: character-level (the
210 most common characters in the dataset) and word-level (a BPE tokenizer with 16k token, trained
on the dataset as in GPT-2).

MNLI The Multi-Genre Natural Language Inference dataset (Williams et al., 2018) is a task from
the GLUE benchmark (Wang et al., 2018). It contains 433k sentence pairs, labelled with entailment
information. The model has to predict whether the two sentences are an entailment, a contradiction,
or neutral. For evaluation, we use the validation split with domains matching the training set.

C.3 MODELS

Pre-act ResNet We use the same architecture as the original ResNet for CIFAR10 (He et al.,
2015), using pre-activations as in (He et al., 2016). We only modify the downsampling layers as
described in Appendix G. We use:

gi(x) = Upsamplei(Blocki(Downsamplei(x))) ri(x, z) = x+ z (14)

ResNet Similarly, we use the same architecture as the original ResNet for CIFAR10 (He et al.,
2015), and we only modify the downsampling layers as described in Appendix G. We use:

gi(x) = Upsamplei(Blocki(Downsamplei(x))) ri(x, z) = ReLU(x+ z) (15)

GPT-2 We use a transformer model following the original GPT-2 architecture (Radford et al.,
2019), with only smaller dimensions and vocabulary size. Note that GPT-2 uses pre-normalization,
i.e. the layer-norm is applied at the beginning of all layers, and the residual connection is purely
linear. This implies that the residual connection is linear:

gi(x) = Blocki(x)) ri(x, z) = x+ z (16)

However, the above choice for gi and ri is not suited and makes Highway-BP diverge. We believe
this is because the layers learn to cancel part of their residual connection. Taking this into account,
in our experiments we used:

gi(x) = Blocki(x)) + γx ri(x, z) = (1− γ)x+ z (17)

where we picked γ = 0.15 with minimal tuning. Finding better ways of choosing γ, understanding
why it is necessary, and studying how this impacts Highway-BP, are future works that could help to
considerably improve Highway-BP on such models.

Note that the two equations are mathematically equivalent when doing backpropagation, but the
latter greatly improves the convergence of Highway-BP. In particular, γ = 0 is equivalent to the
previous equation, and γ = 1 makes Highway-BP behave exactly like the fixed-point iteration
baseline.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 4: Hyperparameters used in the deep models experiments. In language modeling tasks, the
last input dimension is the vocabulary size.

Model Pre-act ResNet32 ResNet110 GPT-2 RoBERTa
Dataset CIFAR10 CIFAR10 Wikitext103 MNLI
Optimizer SGD SGD AdamW AdamW
Epochs 200 200 5.3 2
Learning rate 0.1 0.1 1e-3 3e-5
Batch size 128 128 128 32
Warmup steps 0 0 2k 2.5k
Momentum 0.9 0.9 0.9 0.9
Adam β2 – – 0.98 0.999
Weight decay 1e-4 1e-4 0.1 0.1
Gradient clipping – – 1.0 1.0
Input shape (32, 32, 3) (32, 32, 3) (256, 16k) (128, 50k)
Hidden dim 16→ 64 16→ 64 256 768
Layers 32 110 12 12
Params 464k 1.7M 14.5M 124M

RoBERTa We finetune the pre-trained RoBERTA-base model introduced by Liu et al. (2019).
Compared to GPT-2, RoBERTA uses post-layernorm, i.e. applies a LayerNorm layer after each
residual connection.

fi(x) = LNi(x+ Blocki(x)) (18)

=
x+ Blocki(x)−

µi(x)︷ ︸︸ ︷
E[x+ Blocki(x)]√

Var(x+ Blocki(x)) + ϵ︸ ︷︷ ︸
σi(x)

⊙ αi + βi (19)

= x⊙ αi

σi(x)︸ ︷︷ ︸
ai(x)

+(Blocki(x)− µi(x))⊙
αi

σi(x)
+ βi︸ ︷︷ ︸

bi(x)

(20)

= x⊙ ai(x) + bi(x) (21)

Which leads to the natural choice for gi and ri:

gi(x) = [ai(x), bi(x)] ri(x, z) = x⊙ z1 + z2 (22)

However, similarly to the GPT-2 experiment with Equation 17, we introduce a small change to
improve the convergence of Highway-BP:

gi(x) = [(1− γ)ai(x), bi(x) + γx⊙ ai(x)] ri(x, z) = x⊙ z1 + z2 (23)

This comes naturally when, instead of splitting x+ Blocki(x) into x and Blocki(x), we split it into
(1 − γ)x and γx + Blocki(x). We found γ = 0.8 to be a good choice, however again we believe
there are still many things to understand with a lot of room for improvement, which we leave as
future work.

RNNs The RNN models contain a linear layer to project the input to the hidden dimension, fol-
lowed by the RNN layers, and then a classifier. The classifier is linear for language modeling
(Wikitext103), and is a two-layer MLP for sequence classification (CIFAR10 pixel-level). In addi-
tion, when stacking multiple RNN layers, we introduce residual connections which greatly improve
convergence speed.

C.4 HYPERPARAMETERS

We report the hyperparameters used for sequential models in Table 4, and for RNNs in Table 5.
Parameters that are not showed are set using their default values.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 5: Hyperparameters used in the RNN experiments. In language modeling tasks, the input
dimension is the vocabulary size.

RNN type LSTM GRU GRU GRU
Dataset Wikitext103 char Wikitext103 char Wikitext103 CIFAR10
Training steps 10k 10k 10k 2.5k
Learning rate 1e-3 1e-3 1e-3 1e-3
Batch size 128 128 128 128
Warmup steps 1k 1k 1k 250
Sequence length 256 256 256 1024
Input dim 210 210 16k 3
Hidden dim 512 512 512 64
Layers 1 1 3 1
Params 2.3M 1.8M 21.1M 29.8k

D MEMORY ANALYSIS

In this section we perform a simplified estimation of the memory usage of backpropagation and
Highway-BP. Backpropagation requires the following memory for each layer:

MBP =Mweights +Mcache + 2Mhi
(24)

whereMweights is the size of the layer weights,Mcache is the space taken by the intermediate vari-
ables kept in memory for backpropagation,Mhi

is the size of the hidden state hi (and of its gradi-
ent).

A Highway-BP iteration involves a few variables per layer:

• wk
i (the current gradient estimate): it plays the same role as ∂L

∂hi
in backpropagation, as it

is backpropagated through the residual block gi, so it does not take additional memory.

• vk+1
i : similarly, plays the same role as ∂L

∂hi−1
in backpropagation.

• w0
i (the initial estimate): this variable needs to be stored.

• Ki (the Jacobian of the residual connection): already included in the intermediary variables
stored by backpropagation.

• CumSumProd operation: we see from Algorithm 1 that it requires two tensors per layer if
we use inplace operations. The first tensor is P (m)

i : the product of the Ki (if Ki = I as in
transformers for instance, there is nothing to store) which usually takes the same space as
hi (e.g. if Ki is diagonal). The second tensor is u(m)

i , for which we can reuse the memory
allocated to vk+1

i using inplace operations.

This leads to only two additional tensors to store (w0
i and P

(m)
i):

MHighway-BP =Mweights +Mcache + 4Mhi
(25)

Note that in practice Mcache is what takes most of the memory. In transformers for instance,
Mcache ≈ 17Mhi

. Nevertheless, there can be a non-negligible memory overhead for models with
small residual blocks.

E PRACTICAL CONSIDERATIONS IN A DISTRIBUTED SETTING

While Highway-BP is a new way of speeding up training, it has to be noted that is also does not
conflict with the standard techniques used in distributed training. The most widespread technique
is data parallel, which splits the input bach across devices to process each part in parallel. This can
still be used with Highway-BP, since our algorithm is only used for computing (or approximating)
the gradient. In a layer parallel (or pipeline parallel) setting, layers are on different devices, which
is exactly where Highway-BP would be useful.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

The way Highway-BP may conflict with other distributed modes is if the number of devices is
constrained. One would then have to decide which devices should be used either for increasing the
batch size (data parallel) or speeding up backpropagation (Highway-BP).

Regarding the potential communication overhead, the main difference with backpropagation is the
CumSumProd operation which performs a prefix scan of tensors stored on all devices (one per
layer). While the algorithm is parallel, it is nontrivial to implement efficiently and there can be
different strategies. With a fully distributed strategy, there will be more communications since a
layer needs to send its tensor to two other layers at each iteration. Another approach is a centralized
strategy, where all tensors are gathered together, CumSumProd is computed locally, and the results
are sent back to the layers, which reduces the number of communications between devices. Finding
out which implementation is better is an important future work. Note as well that there are multiple
parallel prefix scan algorithms, each with different advantages.

F SPEED COMPARISON BETWEEN TRAINING ALGORITHMS FOR RNNS

Table 6: Computation times for different RNN tasks, algorithms, and k values.

Task Algorithm Training step time (ms) w.r.t. k
0 1 2 3 5 10 20

1 LSTM layer (L=256) Backpropagation 261 — — — — — —
Fixed-point iteration 81 92 99 111 128 173 262

Highway-BP 87 101 114 125 154 218 347

1 GRU layer (L=256) Backpropagation 209 — — — — — —
Fixed-point iteration 62 69 73 79 92 119 176

Highway-BP 66 77 88 97 118 166 266

3 GRU layers (L=256) Backpropagation 687 — — — — — —
Fixed-point iteration 226 243 260 281 316 400 573

Highway-BP 240 268 300 332 389 538 839

1 GRU layer (L=1024) Backpropagation 715 — — — — — —
Fixed-point iteration 191 207 204 203 209 216 241

Highway-BP 205 210 210 210 230 248 292

G HIGHWAY-BP AND DOWNSAMPLING LAYERS IN RESNETS

For Highway-BP to be effective on ResNet models, we need to adapt the downsampling layers
from the original architecture. Indeed, they are not convenient to handle in our framework since
the downsampling occurs in the residual connection, and the default downsampling layers have no
simple way of computing and factorizing their Jacobians.

We take inspiration from i-RevNet (Jacobsen et al., 2018), in which the downsampling layers are
invertible: the image is split into blocks of size s× s, which are then flattened to produce one vector
per block. This is already much easier to handle in Highway-BP, for instance in a pre-activation
ResNet this means Ki is simply a permutation. Furthermore, they are also easily factorizable, since
downsampling with block size s1 and then s2 is equivalent to doing it once with block size s1s2.
However, a limitation is that when this layer divides the width and height by s, it also increases the
vector dimension by s2, as opposed to the original ResNet where the dimension increases by s. This
leads to the number of parameters exploding.

The above downsampling layer can be modified to fix this issue. Before flattening the blocks, we
perform an average over their height dimension. We thus obtain rows of s vectors, which once
flattened produce vectors scaled by s instead of s2. We used this modification in our implementation.

Note that the i-RevNet downsampling and ours are right-invertible, i.e. we can define an Upsample
function such that Downsample(Upsample(x)) = x. We take advantage of such properties in our
implementation by wrapping all residual blocks by a downsample layer and an upsample layer, using

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

the same block sizes as the original ResNets, instead of placing the downsample layers in the residual
connections. This way, the residual connections are even simpler, since we have Ki = I . For pre-
activation ResNets, this is mathematically equivalent to the original implementation. For ResNets
with ReLU between blocks, this is slightly different since Downsample(ReLU(Upsample(x))) ̸= x,
but has no noticeable impact.

20

	Introduction
	Related work
	Residual connections
	Parallelizing backpropagation

	Notations and assumptions
	Highway backpropagation
	Gradient decomposition
	Iterative algorithm
	Parallel computation
	Approximating backpropagation

	Experiments
	Deep sequential models
	Experimental setup
	Results

	Recurrent neural networks
	Experimental setup
	Results

	Training dynamics analysis

	Discussion and conclusion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Pseudocode of the parallel prefix scan algorithm for CumSumProd
	Experimental setup details
	Training scheme
	Datasets
	Models
	Hyperparameters

	Memory analysis
	Practical considerations in a distributed setting
	Speed comparison between training algorithms for RNNs
	Highway-BP and downsampling layers in ResNets

