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1. Introduction
There is widespread interest in developing robust recogni-
tion models, that can recognise a variety of object classes
despite the presence of unlikely object, scene, or image
properties. This is reflected by the proliferation of chal-
lenging benchmarks that focus on various kinds of robust
recognition behaviour, e.g. robustness to image corrup-
tions (Hendrycks & Dietterich, 2019), to spatial transfor-
mations (Engstrom et al., 2019), to harsh weather condi-
tions (Sakaridis et al., 2018), to imperceptible perturbations
(Gilmer et al., 2018), and to abstract depictions of objects
(Rusak et al., 2021). While it is hard to formulate a com-
pact definition of robustness that covers these diverse re-
quirements and more, we can nonetheless impose a useful
meta-requirement that we should pursue in general: For
robust behaviour to be scalable, it should transfer flexibly
across familiar object classes, and not be separately learned
for every class of interest. We refer to this problem setting
as systematic robustness. We argue in ongoing work that
current training and evaluation protocols – especially for
large-scale image classification – should target this require-
ment. We also demonstrate with extensive experiments that
this remains a multi-faceted challenge for existing classi-
fication models and domain generalisation methods. This
extended abstract describes the experimental setting and
specific instantations thereof that we examine in our work.

While there is significant work on related problems, e.g. sys-
tematic generalisation and spurious correlations (Bahdanau
et al., 2019; Ruis et al., 2020; Geirhos et al., 2020; Montero
et al., 2021; Schott et al., 2022) experiments are typically
conducted on small datasets: Either synthetic ones where
we have full control over the data generation process and
can correspondingly work with tightly-controlled train/test
splits, or naturalistic datasets with limited variability but
which nonetheless admit some form of control. Here we
aim to bridge the gap between work on controlled systematic
generalisation and work on large-scale recognition models,
in which models are trained on large naturalistic datasets
with an ”almost anything goes” approach. We also depart
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from related work on domain generalisation (Gulrajani &
Lopez-Paz, 2021; Koh et al., 2021), by acknowledging the
need to learn specific robust behaviours from data: We are
e.g. unlikely to be able to learn how to handle blurry images
by only looking at clean and noisy ones. Noise and blur are
perturbations with very different frequency characteristics,
and it’s not obvious that this should work without the appro-
priate evaluation. Our experiments also complement work
on domain adaptation under label shift (Johansson et al.,
2019; Zhao et al., 2019; Ben-David et al., 2010).

We formulate a variety of challenges probing systematic
robustness w.r.t. (1) photometric transforms, (2) geometric
transforms, (3) rendition styles. Our proposed benchmarks
are a compromise between a tightly-controlled but overly
simplistic setups and large-scale datasets without meaning-
ful experimental controls, and they build on top of existing
data (Russakovsky et al., 2015; Hendrycks & Dietterich,
2019; Peng et al., 2019). See Figure 1 for an example.
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Figure 1. Systematic Robustness: We study the task of image
classification in the presence of unlikely image properties, e.g.
image corruptions, but under strict experimental controls: We
systematically exclude certain combinations of class and property
from the training data while ensuring that each is individually
represented. At test time, we consider all possible combinations,
seen and unseen. The goal is to encourage flexible robust behaviour
that transfers in a non-trivial manner.



2. Systematic Robustness
We now introduce the problem setting of systematic robust-
ness, describe a simple metric for measuring the latter, and
describe different problem instantiations that we examine.

Preliminaries In this work, we focus on the task of image
classification. Our goal is to train a classifier to recognise
object classes from some closed set C = {ci}Ni=1 given a
training set of images annotated with class labels. The train-
ing data is drawn from a set of ”environments” or ”domains”
E = {E0, . . . ,EM}. Each environment Ek = Tk × Ck can
be characterised by a set of classes Ck and some property
Tk that applies only to images from that environment, e.g.
”contain Gaussian noise”, “ are rotated by 90◦ ”, and “ob-
jects are depicted with line drawings”. E0 is the default
environment in which all classes C are present. The remain-
ing training environments are restricted to disjoint subsets
of classes {C1, . . . ,CM}, s.t.: (1)

⋃M
k=1 Ck ⊆ C, and

(2) ∀(i, j) ∈ {1, . . . ,M} : i ̸= j ⇒ Ci ∩ Cj = Ø.

At test time, we consider all possible environments: {T0 ×
C} ∪ {Ti × Cj | i, j ∈ {1, . . . ,M}}. Thus for any valid
i, j, if i ̸= j then Ti × Cj has not been seen during training.
This allows us to contrast performance in seen and unseen
environments, and determine how well robust behaviour
learned for a subset of available classes transfers to the rest.
This also imposes strict restrictions on training settings, and
it is vital that methods not violate the letter and spirit of
the exercise by resorting to augmentations that fill in the
intentional gaps of the data distribution.

Measuring Systematic Robustness To measure system-
atic robustness of a model f w.r.t. some scene factor Tk,
we first need to measure classification accuracy accf (·) in
two environments: (1) the control environment Tk × Ck,
i.e. the set of classes Ck for which robustness to Tk was
learned during training, and (2) the experimental environ-
ment Tk × Ck, i.e. the environment in which the property
Tk holds for classes Ck = C \ Ck. We can then simply
normalise the accuracy in the experimental environment
accf (Tk × Ck) by the accuracy in the control environment
accf (Tk × Ck). This represents the degree to which robust
behaviour learned in a seen environment transfers to an un-
seen one. Sometimes it will make sense to compensate for
some baseline robustness, e.g. if we are fine-tuning a pre-
trained model f0 that already shows some degree of robust
accuracy. We simply subtract average robust accuracy of the
baseline model accf0(Tk × C) from the accuracy measured
in both environments. We refer to the resulting quantity as
ρk, i.e. systematic robustness w.r.t. Tk, and compute it as
follows while limiting the range to [0, 1]:

ρk = min(1,
max(0, accf (Tk × Ck)− accf0(Tk × C))
min(1, accf (Tk × Ck)− accf0(Tk × C))

)

(1)

It should be noted that a value of 1 is trivial to achieve if

f is not much more robust than the reference classifier f0.
Thus on its own, this measure of robustness is insufficient
and has to be paired with the other metrics that measure
absolute robust accuracy. A related metric is that of effective
robustness (Taori et al., 2020) which also relates robust
accuracy to i.i.d. accuracy.

Problem Instantiations We opt to study three instantia-
tions of this problem: systematic robustness w.r.t. (1) image
corruptions (Hendrycks & Dietterich, 2019), (2) in-plane
image rotations (Engstrom et al., 2019), and (3) rendition
styles (e.g. natural images, line drawings) (Hendrycks et al.,
2021; Rusak et al., 2021). These represent basic challenges
in recognition that robust models should arguably handle
in a flexible manner. They also differ qualitatively: The
first are photometric perturbations that can drastically affect
image statistics, whereas recognising objects from different
viewpoints can require reasoning of a more geometric nature.
While the way an object is depicted can also heavily affect
the statistics of the resulting image, successfully managing
this challenge requires non-trivial abstract reasoning about
the essence of an object’s texture and shape. We study these
problems in the large-scale setting building on prior efforts
to collect the relevant data. We study systematic robust-
ness w.r.t. corruptions and rotations by applying selective
data augmentation to ImageNet (Russakovsky et al., 2015;
Hendrycks & Dietterich, 2019), and w.r.t. rendition styles
by sampling images from DomainNet (Peng et al., 2019).

For image corruptions, we select four out of the 19 sug-
gested for the ImageNet-C benchmark, each representing
one of four categories: Gaussian noise (N ), Gaussian blur
(B), contrast (D), and snow (W). Thus we have up to five
environments including the default ”clean” one. To generate
”corrupted” images, we sample one of five severity levels
and apply the corresponding transformation. For image ro-
tations, we have just one additional environment (R) where
images are randomly rotated by an angle sampled from a
discrete set. When reporting performance for image corrup-
tions, we measure average accuracy or systematic robustness
over the available severity levels. For rotations, we restrict
evaluation to right angles {90◦, 180◦, 270◦} as these do not
introduce a confounding effect via pixel interpolation.

With image renditions, we use natural (or ”real”) images
for the default environment, and then sample images corre-
sponding to the remaining five rendition styles (”clipart”,
”quickdraw”, ”infograph”, ”sketch”, and ”painting”) while
restricting each style to a subset of the available classes.

Conclusion We believe that our proposed setting repre-
sents a step towards putting large-scale classification meth-
ods on a more solid experimental footing, by targeting a
more nuanced evaluation of model behaviour. Our exten-
sive experimental analysis will be the subject of a separate
publication.
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