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1 INTRODUCTION

Electrocardiography (ECG) is a crucial non-invasive diagnostic tool in cardiology, renowned for its
accuracy in detecting a broad range of cardiovascular diseases [Rafie et al. (2021)]. The increasing
volume of ECG recordings, coupled with the limitations of manual analysis which demand consid-
erable expertise of at least four years of medical training and six years of cardiology training and
can be prone to variability and error rates reaching 25 percent [Cook et al. (2020)], highlights the
need for accurate, automated clinical report generation. To leverage the power of modern Large
Language Models (LLMs) for this task, effective methods for representing raw ECG signals in a
discrete, tokenized format are essential.

Our work focuses on exploring tokenization methods to convert continuous ECG signals into dis-
crete tokens. By learning meaningful discrete representations directly from raw ECG data, we aim
to bridge the gap between complex waveform patterns and automated LLM applications such as
clinical report generation and decision support in diagnostic assistance.

Tokenization converts complex data into discrete units, facilitating alignment of continuous signals
with LLMs. In language, sentences are tokenized into discrete units enabling efficient processing by
LLMs. In the audio domain, tokenization has revolutionized tasks such as speech recognition and
synthesis, allowing for the representation of continuous audio waveforms as sequences of continuous
or discrete acoustic tokens [Mousavi et al. (2024), Zhang et al. (2023)] leading to the development
of multi-modal LLMs [Borsos et al. (2022)]. Similarly, in the physiological signals space including
ECG, EEG, EHR, there have been works aligning continuous representations with LLMs [Cai et al.
(2024), Oh et al. (2022), Duan et al. (2023), Lee et al. (2024)]. If we specifically focus on ECG,
the literature exploring discrete tokenization remains limited. A recent work ECGByte [Han et al.
(2024)] explored byte-pair encoding for tokenizing ECG signals by taking inspiration from how
tokenization is done in LLMs [Radford et al. (2019)]. We draw inspiration from audio codecs
[D’efossez et al. (2022), Zeghidour et al. (2021)] and use vector quantization (VQ) [Mammen &
Ramamurthi (1990)], specifically QINCo [Huijben et al. (2024)] to tokenize ECG signals. QINCo
has an adaptive residual quantization nature which would dynamically tailor its codebooks at each
training epoch in order to capture the subtle and time-varying patterns present in ECG data.

2 DATA AND METHODS

We utilize the open-source MIMIC-IV dataset [Johnson et al. (2023)] for all trainings and evalu-
ations. MIMIC-IV is a collection of 789,481 ECGs, each being a 10-second, 12-lead time series
sampled at 500Hz. Prior to model training, we applied a signal-based normalization technique for
preprocessing. To establish clinically relevant labels for linear probing (LP), two expert cardiolo-
gists, each with over four years of ECG interpretation experience, independently annotated 10,075
diagnostic statements (drawn from MIMIC-IV and other datasets) using a standardized set of 77 la-
bels based on American Heart Association guidelines [Kligfield et al. (2007)]. These labels span six
clinical categories—Rhythm Disorders, Conduction Disorders, Chamber Enlargement, Pericarditis,
Infarction/Ischemia, and Other—and were finalized through consensus review in a standard 12-lead
ECG format, achieving high inter-rater reliability (Cohen’s kappa > 0.80).
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Figure 1: Method Overview 1a. and 1b. show the QINCo training with a reconstruction objective.
2. Linear probing on frozen embeddings

Our methodology for discrete ECG tokenization consists of two principal stages: QINCo training
and LP. The initial stage involves training the QINCo model, which serves as our ECG tokenizer.
This tokenizer is trained on randomly chosen 90% of the dataset, while the remainder is reserved
for testing, enabling it to learn a discrete codebook representation with a codebook size of 1024
and 8 quantizers. The input signals of size 5000×12 are fed to the encoder, which consists of
several 1-dimensional convolutional layers, and the decoder produces a reconstructed signal. The
model is trained using the QINCo loss, which extends the standard MSE loss by iteratively refining
the reconstruction over 8 quantization steps. In each step, the residual error from the previous
quantization is further quantized, enabling the model to progressively capture increasingly finer
details of the ECG signals. The training was performed for 2 epochs with a learning rate of 3 ×
10−4and a batch size of 4. In the LP stage, the encoder of the QINCo is frozen. Subsequently, the
entire dataset is passed through this frozen encoder to generate discrete embeddings for each ECG
signal. The embeddings are represented as codebook entries from the multiple quantizers hence
converting the continuous signals into discrete tokens. The embeddings are divided into 70:10:20
ratio for train, validation and test sets respectively. We used a different split from the QINCo training
stage, as QINCo was trained for reconstruction, while LP involves classification. We believe that the
downstream performance is a pure reflection of the learned representations’ quality. A single layer
linear probe of dimension 256 is used to perform multi-label classification on the frozen discrete
tokens. We performed hyperparameter optimization using WandB [Biewald (2020)] and train the
probe with a learning rate of 1 × 10−5 with a CosineAnnealing learning rate scheduler for 100
epochs.

3 RESULTS

For our tokenizer, we had a MSE loss of 0.028 on test set and 96.28% overall usage of the code-
books. This means that our tokenizer was able to discretize the signals without codebook collapse.
For qualitative assessment, an expert cardiologist reviewed reconstructed test-set signals. We also
evaluated performance on six diagnostic classes—Rhythm Disorders, Conduction Disorders, Cham-
ber Enlargement, Pericarditis, Infarction/Ischemia, and Other Diagnoses using micro-averaged AUC
and F1-score using the Youden Index for each label, with weighted averaging for overall AUC. The
micro AUC values were 0.957, 0.893, 0.888, 0.705, 0.833, and 0.929, respectively, while the corre-
sponding micro F1 scores were 0.911, 0.789, 0.791, 0.688, 0.719, and 0.846.

4 DISCUSSION

In this study we introduce a novel way to create discrete tokens from ECG signals. To the best of our
knowledge, this is the first work employing deep learning-based VQ for raw ECG signals. Through
its reliable performance on six diagnostic categories, we demonstrate that the learned representations
are clinically meaningful and potentially valuable for other downstream tasks. We note that LP
performs worse on certain classes compared to others, likely due to their under-representation in
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the public dataset MIMIC-IV. Although this work only pretrained QINCo on MIMIC-IV, we plan to
scale up the pretraining and benchmark on other datasets like PTBXL, Code-15 and Montreal Heart
Institute (MHI) dataset. We would like to explore other VQ methods to tokenize the ECG signals.
This work is a part of our ongoing efforts to develop a clinical report generation model using LLMs.
Once we complete the pipeline, we plan to validate the report generation performance across 10
sites spread across North America. We would also compare this work with the current tokenization
and report generation models for ECG.

MEANINGFULNESS STATEMENT

We define a meaningful representation of life as one capable of conveying information from macro to
micro scales of a living organism’s state. Our exploration focuses on human heart health within this
vast scope. We are investigating methods to compress and learn representations from ECG signals,
ultimately seeking to translate these signals into human-readable language. This effort contributes
to building AI systems that can understand and interpret complex biological data, paving the way
for advanced, personalized medical care.
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