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Figure 1: Diffusion-KTO is a novel framework for aligning text-to-image diffusion models with human
preferences using only per-sample binary feedback. Diffusion-KTO bypasses the need to collect expensive
pairwise preference data and avoids training a reward model. As seen above, Diffusion-KTO aligned text-to-
image models generate images that better align with human preferences. We display results after fine-tuning
Stable Diffusion v1-5 and sampling prompts from HPS v2 [50], Pick-a-Pic [27], and PartiPrompts [54] datasets.

Abstract

We present Diffusion-KTO, a novel approach for aligning text-to-image diffusion
models by formulating the alignment objective as the maximization of expected
human utility. Unlike previous methods, Diffusion-KTO does not require col-
lecting pairwise preference data nor training a complex reward model. Instead,
our objective uses per-image binary feedback signals, e.g. likes or dislikes, to
align the model with human preferences. After fine-tuning using Diffusion-KTO,
text-to-image diffusion models exhibit improved performance compared to existing
techniques, including supervised fine-tuning and Diffusion-DPO[48], both in terms
of human judgment and automatic evaluation metrics such as PickScore [27] and
ImageReward [52]. Overall, Diffusion-KTO unlocks the potential of leveraging
readily available per-image binary preference signals and broadens the applicabil-
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ity of aligning text-to-image diffusion models with human preferences. Code is
available at https://github.com/jacklishufan/diffusion-kto

1 Introduction

In the rapidly evolving field of generative models, aligning model outputs with human preferences
remains a paramount challenge, especially for text-to-image (T2I) models. Large language models
(LLMs) have made significant progress in generating text that caters to a wide range of human needs,
primarily through a two-stage process: first, pretraining on noisy web-scale datasets, then fine-tuning
on a smaller, preference-specific dataset. This fine-tuning process aims to align the generative
model’s outputs with human preferences, without significantly diminishing the capabilities gained
from pretraining. Extending this fine-tuning approach to text-to-image models offers the prospect of
tailoring image generation to user preferences, a goal that has remained relatively under-explored
compared to its counterpart in the language domain.

Recent works have begun to explore aligning text-to-image models with human preferences. These
methods either use a reward model and a reinforcement learning objective [52, 33, 14], or directly
fine-tune the T2I model on preference data [48, 53]. However, these methods are restricted to learning
from pairwise preference data, which consists of pairs of preferred and unpreferred images generated
from the same prompt.

While paired preferences are commonly used in the field, it is not the only type of preference data
available. Per-sample feedback is a promising alternative to pairwise preference data, as the former is
abundantly available on the Internet. Per-sample feedback provides valuable preference signals for
aligning models, as it captures information about the users’ subjective distribution of desired and
undesired generations. For instance, as seen in Fig. 2, given an image and its caption, a user can
easily say if they like or dislike the image based on criteria such as attention to detail and fidelity
to the prompt. While paired preference data provides more information about relative preferences,
gathering such data is an expensive and time-consuming process in which annotators must rank
images according to their preferences. In contrast, learning from per-sample feedback can utilize the
vast amounts of per-sample preference data collected on the web and increases the applicability of
aligning models with user preferences at scale. Inspired by these large-scale use cases, we explore
how to directly fine-tune T2I models on per-image binary preference data.

To address this gap, we propose Diffusion-KTO, a novel alignment algorithm for T2I models that
operates on binary per-sample feedback instead of pairwise preferences. Diffusion-KTO extends the
utility maximization framework shown in KTO [18] to the setting of diffusion models. Specifically,
KTO bypasses the need to maximize the likelihood from paired preferences and, instead, directly
optimizes an LLM using a utility function that encapsulates the characteristics of human decision-
making. While KTO is easy to apply to large language models, we cannot immediately apply it
to diffusion models as it would require sampling across all possible trajectories in the denoising
process. Although existing works approximate this likelihood by sampling once through the reverse
diffusion process, back-propagating over all sampling steps is extremely computationally expensive.
To overcome this, we present a utility maximization objective that applies to each individual sampling
step, circumventing the need for sampling through the entire reverse diffusion process.

Our main contributions are as follows:

• We generalize the human utility maximization framework used to align LLMs to the setting
of diffusion models (Section 4).

• Our method, Diffusion-KTO, facilitates alignment from per-image binary feedback. Thus,
introducing the possibility of learning from human feedback at scale using the abundance of
per-sample feedback that has been collected on the Internet.

• Through comprehensive evaluations, we demonstrate that generations from Diffusion-KTO
aligned models are generally preferred over existing approaches, as judged by human
evaluators and preference models (Section 5).

In summary, Diffusion-KTO offers a simple yet robust framework for aligning T2I models with
human preferences that greatly expands the utility of generative models in real-world applications.
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Figure 2: Diffusion-KTO aligns text-to-image diffusion models using per-image binary feedback. Existing
alignment approaches (Left) are restricted to learning from pairwise preferences. However, Diffusion-KTO
(Right) uses per-image preferences which are abundantly available on the Internet. As seen above, the quality
of an image can be assessed independent of another generation for the same prompt. More importantly, such
per-image preferences provide valuable signals for aligning T2I models, as demonstrated by our results.

2 Related Works

Text-to-Image Generative Models. Text-to-image (T2I) models have demonstrated remarkable
success in generating high quality images that maintain high fidelity to the input caption [38, 54,
37, 7, 11, 26, 55, 8]. In this work, we focus on diffusion models [43, 44, 24] due to their popularity
and open-source availability. While these models are capable of synthesizing complex, high quality
images after pretraining, they are generally not well-aligned with the preferences of human users.
Thus, they can often generate images with noticeable issues, such as poorly rendered hands and
faces. We seek to address these issues by introducing a fine-tuning objective that allows text-to-image
diffusion models to learn directly from human preference data.

Improving Language Models using Human Feedback. Following web-scale pretraining, large
language models are further improved by fine-tuning on a curated set of data (supervised fine-tuning)
and then using reinforcement learning to learn from human feedback. Reinforcement learning from
human feedback (RLHF) [2, 12, 13], in particular, has been shown to be an effective means of aligning
these models with user preferences [59, 5, 31, 30, 29, 45, 10, 3, 6, 22]. While this approach has
been successful [1, 46], the difficulties in fine-tuning an LLM using RLHF [36, 58, 49, 17, 21, 42, 4]
has led to the development of alternative fine-tuning objectives [35, 18, 56, 57]. Along these lines,
KTO [18] introduces a fine-tuning objective that trains an LLM to maximize the utility of its output
according to the Kahneman & Tversky model of human utility [47]. This utility maximization
framework does not require pairwise preference data and only needs per-sample binary feedback. In
this work, we explore aligning diffusion models given binary feedback data. As a first step in this
direction, we generalize the utility maximization framework to the setting of diffusion models.

Improving Diffusion Models using Human Feedback. Before the recent developments in aligning
T2I models using pairwise preferences, supervised fine-tuning was the popular approach for improving
these models. Existing supervised fine-tuning approaches curate a dataset using preference models
[39, 32], pre-trained image models [41, 8, 16, 51, 50], and/or human experts [15], and fine-tune
the model on this dataset. Similarly, many works have explored using reward models to fine-tune
diffusion models via policy gradient techniques [19, 23, 9, 52, 14, 33, 28, 20] to improve aspects
such as image-text fidelity. Similar to our work, ReFL [52], DRaFT [14], and AlignProp [33] align
T2I diffusion models with human preferences. However, these methods require back-propagating
the reward through the reverse diffusion sampling process, which is extremely expensive in memory.
As a result, these works depend on techniques such as low-rank weight updates [25] and sampling
from only a subset of steps in the reverse process, thus limiting their ability to fine-tune the model.
In contrast, the Diffusion-KTO objective extends to each step in the denoising process, thereby
avoiding such memory issues. More broadly, the main drawbacks of these reinforcement learning
based approaches are: limited generalization, e.g. closed vocabulary [28, 20], reward hacking
[14, 33, 9], and they rely on a potentially biased reward model. Since Diffusion-KTO trains directly
on open-vocabulary preference data, we find that it can generalize to an open-vocabulary and avoids
issues such as reward hacking. Recently, works such as Diffusion-DPO[48] and D3PO [53] present
extensions of the DPO objective [35] to the setting of diffusion models. Diffusion-KTO shares
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similarities with Diffusion-DPO and D3PO, as we build upon these works to introduce a reward
model-free alignment objective. However, unlike these works, Diffusion-KTO does not rely on
pairwise preference data and, instead, uses only per-image binary feedback.

3 Background

3.1 Diffusion Models

Denoising Diffusion Probabilistic Models (DDPM) [24] model the image generation process as a
Markovian process. Given data x0, the forward process p(xt|xt−1) gradually adds noise to an initial
image x0 according to a variance schedule, until it reaches xT ∼ N (0, I). A generative model can be
trained to learn the reverse process qθ(xt−1|xt) using the evidence lower bound (ELBO) objective:

LDDPM = Ex0,t,ϵ[λ(t)∥ϵt − ϵθ(xt, t)∥2] (1)

where λ(t) is a time-dependent weighting function and ϵ is the added noise.

3.2 Direct Preference Optimization

RLHF first fits a reward model r(x, c), for a generated sample x and input prompt c, to human
preference data D, and then maximizes the expected reward of a generative model πθ while ensuring
it does not significantly deviate from the initialization point πref. It uses the following objective with
a divergence penalty controlled by a hyperparameter β.

max
πθ

Ec∼D,x∼πθ(x|c)[r(x, c)]− βDKL[πθ(x|c)||πref(x|c)] (2)

The authors of DPO [35] present an equivalent objective (Eq. (3)) using the implicit reward model
r(x, c) = β log πθ(x|c)

πref(x|c) + β logZ(c)

max
πθ

Exw,xl,c∼D[log σ(β log
πθ(x

w|c)
πref(xw|c)

− β log
πθ(x

l|c)
πref(xl|c)

)] (3)

where Z(c) is the partition function, (xw, xl) are pairs of winning and losing samples, and c is the
input conditioning. Through this formulation, the model πθ can be directly trained in a supervised
fashion without explicitly fitting a reward model.

3.3 Implicit Reward Model of a Diffusion Model

One of the challenges in adapting DPO to the context of diffusion models is that the likelihood πθ(x|c)
is hard to optimize because each sample x is generated through a multi-step Markovian process.
In particular, it requires computing the marginal distribution

∑
x1...xN

πθ(x0, x1...xN |c) over all
possible path of the diffusion process, where πθ(x0, x1...xN |c) = πθ(xN )

∏N
i=1 πθ(xi−1|xi, c).

D3PO [53] adapted DPO by considering the diffusion process as a Markov Decision Process (MDP).
In this setup, an agent takes an action a at each state s of the diffusion process. Instead of directly
maximizing r(x, c), one can maximize Q(a, s) which assigns a value to each possible action a at a
given state s in the diffusion process instead of the final outcome. This setup uses the local policy
π(a|s), which represents a single sampling step. In this setup, D3PO [53] showed that the optimal
solution Q∗(a, s) satisfies the relation Q∗(a, s) = β log

π∗
θ (a|s)

πref(a|s) for the optimal policy π∗
θ . This leads

to the approximate objective:

max
πθ

Es∼dπ,a∼πθ(·|s)[Q(a, s)]− βDKL[πθ(a|s)||πref(a|s)] (4)

where dπ is the state visitation distribution under policy π. Concretely, the action is a sampling step,
and we can write Q(a, s) as Q(xt−1, xt, c) and π(a|s) as π(xt−1|xt, c).
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Figure 3: We present Diffusion-KTO, which aligns text-to-image diffusion models by extending the utility
maximization framework to the setting of diffusion models. Since this framework aims to maximize the utility
of each generation (U(x)) independently, it does not require paired preference data. Instead, Diffusion-KTO
trains with per-image binary feedback signals, e.g. likes and dislikes. Our objective also extends to each step in
the diffusion process, thereby avoiding the need to back-propagate a reward through the entire sampling process.

3.4 Kahneman-Tversky Optimization

In decision theory, the expected utility hypothesis assumes that a rational agent makes decisions based
on the expected utility of all possible outcomes of an action, instead of using objective measurements
such as the value of monetary returns. Formally, given an action a and the set of outcomes O(a), the
expected utility is defined as EU(a) =

∑
o∈O(a) pA(o)U(o), where pA is a subjective belief of the

probability distribution of the outcomes and the utility function U(o) is a real-valued function.

Prospect theory [47] further augments this model by asserting that the utility function is not defined
solely on the outcome (e.g. the absolute gain in dollars), but also with respect to some reference point
(e.g. current wealth). In this formulation, the utility function is defined as U(o, oref) for a reference
outcome oref. Based on this theory, KTO [18] proposed an alternative objective for aligning LLMs:

max
πθ

Ec,x∼D[λ(x)σ( w(x)(β log
πθ(x|c)
πref(x|c)

− Ec′∼D [β KL(πθ(x
′|c′)∥πref(x

′|c′))]))] (5)

where x is the output of the LLM, c is the input prompt, w(x) = 1 if x is desirable and w(x) = −1
otherwise, and λ(x) is a weighting function of samples. The divergence penalty is computed as
the expectation of the KL divergence between the model distribution πθ(x

′|c′) and the reference
distribution πref(x

′|c′) over all input prompts c′ in the dataset. This formulation uses the sigmoid
function σ(x) as an approximation for the Kahneman-Tversky utility function which is concave in
gain and convex in loss. Experiments showed that KTO aligned LLMs were able to outperform DPO
aligned LLMs, and KTO is resilient towards noise in the preference data [18].

4 Method

4.1 Diffusion-KTO

Here, we propose Diffusion-KTO. Instead of optimizing the expected reward, we incorporate a
non-linear utility function that calculates the utility of an action based on its value Q(a, s) with
respect to the reference point Qref.

max
πθ

Es′∼dπ,a′∼πθ(·|s)[U(Q(a′, s′)−Qref)] (6)

where U(v) is a monotonically increasing value function that maps the implicit reward to subjective
utility. Practically, the local policy πθ(a|s) is a sampling step, and can be written as πθ(xt−1|xt).
Applying the relation Q∗(a, s) from Sec. 3.3, we get the objective

max
πθ

Ex0∼D,t∼Uniform([0,T])[U(β log
πθ(xt−1|xt)

πref(xt−1|xt)
−Qref)] (7)
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Following KTO [18], we can optimize the policy based on whether a given generation is considered
“desirable” or “undesirable”:

max
πθ

Ex0∼D,t∼Uniform([0,T])[U(w(x0)(β log
πθ(xt−1|xt)

πref(xt−1|xt)
−Qref))] (8)

where w(x0) = ±1 if image x0 is desirable or undesirable. We set Qref = βDKL[πθ(a|s)||πref(a|s)].
Empirically, this is calculated by computing max(0, 1

m

∑
log πθ(a

′|s′)
πref(a′|s′)

) over a batch of unrelated
pairs of (s′, a′) following the KTO setup [18] in Eq. (5).

4.2 Utility Functions

While we incorporate the reference point aspect of the Kahneman-Tversky model, it is unclear if
other assumptions about human behavior are applicable. It is also known that different people may
exhibit different utility functions. Thus, we explore a wide range of utility functions. For presentation
purposes, we center all utility functions U(x) around 0 by using Ucentered(x) = U(x)− U(0), such
that Ucentered(0) = 0. This does not change the objective in Eq. (8) as the gradient and optimal policy
are not affected. We experiment with the following utility functions:

• Loss-Averse: We characterize a loss-averse utility function as any utility function that is
concave (see U(x) plotted in blue in Figure 3). Using this utility function, the Diffusion-
KTO objective can be considered as a variant of the Diffusion-DPO objective. While
aligning according to this utility function follows a similar form to the Diffusion-DPO
objective, our approach does not require paired preference data.

• Risk-Seeking: Conversely, we define a risk-seeking utility function as any convex utility
function (see U(x) plotted in yellow in Figure 3). A typical example of a risk-seeking utility
function is the exponential function. However, its exploding behavior on (0,+∞) makes it
hard to optimize. Instead, for this case, we consider U(x) = − log σ(−x).

• Kahneman-Tversky model: Kahneman-Tversky’s prospect theory argues that humans
tend to be risk-averse for gains but risk-seeking for losses relative to a reference point. This
amounts to a function that is concave in (0,+∞) and convex in (0,−∞). Following the
adaptation proposed in KTO, we employ the sigmoid function U(x) = σ(x) (see U(x)
plotted in red in Figure 3). Empirically, we find this utility function to perform best.

Under the expected utility hypothesis, the expectation is taken over the subjective belief of the
distribution of outcomes, not the objective distribution. In our setup, the dataset consists of unpaired
samples x that are either desirable (w(x) = 1) or undesirable (w(x) = −1). Because we do not have
access to additional information, we assume the subjective belief of a sample x is solely dependent
on w(x). During training, this translates to a biased sampling process where each sample is drawn
uniformly from all desirable samples with probability γ and uniformly from all undesirable samples
with probability 1− γ.

5 Experiments

We comprehensively evaluate Diffusion-KTO through quantitative and qualitative analyses to demon-
strate its effectiveness in aligning text-to-image diffusion models with a preference distribution.
Further comparisons, such as the performance when using prompts from different datasets, the
results of our ablations, and implementation and evaluation details can be found in the Appendix.
Additionally, in the Appendix, we report the results of synthetic experiments which highlight that
Diffusion-KTO can be used to cater T2I diffusion models to the preferences of a specific user. The
code used for this work will be made publicly available and is available in the Supplementary material.

Implementation Details. We fine-tune Stable Diffusion v1-5 (SD v1-5) [39] (CreativeML Open
RAIL-M license) with the Diffusion-KTO objective, using the Kahneman-Tversky utility function,
on the Pick-a-Pic v2 dataset [27] (MIT license). The Pick-a-Pic dataset consists of paired preferences
in the form of (preferred image, non-preferred image, input prompt). Since Diffusion-KTO does not
require paired preference data, we partition the images in the training data. If an image is labelled
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Figure 4: User study win-rate (%) comparing Diffusion-KTO (SD v1-5) to SD v1-5, and SFT (SD v1-5)
and Diffusion-DPO (SD v1-5). Results of our user study show that Diffusion-KTO significantly improves the
alignment of the base SD v1-5 model. Moreover, our Diffusion-KTO aligned model also outperforms supervised
finetuning (SFT) and the officially released Diffusion-DPO model, as judged by users, despite only training with
simple per-image binary feedback. We also include the 95% confidence interval of the win-rate.

Table 1: Automatic win-rate (%) for Diffusion-KTO (SD v1-5) in comparison to existing alignment
approaches using prompts from the Pick-a-Pic v2 test set. We use off-the-shelf models, e.g. preference
models such as PickScore, to compare generations and determine a winner based on the method with the higher
scoring generation. Diffusion-KTO drastically improves the alignment of the base SD v1-5 and demonstrates
significant improvements in alignment when compared to existing approaches. Win rates above 50% are bolded.

Method Aesthetic PickScore ImageReward CLIP HPS v2

vs. SD v1-5 86.0 85.2 87.2 62.0 62.0
vs. SFT 56.4 72.8 64.8 64.8 54.6
vs. CSFT 50.6 73.6 65.2 62.8 60.4
vs. AlignProp 86.8 96.6 84.4 96.2 90.2
vs. D3PO 68.0 73.6 71.6 56.8 55.6
vs. Diffusion-DPO 74.2 61.8 78.4 53.2 51.6

as preferred at least once, we consider it a desirable sample, otherwise we consider the sample
undesirable. In total, we train with 237,530 desirable samples and 690,538 undesirable samples.

Evaluation Details. We evaluate the effectiveness of Diffusion-KTO by comparing generations from
our Diffusion-KTO aligned model to generations from existing methods using automated preference
metrics and user studies. For our results using automated preference metrics, we present win-rates
(how often the metric prefers Diffusion-KTO’s generations versus another method’s generations)
using the LAION aesthetics classifier [40] (MIT license), which is trained to predict the aesthetic
rating a human would give to the provided image, CLIP [34] (MIT license), which measures
image-text alignment, and PickScore [27] (MIT license), HPS v2 [50] (Apache-2.0 license), and
ImageReward [52] (Apache-2.0 license) which are caption-aware models that are trained to predict
a human preference score given an image and its caption. Additionally, we perform user studies to
compare Diffusion-KTO with existing baselines. In our user study, we ask judges to assess which
image they prefer (Which image do you prefer given the prompt?) given an image generated by our
Diffusion-KTO model and an image generated by the other method for the same prompt.

We compare Diffusion-KTO to the following baselines: Stable Diffusion v1-5 (SD v1-5), supervised
fine-tuning (SFT), conditional supervised fine-tuning (CSFT), AlignProp [33], D3PO [53] and
Diffusion-DPO [48]. Our SFT baseline fine-tunes SD v1-5 on the subset of images that are labelled
as preferred using the standard denoising objective. Our CSFT baseline, similar to the approach
introduced into HPS v1 [51], appends a prefix to each prompt (“good image", “bad image”) and fine-
tunes SD v1-5 using the standard diffusion objective while training with preferred and non-preferred
samples independently. To compare with D3PO (MIT license), we fine-tune SD v1-5 using their
officially released codebase. For AlignProp (SD v1-5) (MIT license) and Diffusion-DPO (SD v1-5)
(Apache-2.0 license), we compare with their officially released checkpoints.

5.1 Quantitative Results

Table 1 provides the win-rate, per automated metrics, for Diffusion-KTO aligned SD v1-5 and the
related baselines. Diffusion-KTO markedly improves alignment of SD v1-5, with win-rates of up to
87.2%. Results from our user study (Figure 4) confirm that human evaluators consistently prefer the
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Diffusion-KTO Diffusion-DPO SFT CSFT SD v1-5

 "A minimalistic 
fisherman in geometric 
design with isometric 

mountains and forest in 
the background and 

flying fish and a moon."

"Woman, perfect hair, 
perfect nose, perfect 

face, natural light, 
raytracing, perfect lips, 
symmetrical face, depth 
of field, elegant, highly 
detailed, octane render, 

photograph with a 
Hasselblad H3DII.”

"A cute turtle baby sitting 
in a coffee cup, captured 

in an humorous 
illustration with warm 

colors and a night 
scenery."

"A bird perched on a 
tree branch in a dense 

forest, with sunlight 
filtering through the 

leaves."

Figure 5: Side-by-side comparison of images generated by related methods using SD v1-5. Diffusion-KTO
demonstrates a significant improvement in terms of aesthetic appeal and fidelity to the caption (see Sec. 5.2).

generations of Diffusion-KTO to that of the base SD v1-5 (75% win-rate in favor of Diffusion-KTO).
Further, Diffusion-KTO aligned models outperform related alignment approaches such as AlignProp,
D3PO, and Diffusion-DPO. Diffusion-KTO significantly outperforms Diffusion-DPO on metrics
such as LAION Aesthetics, PickScore, and HPS v2 while performing comparably in terms of other
metrics. We also find that human judges prefer generations from our Diffusion-KTO model (72%
win-rate versus SFT and 69% win-rate versus Diffusion-DPO) over that from SFT and Diffusion-DPO.
This highlights the effectiveness of our utility maximization objective and shows that not only can
Diffusion-KTO learn from per-image binary feedback, but it can also outperform models training
with pairwise preference data.

5.2 Qualitative Results

In Fig. 5, we showcase a visual comparison of Diffusion-KTO with existing approaches for preference
alignment. As seen in the first row, most models are misguided by the "sunlight" reference in the
prompt and produce in a dark image. Diffusion-KTO demonstrates a focus on the bird, which is the
central object in the caption and provides a better quality result over Diffusion-DPO, which doesn’t
include any visual indication for the “sunlight". In the second row of images, our Diffusion-KTO
aligned model is able to successfully generate a "turtle baby sitting in a coffee cup". Methods such as
Diffusion-DPO, in this example, have an aesthetically pleasing result but ignore key components of
the prompt (e.g. "turtle","night"). On the other hand, SFT and CSFT follow the prompt but provide
less appealing images. For the third prompt, which is a detailed description of a woman, the output
from our Diffusion-KTO model provides the best anatomical features, symmetry, and pose compared
to the other approaches. Notably, for this third prompt, the generation of the Diffusion-KTO model
also generated a background is more aesthetically pleasing. The final row uses a difficult prompt that
requires a lot of different objects in a niche art style. While all models were able to depict the right
style, i.e. geometric art, only the Diffusion-KTO generation includes key components such as the
"moon," "flying fish," and "fisherman" objects. These examples demonstrate that Diffusion-KTO
significantly increases the visual appeal of generated images while improving image-text alignment.
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Figure 6: Visualizing the effect of various utility functions. We sample from MLP diffusion models trained
using various alignment objectives. We find that using the Kahneman-Tversky utility function leads to the best
performance in terms of aligning with the desirable distribution and avoiding the undesirable distribution.

6 Analysis

To further study the effect of different utility functions, we conduct miniature experiments to observe
their impact. We assume the data is two-dimensional, and the pretraining data follows a Gaussian
distribution centered at (0.5, 0.8) with variance 0.04. We sample desirable samples from a Gaussian
distribution Pd centered at (0.3, 0.8), sample undesirable samples from a Gaussian distribution Pu

centered at (0.3, 0.6), and the variance of both distributions is 0.01. We pretrain small MLP diffusion
models, using the standard diffusion objective on the pretraining data, and then fine-tune using
various utility functions. We sample 3500 data points from the trained model. Figure 6 shows that the
risk-averse utility function (used by Diffusion-DPO) has a strong tendency to avoid loss to the point
that it deviates from the distribution of desirable samples. The risk-seeking utility function behaves
roughly the same as the SFT baseline and shows a strong preference for desirable samples at the cost
of tolerating some undesirable samples. In comparison, our objective achieves a good balance.

7 Limitations

While Diffusion-KTO significantly improves the alignment of text-to-image diffusion models, it
suffers from the shortcomings of T2I models and related alignment methods. Specifically, Diffusion-
KTO is trained on preference data from the Pick-a-Pic dataset which contains prompts submitted by
online users and images generated using off-the-shelf T2I models. As a result, the preference distri-
bution in this data may be skewed toward inappropriate or otherwise unwanted imagery. Furthermore,
in this work, we examined three main models of human utility, from which we have concluded the
Kahneman-Tversky model to perform best based on empirical results. However, we believe that the
choice of utility function, as well as the underlying assumptions behind such functions, remains an
open question. Additionally, since Diffusion-KTO fine-tunes a pretrained T2I model, it inherits the
weaknesses of this model, including generating images that reflect and propagate negative stereotypes.
Despite these limitations, Diffusion-KTO presents a broader framework for improving and aligning
diffusion models from per-image binary feedback.

8 Conclusion

In this paper, we introduced Diffusion-KTO, a novel approach to aligning text-to-image diffusion
models with human preferences using a utility maximization framework. This framework avoids
the need to collect pairwise preference data, as Diffusion-KTO only requires simple per-image
binary feedback, such as likes and dislikes. We extend the utility maximization approach, recently
introduced to align LLMs, to the setting of diffusion models and explore various utility functions.
Diffusion-KTO aligned diffusion models lead to demonstrable improvements in image preference
and image-text alignment when evaluated by human judges and automated metrics. While our work
has empirically found the Kahneman-Tversky model of human utility to work best, we believe that
the choice of utility functions remains an open question and promising direction for future work.
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A Experiment Settings

A.1 Implementation Details

We train Stable Diffusion v1-5 (SD v1-5) on 4 NVIDIA A6000 GPUs with a batch size of 2 per GPU
using the Adam optimizer. We use a base learning rate of 1e-7 with 1000 warm-up steps for a total
of 10000 iterations. We set β to 5000. We sample from the set of desirable samples according to
γ = 0.8. To make Diffusion-KTO possible on paired preference datasets such as Pick-a-Pic [27], we
create a new sampling strategy where we categorize every image that has been labelled as preferred
at least once as desirable samples and the rest as undesirable samples.

A.2 Evaluation Details

We employ human judges via Amazon Mechanical Turk (MTurk) for our user studies. Judges are
given the prompt and a side-by-side image consisting of two generations from two different methods
(e.g. Diffusion-KTO and Diffusion-DPO [48]) for the given prompt. We gather prompts by randomly
sampling 100 prompts, 25 from each prompt style (“Animation”, “Concept-art”, “Painting”, “Photo”),
from the HPS v2 [50] benchmark. We collect a total of 300 human responses for our user study.
In the interest of human safety, we opt to use prompts from HPS v2 instead of Pick-a-Pic [27], as
we have found some prompts in the latter to be suggestive or otherwise inappropriate. The authors
of HPS v2 incorporate additional filtering steps to remove inappropriate prompts. We also inform
judges that they may be exposed to explicit content by checking this box in the MTurk interface and
including the disclaimer: “WARNING: This HIT may contain adult content. Worker discretion is
advised" in our project description. We gauge human preference by asking annotators which image
they prefer given the prompt, i.e. “Which image do you prefer given the prompt?”. The instructions
given to our judges are provided below. Judges are asked to select “1” or “2”, corresponding to which
image they prefer (1 refers to the image on the left and 2 refers to the image on the right, these values
are noted above each image when displayed). To ensure a fair comparison, they are not given any
information about which methods are being compared and the order of methods (left or right) is
randomized. MTurk workers were compensated in accordance with the minimum wage laws of the
authors’ country. We follow the guidelines and approval required for such studies by our institution.

Instructions
Both of these images were generated by AI models trained to create an image from a text
prompt. Which image do you prefer given the associated text?
Example criteria could include: detail, art quality, aesthetics, how well the text prompt is
reflected, lack of distortions/irregularities (e.g. extra limbs, objects). In general, choose which
image you think you would consider to be "better".

For our evaluation using automated metrics, we report win-rates (how often the metric prefers
Diffusion-KTO’s generations versus another method’s generations). Given a prompt, we generate one
image from the Diffusion-KTO aligned model and one image using another method. The winning
method is determined by which method’s image has a higher score per the automated metric. To
account for the variance in sampling from diffusion models, we generate 5 images per method and
report the win-rate using the median scoring images. We evaluate using all the prompts from the test
set of Pick-a-Pic, the test set of HPS v2, and the prompts from PartiPrompts.

The human evaluation experiment received exemption for IRB.
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B Additional Quantitative Results

B.1 Performance in terms of Average Score per Preference Models.

In Table 2, we report the average score (and 95% confidence interval of the mean) given by each
metric used in our automated evaluations. For each method (using SD v1-5), we sample 5 generations
per prompt, for a total of 2500 generations (i.e. N=2500). As seen below, Diffusion-KTO exhibits
state-of-the-art performance according to numerous metrics while performing comparably to the
state-of-the-art in the remaining metrics. These results demonstrate the effectiveness of Diffusion-
KTO for aligning T2I diffusion models with human preferences. Additionally, we report the 95%
confidence interval of win rate in Table 3

Table 2: Average score according to existing models when evaluated on the Pick-a-Pic test set. We report
the mean score and the 95% confidence interval of the mean when evaluating prompts from the Pick-a-Pic test
set. Methods with the highest mean score according to a given metric are bolded.

Method Aesthetic PickScore ImageReward CLIP HPS v2

SD v1-5 5.281 ±.022 20.387 ±.054 0.333 ±.002 31.364 ±.144 0.102 ±.042
SFT 5.499 ±.020 20.664 ±.052 0.336 ±.002 31.377 ±.141 0.485 ±.038
CSFT 5.527 ±.020 20.713 ±.053 0.335 ±.002 31.448 ±.147 0.488 ±.040
AlignProp 5.106 ±.021 19.123 ±.054 0.278 ±.002 26.932 ±.144 0.195 ±.042
D3PO 5.326 ±.022 20.413 ±.055 0.333 ±.002 31.350 ±.147 0.143 ±.042
Diffusion-DPO 5.380 ±.022 20.785 ±.055 0.339 ±.002 31.673 ±.145 0.293 ±.042

Diffusion-KTO 5.527 ± .020 20.908 ±.054 0.342 ±.002 31.781 ±.143 0.623 ±.039

Table 3: Confidence Interval of Win Rate (%) on Pick-a-Pic test set. We report the the 95% confidence
interval of the win rate over 2500 samples.

Method Aesthetic PickScore ImageReward CLIP HPS v2

vs. SD v1-5 86.0±1.36 85.2±1.39 87.2±1.31 62.0±1.90 62.0±1.90
vs. SFT 56.4±1.94 72.8±1.74 64.8±1.87 64.8±1.87 54.6±1.95
vs. CSFT 50.6±1.96 73.6±1.73 65.2±1.87 62.8±1.89 60.4±1.92
vs. AlignProp 86.8±1.33 96.6±0.71 84.4±1.42 96.2±0.75 90.2±1.17
vs. D3PO 68.0±1.83 73.6±1.73 71.6±1.77 56.8±1.94 55.6±1.95
vs. Diffusion-DPO 74.2±1.72 61.8±1.90 78.4±1.61 53.2±1.96 51.6±1.96

B.2 Performance on HPS v2 and PartiPrompts.

In addition to the results on the Pick-a-Pic test set reported in Table 1, we provide additional results on
HPS v2 (Apache-2.0 license) and PartiPrompts (Apache-2.0 license) datasets in Table 4 and Table 5.
Results show that Diffusion-KTO outperforms existing baselines on a diverse set of prompts.

Table 4: Automatic win-rate (%) for Diffusion-KTO in comparison to existing alignment approaches
using prompts from the HPS v2 test set. The provided win-rates display how often automated metrics prefer
Diffusion-KTO generations to that of other methods. Win rates above 50% are bolded.

Method Aesthetic PickScore ImageReward CLIP HPS v2

vs. SD v1-5 76.2±1.67 77.7±1.63 74.3±1.71 53.5±1.96 53.6±1.95
vs. SFT 60.1±1.92 66.6±1.85 54.5±1.95 54.9±1.95 51.9±1.96
vs. CSFT 51.5±1.96 64.7±1.87 52.2±1.96 54.5±1.95 55.3±1.95
vs. AlignProp 86.2±1.35 98.0±0.55 81.0±1.54 93.2±0.99 89.7±1.19
vs. D3PO 76.0±1.67 76.9±1.65 75.6±1.68 54.4±1.95 53.9±1.95
vs. Diffusion-DPO 63.9±1.88 60.3±1.92 66.3±1.85 47.3±1.96 48.9±1.96

In addition, we provide a per-style score breakdown using the prompts and their associated styles
(Animation, Concept-art, Painting, Photo) in the HPSv2 test set in Appendix B.2. Across these
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Table 5: Automatic win-rate (%) for Diffusion-KTO in comparison to existing alignment approaches
using prompts from PartiPrompts. The provided win-rates display how often automated metrics prefer
Diffusion-KTO generations to that of other methods. Win rates above 50% are bolded.

Method Aesthetic PickScore ImageReward CLIP HPS v2

vs. SD v1-5 74.2±1.72 67.1±1.84 66.9±1.84 53.8±1.95 52.5±1.96
vs. SFT 55.0±1.95 65.0±1.87 53.6±1.95 54.4±1.95 53.2±1.96
vs. CSFT 50.9±1.96 62.3±1.90 53.9±1.95 51.8±1.96 53.0±1.96
vs. AlignProp 76.6±1.66 95.5±0.81 79.0±1.60 91.2±1.11 86.8±1.33
vs. D3PO 75.1±1.70 67.0±1.84 68.9±1.81 51.5±1.96 53.0±1.96
vs. Diffusion-DPO 66.2±1.85 52.7±1.96 56.4±1.94 49.6±1.96 46.1±1.95

metrics, our model performs best for "painting" and "concept-art" styles. We attribute this to our
training data. Since Pick-a-Pic prompts are written by users, it will reflect their biases, e.g., a bias
towards artistic content. Such biases are also noted by the authors of HPSv2 who state "However,
a significant portion of the prompts in the database is biased towards certain styles. For instance,
around 15.0% of the prompts in DiffusionDB include the name ’Greg Rutkowski’, 28.5% include
’artstation’."

We also observe that different metrics prefer different styles. For example, the "photos" style has
the highest PickScore but the lowest ImageReward. With this in mind, we would like to underscore
that our method, Diffusion-KTO, is agnostic to the preference distribution (as long as feedback
is per-sample and binary), and training on different, less biased preference data could avoid such
discrepancies.

Style Aesthetic PickScore ImageReward CLIP HPS

anime 5.493 21.569 0.716 34.301 0.368
concept-art 5.795 21.011 0.804 33.141 0.359
paintings 5.979 21.065 0.802 33.662 0.360

photo 5.365 21.755 0.471 31.047 0.332
Table 6: Per-style score breakdown for different metrics in the HPSv2 test set.

B.3 Using Stable Diffusion v2-1.

We perform additional experiments, this time using Stable Diffusion v2-1 (SD v2-1) [39] (CreativeML
Open RAIL++-M license). We fine-tune SD v2-1 using Diffusion-KTO with the same hyperparame-
ters and compute listed in Appendix A. In Table 7, we compare Diffusion-KTO (SD v2-1) with SD
v2-1 and Diffusion-DPO (SD v2-1). To compare with Diffusion-DPO, we fine-tune SD v2-1 using
the official codebase released by the authors. As seen in Table 7, Diffusion-KTO outperforms the
SD v2-1 base model and Diffusion-DPO according to most metrics while performing comparably in
others. This highlights the generality of Diffusion-KTO, as it is an architecture agnostic approach to
improving the alignment of any text-to-image diffusion model.

C Synthetic Experiment: Aligning with a Specific User

Per-image binary feedback data is easy to collect and is abundantly available on the internet in the
forms of likes and dislikes. This opens up the possibility of aligning T2I models to the preferences of
a specific user. While users may avoid the tedious task of providing pairwise preference, Diffusion-
KTO can be used to easily align a diffusion model based on the images that a user likes and dislikes.
Here, we conduct synthetic experiments to demonstrate that Diffusion-KTO can be used to align
models to custom preference heuristics, in an attempt to simulate the preference of a select user.

We experiment using two custom heuristics to mock the preferences of a user. These heuristics are:
(1) preference for red images (i.e. red filter preference) and (2) preference for images with high
aesthetics score. For these experiments, we fine-tune Stable Diffusion v1-5 using the details listed
in A.1. For the red filter preference experiment, we use (image, caption) pairs from the Pick-a-Pic
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Table 7: Automatic win-rate (%) for Diffusion-KTO when using Stable Diffusion v2-1 (SD v2-1). The
provided win-rates display how often automated metrics prefer Diffusion-KTO generations to that of other
methods. Results using Diffusion-DPO (SD v2-1) were produced by training SD v2-1 with the Diffusion-DPO
objective, using the official codebase released by the authors. Win rates above 50% are bolded.

Dataset Diffusion-KTO Aesthetic PickScore ImageReward CLIP HPS v2

Pick-A-Pic vs SD v2-1 71.4 70.0 69.2 53.4 49.6
vs Diffusion-DPO 63.8 67.4 66.2 50.0 44.8

HPS v2 vs SD v2-1 72.2 77.9 71.0 51.6 50.1
vs Diffusion-DPO 65.8 71.4 67.3 49.9 47.4

PartiPrompts vs SD v2-1 69.2 67.2 65.0 50.8 48.0
vs Diffusion-DPO 66.0 61.2 63.1 49.2 44.7
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Figure 7: Aligning text-to-image models with the preferences of a specific user. Since per-image binary
feedback is easy-to-collect, we perform synthetic experiments to demonstrate that Diffusion-KTO is an effective
means of aligning models to the preferences of a specific user. We show qualitative results for customizing
a text-to-image model with arbitrary user preference using Diffusion-KTO Stable Diffusion v1-5. The first
row displays generations from a model that is trained to learn a preference for LAION aesthetics score ≥ 7.
As expected, these generations tend to introduce further detail (such as the woman’s facial features) and add
additional colors and textures. The second row displays images from a model that is trained to learn a preference
for red images, and Diffusion-KTO learns to add this preference for red images while minimally changing the
content of the image. We additionally plot the aesthetic score and redness score throughout the training. The
redness score is calculated as the difference between the average intensity of the red channel and the average
intensity in all channels.

v2 training set and enhance the red channel values to generate desired samples (original images are
considered undesirable). For the aesthetics experiment, we train with images from the Pick-a-Pic
v2 training set. We use images with an aesthetics score ≥ 7 as desirable samples and categorize the
remaining images as undesirable. Figure 7 provides visual results depicting how Diffusion-KTO
can align with arbitrary user preferences. For the aesthetics preference experiment (Figure 7 row
1), we see that generations contain finer detail and additional colors and textures, in comparison
to the baseline image, both of which are characteristics of a high scoring images per the LAION
aesthetics classifier. Similarly, Diffusion-KTO also learns the preference for red images in the red
filter preference experiment (Figure 7 row 2). While we experiment with simple heuristics, these
results show the efficacy of Diffusion-KTO in learning arbitrary preferences using only per-sample
binary feedback.
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D Ablations

We explored various design choices of Diffusion-KTO in this section. We report the mean PickScore
on the HPS v2 dataset, which consists of 3500 prompts and is the largest amongst Pick-a-Pic,
PartiPrompts, and HPS v2. We show results in Fig. 8
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Figure 8: Ablation Studies. We experiment with different data sampling strategy and different utility functions.
Results show the best combination is to a) use the winning (i.e. images that are always preferred) and intermediate
(i.e. images that are sometimes preferred and sometimes non-preferred) samples, b) use a positive ratio of 0.8, c)
use the KTO objective function, d) use a beta β value of 5000.

D.1 Data Partitioning

In converting the Pick-a-Pic dataset, which consists of pairwise preferences, to a dataset of per-image
binary feedback, we consider two possible options. The first option is to categorize a sample as desired
if it is always preferred across all pairwise comparisons (win), with all other samples considered
undesirable. The second option additionally incorporate any samples as desirable samples if they
are labelled as preferred in at least one pairwise comparison. Results show that the latter option is a
better strategy.

D.2 Data Sampling

During the training process, we sample some images from the set of all desired images and some
images from the set of all undesired images. This ratio is set to a fixed value γ to account for
potentially imbalanced dataset. We find that sampling 80% of the images in a minibatch from the set
of desired images achieves the optimal result.

D.3 Choice of Beta

We experiment with different values between 2000 and 5000 for β, the parameter controlling the
deviation from the policy. We show that there is a rise in performance with the increase in value but
with diminishing returns, indicating an optimal score around 5000.

D.4 Utility function

We explored the effect of various utility function described in the main paper. Particularly, we
consider Loss-Averse U(x) = log σ(x), KTO U(x) = σ(x) and Risk-Seeking U(x) = − log σ(−x).
Results show that KTO is the optimal result.

We visualize the utility function and its first order derivative in Fig. 9. Intuitively, Loss-Aversion will
reduce the update step during the training when reward is sufficiently high, Risk-Seeking will reduce
the update step during the training when reward is low. KTO will reduce the update step if the reward
is either sufficiently high or sufficiently low. This makes KTO more robust to noisy and sometimes
contradictory preferences.
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Figure 9: Utility functions visualizations. We visualize the utility function and its first order derivative.
Intuitively, Loss-Aversion will reduce the update step during the training when reward is sufficiently high,
Risk-Seeking will reduce the update step during the training when reward is low. KTO will reduce the update
step reward is either sufficiently high or sufficiently low. The functions are centered by a constant offset so that
U(0) = 0 for better visibility. The constant offset does not contribute to the gradient and, thus, has no effect to
training.

E Additional Qualitative Results

We provide further visual comparisons between Diffusion-KTO aligned SD v1-5 and the off-the-shelf
SD v1-5 (Fig. 10). We find that Diffusion-KTO aligned models improve various aspects including
photorealism, richness of colors, and attention to fine details. We also provide visual examples of
failure cases from Diffusion-KTO aligned SD v1-5 (Fig. 13).

F Safety

To understand the effect of aligning with Pick-a-Pic v2, which is known to contain some NSFW
content, we run a CLIP-based NSFW safety checker on images generated using test prompts from
Pick-a-Pic v2 and HPSv2. For Pick-a-Pic prompts, 5.4% of Diffusion-KTO generations are marked
NSFW, and 4.4% of SDv1-5 generations are marked NSFW. For HPSv2 prompts, which are safer,
1.3% of Diffusion-KTO generations are marked NSFW, and 1.0% of SD v1-5 generations are marked
NSFW. Overall, training on the Pick-a-Pic dataset leads to a marginal increase in NSFW content.
We observe similar trends for Diffusion-DPO, which aligns with the same preference distribution
(5.8% NSFW on Pick-a-Pick and 1.3% NSFW on HPSv2). We would like to emphasize that our
method is agnostic to the choice of preference dataset, as long as the data can be converted into binary
per-sample feedback. We used Pick-a-Pic because of its size and to fairly compare with related works.
In general, we encourage fair and responsible use of our algorithm and

G Details of Qualitative Results

In this section, we discuss the sources of the prompts used in Fig. 5. To highlight the advantage
of Diffusion-KTO in real-world scenarios, we refer to user prompts shared over the internet. In
particular, we chose Playground AI (https://playground.com), where users share generated images
alongside their prompts. These prompts reflect typical use cases in real-world scenarios and is
generally similar to the "good" samples in the Pick-a-Pic dataset, which is also written by human
labelers.

18

https://playground.com


Diffusion-KTO (SD v1-5) SD v1-5

Figure 10: Side-by-side comparison of Diffusion-KTO (SD v1-5) versus Stable Diffusion v1-5. The images
were created using the prompts: "A rare animal in its habitat, focusing on its fur texture and eye depth during
golden hour.", "A magical forest with tall trees, sunlight, and mystical creatures, visualized in detail.", "A city
after an apocalypse, showing nature taking over buildings and streets with a focus on rebirth."
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Diffusion-KTO (SD v1-5) SD v1-5

Figure 11: Additional side-by-side comparison of Diffusion-KTO (SD v1-5) versus Stable Diffusion v1-5.
The images were created using the prompts: "A dramatic space battle where two starships clash among asteroids,
with laser beams lighting up the dark void and explosions sending debris flying, intense and futuristic.", "A
timeworn portal in the middle of a serene lake, with glowing edges that ripple with energy, reflecting a starry sky
in its surface, captured in an ultra HD painting.", "A peaceful digital painting of a meadow at sunrise, where
wildflowers bloom and a gentle mist rises from the grass, soft focus."
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Diffusion-KTO (SD v1-5) SD v1-5

Figure 12: Additional side-by-side comparison of Diffusion-KTO (SD v1-5) versus Stable Diffusion v1-5.
The images were created using the prompts: "A dramatic scene of two ships caught in a stormy sea, with
lightning striking the waves and sailors struggling to steer, 8k resolution.", "A cinematic black and white portrait
of a man with a weathered face and stubble, soft natural light through a window, shallow depth of field, shot on
a Canon 5D Mark III.", "A hyperrealistic close-up of a cherry blossom branch in full bloom, with each petal
delicately illuminated by the morning sun, 8k resolution."
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"A playful dolphin 
leaping out of 

turquoise sea waves, 
with a backdrop of a 
stunningly colorful 

coral reef."

"An ancient dragon 
perched atop a 

mountain, overlooking 
a valley illuminated by 

the golden light of 
sunrise, with every 

scale visible in crisp 
detail."

"Wish you were 
here"

"A Pokémon trainer 
discovering a valley 
with wild Pokémon 
with a Butterfree 

fluttering nearby and a 
group of Jigglypuff 

singing in the 
distance"

Figure 13: Failures cases of Diffusion-KTO SD v1-5. In the first instance (top-left) the dolphin is correctly
shown "leaping out of the water", however, the coral reef is at the surface of the water not at the bottom of the
sea. The second image (top-right) shows a dragon at the top of the mountain, however the dragon’s body seems
to merge with the stone. For the bottom left image, the caption is "Wish you were here" which is incorrectly
written. The final image depicts a Pokémon trainer in a valley accurately, but it is missing a "group of Jigglypuff".
We note that Diffusion-KTO aligned models inherit the limitations of existing text-to-image models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in our abstract and introduction are supported by experimental
results in Section 5 (and additionally Appendix B).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not introduce new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We take the following steps to ensure reproducibility: (1) we clearly describe
the objective used in our work (Section 4), (2) full details of our experiments are provided in
Section 5 and Appendix A. Additionally, our code is available in the Supplementary material
and will be publicly released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available datasets to train (Pick-a-Pic) and evaluate (Pick-a-
Pic, HPS v2, PartiPrompts) (see Section 5). Code is provided in the Supplemental material,
and will be open-sourced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: For details of the data split, see Section 5. For details about hyperparameters,
optimizers, etc., see Appendix A.1. These details are also documented in our code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Appendix A.2 and B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are reported in Appendix A.1 and documented via a
structured template in our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fairly compensate human evaluators and take additional measures to ensure
that they are not exposed to NSFW content during their work, further details can be found
in Appendix A.2 (Potential Harms Caused by the Research Process). We communicate
the impact, including biases that are learned from skewed preference data, of this work in
Section 7 of the paper (Societal Impact and Potential Harmful Consequences).
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Societal impacts are discussed in Section 7 and in the Introduction.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We only release training code.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Assets used in this work are cited and the licenses are explicitly mentioned
(see Section 5 and Appendix B).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details regarding our training process are documented in the paper (see Section
5 and Appendix A) and are documented as part of the code in the Supplementary material
(see readme.md and the structured template is given in the implementation details markdown
file).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We perform a user study to evaluate the quality of Diffusion-KTO’s generations.
We provide full details of this evaluation in Appendix A.2 (Evaluation Details).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Yes, risks are described and disclosed to participants (plus we take additional
safety measures to minimize exposure). We also obtain approval from our institution. See
Appendix A.2.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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