
Published as a conference paper at ICLR 2023

THE PROVABLE BENEFITS OF UNSUPERVISED DATA
SHARING FOR OFFLINE REINFORCEMENT LEARNING

Hao Hu1∗, Yiqin Yang2∗, Qianchuan Zhao2, Chongjie Zhang1

1Institute for Interdisciplinary Information Sciences, Tsinghua University
2Department of Automation, Tsinghua University
{huh22,yangyiqi19}@mails.tsinghua.edu.cn
{chongjie,zhaoqc}@tsinghua.edu.cn

ABSTRACT

Self-supervised methods have become crucial for advancing deep learning by
leveraging data itself to reduce the need for expensive annotations. However, the
question of how to conduct self-supervised offline reinforcement learning (RL)
in a principled way remains unclear. In this paper, we address this issue by in-
vestigating the theoretical benefits of utilizing reward-free data in linear Markov
Decision Processes (MDPs) within a semi-supervised setting. Further, we propose
a novel, Provable Data Sharing algorithm (PDS) to utilize such reward-free data
for offline RL. PDS uses additional penalties on the reward function learned from
labeled data to prevent overestimation, ensuring a conservative algorithm. Our re-
sults on various offline RL tasks demonstrate that PDS significantly improves the
performance of offline RL algorithms with reward-free data. Overall, our work
provides a promising approach to leveraging the benefits of unlabeled data in of-
fline RL while maintaining theoretical guarantees. We believe our findings will
contribute to developing more robust self-supervised RL methods.

1 INTRODUCTION

Offline reinforcement learning (RL) is a promising framework for learning sequential policies with
pre-collected datasets. It is highly preferred in many real-world problems where active data col-
lection and exploration is expensive, unsafe, or infeasible (Swaminathan & Joachims, 2015; Shalev-
Shwartz et al., 2016; Singh et al., 2020). However, labeling large datasets with rewards can be costly
and require significant human effort (Singh et al., 2019; Wirth et al., 2017). In contrast, unlabeled
data can be cheap and abundant, making self-supervised learning with unlabeled data an attractive
alternative. While self-supervised methods have achieved great success in computer vision and nat-
ural language processing tasks (Brown et al., 2020; Devlin et al., 2018; Chen et al., 2020), their
potential benefits in offline RL are less explored.

Several prior works (Ho & Ermon, 2016; Reddy et al., 2019; Kostrikov et al., 2019) have explored
demonstration-based approaches to eliminate the need for reward annotations, but these approaches
require samples to be near-optimal. Another line of work focuses on data sharing from different
datasets (Kalashnikov et al., 2021; Yu et al., 2021a). Still, it assumes that the dataset can be relabeled
with oracle reward functions for the target task. These settings can be unrealistic in real-world
problems where expert trajectories and reward labeling are expensive.

Incorporating reward-free datasets into offline RL is important but challenging due to the sequential
and dynamic nature of RL problems. Prior work (Yu et al., 2022) has shown that learning to predict
rewards can be difficult, and simply setting the reward to zero can achieve good results. However,
it’s unclear how reward-prediction methods affect performance and whether reward-free data can
provably benefit offline RL. This naturally leads to the following question:

How can we leverage reward-free data to improve the performance of offline RL algorithms
in a principled way?

*Equal contribution.

1

Published as a conference paper at ICLR 2023

To answer this question, we conduct a theoretical analysis of the benefits of utilizing unlabeled data
in linear MDPs. Our analysis reveals that although unlabeled data can provide information about
the dynamics of the MDP, it cannot reduce the uncertainty over reward functions. Based on this
insight, we propose a model-free method named Provable Data Sharing (PDS), which adds uncer-
tainty penalties to the learned reward functions to maintain a conservative algorithm. By doing so,
PDS can effectively leverage the benefits of unlabeled data for offline RL while ensuring theoretical
guarantees.

We demonstrate that PDS can cooperate with model-free offline methods while being simple and
efficient. We conduct extensive experiments on various environments, including single-task domains
like MuJoCo (Todorov et al., 2012) and Kitchen (Gupta et al., 2019), as well as multi-task domains
like AntMaze and Meta-World (Yu et al., 2020a). The results show that PDS improves significantly
over previous methods like UDS (Yu et al., 2022) and naive reward prediction methods.

Our main contribution is the Provable Data Sharing (PDS) algorithm, a novel method for utilizing
unsupervised data in offline RL that provides theoretical guarantees. PDS adds uncertainty penalties
to the learned reward functions and can be easily integrated with existing offline RL algorithms. Our
experimental results demonstrate that PDS can achieve superior performance on various locomotion,
navigation, and manipulation tasks. Overall, our work provides a promising approach to leveraging
the benefits of unlabeled data in offline RL while maintaining theoretical guarantees and contributing
to the development of more robust self-supervised RL methods.

2 RELATED WORK

Offline Reinforcement Learning Current offline RL methods (Levine et al., 2020) can be roughly
divided into policy constraint-based, uncertainty estimation-based, and model-based approaches.
Policy constraint methods aim to keep the policy close to the behavior under a probabilistic dis-
tance (Siegel et al., 2020; Yang et al., 2021; Kumar et al., 2020; Fujimoto & Gu, 2021; Yang et al.,
2022; Fujimoto et al., 2019; Hu et al., 2022; Kostrikov et al., 2021; Ma et al., 2021; Wang et al.,
2021). Uncertainty estimation-based methods attempt to consider the Q-value prediction’s confi-
dence using dropout or ensemble techniques (An et al., 2021; Wu et al., 2021). Last, model-based
methods incorporates the uncertainty in the model space for conservative offline learning (Yu et al.,
2020b; 2021b; Kidambi et al., 2020).

Offline Data Sharing Prior works have demonstrated that data sharing across tasks can be ben-
eficial by designing sophisticated data-sharing protocols (Yu et al., 2021a). For example, previous
studies have explored developing data sharing strategies by human effort (Kalashnikov et al., 2021),
inverse RL (Reddy et al., 2019; Li et al., 2020), and estimated Q-values (Yu et al., 2021a). However,
these data sharing works must assume the dataset can be relabeled with oracle rewards for the target
task, which is a strong assumption since the high cost of reward labeling. Therefore, effectively
incorporating the unlabeled data into the offline RL algorithms is essential. To solve this issue,
some recent work (Yu et al., 2022) proposes simply applying zero rewards to unlabeled data. In
this work, we propose a principle way to leverage unlabeled data without the strong assumption of
reward relabeling.

Reward Prediction It is widely observed that reward shaping and intrinsic rewards can accelerate
learning in online RL (Mataric, 1994; Ng et al., 1999; Wu & Tian, 2017; Song et al., 2019; Guo
et al., 2016; Abel et al., 2021). There are also extensive works that studies automatically designing
reward functions using inverse RL (Ng et al., 2000; Fu et al., 2017). However, there is less attention
on the offline setting where online interaction is not allowed and the trajectories may not be optimal.

3 PRELIMINARIES

3.1 LINEAR MDPS AND PERFORMANCE METRIC

We consider infinite-horizon discounted Markov Decision Processes (MDPs), defined by the tuple
(S,A,P, r, γ), with state space S, action space A, discount factor γ ∈ [0, 1), transition function
P : S × A → ∆(S), and reward function r : S × A → [0, rmax]. To make things more concrete,

2

Published as a conference paper at ICLR 2023

we consider the linear MDP (Yang & Wang, 2019; Jin et al., 2020) as follows, where the transition
kernel and expected reward function are linear with respect to a feature map.
Definition 3.1 (Linear MDP). We say an episodic MDP (S,A,P, r, γ) is a linear MDP with known
feature map φ : S × A → Rd if there exist unknown measures µ = (µ1, . . . , µd) over S and an
unknown vector θ ∈ Rd such that

P(s′ | s, a) = 〈φ(s, a), µ(s′)〉, r(s, a) = 〈φ(s, a), θ〉 (1)

for all (s, a, s′) ∈ S × A × S. And we assume ‖φ(s, a)‖2 ≤ 1 for all (s, a, s′) ∈ S × A × S and
max{‖µ(S)‖2, ‖θ‖2} ≤

√
d, where ‖µ(S)‖ ≡

∫
S ‖µ(s)‖ds.

A policy π : S → ∆(A) specifies a decision-making strategy in which the agent chooses actions
adaptively based on the current state, i.e., at ∼ π(· | st). The value function V π : S → R and the
action-value function (Q-function) Qπ : S ×A → R are defined as

V π(s) = Eπ
[∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s

]
, Qπ(s, a) = Eπ

[∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s, a0 = a

]
. (2)

where the expectation is with respect to the trajectory τ induced by policy π.

We define the Bellman operator as

(Bf)(s, a) = Es′∼p(·|s,a)

[
r(s, a) + γf(s′)

]
. (3)

We use π∗,Q∗, and V ∗ to denote the optimal policy, optimal Q-function, and optimal value function,
respectively. We have the Bellman optimality equation

V ∗(s) = max
a∈A

Q∗(s, a), Q∗(s, a) = (BV ∗)(s, a). (4)

Meanwhile, the optimal policy π∗ satisfies

π∗(· | s) = argmax
π
〈Q∗(s, ·), π(· | s)〉A, V ∗(s) = 〈Q∗(s, ·), π∗(· | s)〉A,

where the maximum is taken over all functions mapping from S to distributions over A. We aim
to learn a policy that maximizes the expected cumulative reward. Correspondingly, we define the
performance metric as

SubOpt(π, s) = V π
∗
(s)− V π(s). (5)

3.2 PROVABLE OFFLINE ALGORITHMS

In this section, we consider pessimistic value iteration (PEVI; Jin et al., 2021) as the backbone algo-
rithm, described in Algorithm 2. It is a representative model-free offline algorithm with theoretical
guarantees. PEVI uses negative bonus Γ(·, ·) over standard Q-value estimation Q̂(·, ·) = (B̂V̂)(·) to
reduce potential bias due to finite data, where B̂ is some empirical estimation of B from dataset D.
Please refer to Appendix A.1 for more details of the PEVI algorithm.

We use the following notion of ξ-uncertainty quantifier as follows to formalize the idea of pessimism.
Definition 3.2 (ξ-Uncertainty Quantifier). We say Γ : S × A → R is a ξ-uncertainty quantifier for
B̂ and V̂ if with probability 1− ξ, for all (s, a) ∈ S ×A,∣∣(B̂V̂)(s, a)− (BV̂)(s, a)

∣∣ ≤ Γ(s, a). (6)

3.3 UNSUPERVISED DATA SHARING

We consider unsupervised data sharing in offline reinforcement learning. We first characterize the
quality of the dataset with the notion of coverage coefficient (Uehara & Sun, 2021), defined as below.
Definition 3.3. The coverage coefficient C† of a dataset D = {(sτ , aτ , rτ)}Nτ=1 is defined as

C† = sup
C

{
1

N
·
N∑
τ=1

φ(sτ , aτ)φ(sτ , aτ)> � C · Eπ∗
[
φ(st, at)φ(st, at)

> ∣∣ s0 = s
]
,∀s ∈ S

}
,

3

Published as a conference paper at ICLR 2023

The coverage coefficientC† is common in offline RL literature (Uehara & Sun, 2021; Jin et al., 2021;
Rashidinejad et al., 2021), which represents the maximum ratio between the density of empirical
state-action distribution and the density induced from the optimal policy. Intuitively, it represents
the quality of the dataset. For example, the expert dataset has a high coverage ratio while the
random dataset may have a low ratio.

We denoteD0 as the origin labeled dataset, with coverage coefficientC†0 and sizeN0. And we denote
the unlabeled dataset as D1, with coverage coefficient C†1 and size N1. Note that it is possible that
the unlabeled data comes from multiple sources, such as multi-task settings, and we still use D1 to
represent the combined dataset ∪Mi=1Di from M tasks for simplicity.

4 PROVABLE UNSUPERVISED DATA SHARING

How can we leverage reward-free data for offline RL? A naive approach is to learn the reward
function from labeled data via the following regression

θ̂ = argmin
θ

N0∑
τ=1

(fθ(sτ , aτ)− rτ)
2

+
ν

2
‖θ‖22, (7)

where fθ(sτ , aτ) = φ(sτ , aτ)>θ in linear MDPs. Then we can use this learned reward function
to label unsupervised data. However, this approach can lead to suboptimal performance due to
overestimation of the predicted reward rθ̂ (Yu et al., 2022), which undermines the pessimism in
offline algorithms.

To address this issue, we propose a data-sharing algorithm called Provable Data Sharing (PDS). We
start by analyzing the uncertainty in learned reward functions and add penalties for such uncertainty
to leverage unlabeled data. In Section 4.2, we show that PDS has a provable performance bound
consisting of two parts: the offline error, which is tightened compared to no data sharing due to
additional data, and the error from reward bias. The performance bound of PDS is provably better
than no data sharing as long as the unlabeled dataset has mediocre size or quality. We also ex-
tend our algorithm in linear MDPs to general settings in Section 4.3 and propose using ensembles
for reward uncertainty estimation. We demonstrate the effectiveness of PDS by integrating it with
IQL (Kostrikov et al., 2021), and present Algorithm 3, which is simple and can be easily integrated
with other model-free offline algorithms.

4.1 PROVABLE DATA SHARING

To address the issue of potential overestimation of predicted rewards, we first analyze the uncertainty
in learned reward functions. In the context of linear MDPs, the reward function can be learned via
linear regression, and the uncertainty of the parameters is characterized by the elliptical confidence
region, as shown in Lemma 4.1. This confidence region is important as it allows us to give a more
accurate estimation of the reward function while keeping the overall algorithm pessimistic.

Lemma 4.1 (Abbasi-Yadkori et al. (2011)). Let α =
√
ν + rmax ·

√
2 log 1

δ + d log (1 + N0

νd),Λ =

νI +
∑N0

τ=1 φ(sτ , aτ)φ(sτ , aτ)>,

C(δ) =
{
θ ∈ Rd | ‖θ − θ̂‖Λ ≤ α

}
, (8)

where θ̂ is the minimizer in Equation (7), then we have P(θ? ∈ C(δ)) ≥ 1− δ, where θ? is the true
parameter for the reward function.

Proof. Please refer to Theorem 2 in Abbasi-Yadkori et al. (2011) for detailed proof.

Lemma 4.1 provides a useful insight: the uncertainty of the learned reward function in linear MDPs
only depends on the quality and size of labeled data. Based on this insight, we propose a two-phase
algorithm that guarantees a provable performance bound, as shown in Theorem 4.3. The simple
reward prediction method can compromise the pessimistic estimation of the algorithm, while UDS
may result in a reward bias that is too large. Our algorithm consists of two phases: in the first phase,

4

Published as a conference paper at ICLR 2023

we construct a pessimistic reward estimator that finds the reward function in the confidence set that
leads to the lowest optimal value. In the second phase, we conduct standard offline RL with the
given pessimistic reward function.

To solve the challenge of finding the best parameter in the confidence set, which is a bi-level op-
timization problem, we propose using a simpler method that maintains the pessimistic property of
the offline algorithms. This method involves using a pessimistic estimation, which allows us to keep
the algorithm pessimistic while avoiding the computational challenges of the bi-level optimization
problem. Formally,

r̂(s, a) = max

{
φ(s, a)>θ̂ − α

√
φ(s, a)>Λ−1φ(s, a), 0

}
, (9)

where Λ = νI +
∑N0

τ=1 φ(sτ , aτ)φ(sτ , aτ)>.

We adopt the pessimistic estimation in Equation (9) because it provides a lower bound for reward
functions in the confidence set C(δ), as guaranteed by the following lemma derived from Cauchy-
Schwartz inequalities.

Lemma 4.2. For any θ ∈ C(δ),∣∣∣φ(s, a)>θ − φ(s, a)>θ̂
∣∣∣ ≤ α√φ(s, a)>Λ−1φ(s, a). (10)

When labeled data is scarce or there is a significant distributional shift between the labeled and
unlabeled data, Equation (9) degenerates to 0, which is equivalent to the UDS algorithm (Yu et al.,
2022).

Algorithm 1 Provable Data Sharing, Linear MDP

1: Require: Labeled dataset D0 = {(sτ , aτ , rτ)}N0
τ=1, unlabeled dataset D1 = {(sτ , aτ)}N1

τ=1.
2: Require: Confidence parameter α, β, δ.
3: Learn the reward function θ̂ from D0 using Equation (7)
4: Construct the confidence set C(δ) using Equation (8).
5: Construct the pessimistic reward over the confidence set

θ̃ ← argmin
θ∈C(δ)

V̂θ, (11)

where V̂θ is the estimated value function from Algorithm 2 and dataset D0 ∪ D1 with reward
relabeled with parameter θ.

6: Annotate the reward in D0 ∪ D1 with parameter θ̃.
7: Learn the policy from the annotated dataset D0 ∪ D1 using Algorithm 2

V̂ , π̂ ← PEVI(D0 ∪ D1). (12)

8: Return π̂

4.2 THEORETICAL ANALYSIS

The following subsection analyzes how the provable data-sharing (PDS) algorithm can enhance the
performance bound by leveraging unlabeled data. To be specific, we present the following theorem.

Theorem 4.3 (Performance Bound for PDS). Suppose the dataset D0,D1 have positive coverage
coefficients C†0 , C

†
1 , and the underlying MDP is a linear MDP. In Algorithm 1, we set

λ = 1, ν = 1, α = 2
√
dζ2 ·rmax, β =

cd
√
ζ1

1− γ ·rmax, ζ1 = log

(
4d(N0 +N1)

(1− γ)δ

)
, ζ2 = log

(
2dN0

δ

)
,

5

Published as a conference paper at ICLR 2023

where c > 0 is an absolute constant and δ ∈ (0, 1) is the confidence parameter. Then with proba-
bility 1− 2δ, the policy π̂ generated by PDS satisfies for all s ∈ S,

SubOpt
(
π̂; s
)
≤ 2crmax

(1− γ)2

√
d3ζ1

N0C
†
0 +N1C

†
1

+
4rmax

1− γ

√
d2ζ2

N0C
†
0

.

Proof. Please refer to Appendix B for detailed proof.

The performance bound of PDS is composed of two terms. The first is the offline error, which is
inherited from offline algorithms. This bound is improved when additional unlabeled data with size
N1 and coverage C†1 is available. The second term is the reward bias, which arises due to uncer-
tainties in the rewards. Notably, this term is equivalent to the performance bound of a linear bandit
with rewards in the range [0, rmax/(1−γ)]. As the number of unlabeled data approaches infinity, the
uncertainty of the dynamics decreases to zero, and the RL problem becomes a linear bandit prob-
lem. The theorem demonstrates that PDS outperforms UDS, which suffers from a constant reward
bias, and naive reward prediction methods, which lack pessimism and therefore do not offer such
guarantees. Moreover, we demonstrate the tightness of the bound by constructing an “adversarial”
dataset that matches the bound’s suboptimality (see Appendix F).

To better understand the benefits of unlabeled data, we define the suboptimality bound ratio (SBR)
of an offline algorithmA as the ratio of the suboptimality bound obtained by the policy learned with
additional unlabeled data to the suboptimality bound of the policy learned using labeled data alone.
Mathematically, the SBR of A is given by:

SBR(A) =
SubOpt

(
π̂A(D0,D1)

)
SubOpt

(
π̂A(D0,∅)

) , (13)

where SubOpt is the tight upper bound on suboptimality. The SBR provides a measure of the benefit
of unlabeled data to the offline algorithm, with a smaller SBR indicating a greater benefit from the
unlabeled data. Applying this definition to PDS, we obtain the following corollary.
Corollary 4.4 (Informal). The SBR of PDS satisfies

SBR ≈
√

N0C
†
0

N0C
†
0 +N1C

†
1︸ ︷︷ ︸

finite sample term

+
2(1− γ)

c
√
d︸ ︷︷ ︸

asymptotic term

, (14)

where c is the constant in Theorem 4.3 and we ignore the logarithmic factors.

When does unlabeled data improve the performance of offline algorithms? Corollary 4.4 al-
lows us to analyze the relative performance of PDS under different conditions. The first term of the
bound depends on the qualities and amounts of both labeled and unlabeled datasets. If the unlabeled
dataset has a mediocre number of samples or data quality, the first term will be sufficiently small.
The second term affects the asymptotic performance when the unlabeled data approaches infinity,
and it depends on the discount factor and the dimension of the problem. PDS improves over no
data-sharing algorithms asymptotically in larger problems or longer horizons. For a more detailed
discussion, please refer to Appendix E.

4.3 PRACTICAL IMPLEMENTATION

This subsection outlines the practical implementation of PDS in general MDPs. We employ L
ensembles θ1, . . . , θL to estimate uncertainty, which are learned using Equation (7). To estimate
pessimistic rewards, we use the following pessimistic estimation:

r̂(s, a) = max {µ(s, a)− kσ(s, a), 0} , (15)

where µ(s, a) = 1
L

∑L
i=1 fθi(s, a), σ(s, a) =

√
1
L

∑L
i=1(fθi(s, a)− µ(s, a))2 are the mean and

standard deviation, respectively. Here, k is a hyperparameter used to control the amount of pes-
simism. We can also use the minimum over L ensembles for the pessimistic estimation, which is

6

Published as a conference paper at ICLR 2023

linked to Equation (15) following An et al. (2021); Royston (1982) as shown in Equation (16):

E
[

min
j=1,...,L

fθj (s, a)

]
≈ µ(s, a)− Φ−1

(
L− π

8

L− π
4 + 1

)
σ(s, a), (16)

where Φ is the CDF of the standard Gaussian distribution.

The appropriate value of k for each domain can be difficult to determine. To address this issue, we
observe that the amount of pessimism required for different domains is proportional to the difference
in mean rewards between labeled and unlabeled data. Leveraging this insight, we propose a simple
and efficient automatic mechanism for adjusting the value of the k parameter. Specifically, we
suggest a method that adjusts k based on the difference in mean rewards, as given by Equation (17):

r̂(s, a) = max

{
min

j=1,...,L
fθj (s, a)− kσ(s, a), 0

}
,

where k = a · max(µ− µ̂, 0)

|µ|+ ε
. (17)

where µ = 1
N0

∑N0

i=1 µ(si, ai), µ̂ = 1
N1

∑N1

i=1 µ̂(si, ai) are the mean reward of labeled and (pre-
dicted) unlabeled data, respectively. We use a = 25 and L = 10 in all experiments.

Then we can plug in any model-free offline algorithms. Here we use IQL (Kostrikov et al., 2021) as
the backbone offline algorithm, but we emphasize that it can be easily integrated with other model-
free algorithms. The details of our algorithm is summarized in Algorithm 3 in Appendix A.2.

5 EXPERIMENTS

In this section, we aim to evaluate the effectiveness of pessimistic reward estimation and answer
the following questions: (1) How does PDS perform compared to the naive reward prediction and
unlabeled data sharing (UDS) methods in single locomotion and manipulation tasks? (2) How does
PDS behave in multi-task offline RL settings compared to baselines? (3) What makes PDS effective?

Algorithm door-open door-close drawer-open drawer-close average

UDS 16.2±12.1 0.0±0.0 30.4±60.4 182.2±0.4 57.2±30.8
Rew Pred 26.4±12.9 110.8±14.3 102.6±40.2 182.2±0.4 105.5±22.3

PDS 25.5±15.5 114.3±1.8 153.8±0.4 182.8±0.4 119.1±18.1
No Share 4.8±9.5 0.0±0.0 29.6±58.7 175.0±17.6 52.4±31.0

Oracle 20.6±13.3 113.2±5.7 135.6±36.5 182.6±0.4 113.0±19.6

Table 1: Experiment results for multi-task robotic manipulation (Meta-World) experiments. Num-
bers are averaged across five seeds and we bold the best-performing method that does not have
access to the true rewards.

Env Tasks / Dataset type UDS Rew Pred CDS+UDS PDS

Antmaze

medium-play (3 tasks) / directed 15.8±1.2 26.2±3.7 40.6±4.0 40.0±3.6
medium-play (3 tasks) / undirected 19.6±2.5 27.2±2.9 37.2±5.1 29.2±4.1
medium-diverse (3 tasks) / directed 8.7±3.3 20.2±3.8 33.3±11.5 53.2±3.6

medium-diverse (3 tasks) / undirected 9.7±1.3 42.2±4.3 40.7±3.5 42.5±5.2

Table 2: Experiment results for AntMaze tasks with normalized score metric averaged with five
random seeds.

Single-task domains and datasets. To address Question (1), we empirically evaluate the PDS
algorithm on the hopper, walker2d, and kitchen tasks from the D4RL benchmark suite (Fu et al.,
2020). We use 50 labeled trajectories with varying amounts of unlabeled data of different sizes and
qualities. This experimental setup is motivated by real-world problems where labeled data is often
scarce, and additional unlabeled data may be readily available.

7

Published as a conference paper at ICLR 2023

Task Labeled Size Unlabeled Size UDS Rew Pred PDS Oracle

Hopper
medium / 50K medium / 0.1M 58.7±1.5 64.8±3.2 73.9±8.4 66.3±2.1
medium / 50K medium / 0.4M 57.3±1.4 68.9±4.0 77.8±7.4 67.4±4.2
medium / 50K medium / 0.6M 56.6±1.4 68.5±2.1 75.9±2.4 68.2±2.1
expert / 50K random / 0.1M 53.3±3.8 27.9±15.1 42.7±9.8 18.1±5.9

random / 50K expert / 0.1M 4.3±0.4 84.7±10.8 92.3±9.8 40.1±4.5

Walker2d
medium / 50K medium / 0.1M 70.8±1.2 71.4±2.9 76.1±0.2 74.6±2.3
medium / 50K medium / 0.4M 75.3±1.4 70.9±4.1 80.1±0.3 77.7±2.4
medium / 50K medium / 0.6M 74.8±0.4 79.9±4.2 79.1±1.4 79.1±2.7
expert / 50K random / 0.1M 25.7±13.1 2.7±0.2 39.5±10.0 22.6±1.2

random / 50K expert / 0.1M 0.4±0.1 95.3±2.3 101.4±3.2 15.8±1.3

Table 3: Experimental results with normalized score metric averaged with five random seeds.

Multi-task domains and datasets. We investigate Question (2) by evaluating PDS on several
multi-task domains. The first set of domains we consider is Meta-World (Yu et al., 2020a), where
we adopt the same setup as in CDS (Yu et al., 2021a) and evaluate PDS on four tasks: door open,
door close, drawer open, and drawer close. The second domain is the AntMaze task
in D4RL, which consists of mazes of two sizes (medium and large) and includes 3 and 7 tasks,
respectively, corresponding to different goal positions. For a detailed description of the experimental
setting, please refer to Appendix D.

Comparisons. To ensure a fair comparison, we combine UDS with IQL (Kostrikov et al., 2021),
the same underlying offline RL method as PDS. In addition to UDS, we train a naive reward pre-
diction method and the sharing-all-true-rewards method (Oracle), and adapt them with IQL. In all
experiments, we set the hyperparameters a = 25 and L = 10 for our method.

5.1 EXPERIMENTAL RESULTS

Results of Question (1). We evaluated each method on the hopper, walker2d, and kitchen domains
and found that PDS outperformed the other methods on most tasks and achieved competitive or
better performance than the oracle method (Table 3). Notably, PDS performed well when the labeled
and unlabeled datasets had different data qualities, which we attribute to its ability to capture the
uncertainties induced by this distribution shift and maintain a pessimistic algorithm. The prediction
method performed well when the unlabeled dataset had high quality, and UDS performed well when
the unlabeled data had low quality. PDS combined the strengths of both methods and achieved
superior performance.

Results of Question (2). Multi-task settings exhibit greater distributional shifts between labeled
and unlabeled data due to the differing task goals. We evaluated PDS and the other methods on
the AntMaze and Meta-World domains (Tables 2 and 1) and found that PDS’s performance was
comparable to the oracle method and outperformed the other methods. UDS performed relatively
poorly on the Meta-World dataset, possibly due to the high dataset quality, which made labeling
with zeros induce a large reward bias. On the multi-task AntMaze domain, PDS outperformed both
UDS and the naive prediction method, especially on the diverse dataset. These results aligned with
our observation on single-task domains that PDS performs better when the distribution shift between
datasets is larger.

Results of Question (3). We conducted experiments on the hopper and walker2d tasks with vari-
ous penalty weights k to investigate the effect of uncertainty weights in PDS (Figure 1). The results
shows that PDS can interpolate between UDS and the reward prediction method and offered a better
trade-off to balance the conservation and generalization of reward estimators, resulting in better per-
formance. Also, PDS reduces the variance from reward prediction and is close to the oracle method,
indicating its ability to reduce the uncertainties from the variance of reward predictors while keeping
the reward bias small, as shown in Figure 2.

8

Published as a conference paper at ICLR 2023

10 20
Penalty Weight

0

25

50

75

100

N
or

m
al

iz
ed

R
et

ur
n

Walker2d-Random-Expert

PDS

UDS

Reward Pred

10 20
Penalty Weight

0

25

50

75

100

N
or

m
al

iz
ed

R
et

ur
n

Hopper-Random-Expert

PDS

UDS

Reward Pred

10 20
Penalty Weight

0

20

40

60

80

N
or

m
al

iz
ed

R
et

ur
n

Walker2d-Expert-Random

PDS

UDS

Reward Pred

10 20
Penalty Weight

20

40

60

80

N
or

m
al

iz
ed

R
et

ur
n

Hopper-Expert-Random

PDS

UDS

Reward Pred

Figure 1: Impact of penalty weight k on the performance. We evaluate PDS on Hopper/Walker2d-
Labeled (Expert/Random)-Unlabeled (Expert/Random) tasks with various k.

0.00 0.25 0.50 0.75 1.00
Million Steps

10−2

10−1

100

101

S
ta

nd
ar

d
D

ev
ia

ti
on

Drawer Open / Expert

0.00 0.25 0.50 0.75 1.00
Million Steps

10−3

10−2

10−1

100

S
ta

nd
ar

d
D

ev
ia

ti
on

Drawer Close / Medium-Play

UDS

PDS

Reward Pred

No Sharing

Sharing All

Figure 2: The standard deviation of the state values learned with IQL. The reward prediction method
suffers from a large deviation. The oracle method’s and PDS’s deviation is mediocre, and no sharing
and UDS methods enjoy the smallest deviation.

Discussion of PDS, UDS, and Reward Prediction: PDS can be seen as a generalization of both
UDS and the reward prediction method. UDS sets the penalty weight k to infinity, while the reward
prediction method sets it to zero. However, UDS introduces a high reward bias, and the reward
prediction method ruins the pessimism of offline algorithms. In contrast, PDS offers a trade-off be-
tween bias and pessimism by adaptively adjusting k. To verify that overestimation is the main factor
for the suboptimal performance of the reward prediction method, we conduct additional ablation
studies, as shown in Appendix G.

6 CONCLUSION

In this paper, we show that incorporating reward-free data into offline reinforcement learning can
yield significant performance improvements. Our theoretical analysis reveals that unlabeled data
provides additional information about the MDP’s dynamics, reducing the problem to linear bandits
in the limit and improving performance bounds therefore. Building upon these insights, we pro-
pose a new algorithm, PDS, that leverages this information by incorporating uncertainty penalties
on learned rewards to ensure a conservative approach. Our method has provable guarantees in the-
ory and achieves superior performance in practice. In future work, it may be interesting to explore
how PDS can be further improved with representation learning methods, and to extend our anal-
ysis to more general settings, such as generalized linear MDPs (Wang et al., 2019) and low-rank
MDPs (Ayoub et al., 2020; Jiang et al., 2017).

7 ACKNOWLEDGEMENTS

This work is supported in part by Science and Technology Innovation 2030 - “New Generation
Artificial Intelligence” Major Project (No. 2018AAA0100904) and the National Natural Science
Foundation of China (62176135).

9

Published as a conference paper at ICLR 2023

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael Littman, Doina Precup,
and Satinder Singh. On the expressivity of markov reward. Advances in Neural Information
Processing Systems, 34:7799–7812, 2021.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in Neural Information Processing
Systems, 34, 2021.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pp.
463–474. PMLR, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. arXiv preprint arXiv:1710.11248, 2017.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for reward design
to improve monte carlo tree search in atari games. arXiv preprint arXiv:1604.07095, 2016.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Hao Hu, Yiqin Yang, Qianchuan Zhao, and Chongjie Zhang. On the role of discount factor in offline
reinforcement learning. arXiv preprint arXiv:2206.03383, 2022.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Con-
textual decision processes with low bellman rank are pac-learnable. In International Conference
on Machine Learning, pp. 1704–1713. PMLR, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

10

Published as a conference paper at ICLR 2023

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. arXiv preprint arXiv:1912.05032, 2019.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Alexander Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning.
Advances in neural information processing systems, 33:7754–7767, 2020.

Xiaoteng Ma, Yiqin Yang, Hao Hu, Qihan Liu, Jun Yang, Chongjie Zhang, Qianchuan Zhao, and
Bin Liang. Offline reinforcement learning with value-based episodic memory. arXiv preprint
arXiv:2110.09796, 2021.

Maja J Mataric. Reward functions for accelerated learning. In Machine learning proceedings 1994,
pp. 181–189. Elsevier, 1994.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021,
2021.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

JP Royston. Expected normal order statistics (exact and approximate): algorithm as 177. Applied
Statistics, 31(2):161–5, 1982.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

Avi Singh, Larry Yang, Chelsea Finn, and Sergey Levine. End-to-end robotic reinforcement learning
without reward engineering. In Antonio Bicchi, Hadas Kress-Gazit, and Seth Hutchinson (eds.),
Robotics: Science and Systems XV, University of Freiburg, Freiburg im Breisgau, Germany, June
22-26, 2019, 2019. doi: 10.15607/RSS.2019.XV.073.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:
Connecting new skills to past experience with offline reinforcement learning. arXiv preprint
arXiv:2010.14500, 2020.

Shihong Song, Jiayi Weng, Hang Su, Dong Yan, Haosheng Zou, and Jun Zhu. Playing fps games
with environment-aware hierarchical reinforcement learning. In IJCAI, pp. 3475–3482, 2019.

11

Published as a conference paper at ICLR 2023

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. The Journal of Machine Learning Research, 16(1):1731–1755,
2015.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under
partial coverage. arXiv preprint arXiv:2107.06226, 2021.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. Advances in Neural Information
Processing Systems, 34:29420–29432, 2021.

Yining Wang, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy. Optimism in reinforcement
learning with generalized linear function approximation. arXiv preprint arXiv:1912.04136, 2019.

Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46,
2017.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov, and
Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. arXiv preprint
arXiv:2105.08140, 2021.

Yuxin Wu and Yuandong Tian. Training agent for first-person shooter game with actor-critic curricu-
lum learning. In 5th International Conference on Learning Representations, ICLR 2017, 2017.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pp. 6995–7004. PMLR, 2019.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. arXiv preprint arXiv:2106.03400, 2021.

Yiqin Yang, Hao Hu, Wenzhe Li, Siyuan Li, Jun Yang, Qianchuan Zhao, and Chongjie Zhang.
Flow to control: Offline reinforcement learning with lossless primitive discovery. arXiv preprint
arXiv:2212.01105, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020a.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020b.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
Conservative data sharing for multi-task offline reinforcement learning. Advances in Neural
Information Processing Systems, 34:11501–11516, 2021a.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. arXiv preprint arXiv:2102.08363,
2021b.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine. How
to leverage unlabeled data in offline reinforcement learning. arXiv preprint arXiv:2202.01741,
2022.

12

Published as a conference paper at ICLR 2023

A ALGORITHM DETAILS

A.1 PESSIMISTIC VALUE ITERATION (PEVI,(JIN ET AL., 2021))

In this section, we describe the details of PEVI algorithm.

In linear MDPs, we can construct B̂V̂ and Γ based on D as follows, where B̂V̂ is the empirical
estimation for BV̂ . For a given dataset D = {(sτ , aτ , rτ)}Nτ=1, we define the empirical mean
squared Bellman error (MSBE) as

M(w) =

N∑
τ=1

(
rτ + γV̂ (sτ+1)− φ(sτ , aτ)>w

)2
+ λ||w||22

Here λ > 0 is the regularization parameter. Note that ŵ has the closed form

ŵ = Λ−1
(N∑
τ=1

φ(sτ , aτ) ·
(
rτ + γV̂ (sτ+1)

))
,

where Λ = λI +

N∑
τ=1

φ(sτ , aτ)φ(sτ , aτ)>. (18)

Then we simply let

B̂V̂ = 〈φ, ŵ〉. (19)

Meanwhile, we construct Γ based on D as

Γ(s, a) = β ·
(
φ(s, a)>Λ−1φ(s, a)

)1/2
. (20)

Here β > 0 is the scaling parameter. The overall PEVI algorithm is summarized in Algorithm 2.

Algorithm 2 Pessimistic Value Iteration, PEVI
1: Require: Dataset D = {(sτ , aτ , rτ , sτ+1)}Tτ=1.
2: Initialization: Set V̂ (·)← 0 and construct Γ(·, ·).
3: while not converged do
4: Construct (B̂V̂)(·, ·)
5: Set Q̂(·, ·)← (B̂V̂)(·, ·)− Γ(·, ·).
6: Set π̂(· | ·)← argmaxπ Eπ

[
Q̂(·, ·)

]
.

7: Set V̂ (·)← Eπ̂
[
Q̂(·, ·)

]
.

8: end while
9: Return V̂ , π̂

A.2 IQL WITH PROVABLE DATA SHARING

In this section, we give a detailed description of our IQL+PDS algorithm.

13

Published as a conference paper at ICLR 2023

Algorithm 3 IQL+PDS algorithm, General MDPs
Input: Labeled dataset D0, unlabeled dataset D1.
Input: Parameter α, β, k, τ .
Output: policy πφ.

1: Learn L reward functions as in Equation (7).
2: Construct pessimistic reward estimation as in Equation (17).
3: Relabel unsupervised dataset D1 and combine with the labeled dataset D0.
4: Initialize ψ, θ, θ̂, φ.
5: for each gradient step do
6: φ← ψ − λV∇ψLV (ψ), LV (ψ) = Es,a

[
Lτ2(Qθ̂(s, a)− Vψ(s))

]
7: θ ← θ − λQ∇θLQ(θ), LQ(θ) = Es,a,r

[
(r + γQθ̂(s, a)−Qθ(s, a))2

]
8: θ̂ ← αθ + (1− α)θ
9: end for

10: for each gradient step do
11: φ← φ− λπ∇φLπ(φ), Lπ(φ) = Es,a

[
exp

(
β(Qθ̂(s, a)− Vψ(s))

)
log(πφ(a|s))

]
12: end for

B PROOF OF THEOREM 4.3

Proof. From Equation (11) in Algorithm 1, we have

V̂θ̃ ≤ V̂θ, ∀θ ∈ C(δ), (21)

where θ̃ is the pessimistic estimation of θ.

Let E1 be the event θ? ∈ C(δ), then we have P(E1) ≥ 1− δ from Lemma 4.1.

Let E2 be the event where the following inequality holds,

|(BV̂)(s, a)− (B̂V̂)(s, a)| ≤ Γ = β
√
φ(s, a)>Λ−1φ(s, a),∀(s, a) ∈ S ×A. (22)

then we have P(E2) ≥ 1− δ from Lemma C.3.

Condition on E1 ∩ E2, we have.

V π
∗

θ? − V π̂θ? = V π
∗

θ? − V̂θ? + V̂θ? − V π̂θ?
≤ V π∗θ? − V̂θ?
= V π

∗

θ? − V π
∗

θ̃
+ V π

∗

θ̃
− V̂θ̃ + V̂θ̃ − V̂θ?

≤ V π∗θ? − V π
∗

θ̃
+ V π

∗

θ̃
− V̂θ̃

= V π
∗

θ? − V π
∗

θ̂
+ V π

∗

θ̂
− V π∗

θ̃
+ V π

∗

θ̃
− V̂θ̃

≤ 4rmax

1− γ

√
d2ζ2

N0C
†
0

+
2crmax

(1− γ)2

√
d3ζ1

N0C
†
0 +N1C

†
1

,

where the first inequality follows from Lemma C.2. The second inequality follows from Equa-
tion (21), and the last inequality follows from Lemma C.5 and C.1.

From the union bound, we have that the above inequality holds with a probability of 1− 2δ.

C ADDTIONAL LEMMAS AND MISSING PROOFS

Lemma C.1. Under the event in Lemma C.3, we have

V π
∗

θ (s)− V̂θ(s) ≤
2crmax

(1− γ)2

√
d3ζ

C†N
,

14

Published as a conference paper at ICLR 2023

with probability 1− δ, for all ‖θ‖22 ≤ d.

Proof. Let

δ(s, a) = r(s, a) + γEs′∼P(·|s,a)V̂ (s′)− Q̂(s, a), (23)

From the definition of Q̂(s, a) and V̂ (s), we have

δ(s, a) = Bγ V̂ (s)− Q̂(s, a) = Bγ V̂ (s)− B̂γ V̂ + Γ(s, a). (24)

Under the condition of Lemma C.3, it holds that

0 ≤ δ(s, a) ≤ 2Γ(s, a), for all s, a. (25)

Then we have

V π
∗

θ (s)− V̂θ(s)
=Ea∼π∗,s′∼P(·|s,a)

[
r(s, a) + γV π

∗
(s′)
]
− Ea∼π̂

[
Q̂(s, a)

]
=Ea∼π∗,s′∼P(·|s,a)

[
r(s, a) + γV π

∗
(s′)− Q̂(s, a)

]
+ Ea∼π∗

[
Q̂(s, a)

]
− Ea∼π̂

[
Q̂(s, a)

]
=Ea∼π∗,s′∼P(·|s,a)

[
r(s, a) + γV̂ (s′)− Q̂(s, a)

]
+ γEa∼π∗,s′∼P(·|s,a)

[
V π
∗
(s′)− V̂ (s′)

]
+
〈
Q̂(s, ·), π∗(· | s)− π̂(· | s)

〉
A

=Ea∼π∗,s′∼P(·|s,a) [δ(s, a)] +
〈
Q̂(s, ·), π∗(· | s)− π̂(· | s)

〉
A

+ · · ·

=Eπ∗
[∞∑
t=0

γtδ(st, at) | s0 = s

]
+ Eπ∗

[∞∑
t=0

γt
〈
Q̂(st, ·), π∗(· | st)− π̂(· | st)

〉
A
| s0 = s

]

≤Eπ∗
[∞∑
t=0

γtδ(st, at)
∣∣∣ s0 = s

]

≤2Eπ∗
[∞∑
t=0

γtΓ(st, at)
∣∣∣ s0 = s

]
=2βEπ∗

[∞∑
t=0

γt
(
φ(st, at)

>Λ−1φ(st, at)
)1/2 ∣∣∣ s0 = s

]
.

Here the first inequality follows from the fact that π̂(·|s) = argmaxπ

〈
Q̂(·, ·), π(·|s)

〉
and the

second inequality follows from Equation (25).

By the Cauchy-Schwarz inequality, we have

Eπ∗
[∞∑
t=0

γt
(
φ(st, at)

>Λ−1φ(st, at)
)1/2 ∣∣∣ s0 = s

]
=

1

1− γEdπ
∗

[√
Tr
(
φ(s, a)>Λ−1φ(s, a)

) ∣∣∣ s0 = s
]

=
1

1− γEdπ
∗

[√
Tr
(
φ(s, a)φ(s, a)>Λ−1

) ∣∣∣ s0 = s
]

≤ 1

1− γ

√
Tr
(
Edπ∗

[
φ(s, a)φ(s, a)>

∣∣ s0 = s
]
Λ−1

)
=

1

1− γ

√
Tr
(

Σ>π∗,sΛ
−1
)
, (26)

15

Published as a conference paper at ICLR 2023

for all s ∈ S. Then we have

V π
∗

θ (s)− V̂θ(s) ≤ 2βEπ∗
[∞∑
t=0

γt
(
φ(st, at)

>Λ−1φ(st, at)
)1/2 ∣∣∣ s0 = s

]
≤ 2β

1− γ

√
Tr
(

Σπ∗,s ·
(
I + C† ·N · Σπ∗,s

)−1
)

=
2β

1− γ

√√√√ d∑
j=1

λj(s)

1 + C† ·N · λj(s)
. (27)

Here {λj(s)}dj=1 are the eigenvalues of Σπ∗,s for all s ∈ S, the second inequality follows from
Equation (26). Meanwhile, by Definition 3.1, we have ‖φ(s, a)‖ ≤ 1 for all (s, a) ∈ S × A. By
Jensen’s inequality, we have

‖Σπ∗,s‖op ≤ Eπ∗
[
‖φ(s, a)φ(s, a)>‖op

∣∣ s0 = s
]
≤ 1 (28)

for all s ∈ S. As Σπ∗,s is positive semidefinite, we have λj(s) ∈ [0, 1] for all s ∈ S and all j ∈ [d].
Hence we have

V π
∗

θ (s)− V̂θ(s) ≤
2β

1− γ

√√√√ d∑
j=1

λj(s)

1 + C† ·N · λj(s)

≤ 2β

1− γ

√√√√ d∑
j=1

1

1 + C† ·N ≤
2crmax

(1− γ)2

√
d3ζ

C†N
(29)

for all x ∈ S, where the second inequality follows from the fact that λj(s) ∈ [0, 1] for all s ∈ S and
all j ∈ [d], while the third inequality follows from the choice of the scaling parameter β > 0.

Then we have the conclusion in Lemma C.1.

Lemma C.2. Under the event in Lemma C.3, we have

V̂θ(s)− V π̂θ (s) ≤ 0 (30)

with probability 1− δ, for all ‖θ‖22 ≤ d.

Proof. Similar to the proof of Lemma C.1, let

δ(s, a) = r(s, a) + γEs′∼P(·|s,a)V̂ (s′)− Q̂(s, a), (31)

we have

V̂ (s)− V π̂(s) =Ea∼π̂
[
Q̂(s, a)

]
− Ea∼π̂,s′∼P(·|s,a)

[
r(s, a) + γV π̂(s′)

]
=Ea∼π̂,s′∼P(·|s,a)

[
Q̂(s, a)− r(s, a)− γV̂ (s′)

]
+ γEa∼π̂,s′∼P(·|s,a)

[
V̂ (s′)− V π̂(s′)

]
=− Eπ̂ [δ(s, a)] + γEa∼π̂,s′∼P(·|s,a)

[
V̂ (s′)− V π̂(s′)

]
=− Eπ̂ [δ(s, a)] + · · ·

=− Eπ̂

[∞∑
t=0

γtδ(st, at) | s0 = s

]
.

Then under the condition of Lemma C.3, it holds that

0 ≤ δ(s, a) ≤ 2Γ(s, a), for all s, a, (32)

Then we have the result immediately.

16

Published as a conference paper at ICLR 2023

Lemma C.3 (ξ-Quantifiers). Let

λ = 1, β = c · dVmax

√
ζ, ζ = log (2dN/(1− γ)ξ). (33)

Then Γ = β ·
(
φ(s, a)>Λ−1φ(s, a)

)1/2
are ξ-quantifiers with probability at least 1− ξ. That is, let

E2 be the event that the following inequality holds,

|(BV̂)(s, a)− (B̂V̂)(s, a)| ≤ Γ = β
√
φ(s, a)>Λ−1φ(s, a),∀(s, a) ∈ S ×A. (34)

Then we have P(E2) ≥ 1− ε.

Proof. we have

BV̂ − B̂V̂ = φ(s, a)>(w − ŵ)

= φ(s, a)>w − φ(s, a)Λ−1

(
N∑
τ=1

φτ (rτ + γV̂ (sτ+1)

)

= φ(s, a)>w − φ(s, a)Λ−1

(
N∑
τ=1

φτφ
>
τ w

)
︸ ︷︷ ︸

(i)

+φ(s, a)Λ−1(

N∑
τ=1

φτφ
>
τ w −

N∑
τ=1

φτ (rτ + γV̂ (sτ+1))︸ ︷︷ ︸
(ii)

,

(35)
Then we bound (i) and (ii), respectively.

For (i), we have
(i) = φ(s, a)>w − φ(s, a)Λ−1(Λ− λI)w

= λφ(s, a)Λ−1w

≤ λ||φ(s, a)||λ−1 ||w||λ−1

≤ Vmax
√
dλ
√
φ(s, a)>Λ−1φ(s, a), (36)

where the first inequality follows from Cauchy-Schwartz inequality. The second inequality follows
from the fact that ||Λ−1||op ≤ λ−1 and Lemma C.4.

For notation simplicity, let ετ = rτ + γV̂ (sτ+1)− φ>τ w, then we have

|(ii)| = φ(s, a)Λ−1
N∑
τ=1

φτ ετ

≤ ||
N∑
τ=1

φτ ετ ||Λ−1 · ||φ(s, a)||Λ−1

= ||
N∑
τ=1

φτ ετ ||Λ−1︸ ︷︷ ︸
(iii)

·
√
φ(s, a)>Λ−1φ(s, a). (37)

The term (iii) is depend on the randomness of the data collection process of D. To bound this term,
we resort to uniform concentration inequalities to upper bound

sup
V ∈V(R,B,λ)

∥∥∥ N∑
τ=1

φ(sτ , aτ) · ετ (V)
∥∥∥,

where
V(R,B, λ) = {V (s;w, β,Σ) : S → [0, Vmax] with||w|| ≤ R, β ∈ [0, B],Σ � λ · I}, (38)

where V (s;w, β,Σ) = maxa{φ(s, a)>w − β ·
√
φ(s, a)>Σ−1φ(s, a)}. For all ε > 0, let

N (ε;R,B, λ) be the minimal cover if V(R,B, λ). That is, for any function V ∈ V(R,B, λ),
there exists a function V † ∈ N (ε;R,B, λ), such that

sup
s∈S
|V (s)− V †(s)| ≤ ε. (39)

17

Published as a conference paper at ICLR 2023

Let R0 = Vmax
√
Nd/λ,B0 = 2β, it is easy to show that at each iteration, V̂ u ∈ V(R0, B0, λ).

From the definition of B, we have

|BV̂ − BV †| = γ

∣∣∣∣∫ (V̂ (s′)− V †(s′)) 〈φ(s, a), µ(s′)〉ds′
∣∣∣∣ ≤ γε. (40)

Then we have
|(r + γV − BV)− (r + γV † − BV †)| ≤ 2γε. (41)

Let ε†τ = r(sτ , aτ) + γV †(sτ+1)− BV †(s, a), we have

(iii)2 = ||
N∑
τ=1

φτ ετ ||2Λ−1 ≤ 2||
N∑
τ=1

φτ ε
†
τ ||2Λ−1 + 2||

N∑
τ=1

φτ (ε†τ − ετ)||2Λ−1

≤ 2||
N∑
τ=1

φτ ε
†
τ ||2Λ−1 + 8γ2ε2

N∑
τ=1

|φτΛ−1φτ |

≤ 2||
N∑
τ=1

φτ ε
†
τ ||2Λ−1 + 8γ2ε2N2/λ

It remains to bound ||∑N
τ=1 φτ ε

†
τ ||2Λ−1 . From the assumption for data collection process, it is easy

to show that ED[ετ | Fτ−1] = 0, where Fτ−1 = σ({(si, ai)τi=1 ∪ (ri, si+1)τi=1}) is the σ-algebra
generated by the variables from the first τ step. Moreover, since ετ ≤ 2Vmax, we have ετ are
2Vmax-sub-Gaussian conditioning on Fτ−1. Then we invoke Lemma C.7 with M0 = λ · I and
Mk = λ · I +

∑k
τ=1 φ(sτ , aτ) φ(sτ , aτ)>. For the fixed function V : S → [0, Vmax], we have

PD
(∥∥∥ N∑

τ=1

φ(sτ , aτ) · ετ (V)
∥∥∥2

Λ−1
> 8V 2

max · log
(det(Λ)1/2

δ · det(λ · I)1/2

))
≤ δ (42)

for all δ ∈ (0, 1). Note that ‖φ(s, a)‖ ≤ 1 for all (s, a) ∈ S ×A by Definition 3.1. We have

‖Λ‖op =
∥∥∥λ · I +

N∑
τ=1

φ(sτ , aτ)φ(sτ , aτ)>
∥∥∥

op
≤ λ+

N∑
τ=1

‖φ(sτ , aτ)φ(sτ , aτ)>‖op ≤ λ+N,

where ‖ · ‖op denotes the matrix operator norm. Hence, it holds that det(Λ) ≤ (λ + N)d and
det(λ · I) = λd, which implies

PD
(∥∥∥ N∑

τ=1

φ(sτ , aτ) · ετ (V)
∥∥∥2

Λ−1

> 4V 2
max ·

(
2 · log(1/δ) + d · log(1 +N/λ)

))

≤ PD
(∥∥∥ N∑

τ=1

φ(sτ , aτ) · ετ (V)
∥∥∥2

Λ−1

> 8V 2
max · log

(det(Λ)1/2

δ · det(λ · I)1/2

))
≤ δ.

Therefore, we conclude the proof of Lemma C.3.

Applying Lemma C.3 and the union bound, we have

PD
(

sup
V ∈N (ε)

∥∥∥ N∑
τ=1

φ(sτ , aτ) ·ετ (V)
∥∥∥2

Λ−1
> 4V 2

max ·
(
2 · log(1/δ)+d · log(1+N/λ)

))
≤ δ · |N (ε)|.

(43)

Recall that

V̂ ∈ V(R0, B0, λ), where R0 = Vmax
√
Nd/λ, B0 = 2β, λ = 1, β = c · dVmax

√
ζ. (44)

Here c > 0 is an absolute constant, ξ ∈ (0, 1) is the confidence parameter, and ζ = log(2dVmax/ξ)
is specified in Algorithm 2. Applying Lemma C.6 with ε = dVmax/N , we have

log |N (ε)| ≤ d · log(1 + 4d−1/2N3/2) + d2 · log(1 + 32c2 · d1/2N2ζ)

≤ d · log(1 + 4d1/2N2) + d2 · log(1 + 32c2 · d1/2N2ζ). (45)

18

Published as a conference paper at ICLR 2023

By setting δ = ξ/|N (ε)|, we have that with probability at least 1− ξ,∥∥∥ N∑
τ=1

φ(sτ , aτ) · ετ (V̂)
∥∥∥2

Λ−1

≤ 8V 2
max ·

(
2 · log(Vmax/ξ) + 4d2 · log(64c2 · d1/2N2ζ) + d · log(1 +N) + 4d2

)
≤ 8V 2

maxd
2ζ(4 + log (64c2)). (46)

Here the last inequality follows from simple algebraic inequalities. We set c ≥ 1 to be sufficiently
large, which ensures that 36 + 8 · log(64c2) ≤ c2/4 on the right-hand side of Equation (46). By
Equations (37) and (46), it holds that

|(ii)| ≤ c/2 · dVmax
√
ζ ·
√
φ(x, a)>Λ−1φ(s, a) = β/2 ·

√
φ(x, a)>Λ−1φ(s, a) (47)

By Equations (20), (35), (36), and (47), for all (s, a) ∈ S ×A, it holds that∣∣(BV̂)(s, a)− (B̂V̂)(s, a)
∣∣ ≤ (Vmax

√
d+ β/2) ·

√
φ(s, a)>Λ−1φ(s, a) ≤ Γ(s, a) (48)

with probability at least 1− ξ. Therefore, we conclude the proof of Lemma C.3.

Lemma C.4 (Bounded weight of value function). Let Vmax = rmax/(1 − γ). For any function
V : S → [0, Vmax], we have

||w|| ≤ Vmax
√
d, ||ŵ|| ≤ Vmax

√
Nd

λ
.

Proof. Since

w>φ(s, a) = 〈M,φ(s, a)〉+ γ

∫
V (s′)ψ(s′)>Mφ(s, a)ds′,

we have

w = M + γ

∫
V (s′)ψ(s′)>Mds′

= rmax
√
d+ γVmax

√
d

= Vmax
√
d.

For ŵ, we have

||ŵ|| = ||Λ−1
N∑
τ=1

φτ (rτ + γV (sτ+1))||

≤
N∑
τ=1

||Λ−1φτ (rτ + γV (sτ+1))||

≤ Vmax

N∑
τ=1

||Λ−1φτ ||

≤ Vmax

N∑
τ=1

√
φ>τ Λ−1/2Λ−1Λ−1/2φτ

≤ Vmax√
λ

N∑
τ=1

√
φ>τ Λ−1φτ

≤ Vmax

√
N

λ

√√√√Tr(Λ−1

T∑
τ=1

φτφ>τ)

≤ Vmax

√
Nd

λ
.

19

Published as a conference paper at ICLR 2023

Lemma C.5. For policy π∗ and any reward function parameter θ ∈ C(δ), we have

|V π∗θ − V π∗
θ̂
| ≤ 2rmax

1− γ

√
d2ζ2

N0C
†
0

.

Proof. From the definition, we have

|rθ(s, a)− rθ̂(s, a)| = |φ(s, a)>θ − φ(s, a)>θ̂|
≤ ‖θ − θ̂‖Λ · ‖φ(s, a)‖Λ−1

≤ α
√
φ(s, a)>Λ−1φ(s, a),

Where the first inequality follows from the Cauchy-Schwartz inequality and the second inequality
uses the fact that θ ∈ C(δ). Then we have

V π
∗

θ (s)− V π∗
θ̂

(s) = Eπ∗
[∞∑
t=0

γt(rθ(s, a)− rθ̂(s, a))
∣∣∣ s0 = s

]

≤ Eπ∗
[∞∑
t=0

γt|rθ(s, a)− rθ̂(s, a)|
∣∣∣ s0 = s

]

≤ αEπ∗
[∞∑
t=0

γt
√
φ(s, a)>Λ−1φ(s, a)

∣∣∣ s0 = s

]

≤ α

1− γ

√√√√ d∑
j=1

1

1 + C†0 ·N0

≤ 2rmax

1− γ

√
d2ζ2

N0C
†
0

,

where the second to last inequality follows similarly as Equation (26) (27) and the last inequality
follows from the fact that α = 2rmax

√
dζ2.

Note that such a choice of α is sufficient for Lemma 4.1 to hold since

√
ν + rmax ·

√
2 log

1

δ
+ d log (1 +

N0

νd
) = 1 + rmax ·

√
2 log

1

δ
+ d log (1 +

N0

d
)

≤ 1 + rmax ·
√

2 log
1

δ
+ d log 2N0

≤ 1 + rmax ·
√
d log

2N0

δ

≤ 2rmax ·
√
d log

2N0

δ

= 2rmax
√
dζ2,

where the inequalities holds for sufficiently small δ > 0 and d ≥ 2.

C.1 TECHNICAL LEMMAS

Lemma C.6 (ε-Covering Number (Jin et al., 2020)). For all h ∈ [H] and all ε > 0, we have

log |N (ε;R,B, λ)| ≤ d · log(1 + 4R/ε) + d2 · log
(
1 + 8d1/2B2/(ε2λ)

)
.

Proof of Lemma C.6. See Lemma D.6 in Jin et al. (2020) for detailed proof.

Lemma C.7 (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011)). Let
{Ft}∞t=0 be a filtration and {εt}∞t=1 be an R-valued stochastic process such that εt is Ft-measurable

20

Published as a conference paper at ICLR 2023

for all t ≥ 1. Moreover, suppose that conditioning on Ft−1, εt is a zero-mean and σ-sub-Gaussian
random variable for all t ≥ 1, that is,

E[εt | Ft−1] = 0, E
[
exp(λεt)

∣∣Ft−1

]
≤ exp(λ2σ2/2), ∀λ ∈ R.

Meanwhile, let {φt}∞t=1 be an Rd-valued stochastic process such that φt is Ft−1-measurable for all
t ≥ 1. Also, let M0 ∈ Rd×d be a deterministic positive-definite matrix and

Mt = M0 +

t∑
s=1

φsφ
>
s

for all t ≥ 1. For all δ > 0, it holds that∥∥∥ t∑
s=1

φsεs

∥∥∥2

M−1
t

≤ 2σ2 · log
(det(Mt)

1/2 · det(M0)−1/2

δ

)
for all t ≥ 1 with probability at least 1− δ.

Proof. See Theorem 1 of Abbasi-Yadkori et al. (2011) for a detailed proof.

21

Published as a conference paper at ICLR 2023

D EXPERIMENTAL SETTINGS

D.1 MULTI-TASK ANTMAZE

We first divide the source dataset (e.g., antmaze-medium-diverse-v2) into the directed dataset
or the undirected dataset. The trajectories in the undirected dataset are randomly and uni-
formly divided into different tasks. In contrast, the directed dataset is associated with the goal
closest to the final state of the trajectory. Then, for each subtask (e.g., goal=(0.0, 16.0)), we rela-
bel the corresponding undirected or undirected dataset according to the goal. Finally, we
keep the rewards in the target task dataset (labeled dataset) while setting the rewards in the other
task dataset to 0 (unlabeled dataset). We visualize the directed or undirected dataset in Fig-
ure 3. We can find that the distribution shift issue in the directed dataset is more severe than the
undirected dataset, which further challenges the unlabeled data sharing algorithms.

Figure 3: Visualization of multi-task antmaze-medium-diverse-v2 datasets. The purple dots denote
the transition of reward 0. The yellow dots denote the transition near the goal of the sub-task and
the reward is +1.

D.2 MULTI-TASK META-WORLD

We consider the same setup as in CDS (Yu et al., 2021a) and four tasks: door open,
door close, drawer open and drawer close, which is shown in Figure 4. We use
medium-replay datasets with 152K transitions for task door open and drawer close and use 10 expert
trajectories for task door close and drawer open.

(a) Door Open (b) Drawer Close

Figure 4: Visualization of subtasks in Meta-World.

22

Published as a conference paper at ICLR 2023

E MORE DISCUSSION ON THE RELATIVE PERFORMANCE OF UDS

Based on the discussion in the main text, we can summarize the factors that affect the relative
performance of PDS algorithms as follows.

scenarios large number of
unlabeled data

high quality of
unlabeled data

long horizon large dimension

finite-sample
term

X X

asymptotic
term

X X

Table 4: Scenarios where PDS has better relative performance.

However, it is worth noting that the asymptotic term is dependent on the backbone offline algorithm
we choose. For model-based algorithms like Uehara & Sun (2021), the performance bound scale
as O(d) and thus the problem’s dimension does not affect the asymptotic term. The dependence
over the discount factor is also dependent on the choice of the backbone algorithm. However, it is
known that the lower bound of offline RL algorithms in linear MDPs scales asO((1− γ)1.5) so this
asymptotic term must scales at least as O((1 − γ)0.5) and thus negatively depends on the discount
factor. That is, the larger the discount factor, the better the relative performance of PDS.

F DISCUSSION ON THE PERFORMANCE BOUND

F.1 CONSTRUCTION OF ADVERSARIAL EXAMPLES

In this section, we show that there is an MDP and an “unfortunate” dataset such that the subopti-
mality of Algorithm 3 matches the performance bound in Theorem 4.3. We first focus on the case
without data sharing. The same techniques can be used to match the reward-learning bound. We
only need to show that all inequalities in Theorem 4.3 can become equality. Suppose we have an
MDP with one state and N > d actions. d of them are optimal actions, with feature map

φ(s, ai) = (0, . . .︸ ︷︷ ︸
i−1 zeros

,
√
d, 0, . . .)

and let the optimal policy be uniform over d actions. Such construction makes Σπ∗,s = I so that
inequalities in Equation (25)∼(27) become equalities. Then we let samples from other actions match
the confidence upper bound while samples from the optimal action match the confidence lower
bound, and we also need all the samples to be symmetric over different dimensions (this is required
by the Cauchy-Schwitz inequality used in the proof), such that the confidence bound inequalities in
Lemma C.3 also become equalities. Then, in this case, the suboptimality bound is matched and the
bound in Theorem 4.3 is tight.

F.2 REWARD BIAS OF UDS

In this section, we show that UDS suffers from a constant reward bias.

Lemma F.1. By labeling all rewards in the unlabeled dataset to zeros, we have

ED0+D1
[|r(s, a)− r̂UDS(s, a)|] =

N1

N0 +N1
· ED1

[|r(s, a)|].

That is, the reward bias does not vanish as long as the ratio of labeled data size and unlabeled data
size keeps constant.

23

Published as a conference paper at ICLR 2023

Proof.

ED0+D1
[|r(s, a)− r̂UDS(s, a)|] =

N0

N0 +N1
· ED0

[|r(s, a)− r(s, a)|] +
N1

N0 +N1
· ED1

[|r(s, a)− 0|]

=
N1

N0 +N1
· ED1

[|r(s, a)|].

G HOW BAD IS THE REWARD PREDICTION BASELINE ACTUALLY?

We conduct ablation studies for the reward prediction method from three aspects, including model
size, ensemble number, and early stopping, which are shown in Table 5, Table 6 and Table 7. For
the model size, 256*3 denotes the 256 hidden neurons with three hidden layers. As for the early
stopping, Epoch Number = 3 denotes traversing the entire training dataset 3 times. (We find the
Epoch Number=3 is enough to reduce the prediction error to a small range, and increasing epochs
leads to overfitting.)

We conduct experiments in a setting where the quality of the reward labeled and reward-free data dif-
fers significantly. For example, walker2d-expert(50K)-random(0.1M) denotes 50K reward-labeled
data from expert datasets and 0.1M reward-free data from random datasets. We set the PDS as the
default parameter in all comparisons, including the model size 256*2, the training epoch 3, and the
ensemble number 10. All experimental results adopt the normalized score metric averaged over five
seeds with standard deviation.

The experimental results show that fine-tuning reward prediction can improve its performance in
some cases, Nevertheless, a well-tuned reward prediction method still performs poorly compared
to PDS in general. We hypothesize that this is because the ”test” (reward-free) dataset may have a
large distributional shift from the ”training” (reward-labeled) dataset, violating the i.i.d. assumption
in supervised learning.

Model Size (Reward Prediction) 256*3 512*3 256*4 512*4 PDS

walker2d-expert(50K)-random(0.1M) 1.8±0.3 11.2±2.0 1.2±0.2 13.3±2.7 77.6±8.1
walker2d-random(50K)-expert(0.1M) 95.1±1.9 96.5±1.6 99.4±2.0 97.2±2.2 105.1±1.2
hopper-expert(50K)-random(0.1M) 27.8±14.7 31.6±15.2 36.6±14.8 36.3±11.8 61.5±6.2
hopper-random(50K)-expert(0.1M) 72.9±19.7 78.9±16.7 92.1±15.7 92.3±14.6 93.8±4.9

Table 5: Ablation for the model size. We adopt various model sizes for the prediction network in
the Reward Prediction baseline, while PDS adopts the default parameter model size 256*3.

Epoch Number (Reward Prediction) 1 2 3 PDS

walker2d-expert(50K)-random(0.1M) 2.9±1.3 39.6±4.1 1.8±0.7 77.6±8.1
walker2d-random(50K)-expert(0.1M) 91.2±1.3 101.2±1.9 95.1±1.6 105.1±1.2
hopper-expert(50K)-random(0.1M) 35.9±9.8 31.0±5.2 27.8±14.7 61.5±6.2
hopper-random(50K)-expert(0.1M) 42.4±11.8 57.8±12.2 84.8±10.5 93.8±4.9

Table 6: Ablation for the early stopping. We adopt various Training Epochs for the prediction
network in the Reward Prediction baseline, while PDS adopts the default parameter epoch number
3.

24

Published as a conference paper at ICLR 2023

Environment Reward Prediction (Ensemble=10) PDS

walker2d-expert(50K)-random(0.1M) 18.9±3.6 77.6±8.1
walker2d-random(50K)-expert(0.1M) 91.41±2.5 105.1±2.1
hopper-expert(50K)-random(0.1M) 39.4±5.7 61.5±6.2
hopper-random(50K)-expert(0.1M) 78.4±4.6 93.8±4.9

Table 7: Ablation for the ensemble. PDS adopts the default parameter ensemble number 10 and we
adopt the same ensemble number for the prediction network in the Reward Prediction baseline.

25

	Introduction
	Related Work
	Preliminaries
	Linear MDPs and Performance Metric
	Provable Offline Algorithms
	Unsupervised Data Sharing

	Provable Unsupervised Data Sharing
	Provable Data Sharing
	Theoretical Analysis
	Practical Implementation

	Experiments
	Experimental Results

	Conclusion
	Acknowledgements
	Algorithm Details
	Pessimistic Value Iteration (PEVI,jin2021pessimism)
	IQL with provable data sharing

	Proof of Theorem 4.3
	Addtional Lemmas and Missing Proofs
	Technical Lemmas

	Experimental Settings
	Multi-task Antmaze
	Multi-task Meta-World

	More discussion on the relative performance of UDS
	Discussion on the Performance Bound
	Construction of Adversarial Examples
	Reward Bias of UDS

	How bad is the reward prediction baseline actually?

