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Abstract

The alignments of reasoning abilities between001
smaller and larger Language Models are largely002
conducted via Supervised Fine-Tuning (SFT)003
using demonstrations generated from robust004
Large Language Models (LLMs). Although005
these approaches deliver more performant mod-006
els, they do not show sufficiently strong gener-007
alization ability as the training only relies on008
the provided demonstrations.009

In this paper, we propose the Self-refine010
Instruction-tuning method that elicits Smaller011
Language Models to self-refine their abili-012
ties. Our approach is based on a two-stage013
process, where reasoning abilities are first014
transferred between LLMs and Small Lan-015
guage Models (SLMs) via Instruction-tuning016
on demonstrations provided by LLMs, and then017
the instructed models Self-refine their abilities018
through preference optimization strategies.019

In particular, the second phase operates refine-020
ment heuristics based on the Direct Preference021
Optimization algorithm, where the SLMs are022
elicited to deliver a series of reasoning paths023
by automatically sampling the generated re-024
sponses and providing rewards using ground025
truths from the LLMs. Results obtained on026
commonsense and math reasoning tasks show027
that this approach significantly outperforms028
Instruction-tuning in both in-domain and out-029
domain scenarios, aligning the reasoning abili-030
ties of Smaller and Larger Language Models.031

1 Introduction032

Previous works have demonstrated that Chain-of-033

Thought (CoT) prompting can improve the Large034

Language Models (LLMs) 1 capacity to perform035

complex reasoning tasks by decomposing a rea-036

soning task into a sequence of intermediate steps037

(Wei et al., 2022), where the generation of multi-038

step controlled reasoning can improve results in039

1(e.g., with more than 60B parameters (Wei et al., 2023))

commonsense (Bubeck et al., 2023), symbolic and 040

mathematical (Gaur and Saunshi, 2023; Liu et al., 041

2023) reasoning datasets. 042

Since the size of LLMs represents an adoption 043

barrier for many use cases and smaller models do 044

not seem to have the same emergent reasoning abil- 045

ities as LLMs, several state-of-the-art alignment ap- 046

proaches for solving mathematical problems have 047

emerged, where Supervised Fine-Tuning (SFT) has 048

been used to train Small Language Models (SLMs) 049

using CoT annotations. However, these annotations 050

outline the intermediate reasoning steps for solv- 051

ing a given problem, which consists of a reasoning 052

pathway generated by the LLM for the specific 053

case. This phenomenon can lead to a relatively 054

weak generalization capacity of tuned models that 055

have a few and limited number of samples. Indeed, 056

there are often multiple valid CoT annotations for 057

the same question (Cobbe et al., 2021; Zhang et al., 058

2023), which underlines the need for a more gen- 059

eral CoT-based fine-tuning approach. 060

In this paper, we propose Self-refine Instruction- 061

tuning, which is a method to enable CoT reasoning 062

over SLMs. Our approach starts by performing 063

Instruction-tuning on SLMs via demonstrations de- 064

livered by LLMs and then applies preference op- 065

timization based on reinforcement learning (RL) 066

heuristics to let the SLMs refine their abilities to 067

solve a task in a step-wise manner. Hence, propos- 068

ing a teacher-student alignment method, we inves- 069

tigate the impact of transferring Chain-of-Thought 070

reasoning abilities through the support of Demon- 071

strations "taught" by LLMs to SLMs as a warm-up 072

to the Self-refine process. Therefore, to reinforce 073

the Instruction-tuning phase, we analyze whether 074

preference optimization methods could strengthen 075

students’ step-wise reasoning abilities. 076

Complementing the foundation work of (Wang 077

et al., 2023c,d), we introduce Self-refinement based 078

on reinforcement learning, and in contrast to (Ue- 079

sato et al., 2022; Luo et al., 2023; Luong et al., 080
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Figure 1: In Self-refine Instruction-tuning, the Demonstrations delivered by teacher models are used to align
reasoning abilities in a teacher-student setting. Following the transference of step-wise reasoning knowledge via
instruction tuning, the students Self-refine their abilities with the support of Direct Preference Optimization methods.

2024; Paul et al., 2024), we use an Instruction-081

tuning via Demonstrations approach (Ranaldi and082

Freitas, 2024) (i.e., a task-oriented specialization083

of Supervised Fine-Tuning) through which we in-084

struct SLMs using Demonstrations delivered from085

different teachers prompted via a CoT mechanism.086

This leads to the target research questions, which087

are the focus of this paper:088

RQ1: How does Instruction-tuning via Demon-089

strations initialize the SLMs’ reasoning abilities?090

RQ2: What is the effect of the preference op-091

timization algorithm on the alignment between092

teacher and student models?093

RQ3: How much does the ability to solve tasks094

in a multi-step manner improve across different095

scenarios?096

To answer these questions, we select three dif-097

ferent SLMs: Llama2-7b, -13b (Touvron et al.,098

2023), Mistral-7b (Jiang et al., 2023); and three099

LLMs Llama2-70b, Mixtral (Jiang et al., 2024) and100

GPT-3.5 (OpenAI, 2023). In the teacher-student101

alignment phase, we use LLMs (teachers) to de-102

liver Demonstrations at the core of the Instruction-103

tuning process (see Figure 1) used to instruct SLMs104

(students). In the Self-refine phase, the students im-105

prove their step-wise reasoning abilities via Direct106

Preference Optimization (DPO) (Rafailov et al.,107

2023). This allows the students to sample different108

reasoning paths and CoT Demonstrations and learn109

from them (Figure 1). Moreover, differently from110

previous works, preferences are self-generated, and111

there is no need for a separately trained reward112

model as in the previous approaches (Ouyang et al.,113

2022). We demonstrate the effectiveness of the114

proposed refinement technique in aligning teacher-115

student models (overcoming the differences high-116

lighted by Ranaldi and Freitas (2024)) from the117

same family and in maximizing efficiency in in-118

domain and out-domain tasks.119

Our contributions can be summarized as follows:120

• We propose the Self-refined Instruction-tuning 121

approach that is a task-oriented Supervised 122

Fine-Tuning (SFT), which utilizes DPO 123

heuristics to conduct a self-refinement process 124

starting from instructed SLMs. 125

• We analyze the impact of different configura- 126

tions of Instruction-tuning on the SLMs be- 127

fore and after the Self-refining phase by con- 128

ducting in-depth experiments on mathemat- 129

ical problems and common sense question- 130

answering tasks using Demonstrations deliv- 131

ered by teacher of the same family (in-family) 132

or not (out-family). Hence, we show the down- 133

stream functionalities in both scenarios. 134

• Finally, we display the generalization abil- 135

ities acquired via Self-refined Instruction- 136

tuning through a systematic evaluation using 137

Demonstrations provided by in-family and 138

out-family teachers, both within in-domain 139

and out-domain tasks. 140

2 Method 141

To transfer the step-wise reasoning properties from 142

Large Language Models (LLMs) to Small Lan- 143

guage Models (SLMs), we propose Self-refine 144

Instruction-tuning, a two-step approach as shown 145

in Figure 1. In the first phase, there is a transfer of 146

step-wise (CoT) reasoning via Instruction-tuning, 147

where LLMs systematically generate Demonstra- 148

tions which are used by SLMs to initialize their 149

step-wise (CoT) alignment (Section 2.1). In the 150

second phase, the instructed SLMs Self-refine their 151

internal CoT model via the preference optimization 152

technique presented in Section 2.2. 153

2.1 Instruction-tuning Phase 154

A significant part of the state-of-the-art works em- 155

ploys standard Supervised Fine-Tuning (SFT) per- 156

formed on annotations produced by a single LLM 157
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(Large Language Model) as a mechanism to im-158

prove SLMs. In our contribution, we take a step159

further and use Instruction-tuning, which is a task-160

oriented specialization of SFT (Supervised Fine-161

Tuning), in coordination with a teacher-student162

alignment approach (detailed in Appendix A). In163

this phase, the SLM (student) is fine-tuned on a164

dataset produced by LLM (teacher) comprising a165

set of tuples in the form of (i, q, ai), where i repre-166

sents a specific instruction, q is the input question167

(e.g., math-word problem), and ai is the expected168

output and CoT answers generated from the teacher169

in response to the instruction and input. This setup170

is intended to transfer to the student models foun-171

dational problem-solving abilities, emphasizing the172

generation of outputs that conform to the provided173

instructions. The CoT answer ai is articulated as:174

ai = [w1, w2, . . . , wl−1, wl]175

with l indicating the sequence length. At each176

timestep t, the action wt is derived from the pol-177

icy πθ(·|st), where wt can be any token from the178

models vocabulary, and the state st encapsulates179

the concatenation of all previously generated to-180

kens and the optional input x if provided. The state181

transition is defined as:182

st+1 =

{
(x, i) if t = 0

[st, wt] if 1 ≤ t ≤ l
183

The Instruction-tuning loss function explicitly184

integrates the instruction i, aligning the models’185

learning process with the instructional context.186

This loss function is formulated as:187

Linst(θ) = −E(i,q,ai)∼D

[
L∑

t=1

log πθ(wt|st, i)

]
188

Here, πθ is conditioned on both the state st, the189

input q, and the instruction i, ensuring that the190

model prioritizes instruction compliance in its out-191

put generation. This methodological shift from192

SFT to Instruction-tuning underlines the principle193

of enhancing the models’ ability to accurately in-194

terpret and execute complex instructions.195

2.2 Self-refinement Phase196

In the second phase, the instructed SLMs (students)197

that have improved CoT properties via Instruction-198

tuning (Section 2.1) self-refine these properties199

with the support of Direct Preference Optimization200

(DPO) (Rafailov et al., 2023). This refinement can201

be conducted in an SFT style, relying exclusively 202

on labeled preference data. The policy model, de- 203

fined as πθ, learns by repeatedly sampling the an- 204

swers generated by teachers and students. 205

Direct Preference Optimization In the standard 206

DPO approach (Rafailov et al., 2023), a human an- 207

notator ranks the outputs from a reference policy, 208

labeling winning and losing pairs yw = πinst(x) 209

and yl = πinst(x). However, we propose an op- 210

timization step via Self-generated annotation by 211

the students πinst, which, after Instruction-tuning, 212

should have more robust performances and reliably 213

follow the demands of the questions. 214

For each Demonstration (i, x, ai), we prompt 215

the students using the input x = i+ q ( or xCoT = 216

x+ "Let’s think step by step") (blue block 217

in Figure 1). Hence, for each instance within the 218

Demonstrations we collect the Answers (ya = 219

πinst(x)) that are the answers generated by the 220

student given the input x, and the CoT-Answers 221

(yCoT = πinst(xCoT )) are the answers that deliver 222

CoT generated by the student elicited via CoT 223

mechanism xCoT . 224

In particular, assuming it is preferable for the 225

model to generate responses that provide a CoT 226

when elicited with xCoT and responses when 227

prompted with x just as the corresponding LLM 228

teacher would do, we propose an alignment by ex- 229

ploiting DPO optimization. This aims to move the 230

default style of our model (response generated by 231

the student) towards the desired style (answers that 232

deliver CoT). Different configurations are proposed 233

depending on the desired result. Starting from the 234

standard equation 1: 235

LDPO(πθ;πinst) = −E(x,yw,yl)∼D

[log σ(M(x, yw, yl))]
(1) 236

where σ is the sigmoid function, and 237

M(x, yw, yl) = β log
πθ(yw|x)
πsft(yw|x)

−β log
πθ(yl|x)
πsft(yl|x)

(2) 238

where β is a hyperparameter. 239

We propose the Self-refine Instruction-tuning 240

that uses as optimization technique DPOCoT (de- 241

scribed in details in Appendix B in Equation 3. 242

In particular, in DPOCoT the answers that deliver 243

a CoT response which is self-generated from the 244

students are referred to as the preferred response. 245
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3 Experimental Setup246

In order to evaluate the proposed model, we use247

both commonsense and mathematical reasoning248

tasks (introduced in Section 3.1) that are generally249

used to assess the step-wise inference properties250

of Large Language Models (LLMs). Regarding251

the Self-refine Instruction-tuning on the Small Lan-252

guage Models (SLMs), we use the approach pre-253

sented in Section 3.2.254

3.1 Tasks & Datasets255

In this paper, we selected different tasks that focus256

on reasoning tasks:257

Commonsense Task We adopt two benchmarks258

to evaluate commonsense reasoning: Common-259

SenseQA (Talmor et al., 2019) (CSQA) and Open-260

BookQA (Mihaylov et al., 2018) (OBQA) are two261

multi-choice commonsense question-answering262

tasks.263

Physical & Social Interaction Task We adopt264

two benchmarks to evaluate reasoning in the con-265

text of everyday situations, aiming to establish the266

most reasonable solution: Interaction Question An-267

swering (PIQA) (Bisk et al., 2019) and Social In-268

teraction Question Answering (SIQA) (Sap et al.,269

2019), which emphasizes people’s actions and so-270

cial implications.271

Mathematical Task We use two math word prob-272

lem benchmarks to evaluate the models of math-273

ematical reasoning. MultiArith (Roy and Roth,274

2015) covers a set of multi-step arithmetic reason-275

ing tasks, while GSM8k (Cobbe et al., 2021) covers276

a set of primary school-level mathematical prob-277

lems.278

additional benchmarks Finally, in order to eval-279

uate the adaptability of our proposal, we conduct280

further analysis on two additional evaluation bench-281

marks: MATH (Hendrycks et al., 2021b), and282

MMLU (Hendrycks et al., 2021a).283

Datasets Since the test split is not prescribed for284

all the benchmarks, we adopt the following strat-285

egy: for SIQA, PIQA, CSQA, and OBQA, we286

use 4000 examples with equally distributed tar-287

get classes as training data and the validation ver-288

sions found on huggingface as test data, while for289

GSM8K and MultiArith we use the full hugging-290

face datasets. In Table 8, we report the descrip-291

tive statistics and splitting ratios, while in Table 7,292

we report one example for each benchmark. The293

supporting datasets are publicly accessible as de- 294

scribed in Table 9. 295

3.2 Self-refine Instruction-tuning Pipeline 296

The Self-refine Instruction-tuning comprises the 297

annotation process conducted by the LLMs teach- 298

ers that are prompted in the zero-shot scenario (as 299

shown in Table 6), as explained in Appendix A. We 300

selected Llama-2-70 (Touvron et al., 2023), Mix- 301

tral7x8 (Jiang et al., 2024) and GPT-3.5 (OpenAI, 302

2023) as LLMs (teachers) and Llama2-7, -13 (Tou- 303

vron et al., 2023) and Mistral-7 (Jiang et al., 2023) 304

SMLs (students) models. 305

Hence, the students models are tuned, as pro- 306

posed in (Taori et al., 2023) and evaluated with 307

probing pipelines (detailed in Section 3.3). The 308

students are instructed via Demonstrations that con- 309

tain the answers generated by the teachers, as ex- 310

plained in Section 2.1. Downstream of the teacher- 311

student CoT transference process, the optimization 312

technique (proposed in Section 2.2 and detailed in 313

Appendix B) is employed to improve alignment 314

and self-refine the quality of the generation. 315

3.2.1 Models Setup 316

We conduct the Self-refined Instruction-tuning 317

in two different phases. Firstly, we start with 318

Instruction-tuning phase using QLoRA Dettmers 319

et al. (2023). This approach allows Instruction- 320

tuning to be performed while reducing memory 321

usage. In particular, Dettmers et al. (2023) propose 322

several techniques for tuning models with many pa- 323

rameters on GPUs with limited resources while pre- 324

serving 16-bit tuning performance. We follow the 325

training approach proposed in (Taori et al., 2023), 326

setting four training epochs using a learning rate 327

of 2e-5 with a 1e-4 weight decay. We use the co- 328

sine learning rate scheduler with a warm-up ratio 329

of 0.03. Furthermore, we conduct the Self-refine 330

phase following the approach proposed in (Rafailov 331

et al., 2023). In particular, we use the huggingface 332

DPOtrainer to support its reproducibility. We fol- 333

low the parameters proposed in (Rafailov et al., 334

2023). Hence, for the DPO policy, our work em- 335

ploys a learning rate of 1e-6, β set at 0.1, and a 336

warm-up step count of 100. The batch size is con- 337

figured to 128. The optimization process is capped 338

at a maximum of 1000 steps, where we save the 339

checkpoint corresponding to the lowest loss on the 340

validation set. The experiments were conducted 341

on a workstation equipped with four Nvidia RTX 342

A6000 with 48GB of VRAM. 343
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Figure 2: Accuracies (%) on benchmarks (Section 3.1) before Instruction-tuning (i.e., Baselines and Baseline
CoT), after Instruction-tuning (IT) performed on Demonstrations delivering CoT and finally behind the Self-refine
Instruction-tuning phase (Self IT). In particular, the models were instructed via Demonstrations delivered by
in-family LLMs (as described in the legend, we use the notation method(Teacher->Student)).

3.3 Evaluation344

The most commonly used evaluation methods for345

question-answering tasks are language-model prob-346

ing, in which the option with the highest probabil-347

ity is selected (Brown et al., 2020), and multiple-348

choice probing, in which the models are asked to349

commit to an answer. The evaluation in the first350

case is performed with a function taking the argmax351

and, in the second case, with a direct string match-352

ing. The second method is more widely used in353

recent evaluations as it can be inclusive to the larger354

GPT family models(OpenAI, 2023), where prob-355

ability values are not readily accessible. In the356

experiments, we chose the latter to have a compa-357

rable and scalable pipeline (Details provided in Ap-358

pendix C.2). Finally, string matching is performed359

between the generated outputs and the target choice360

to evaluate the percentages of the correct answers.361

4 Results & Discussion362

The Self-refine Instruction-tuning improves the363

alignment between Large Language Models364

(LLMs) and Small (SLMs) in both in-family and365

out-family settings. These conclusions can be ob-366

served in Figure 2 and Figure 3, which reports367

the downstream accuracies without tuning (see the368

Baselines), with only the Instruction-tuning phase369

on Demonstrations and after the Self-refine phase.370

As discussed in Section 4.1, the models with only371

Instruction-tuning on Demonstrations (generated372

by LLMs) transfers the reasoning properties in a373

marginal way (see Instruction-tuned in Figures 2). 374

However, although teacher-student alignment 375

via Instruction-tuning produces better students, an 376

improved alignment is achieved through the Self- 377

refine phase, as discussed in 4.2. In particular, 378

the ’Self-refine Instruction-tuning’ bars in Figure 379

2 show that the students self-refined outperformed 380

the students tuned only with Instruction-tuning 381

(’Instruction-tuning’ bars on Figure 2). Further- 382

more, the alignment via Demonstrations generated 383

by teachers outside the same family (out-family) 384

delivers more robust students (see Figure 3 the Self- 385

refine Instruction-tuning and (in-family) bars). 386

Finally, students models behind the self-refine 387

phase outperformed others in both in-domain 388

and out-domain tasks (discussed in Section 4.3). 389

Hence, the self-refine mechanism effectively aligns 390

teacher-student capabilities in out-domain tasks by 391

enhancing performance even in the presence of 392

fewer Demonstrations (Section 4.4). 393

4.1 The Instruction-tuning alignment 394

Instruction-tuning led by Larger Language Mod- 395

els (teachers models), which are able to deliver 396

multi-step reasoned answers, induces this property 397

within Smaller Language Models (students mod- 398

els). This can be seen in the experiments in Figure 399

2, Figure 3 and additional evaluations in Appendix 400

I. The student models behind instruction-tuning on 401

demonstrations produced by teacher models outper- 402

formed the baselines of the proposed benchmarks. 403

While one can observe consistent improvements 404

5



Figure 3: Accuracies (%) on benchmarks (Section 3.1) before Instruction-tuning ( Baseline CoT), behind first phase
performed on Demonstrations delivering CoT (i.e., Instruction-tuned (IT)) and finally behind the Self-refine phase
(i.e., Self-refine IT). In particular, the models were instructed via Demonstrations delivered by out-family LLMs (as
described in the legend, we use the notation method(Teacher->Student)).

in performance across the board, there are moder-405

ate variations across models and tasks. The teacher406

models that generate Demonstrations stem from dif-407

ferent families and perform differently, as shown in408

Table 5. The consequence of this phenomenon can409

be seen in Figure 2 and Figure 3 (horizontal lines410

that are the reported performance of the teachers411

and bars ’Instruction-tuning’ that are the perfor-412

mance of the students). Therefore, the teacher-413

student alignment is not complete as there is a gap414

between the performances of the teachers and the415

students tuned via Instruction-tuning (only phase416

presented in Section 2.1). In addition, it is possible417

to differentiate between in-family and out-family418

alignment. In the in-family, where students are419

instructed with Demonstrations delivered by the420

teachers of the same family, performances vary421

from 6.3 points on average in question-answering422

(QA) tasks and 8.2 points on average in math word423

problems (MWP) tasks. Meanwhile, in the out-424

family alignment, the performances vary by 8.5 on425

the QA and 8.7 on the MWP.426

Hence, to improve the alignment both in-family427

and consistently out-family, we have proposed an428

optimization technique based on a self-refinement429

approach (introduced in Section 2.2), the results of430

which we discuss in Section 4.2.431

4.2 The Self-refine Impact432

The Self-refine process enables complete in-family433

student-teacher alignment by consistently increas-434

ing performance in out-family settings and improv-435

ing the qualities of generated answers. The results 436

obtained in Figure 2 show that the students (SLMs 437

instructed with Self-refine Instruction-tuning) out- 438

perform the non-self-refined students and perform 439

comparably to their teachers. The same behaviour 440

can be observed from the out-family setting shown 441

in Figure 3. In particular, the teacher GPT-3.5 442

showed a more robust baseline performance (Ta- 443

ble 5). Although Instruction-tuning alone transfers 444

some of the abilities to the student models, they 445

were significantly lower when compared to the out- 446

family teacher models. In contrast, the teacher- 447

student performances significantly converged af- 448

ter the self-refine phase, leading to the alignment 449

completion. Finally, a positive impact can also be 450

observed on the quality of students’ generations, 451

as shown in the additional experiment discussed in 452

Appendix H. 453

The performances appear completely aligned, 454

but the students were tested only for in-domain 455

tasks. The proposed approach could cause students 456

to over-specialize in in-domain tasks, running the 457

risk of losing the ability to solve out-domain tasks. 458

For this reason, we performed a set of assessments 459

evaluating students on in-domain and out-domain 460

tasks and discussed the results in Section 4.3. 461

4.3 In-Domain and Out-Domain 462

The Self-refine Instruction-tuning approach com- 463

plements student-teacher alignment and improves 464

students’ generalization abilities in out-domain 465

tasks. These results can be observed in Table 1 with 466

6



Trained on Teacher Evaluated on

OBQA CSQA PIQA SIQA GMS8K MultiArith

Baseline - 53.6±.2 50.6±.4 61.6±.1 46.5±.3 68.2±.5 69.5±.2

Baseline CoT - 49.5±.4 55.8±.3 63.8±.1 51.3±.5 71.3±.2 72.6±.4

OBQA
Instruction-tuning 65.3±.3 65.4±.2 66.3±.4 59.2±.2 61.4±.2 60.2±.3

+ Self-refine 70.8±.3 73.2±.2 75.3±.1 62.6±.3 68.7±.4 69.8±.3

Cross Self-refine - 78.4±.1 78.3±.5 64.5±.3 74.4±.4 83.2±.2

CSQA
Instruction-tuning 57.8±.1 71.4±.3 65.5±.4 61.8±.2 60.1±.5 59.3±.1

+ Self-refine 69.5±.5 79.8±.3 74.2±.1 66.3±.2 61.2±.3 60.3±.3

Cross Self-refine 68.7±.4 - 78.4±.2 64.1±.3 72.1±.4 73.4±.2

PIQA
Instruction-tuning 56.9±.1 64.3±.2 80.2±.3 57.3±.3 58.3±.1 59.1±.3

+ Self-refine 68.2±.4 67.3±.5 84.6±.3 63.4±.2 67.8±.1 66.9±.3

Cross Self-refine 68.2±.3 71.3±.3 - 64.2±.1 68.7±.4 67.6±.1

SIQA
Instruction-tuning 58.9±.2 62.8±.5 63.2±.1 62.8±.3 59.6±.1 60.2±.3

+ Self-refine 68.3±.3 68.5±.2 78.3±.3 66.2±.4 61.3±.5 60.9±.4

Cross Self-refine 69.4±.2 68.5±.2 77.9±.3 - 65.1±.3 64.7±.2

GSM8K
Instruction-tuning 53.2±.4 54.9±.5 63.7±.1 52.5±.2 71.2±.3 70.3±.2

+ Self-refine 58.6±.3 61.7±.4 62.3±.2 52.4±.3 76.9±.1 74.3±.2

Cross Self-refine 64.6±.5 64.3±.2 77.6±.4 60.3±.2 - 75.3±.3

MultiArith
Instruction-tuning 53.6±.2 55.7±.3 53.8±.3 51.5±.3 69.3±.1 75.6±.2

+ Self-refine 59.1±.2 63.2±.5 58.3±.3 58.6±.1 70.2±.4 85.8±.2

Cross Self-refine 65.3±.4 61.3±.1 62.1±.2 60.7±.5 73.4±.3 -

Table 1: Evaluation of Llama-2-7 Instruction-tuned (Instruction-tuned) and with completely Self-refine
Instruction-tuning (+ Self-refine Instruction-tuned) on Demonstrations using different test sets. We evaluate
in-domain (QA vs QA) and out-domain (QA vs math-word problem) benchmarks. "Baselines" are referred to the
non-instructed model. Results colored in green indicate the in-domain benchmark, blue the out-domain bench-
mark, and orange the same benchmark on which perform the evaluation phase. Moreover, we propose Self-refine
Instruction-tuning in cross-setting scenario where we optimize the model on the training set related to the evaluated
task.

Llama2-7 as students and Llama2-70 as teachers467

(in Appendix Table 10 with Llama2-13 Table 11468

with Mistral-7). In particular, behind the evalu-469

ations performed on in-domain and out-domain470

tasks, the students Self-refine Instruction-tuned out-471

perform the baselines and the Instruction-tuned472

models. Furthermore, to observe the impact of473

the optimization phase (introduced in Section 2.2)474

on the downstream performance, we conducted a475

further experiment by fixing the Instruction-tuning476

phase and switching the Self-refine ones across477

different evaluation tasks (e.g., we instructed a stu-478

dent on OBQA and then optimized via self-refine479

approach on CSQA). As shown in lines Cross480

Self-refine of Table 1, students warmed up on481

tasks other than those they are optimized, outper-482

formed the others, and obtained similar perfor-483

mances to those obtained from in-domain models.484

This shows that optimization positively impacts the485

alignment of generalization abilities in out-domain486

tasks. Finally, following evaluations in out-domain487

tasks and across scenarios, we evaluate the perfor-488

mance of the proposed approach by reducing the489

number of demonstrations available for alignment490

in Section 4.4.491

4.4 Low-resource Optimization 492

Self-refine Instruction-tuning achieves sustainable 493

performances in low-resource settings. In fact, in 494

Figure 4, it is possible to observe that the perfor- 495

mance achieved by the self-refined students con- 496

sistently outperforms that of the non-self-refined 497

students (where only phase 1 described in Section 498

2.1 was performed) (technical details on the break- 499

down can be found in Appendix C.1). 500

Although it emerges that only the optimization 501

process via DPO is more performant than the 502

instruction-tuning process alone, the combination 503

of the two phases achieves the best results in both 504

in-family and out-family alignment in each pro- 505

posed splitting that are described in Appendix C.1. 506

5 Related Work 507

5.1 Multi-step Reasoning 508

Previous works focus on Chain-of-Thought (CoT) 509

prompting techniques, studying the impact of 510

prompting design and engineering, proposing spe- 511

cialized interventions to improve CoT generaliza- 512

tion and fine-grained multi-step reasoning proper- 513

ties (Wei et al., 2022; Fu et al., 2023). 514

On the prompting design side, Gao et al. (2023) 515

7



proposed using Python programs as a CoT prompt,516

demonstrating more accurate reasoning steps and517

significant improvements behind CoT prompting518

(Wei et al., 2022). Zhou et al. (2023) introduced a519

code generation approach to verify the intermediate520

reasoning step (OpenAI, 2023).521

In parallel, there have been improvements in the522

accessibility of lower-parameter versions of Large523

Language Models (LLMs), which we define as524

Small Language Models (SLMs), on which previ-525

ous CoT improvements cannot be fully observed526

(Shridhar et al., 2023; Ho et al., 2023). There-527

fore, several works are emerging at this gap, aim-528

ing to transfer LLM reasoning properties to SLMs.529

Pioneering proposals in this direction proposed530

teacher-student alignment methods through a series531

of approaches geared towards the distillation of the532

knowledge generated by the teacher for the fine-533

tuning of the student (Li et al., 2023b; Magister534

et al., 2023; Shridhar et al., 2023). Later, Yue et al.535

(2023) proposed specialized Instruction-tuning us-536

ing Alpaca-like style demonstrations (Taori et al.,537

2023) specialized for mathematical tasks, while538

Luo et al. (2023); Xu et al. (2023) proposed super-539

vised fine-tuning reinforced with rewarding algo-540

rithms.541

5.2 Reinforcement Learning (RL)542

A significant component that promotes the gen-543

erative reasoning delivering CoT is provided by544

refinement via RL methods. Recent work that ap-545

plies Proximal Policy Optimization (PPO) (Schul-546

man et al., 2017) for aligning human preferences547

(Ouyang et al., 2022). Several methods have548

been proposed to improve the efficiency of align-549

ment (Azar et al., 2023; Ethayarajh et al., 2023),550

including Direct Preference Optimization (DPO)551

(Rafailov et al., 2023).552

In this work, we adopt RL to refine performance553

over conventional SFT. For mathematical problem554

solving, Uesato et al. (2022) trained an outcome- or555

process-based reward model to perform re-ranking556

(Cobbe et al., 2021), achieving better performance557

than SFT and majority voting (Wang et al., 2023b).558

(Luong et al., 2024) adopted reinforcement learn-559

ing as an extension of traditional supervised tuning.560

We adopt DPO and automate the reward process in561

a teacher-student context. We focus on the transfer562

of CoT-style, step-wise reasoning and propose a re-563

finement technique applied to models downstream564

of the instruction-tuning phase.565

5.3 Self-refined Instruction-tuning 566

Complementing and enhancing foundational ap- 567

proaches (Magister et al., 2023; Uesato et al., 2022; 568

Li et al., 2023a; Ho et al., 2023), several papers 569

have been published simultaneously Wang et al. 570

(2023d); Luo et al. (2023); Wang et al. (2023a); 571

Paul et al. (2024); Luong et al. (2024); Ranaldi 572

and Freitas (2024) (Table 15 summarises the main 573

features). These works prove the effect of super- 574

vised fine-tuning to transfer the ability to produce 575

multi-step reasoned answers from larger to smaller 576

models, as described in Section 5.2. Our work goes 577

beyond the state-of-the-art by: 578

• proposing a method for aligning CoT abilities 579

by introducing Instruction-tuning via Demon- 580

strations produced by answers generated by 581

different LLMs, decentralizing the unique 582

teacher model (in many cases GPT-3.5,4). 583

• analyzing the alignment performance between 584

in-family and out-family models on different 585

tasks related to commonsense and math rea- 586

soning, identifying crucial alignment factors 587

that arise between teachers and students. 588

• investigating the impact of teacher-student 589

alignment by adapting and promoting DPO 590

(Rafailov et al., 2023) as a cornerstone method 591

for eliminating performance gaps. 592

6 Conclusion 593

This paper proposes a novel approach for align- 594

ing multi-step CoT reasoning between teacher 595

Large Language Models (LLMs) and student 596

Smaller LMs (SLMs). In particular, our Self- 597

refine Instruction-tuning is framed as an instruc- 598

tion tuning via Chain-of-Thought Demonstrations 599

method based on explanations delivered by LLMs 600

prompted by the CoT mechanism, which is then 601

reinforced via the Self-refine phase that uses Direct 602

Preference Optimization. We also contrast the im- 603

pact of in-family and out-family alignment across 604

teacher and student models. The results highlight 605

the impact of teacher-student Instruction-tuning 606

interventions as a mechanism to improve the multi- 607

wise reasoning properties of smaller language mod- 608

els and promote the self-refinement abilities of in- 609

structed models to complete the alignment. 610
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Limitations611

In this paper, we analyzed the impact of Answers612

delivered by Large Language Models using them as613

Demonstrations to reinforce the abilities of Small614

Language Models. Although we proposed an ex-615

tensive study, there are several limitations:616

• only English-language prompting methods617

and tasks are considered. The understanding618

of these methods across different languages619

still needs to be established.620

• dependence on Large Language Models,621

where the supporting training sets are not al-622

ways fully known. Although the characteris-623

tics of the corpora are reported in the system624

reports. Consequently, contextualising the dif-625

ferences in pre-training data between models626

is not fully possible, where the analysis is con-627

strained to observing the outputs in natural628

language.629

In conclusion, learning from and with Demonstra-630

tions carries some specific risks associated with631

automation. Although a model may generalize its632

predictions using a seemingly consistent series of633

natural language steps, even if the prediction is634

ultimately correct, there is no guarantee that the635

predicted output comes from a process represented636

by the generalization. A end-user might be overcon-637

fident in the model based on the CoT mechanism.638

Ethical Statement639

Although this research enhances the reasoning abil-640

ities of Smaller Language Models, they still need641

to be made sufficiently robust to be applied within642

more critical domains. Further safety and out-of-643

distribution generalisation mechanisms needs to be644

developed in tandem with the application of the645

methods described in this paper, in order to estab-646

lish the robustness of the described mechanisms.647

References648

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal649
Piot, Daniel Guo, Daniele Calandriello, Michal650
Valko, and Rémi Munos. 2023. A general theoret-651
ical paradigm to understand learning from human652
preferences.653

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng654
Gao, and Yejin Choi. 2019. Piqa: Reasoning about655
physical commonsense in natural language.656

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 657
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 658
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 659
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 660
Gretchen Krueger, Tom Henighan, Rewon Child, 661
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 662
Clemens Winter, Christopher Hesse, Mark Chen, Eric 663
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 664
Jack Clark, Christopher Berner, Sam McCandlish, 665
Alec Radford, Ilya Sutskever, and Dario Amodei. 666
2020. Language models are few-shot learners. 667

Sébastien Bubeck, Varun Chandrasekaran, Ronen El- 668
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe- 669
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, 670
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, 671
and Yi Zhang. 2023. Sparks of artificial general in- 672
telligence: Early experiments with gpt-4. 673

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 674
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 675
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 676
Nakano, Christopher Hesse, and John Schulman. 677
2021. Training verifiers to solve math word prob- 678
lems. ArXiv, abs/2110.14168. 679

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 680
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning 681
of quantized llms. 682

Kawin Ethayarajh, Winnie Xu, Dan Jurafsky, 683
and Douwe Kiela. 2023. Human-aware loss 684
functions (halos). Technical report, Contextual AI. 685
Https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf.686

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and 687
Tushar Khot. 2023. Complexity-based prompting for 688
multi-step reasoning. 689

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 690
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 691
ham Neubig. 2023. Pal: Program-aided language 692
models. 693

Vedant Gaur and Nikunj Saunshi. 2023. Reasoning 694
in large language models through symbolic math 695
word problems. In Findings of the Association for 696
Computational Linguistics: ACL 2023, pages 5889– 697
5903, Toronto, Canada. Association for Computa- 698
tional Linguistics. 699

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 700
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 701
2021a. Measuring massive multitask language under- 702
standing. 703

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 704
Arora, Steven Basart, Eric Tang, Dawn Song, and 705
Jacob Steinhardt. 2021b. Measuring mathematical 706
problem solving with the math dataset. 707

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023. 708
Large language models are reasoning teachers. In 709
Proceedings of the 61st Annual Meeting of the 710
Association for Computational Linguistics (Volume 711
1: Long Papers), pages 14852–14882, Toronto, 712
Canada. Association for Computational Linguistics. 713

9

http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
https://doi.org/10.18653/v1/2023.acl-long.830


Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-714
sch, Chris Bamford, Devendra Singh Chaplot, Diego715
de las Casas, Florian Bressand, Gianna Lengyel, Guil-716
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,717
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,718
Thibaut Lavril, Thomas Wang, Timothée Lacroix,719
and William El Sayed. 2023. Mistral 7b.720

Albert Q. Jiang, Alexandre Sablayrolles, Antoine721
Roux, Arthur Mensch, Blanche Savary, Chris722
Bamford, Devendra Singh Chaplot, Diego de las723
Casas, Emma Bou Hanna, Florian Bressand, Gi-724
anna Lengyel, Guillaume Bour, Guillaume Lam-725
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-726
Anne Lachaux, Pierre Stock, Sandeep Subramanian,727
Sophia Yang, Szymon Antoniak, Teven Le Scao,728
Théophile Gervet, Thibaut Lavril, Thomas Wang,729
Timothée Lacroix, and William El Sayed. 2024. Mix-730
tral of experts.731

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xi-732
ang Ren, Kai-Wei Chang, and Yejin Choi. 2023a.733
Symbolic chain-of-thought distillation: Small mod-734
els can also “think” step-by-step. In Proceedings735
of the 61st Annual Meeting of the Association736
for Computational Linguistics (Volume 1: Long737
Papers), pages 2665–2679, Toronto, Canada. Associ-738
ation for Computational Linguistics.739

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,740
Jian-Guang Lou, and Weizhu Chen. 2023b. Making741
language models better reasoners with step-aware742
verifier. In Proceedings of the 61st Annual Meeting743
of the Association for Computational Linguistics744
(Volume 1: Long Papers), pages 5315–5333,745
Toronto, Canada. Association for Computational Lin-746
guistics.747

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji748
Zhou, and Yue Zhang. 2023. Evaluating the logical749
reasoning ability of chatgpt and gpt-4.750

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-751
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei752
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-753
ardmath: Empowering mathematical reasoning for754
large language models via reinforced evol-instruct.755

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng756
Sun, Xiaoran Jin, and Hang Li. 2024. Reft: Reason-757
ing with reinforced fine-tuning.758

Lucie Charlotte Magister, Jonathan Mallinson, Jakub759
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.760
Teaching small language models to reason. In761
Proceedings of the 61st Annual Meeting of the762
Association for Computational Linguistics (Volume763
2: Short Papers), pages 1773–1781, Toronto, Canada.764
Association for Computational Linguistics.765

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish766
Sabharwal. 2018. Can a suit of armor conduct elec-767
tricity? a new dataset for open book question answer-768
ing.769

OpenAI. 2023. Gpt-4 technical report.770

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car- 771
roll L. Wainwright, Pamela Mishkin, Chong Zhang, 772
Sandhini Agarwal, Katarina Slama, Alex Ray, John 773
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 774
Maddie Simens, Amanda Askell, Peter Welinder, 775
Paul Christiano, Jan Leike, and Ryan Lowe. 2022. 776
Training language models to follow instructions with 777
human feedback. 778

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat- 779
riz Borges, Antoine Bosselut, Robert West, and Boi 780
Faltings. 2024. Refiner: Reasoning feedback on in- 781
termediate representations. 782

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano 783
Ermon, Christopher D. Manning, and Chelsea Finn. 784
2023. Direct preference optimization: Your language 785
model is secretly a reward model. 786

Leonardo Ranaldi and Andre Freitas. 2024. Align- 787
ing large and small language models via chain- 788
of-thought reasoning. In Proceedings of the 789
18th Conference of the European Chapter of the 790
Association for Computational Linguistics (Volume 791
1: Long Papers), pages 1812–1827, St. Julian’s, 792
Malta. Association for Computational Linguistics. 793

Subhro Roy and Dan Roth. 2015. Solving general 794
arithmetic word problems. In Proceedings of the 795
2015 Conference on Empirical Methods in Natural 796
Language Processing, pages 1743–1752, Lisbon, 797
Portugal. Association for Computational Linguistics. 798

Maarten Sap, Hannah Rashkin, Derek Chen, Ro- 799
nan Le Bras, and Yejin Choi. 2019. Social 800
IQa: Commonsense reasoning about social interac- 801
tions. In Proceedings of the 2019 Conference on 802
Empirical Methods in Natural Language Processing 803
and the 9th International Joint Conference on 804
Natural Language Processing (EMNLP-IJCNLP), 805
pages 4463–4473, Hong Kong, China. Association 806
for Computational Linguistics. 807

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec 808
Radford, and Oleg Klimov. 2017. Proximal policy 809
optimization algorithms. 810

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya 811
Sachan. 2023. Distilling reasoning capabilities 812
into smaller language models. In Findings of the 813
Association for Computational Linguistics: ACL 814
2023, pages 7059–7073, Toronto, Canada. Associa- 815
tion for Computational Linguistics. 816

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 817
Jonathan Berant. 2019. CommonsenseQA: A ques- 818
tion answering challenge targeting commonsense 819
knowledge. In Proceedings of the 2019 Conference 820
of the North American Chapter of the Association 821
for Computational Linguistics: Human Language 822
Technologies, Volume 1 (Long and Short Papers), 823
pages 4149–4158, Minneapolis, Minnesota. Asso- 824
ciation for Computational Linguistics. 825

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 826
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 827

10

http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
http://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2401.08967
http://arxiv.org/abs/2401.08967
http://arxiv.org/abs/2401.08967
https://doi.org/10.18653/v1/2023.acl-short.151
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
https://aclanthology.org/2024.eacl-long.109
https://aclanthology.org/2024.eacl-long.109
https://aclanthology.org/2024.eacl-long.109
https://aclanthology.org/2024.eacl-long.109
https://aclanthology.org/2024.eacl-long.109
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421


and Tatsunori B. Hashimoto. 2023. Stanford alpaca:828
An instruction-following llama model. https://829
github.com/tatsu-lab/stanford_alpaca.830

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-831
bert, Amjad Almahairi, Yasmine Babaei, Nikolay832
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti833
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton834
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,835
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,836
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-837
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan838
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,839
Isabel Kloumann, Artem Korenev, Punit Singh Koura,840
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-841
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-842
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-843
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-844
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,845
Ruan Silva, Eric Michael Smith, Ranjan Subrama-846
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-847
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,848
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,849
Melanie Kambadur, Sharan Narang, Aurelien Ro-850
driguez, Robert Stojnic, Sergey Edunov, and Thomas851
Scialom. 2023. Llama 2: Open foundation and fine-852
tuned chat models.853

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-854
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,855
Geoffrey Irving, and Irina Higgins. 2022. Solving856
math word problems with process- and outcome-857
based feedback.858

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, Binghuai859
Lin, Yunbo Cao, Tianyu Liu, and Zhifang Sui. 2023a.860
Making large language models better reasoners with861
alignment.862

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc863
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,864
and Denny Zhou. 2023b. Self-consistency improves865
chain of thought reasoning in language models.866

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-867
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-868
naneh Hajishirzi. 2023c. Self-instruct: Aligning869
language models with self-generated instructions.870
In Proceedings of the 61st Annual Meeting of the871
Association for Computational Linguistics (Volume872
1: Long Papers), pages 13484–13508, Toronto,873
Canada. Association for Computational Linguistics.874

Zhaoyang Wang, Shaohan Huang, Yuxuan Liu, Jia-875
hai Wang, Minghui Song, Zihan Zhang, Haizhen876
Huang, Furu Wei, Weiwei Deng, Feng Sun, and877
Qi Zhang. 2023d. Democratizing reasoning abil-878
ity: Tailored learning from large language model. In879
Proceedings of the 2023 Conference on Empirical880
Methods in Natural Language Processing, pages881
1948–1966, Singapore. Association for Computa-882
tional Linguistics.883

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,884
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,885

Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. 886
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy 887
Liang, Jeff Dean, and William Fedus. 2022. Emer- 888
gent abilities of large language models. 889

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 890
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and 891
Denny Zhou. 2023. Chain-of-thought prompting elic- 892
its reasoning in large language models. 893

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 894
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 895
Jiang. 2023. Wizardlm: Empowering large language 896
models to follow complex instructions. 897

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao 898
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2023. 899
Mammoth: Building math generalist models through 900
hybrid instruction tuning. 901

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. 902
Goodman. 2022. Star: Bootstrapping reasoning with 903
reasoning. 904

Mengxue Zhang, Zichao Wang, Zhichao Yang, Weiqi 905
Feng, and Andrew Lan. 2023. Interpretable math 906
word problem solution generation via step-by-step 907
planning. 908

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun 909
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song, 910
Mingjie Zhan, and Hongsheng Li. 2023. Solving 911
challenging math word problems using gpt-4 code 912
interpreter with code-based self-verification. 913

11

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2211.14275
http://arxiv.org/abs/2211.14275
http://arxiv.org/abs/2211.14275
http://arxiv.org/abs/2211.14275
http://arxiv.org/abs/2211.14275
http://arxiv.org/abs/2309.02144
http://arxiv.org/abs/2309.02144
http://arxiv.org/abs/2309.02144
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.emnlp-main.120
https://doi.org/10.18653/v1/2023.emnlp-main.120
https://doi.org/10.18653/v1/2023.emnlp-main.120
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2306.00784
http://arxiv.org/abs/2306.00784
http://arxiv.org/abs/2306.00784
http://arxiv.org/abs/2306.00784
http://arxiv.org/abs/2306.00784
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921


A Instruction-tuning

The Instruction-tuning proposed in our contribution follows the pipeline proposed in (Ranaldi and Freitas,
2024) to achieving teacher-student alignment comprises two steps: annotation and knowledge transfer.
In the annotation phase, Large Language Models (teachers) are prompted with questions (see Table
3). The answers are collated and form the Demonstrations (see Table 6). They then move on to the
Instruction-tuning phase, conducted using what was proposed in (Taori et al., 2023). In particular, the
Demonstrations are constructed with triples formed by the instruction (a pattern to guide the generation
related to the task), the input, which is the question related to the mathematical problem or the desired
question, and the output the prompted LLM generated. Note that instruction and input can oftentimes be
concatenated, but this depends on the basic configurations of the patterns and the type of task to be solved.
The instruction-tuning process, a specialization of task-oriented fine-tuning, is similar to the latter and can
be described in Section 2.1.

B Self-refine Instruction-tuning

In order to refine Small Language Models (students) instructed via Demonstrations delivered by Large
Language Models (teachers) we propose the Self-refine phase (introduced in Section 2.2). In particular,
this is based on a variant of the DPO optimization algorithm (Rafailov et al., 2023).
Starting from the Demonstrations defined as D = (ii, qi, ai) where i ∈ D (note that ai are generated
using CoT prompt as showed in Appendix D), we prompt the students using the input xi = ii + q ( and
x̂i = xi+ "Let’s think step by step") ∀i ∈ D.
Hence, for each element in Demonstrations, we collect the Answers (yi = πinst(xi)) that are the answers
generated by the student given the input xi, and the CoT-Answers (ŷCoT = πinst(x̂i)) are the answers
that deliver CoT generated by the student elicited via CoT mechanism x̂i.
Hence, we introduce:

• Oracle or Target ti that is the target answer given the input xi.

• Demonstration Answer âi and ai: that are target answer given the input xi or x̂i.

• Answer yi = πinst(x): is the answer generated by the student given the input x (without CoT
prompt).

• CoT Answer yCoT = πinst(xCoT ): is the answer that delivers CoT generated by the student elicited
via CoT mechanism xCoT .

In the following lines, we formalize the structuring of DPOCoT , DPOanswer and other configurations.

DPOCoT We propose DPOCoT where the answers that deliver correct CoT are referred to as the preferred
response, while the others are the answers without CoT defined as:

LDPOCoT (πθ;πinst) = −E(xCoT ,yw,yl)∼D [log σ(M(xCoT , yw, yl))] (3)

Where LDPOCoT (πtheta;πtextinst) the same LDPO introduced in Section 2.2 but in particular to elicit pre-
ferred generations the yw and yl components are defined as follows, ∀i ∈ D :

yw =

{
ŷi if ti ∈ ŷi

âi
(4)

while the discouraged answers are yl that are yi ∀i ∈ D.

DPOanswer In contrast, we propose DPOanswer and where the answers without CoT are referred to as the
preferred.

LDPOanswer(πθ;πinst) = −E(x,yp,yCoT )∼D [log σ(M(x, yp, yCoT ))] (5)

However, since our contribution is focused on CoT in the main work, we only consider DPOCoT . In the
appendix, we have reported DPOanswer results.
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C Experimental Details

C.1 Data Splitting
In order to observe the impact of the Demonstrations, we produced a series of experiments by systemati-
cally decreasing the Instruction-tuning data. In particular, we chose three sub-sets with 75%, 50%, and
25% from the total number of demonstrations. In detail, the Self-refine Instruction phases on the number
of equal Demonstrations are performed by taking about 3000 examples in splitting 100%, 2250 in splitting
50%, 1500 in splitting 50%, and 750 in splitting 25%. We chose the value 3000 because it has the smallest
CoT Demonstrations available. For the total Demonstrations, we selected random samples. Using these
splitting, we performed the evaluations incrementally as the demonstrations used to do Instruction-tuning,
to do Self-refine, and to do Self-refine Instruction-tuning.

C.2 Parameters
The annotation phase that the Teachers performed was done on the training set. The evaluation phase of
both the basic models and the Students and the Teachers was done on the test splitting. The evaluation,
described in Section 3.3, was done with question probing and string matching of the generated answers.
More specifically:

Teachers We performed the annotation phase for each benchmark by delivering to GPT-3.5-turbo,
Mixtral7x8 and Llama-2-70-chat the prompts structured as shown in Table 2 and Table 3 (customized
for each benchmark). We set the temperatures to 0.7 for GPT-3.5-turbo and 0.1 for Llama-2-70-chat as
recommended in technical reports. Moreover, we kept all the other parameters as default. All parameters
are shown in our code .

Baseline & Students We evaluated the performance of the Small Language Models (Llama-2-7-chat,
Llama-2-13-chat, Mistral-7b) by prompting them with the same format used for the Teachers. For
both the baselines and the instructed models, we set the temperature to 0.1 and kept all the other parameters
as default. The evaluation pipelines and generation parameters are available in our code.

Figure 4: Acciracies (%) on the test set of benchmarks. The Self-refine Instruction-tuning performed on different
splits (see Appendix C.1 for major details).
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D Prompting Approaches

Prompt for task: OBQA, CSQA, PIQA, SIQA
Choose the answer to the question only
from options A, B, C, [...].
Question: <Question>
Choices:
A) <Option1>
B) <Option2>
C) <Option3>
....
Answer:

Prompt for task: GSM8k, MultiArith
Answer the following mathematical
question with numerical solution.
Question: <Question>
Answer:

Table 2: Example of input-prompt for multiple-choices (left) and mathematical (right) question-answering bench-
marks.

Prompt for task: OBQA, CSQA, PIQA, SIQA
Choose the answer to the question only
from options A, B, C, [...].
Question: <Question>
Choices:
A) <Option1>
B) <Option2>
C) <Option3>
....
Answer: Let’s think step by step

Prompt for task: GSM8k, MultiArith
Answer the following mathematical
question with numerical solution.
Question: <Question>
Answer: Let’s think step by step

Table 3: Example Zero-shot CoT of input-prompt for multiple-choices (left) and mathematical (right) question-
answering benchmarks.

E Models
Model Version
Llama-2-7-chat meta-llama/Llama-2-7b
Llama-2-13-chat meta-llama/Llama-2-13b
Llama-2-70-chat meta-llama/Llama-2-70b
Mistral-7 mistralai/Mistral-7B-Instruct-v0.1
Mixtral7x8 mistralai/Mixtral-8x7B-v0.1

Table 4: List and specific versions of the models proposed in this work, which can be found on huggingface.co.
For each model we used all the default configurations proposed in the repositories.
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F Accuracy of LLMs on different Benchhmark

Benchmarks Llama-2-70 GPT-3.5 Mixtral7x8
Baseline CoT Baseline CoT Baseline CoT

Training

OpenBook QA 65.6±.3 71.3±.1 66.2±.2 75.4±.4 77.9±.3 81.2±.1

CommonSesnse QA 74.2±.1 79.6±.3 79.3±.4 84.8±.1 78.2±.2 82.3±.3

Social Interaction QA 65.4±.2 67.5±.3 67.6±.5 70.3±.4 65.5±.2 68.2±.3

Physical Interaction QA 82.6±.2 85.8±.2±.3 83.5±.3 85.3±.1 80.2±.3 84.1±.3

GSM8K 74.6±.1 77.2±.2 83.2±.2 86.5±.1 65.6±.4 67.9±.2

MultiArith 88.6±.4 90.8±.3 94.9±.4 96.7±.1 89.3±.1 91.5±.4

Testing

OpenBook QA 65.9±.2 70.8±.1 67.8±.1 74.6±.4 78.4±.3 84.6±.2

CommonSesnse QA 73.4±.2 81.8±.3 80.2±.2 83.7±.1 77.6±.3 81.5±.1

Social Interaction QA 64.2±.2 66.9±.4 66.9 71.3±.3 64.3±.3 65.4±.2

Physical Interaction QA 82.6±.3 85.6±.5 84.3±.2 85.8±.5 79.9±.3 83.5±.1

GSM8K 75.2±.5 77.8±.5 82.8±.2 84.6±.4 63.4±.3 62.8±.5

MultiArith 89.2±.1 92.3±.2 95.6±.2 97.4±3 88.9±.1 90.2±.3

Table 5: Accuracy (%) of Llama-2-70, GPT-3.5 and Mixtral7x8 (teachers) on training and testing data with CoT
prompt (CoT) and with the standard prompt (Baseline).

Instruction
Choose the answer to the question only from options A, B, C, D.

Input
Question: Which form can be made into a triangle?
Choices:
A) ice
B) steam
C) water
D) salt water
Answer: Let’s think step-by-step

Output (that is the Answer produced by teacher model)
Answer:
A) ice: Ice is a solid form of water. In solid form, substances can be molded or shaped into
various forms, including triangles. If you had a block of ice, you could carve or mold it
into a triangular shape.
B) steam: Steam is the gaseous form of water. Being a gas, it doesn’t have a fixed shape. You
can’t shape steam into a triangle without containing it within some form of solid boundary,
and even then, the steam itself isn’t triangular - the container is.
C) water: Water is a liquid that takes the shape of its container. You can pour water into
a triangular container, and while the volume inside would be triangular, the water itself
isn’t inherently triangular.
D) salt water: This is essentially the same as option C, but with salt dissolved in it. Being
a liquid, it takes the shape of its container.
Given these considerations, the only substance among the options that can be shaped into a
triangle by itself is A) Ice.

Table 6: Example of Demonstration produced by the GPT-3.5 answer on an Open Book Question Answering
benchmark instance. The structure is composed by: Instruction, Input and Output.
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G Description of proposed Benchmark
Dataset Example
Open Book Question Answering When birds migrate south for the winter, they do it because
(OBQA) (Mihaylov et al., 2018) A) they are genetically called to. B) their children ask them to.

C) it is important to their happiness. D) they decide to each.
Common Sense Question Answering Aside from water and nourishment what does your dog need?
(CSQA) (Talmor et al., 2019) A) bone. B) charm. C) petted.

D) lots of attention. E) walked.
Physical Interaction Question Answering How do you attach toilet paper to a glass jar? A) Press a piece of double-sided
(PIQA) (Bisk et al., 2019) tape to the glass jar and then press the toilet paper onto the tape.

B) Spread mayonnaise all over the jar with your palms and then roll the jar in toilet paper.
Social Interaction Question Answering Taylor gave help to a friend who was having trouble keeping up with their bills.
(SIQA) (Sap et al., 2019) What will their friend want to do next? A) Help the friend find a higher

paying job. B) Thank Taylor for the generosity. C) pay some of their late employees.
Tina makes $18.00 an hour. If she works more than 8 hours per shift,

(GSM8K) (Cobbe et al., 2021) she is eligible for overtime, which is paid by your wage + 1/2 your hourly
hourly wage. If she works 10 hours every day for 5 days,

how much money does she make?
Chloe was playing a video game where she scores 9 points for each

(MultiArith) (Roy and Roth, 2015) treasure she finds. If she found 6 treasures on the
first level and 3 on the second,

what would her score be?

Table 7: Examples of the benchmarks used in this paper.

OBQA CSQA PIQA SIQA GSM8K MultiArith

classes 4 5 2 3 - -

Training
# examples for 1000 800 2000 1330 4000 420
each class

Test
# examples for 125∗ 235∗ 924∗ 640∗ 1318 180
each class (± 8) (± 11) (± 18) (± 19)

Table 8: Characteristics Training and Test set of benchmarks proposed in Section 3.1. The * indicates that the
number of examples are not perfect balanced, but the difference from the average is marginal. GMS8K e MultiArith
are not closed-ended question answering; they only have a question and a numerical solution.

Name Repository
CommonSenseQA (Talmor et al., 2019) huggingface.co/datasets/commonsense_qa
OpenBookQA (Mihaylov et al., 2018) huggingface.co/datasets/openbookqa
StrategyQA () huggingface.co/datasets/voidful/StrategyQA
PIQA (Bisk et al., 2019) huggingface.co/datasets/piqa
SIQA (Sap et al., 2019) huggingface.co/datasets/social_i_qa
GSM8K (Cobbe et al., 2021) huggingface.co/datasets/gsm8k
MultiArith (Roy and Roth, 2015) huggingface.co/datasets/ChilleD/MultiArith

Table 9: In this table, we list the versions of the benchmark proposed in this work, which can be found on
huggingface.co.
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Trained on Teacher Evaluated on

OBQA CSQA PIQA SIQA GMS8K MultiArith

Baseline - 55.4±.2 63.4±.3 66.4±.2 48.3±.2 65.6±.4 63.4±.2

Baseline CoT - 54.2±.2 62.8±.4 71.2±.3 46.9±.5 70.5±.1 62.8±.2

OBQA
Instruction-tuning 68.5±.4 67.5±.3 69.4±.1 60.1±.2 62.3±.4 61.5±.5

+ Self-refine 71.2±.4 74.1±.2 76.2±.3 63.4±.3 69.9±.4 70.7±.2

Cross Self-refine - 79.2±.1 79.5±.2 65.6±.3 75.2±.4 84.3±.5

CSQA
Instruction-tuning 58.4±.4 77.5±.2 66.4±.2 61.8±.3 62.4±.4 60.2±.2

+ Self-refine 69.5±.5 81.4±.2 74.2±.5 67.9±.1 62.1±.3 61.4±.4

Cross Self-refine 70.2±.4 - 79.5±.3 65.2±.1 73.3±.3 75.3±.5

PIQA
Instruction-tuning 57.8±.2 65.2±.3 81.9±.4 58.5±.4 59.2±.4 60.3±.3

+ Self-refine 69.6±.2 68.2±.4 85.1±.5 64.3±.1 69.3±.2 68.1±.3

Cross Self-refine 69.9±.1 71.3±.1 - 65.3±.1 69.6±.4 69.2±.2

SIQA
Instruction-tuning 59.6±.1 63.9±.4 67.1±.2 64.5±.3 60.3±.4 61.3±.2

+ Self-refine 69.2±.2 69.4±.1 79.2±.4 66.7±.3 62.4±.4 61.8±.2

Cross Self-refine 71.2±.2 69.2±.1 80.4±.2 - 66.5±.1 66.7±.2

GSM8K
Instruction-tuning 54.3±.2 55.8±.3 64.3±.4 53.2±.3 72.3±.3 71.6±.2

+ Self-refine 59.3±.4 62.2±.2 63.5±.3 53.5±.5 77.2±.4 75.2±.3

Cross Self-refine 65.7±.1 65.2±.5 78.1±.3 61.6±.4 - 76.2±.2

MultiArith
Instruction-tuning 54.7±.2 56.6±.3 54.5±.3 52.4±.3 70.2±.1 75.8±.2

+ Self-refine 60.3±.2 64.1±.4 59.4±.3 59.7±.1 72.1±.4 86.2±.3

Cross Self-refine 66.2±.3 62.4±.1 63.2±.3 61.5±.4 73.9±.2 -

Table 10: Evaluation of Llama-2-13 Instruction-tuned (Instruction-tuned) and with completely Self-refine
Instruction-tuning (+ Self-refine Instruction-tuned) on Demonstrations using different test sets. We evaluate
in-domain (QA vs QA) and out-domain (QA vs math-word problem) benchmarks. "Baselines" are referred to the
non-instructed model. Results colored in green indicate the in-domain benchmark, blue the out-domain benchmark,
and orange the same benchmark on which the evaluation phase is performed. Moreover, we propose Self-refine
Instruction-tuning in cross-setting scenarios where we optimize the model on the training set related to the evaluated
task.

Trained on Teacher Evaluated on

OBQA CSQA PIQA SIQA GMS8K MultiArith

Baseline - 62.7±.3 69.2±.4 67.3±.1 55.3±.2 54.2±.2 88.4±.1

Baseline CoT - 60.4±.3 68.7±.2 66.1±.2 54.8±.4 55.6±.3 87.3±.2

OBQA
Instruction-tuning 78.3±.2 65.4±.2 67.2±.3 59.2±.1 64.2±.2 62.1±.3

+ Self-refine 87.6±.2 73.1±.2 76.1±.1 63.3±.3 69.1±.4 70.7±.3

Cross Self-refine - 79.4±.1 80.1±.2 68.2±.4 75.2±.4 81.3±.1

CSQA
Instruction-tuning 58.9±.1 73.1±.4 65.8±.2 62.1±.1 62.2±.3 60.2±.2

+ Self-refine 69.5±.5 81.3±.1 75.1±.1 66.5±.2 61.1±.4 62.4±.1

Cross Self-refine 69.2±.2 - 79.3±.1 65.2±.4 72.8±.4 74.4±.2

PIQA
Instruction-tuning 58.6±.2 64.8±.2 81.6±.2 59.2±.4 60.2±.2 60.3±.4

+ Self-refine 68.2±.4 68.2±.5 85.6±.2 63.8±.2 67.9±.2 67.2±.4

Cross Self-refine 69.2±.3 71.9±.3 - 63.2±.1 68.4±.5 69.6±.1

SIQA
Instruction-tuning 59.3±.2 66.8±.2 63.2±.4 61.5±.2 60.2±.1 61.3±.3

+ Self-refine 68.3±.3 68.5±.2 78.3±.3 65.8±.4 62.4±.5 61.3±.4

Cross Self-refine 71.3±.4 69.2±.2 78.1±.2 - 65.6±.3 68.3±.1

GSM8K
Instruction-tuning 52.4±.1 54.9±.5 58.7±.1 51.8±.3 56.1±.1 65.2±.

+ Self-refine 57.6±.3 58.7±.4 59.3±.2 51.4±.2 63.4±.1 60.3±.1

Cross Self-refine 61.3±.5 64.3±.2 70.1±.4 58.2±.1 - 70.5±.3

MultiArith
Instruction-tuning 57.9±.2 59.2±.3 53.8±.4 51.5±.3 69.3±.2 89.6±.4

+ Self-refine 59.1±.2 63.2±.4 59.4±.5 59.9±.2 68.2±.1 91.4±.3

Cross Self-refine 64.7±.4 65.8±.2 64.1±.4 61.5±.4 70.1±.3 -

Table 11: Evaluation of Mistral-7 Instruction-tuned (Instruction-tuned) and with completely Self-refine
Instruction-tuning (+ Self-refine Instruction-tuned) on Demonstrations using different test sets. We evaluate
in-domain (QA vs QA) and out-domain (QA vs math-word problem) benchmarks. "Baselines" are referred to the
non-instructed model. Results colored in green indicate the in-domain benchmark, blue the out-domain bench-
mark, and orange the same benchmark on which perform the evaluation phase. Moreover, we propose Self-refine
Instruction-tuning in cross-setting scenario where we optimize the model on the training set related to the evaluated
task.
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H Quality of Generations

To demonstrate the quality of the demonstrations generated by the teachers and students, we propose
annotating the responses provided by the teacher and student models automatically. In particular, we
sampled 300 questions (50 questions for each task from the testing set split). Hence, we systematically
prompt both the teacher LLMs and students. Finally, we estimated the quality of the responses generated
by systematically prompting a judge LLM (we chose GPT-4 as it is not among the models used in this
work).

Please act as an impartial judge and evaluate the quality of the response
provided by an AI assistant to the user instruction displayed below. Your
evaluation should consider factors such as quality, accuracy, depth, and
level of detail. Begin your assessment with a short explanation. Be as
objective as possible. After providing your explanation, please rate the
response on a scale of 1 to 3 strictly following this format:“[[rating]]”,
for example: “Rating: [[2]]”.
[question]
${question}
[AI assistant’s response]
${response}

Table 12: Using this prompt, we systematically query GPT-4 to note the answers’ quality.

Model Llama2-70b Mixtral8x7b GPT-3.5
Baseline 1.63 1.34 1.68
Baseline CoT 2.72 2.56 2.89
Target Answers 1 1 1

Table 13: Averages quality scores obtained by LLMs’ answers by using GPT-4 as judge (see Table H).

Model Llama2-7b Llama2-13b Mistral-7b
Baseline 1.26 1.39 1.16
Baseline CoT 1.47 1.56 1.21

in-family
Instruction-tuning 2.43 2.66 2.36
Self-refine Instruction-tuning 2.75 2.83 2.54

out-family (GPT-3.5)
Instruction-tuning 1.99 2.17 1.76
Self-refine Instruction-tuning 2.86 2.79 2.82

Table 14: Averages quality scores obtained by students’ answers by using GPT-4 as judge (see Table H).
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work approach teacher/s students/s tasks
(Zelikman et al., 2022) Self-SFT - GPT-J, LaMDA GSM8k, CSQA
(Magister et al., 2023) SFT PaLM T5-small, -medium GSM8k, StrategyQA,

GPT-3.5 T5-large, -xxl MArith
(Li et al., 2023a) SFT GPT-3 175B OPT-1.3b CSQA, OBQA, QARel

(Shridhar et al., 2023) SFT GPT-3 175B GPT-2 GSM8k, StrategyQA
SVAMP

(Ho et al., 2023) SFT InstructGPT GPT-3 GSM8k, StrategyQA, MArith,
(text-davinci-002) (ada,babbage,curie) SVAMP, AddSub

(Wang et al., 2023d) IT+RL GPT-3 GPT-J GSM8K, MultiArith, SVAMP
CSQA, StrategyQA

(Luong et al., 2024) SFT+RL GPT-3.5 Galactica, CodeLlama GSM8k SVAMP MathQA
(Ranaldi and Freitas, 2024) IT GPT-3.5, Llama2-70 Llama2-7,13, Mistral-7 GSM8k, PIQA, MathQA

CSQA, OBQA, SIQA
(Wang et al., 2023a) SFT+RL GPT-3.5 Llama2-7,13 GSM8k, EAQA
(Paul et al., 2024) SFT GPT-3.5 CodeT5 s,m GSM8k, SVAMP, MArith

IT+RL (DPO) GPT-3.5, Llama2-70 Llama2-7,Llama2-13, GSM8k, CSQA, OBQA
Ours Mixtral8x7 Mistral-7 PIQA, SIQA, MArith

MATH, MMLU

Table 15: Summary of methods, teacher and student models of previous work, we indicate Supervised Fine-tuning
as (SFT), Instruction-tuning as (IT), and Reinforcement Learning (RL). *note that previous works do not use DPO
(Rafailov et al., 2023)

I Additional Evaluations

Figure 5: Accuracies (%) additional benchmarks as described in Section 3.1. Applying the same pipeline proposed
in Section 2 and the same experimental set-up (Section 3) as the experiments shown in Figure 2 and Figure Y3. In
this experiment, we showed that the approach proposed in Section 2 is also scalable on multi-task benchmarks such
as MATH (Hendrycks et al., 2021b) and MMLU (Hendrycks et al., 2021a). (Self-refine Instruction-tuning phase
performed using X as the training set and omitted in the evaluation phase) (as described in the legend, we use the
notation method(Teacher->Student)).
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