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Abstract: Controlling robots through natural language instructions in open-1

vocabulary scenarios is pivotal for enhancing human-robot collaboration and com-2

plex robot behavior synthesis. However, achieving this capability poses signif-3

icant challenges due to the need for a system that can generalize from limited4

data to a wide range of tasks and environments. Existing methods rely on large,5

costly datasets and struggle with generalization. This paper introduces Grounded6

Equivariant Manipulation (GEM), a novel approach that leverages the genera-7

tive capabilities of pre-trained vision-language models and geometric symmetries8

to facilitate few-shot and zero-shot learning for open-vocabulary robot manipu-9

lation tasks. Our experiments demonstrate GEM’s high sample efficiency and10

superior generalization across diverse pick-and-place tasks in both simulation and11

real-world experiments, showcasing its ability to adapt to novel instructions and12

unseen objects with minimal data requirements. GEM advances a significant step13

forward in the domain of language-conditioned robot control, bridging the gap14

between semantic understanding and action generation in robotic systems.15

Keywords: Language-conditioned Robotic Manipulation, Zero-shot Learning16

1 Introduction17

Commanding a robotic manipulator with open-vocabulary natural language is important for enabling18

human-robot collaboration. Taking into account the current state of the environment, the system19

must map the language instructions onto desired robot actions. The challenge is making systems20

robustly interpret language about unseen objects and generalize manipulation actions from small21

amounts of training data.22

Existing vision and language models [1, 2, 3] open the possibilities of performing open-vocabulary23

(or zero-shot) robot manipulation tasks. However, when performing zero-shot in robotic manipula-24

tion, existing modular-based approaches [4, 5, 6, 7] do not accurately perform complex, fine-grained25

manipulation tasks such as “Grasp the mug by its handle and put it in the box”. Learning-based26

approaches like CLIPort [8] and RT-2 [9] address this problem by using imitation learning with27

pre-trained features, where a person demonstrates a task through teleoperation and then learns a28

manipulation policy from these demonstrations. The challenge here is that robot demonstrations are29

expensive, and learned policies do not transfer to other manipulation targets in an open-ended way.30

For example, with CLIPort, a command like “pick the green mug” does not necessarily transfer to31

a related command such as “pick the red mug” unless a red mug was also present in its training set.32

As a result, enormous amounts of robot data are required to perform manipulation tasks.33

We address this problem by introducing new learning algorithms for imitation learning that leverage34

large vision and language models to enable generalization, and use equivarient learning to enable35

efficient learning from small datasets. Our approach, Grounded Equivariant Manipulation (GEM)36

exploits domain symmetries that exist in the robotics aspect of the problem, specifically equivariance37
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Figure 1: Overview. Our method is trained on a small amount of demonstrations (yellow) and can generalize
to novel objects and scenes during testing (green). The object being picked is highlighted by the semantic
map. In the green testing section, upper and bottom images show spatial generalization when transformation
g ∈ SE(2) acts on objects. Different columns show zero-shot generalization on unseen colors and shapes given
open-vocabulary instructions. The green and red grippers denote pick and place positions.

in SE(2). For example, consider the task of “grasp the coffee mug by its handle.” If there is a rotation38

or translation of the mug, the desired pick action should also transform accordingly, i.e. equivari-39

antly. If we can incorporate such language-conditioned symmetries into our model, the policy can40

generalize learned knowledge to many different scenarios related by symmetry transformations au-41

tomatically, thus making the learning more efficient. Apart from leveraging the symmetries, we42

show how to incorporate information from large vision and language models to enable few-shot and43

zero-shot generalization across objects, colors, shapes, and poses, as shown in Figure 1.44

Since many complex manipulation tasks can be completed with a sequence of pick-place actions, we45

frame the learning task as language-conditioned pick and place. We make the following specific con-46

tributions. (1) We propose a novel method for generating semantic maps for language-conditioned47

pick-place using large vision and language models. (2) We systematically analyze the symmetries48

underlying language-conditioned pick-place tasks and design language-conditioned steerable adap-49

tive kernels to leverage them. (3) We demonstrate the state-of-the-art generalization ability and50

sample efficiency of our method in simulation, one physical tabletop setting, and one mobile manip-51

ulation platform on a series of challenging language-conditioned manipulation tasks. Our evaluation52

demonstrates that our approach meets or exceeds the few/zero-shot performance of state-of-the-art53

baselines, while using only 10%-20% training data compared with CLIPort [8] and 0.1% training54

data compared with VIMA [10] in most of the simulation and real-world tasks.55

2 Related work56

Language-conditioned policy learning: With the rapid advance in NLP, many recent works at-57

tempted to encode language instructions into robot policy learning. [11, 12, 13, 10, 14, 15] use58

feature concatenation, FiLM [16], or the cross-attention mechanism to fuse image and language fea-59

tures from pre-trained VLM/LLMs. For example, Shridhar et al. [8] utilizes CLIP visual and text60

encoders and aligned language and image features with a two-stream fusion architecture. [14, 15]61

process the language token and visual token jointly with transformers [17, 18] for keyframe policy62

learning. By appending a deep learnable module on pre-trained features, these models are prone to63

overfit to the training set and lose the generalization ability provided by the pre-trained models. As64

a result, a copious number of robot data is still required to train these models and the performance65

largely decreases with unseen objects. For instance, Stepputtis et al. [19] needs 30k datapoints to66

achieve 94% picking success rate. Jiang et al. [10] requires 60k robot demos to learn its visual pick67

& place tasks. In contrast, our proposed method generates the distribution over the entire action68

space and shows its zero-shot learning ability on novel categories.69

Few-shot manipulation requires the robot to manipulate in-distribution objects with a few demon-70

strations because robot demo collection is expensive. Many works focus on improving sample71
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efficiency to enable few-shot policy learning. Transporter [20] exploits a rigid transformation prior72

in planar manipulation tasks. Works using equivariant models [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]73

leverage symmetries in robotic tasks and have demonstrated its superior effectiveness for unseen74

pose generalization that further allows few-shot learning. However, these methods often only learn75

a single-task policy each time, which limits them from learning from a diverse dataset and gener-76

alizing to novel objects and tasks. In this paper, our model is able to learn a language-conditioned77

multi-task policy yet maintains high sample efficiency by leveraging the inherent symmetry in the78

language-conditioned manipulation problem.79

Open-vocabulary manipulation represents a specific area in language-conditioned manipulation80

where the robot needs to generalize to out-of-distribution objects in a zero-shot manner. To per-81

form diverse tasks in the open world, robots need to equip robust generalization ability because the82

majority of objects that robots encounter during deployment are unseen with novel poses, shapes,83

colors, or textures. Learning-from-scratch methods [20, 31, 32, 33, 34, 35, 36] perform well on84

seen objects but cannot generalize well on unseen ones. Using pre-trained models for robotic85

manipulation [37, 38] has shown the potential of giving robots commonsense knowledge distilled86

from internet-scale data. One popular approach is to combine VLMs with pre-trained skill func-87

tions. Rashid et al. [39] combines LeRF [40] with GraspNet [41] that allows zero-shot language-88

conditioned grasping. [42, 4] use LLM/VLMs as a zero-shot object detector and a text-level task89

planner. These methods usually assume access to a pre-trained library with robust skills. However,90

the lack of learning ability limits these methods to adapt to more complex task-orientated behaviors.91

For example, “insert the letter E block into the letter E hole” since there is no general actor available92

for placing skills. [43] uses NeRF-based dense semantic radiance fields and learns an NDF-style ac-93

tor [26] on top of it to achieve high sample-efficiency. However, it requires task-relevant descriptors94

to define and regress the gripper pose, and cannot achieve zero-shot learning on unseen categories.95

Please refer to Table A6 for a detailed comparison. In this paper, we propose a novel approach that96

is capable of learning effective pick & place policies with a small amount of demonstrations while97

leveraging the zero-shot generalization ability from pre-trained VLM models.98

3 Method99

Problem Statement and Assumptions: This paper focuses on learning from demonstration for100

the planar language-conditioned pick-and-place. Given a set of demonstrations that contains101

observation-language-action tuples (ot, ℓt, at), the objective is to learn a policy p(at|ot, ℓt) where102

the action at = (apickt , aplacet ) has pick and place components. The visual observation ot is a103

top-down orthographic RGB-D reconstruction of the scene from several camera views. The pick104

and place components of action, apickt and aplacet , are parameterized in terms of SE(2) coordinates105

(u, v, θpick) and (u, v, θplace), respectively, where u, v denotes the pixel coordinates of the gripper106

position, θpick is the pick orientation defined with respect to the world frame, and θplace is the delta107

angle between the pick and place. The language instruction ℓt specifies the current-step instruction,108

e.g., “pick the red block and place onto the green and blue blocks” or “grasp the scissors by its han-109

dle and place into the brown box.” We assume ℓt for each step can be parsed into the pick instruction110

and the place instruction, ℓt = (ℓpickt , ℓplacet ). For parser details, please see Appendix A.1.6.111

Method Overview: There are three main modules. (1) The semantic module takes multi-view112

images Ot and the language instruction ℓt and outputs a dense semantic map that summarizes the113

visual and language input. (2) The language-conditioned pick module takes as input the raw RGB-D114

image of the scene ot with the language instruction ℓt and outputs an action map over pick actions.115

(3) Similarly, the language-conditioned place module produces an action map over place actions.116

The only difference is the place module does the convolution with a crop-conditioned instead of a117

language-conditioned kernel.118

3.1 Patch-level Semantic Module119

The semantic module uses a pre-trained CLIP model to identify parts of the visual observation most120

relevant to the current task. Specifically, it takes the language goals ℓpickt and ℓplacet and the current121
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Figure 2: Patch-level Semantic Map Extraction. After (a) patchifying images into patches, two types of
semantic maps are presented in this work. (b) Text-conditioned maps Mtext allow open-vocabulary zero-shot
generalization, which is a projection from the semantic point cloud constructed with multi-view semantic maps
{M i

text}Ni=1. (c) Image-conditioned maps Mimage enhances few-shot performance of the model.

N -view observations Ot = {o1t , o2t , ..., oNt } as input and produces semantic mapsMpick
t andMplace

t122

that highlight the language goals in the pixel space. Note that while these semantic maps do not tell123

the system exactly where to pick, they provide a strong visual-language prior to the pick and place124

modules. The semantic modules are illustrated in Figure 2 and are described in the following.125

Text-conditioned Semantic Maps for Zero-shot Learning: We use CLIP [3], which was trained126

by minimizing the cosine similarity between the image feature and its text label with internet data,127

to generate a pixel-wise semantic score for each of the N views in Ot. We split each image along a128

grid into image patches with patch size p and stride s. Each RGB image patch is then scored with its129

cosine similarity to the language instructions with pre-trained CLIP features. The text-conditioned130

semantic generation function Mtext can be described by131

Mtext(P(ont ), ℓt) = P−1(Epatch
t · ET

ℓt), (1)

where P denotes the image patchification function and P−1 denotes an inverse process that trans-132

forms all similarity scores back to the original image dimension. Epatch
t ∈ R(m×n)×dm is the em-133

bedding outputs from the CLIP image encoder, where (m× n) and dm denote the number of image134

patches and the output embedding dimension of CLIP respectively. Eℓt ∈ R1×dm is the embedding135

output for language instruction ℓt from the CLIP text encoder. After getting pixel-wise semantic136

features for each of the N views, we integrate this information into a single point cloud and label137

each point with the corresponding semantic maps from all views so that we get a final top-down138

text-conditioned semantic map Mtext via projection, as shown in panel (b) of Figure 2.139

Image-conditioned Semantic Map for Enhancing Few-shot Learning: Although the text-140

conditioned map highlights image regions related to language instructions, we found it insufficient141

because the high-value region does not necessarily highlight the correct object if certain categories142

are underrepresented during CLIP training. This misalignment creates noisy training samples as143

shown in Figure A1. To solve it, we further introduce the image-conditioned semantic map, which144

is illustrated in Figure 2(c). Starting with the demonstrations, we identify the image crops in the145

demonstration data corresponding to pick and place events, where the event timing is determined146

by checking the gripper status. For all pick/place events identified, we store into a database a pair147

comprised of the image patch at the pick/place location and the language query that describes the148

pick/place object (left side of Figure 2(c)). Then, at inference time, we index into the dataset using149

the language query text and recall the corresponding image crop, e.g., recall the image crop from150

the dataset corresponding to “banana crown”. The crop query process can be expressed by151

QueriedCrop(D, ℓt) = argmax
crop∈D

(QKT
crop), (2)

where Kcrop ∈ RN×dm denotes all language embeddings that correspond with N image patches for152

allN pick and place objects in dataset D. Q ∈ R1×dm denotes the embedding of the language query.153

Then, we generate image-conditioned semantic maps by evaluating the cosine similarity between the154
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CLIP embeddings of the recalled image crop and the patch embeddings from the top-down image155

ot. The image-conditioned semantic generation function Mimage can be described by156

Mimage(P(ot), ℓt,D) = P−1(Epatch
t · ET

crop), (3)

where Ecrop ∈ R1×dm denotes the embedding output for the image crop from the CLIP image157

encoder. If the pick/place target cannot be located in the dataset, i.e., max(QKT
crop) is below a158

threshold, then the image-conditioned map function returns None. See Figure A1 for more image-159

conditioned semantic map examples and Appendix A.7 for implementation details.160

Fuse Text/image-conditioned Semantic Maps: We first fuse the text/image-conditioned seman-161

tic map by a pixel-wise weighted averaging. Finally, we concatenate the top-down semantic map162

calculated above with a feature map produced by a convolutional encoder on the top-down depth163

image. This concatenated feature map gives downstream parts of the model precision information164

about object boundaries and shapes. The concatenated map is passed through a pixel-wise linear165

layer fθ that produces a final semantic map output, Mpick or Mplace. Given multi-view observations166

Ot, language instruction ℓt, and dataset D, the overall semantic function M can be expressed by167

M(Ot, ℓt,D) = fθ(
w1Mtext(·) + w2Mimage(·)

w1 + w2
,depth), (4)

3.2 Language-Conditioned Pick & Place:168

Figure 3: Pick Module. Our picking module con-
sists of three branches. The top branch is our vision-
language encoder Apick. The middle part is the se-
mantic extractor M(Ot, ℓt) that takes multi-view RGB
observations with pick instruction and outputs pick-
ing semantic map Mpick

t . The bottom branch is the
language-conditioned kernel generator, and we rotate
the dynamic kernel to realize local SE(2) equivariance.

The picking model fpick calculates a proba-169

bility distribution over gripper pose that cor-170

responds to the probability of a success-171

ful grasp on the desired object part. This172

distribution p(apickt |ot, ℓpickt ) is estimated by173

fpick(ot, ℓ
pick
t ,Mpick

t ). The pick command ac-174

tually executed by the robot is selected by175

a⋆pick = argmax apickt .176

Symmetry of Language Conditioned Pick:177

The desired pick action is equivariant with re-178

spect to the pose of the object to be picked, i.e.,179

g·p(apickt |bpick, ℓpickt ) = p(apickt |g·bpick, ℓpickt ),180

where bpick denotes the object to be picked and181

g· denotes the action of a transformation g.182

Note that this form of equivariance is local to183

the object, in contrast to standard models that184

are equivariance with respect to the scene.185

Specifically, assume the observation ot contains186

a set of m objects {bi}mi=1 on the workspace187

and denote the object bpick as the goal object188

instructed by the language instruction ℓpickt . If189

there is a transformation g ∈ SE(2) on the target object bpick regardless of transformations on other190

objects, we denote it as g · obpick

t . The symmetry underlying f can be stated as191

argmax fpick(g · ob
pick

t , ℓpickt ) = g · argmax fpick(ot, ℓ
pick
t ) (5)

Equation 5 claims that if there is transformation g ∈ SE(2) on the object bℓ, the best action a⋆pick to192

grasp the instructed object should be transformed to g ·a⋆pick. If the symmetry is encoded in our pick193

model, it can generalize the pick knowledge learned from the demonstration to many unseen config-194

urations. In the following, we use this symmetry to improve sample efficiency and generalization of195

our pick model. Please refer to Appendix A.9 for detailed proofs.196

Pick Model Architecture: There are two main parts of the pick model. The first (shown in the top197

part of Figure 3) calculates a language-conditioned pick map as follows. We feed the raw RGB-D198
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observation into a UNet, denoted as Apick, and encode ℓpickt with the CLIP. The encoded language199

vector is concatenated onto the descriptor of every pixel in the bottleneck layer of Apick. The output200

of Apick is denoted as Apick(ot, ℓ
pick
t ) or Apick

t for simplicity. It is then integrated with the pick201

semantic map Mpick
t with element-wise multiplication, shown as ⊗ in Figure 3.202

The second part of the pick model is the language-conditioned dynamic kernel, which is a key novelty203

in our approach. We leverage the language-conditioned symmetry by performing a cross-correlation204

between a language-conditioned dynamic kernel Φ and the feature map calculated above, as shown205

in Figure 3. The dynamic kernel Φ maps language embeddings to convolutional kernels that sat-206

isfy the steerability constraints [44]. It allows picking action inference to be SO(2) equivariant207

with respect to the object poses. Please refer to Appendix A.1.2 for our implementation details,208

Appendix A.8 for proof, and Appendix A.1.3 for dynamic kernel visualization.209

Symmetry in Language-Conditioned Place: Place action that transforms pick target to the place-210

ment are bi-equivariant [45, 46, 47], i.e., independent transformations of the placement with g1 and211

the pick target with g2 result in a change (a′place = g1aplaceg
−1
2 ) to complete the rearrangement at212

the new configuration. Leveraging the bi-equivariant symmetries can generalize the learned place213

knowledge to different configurations and thus improve the sample efficiency [45, 46, 47]. The214

coupled symmetries also exist in the language-conditioned place:215

argmax fplace(g1 · ob
place

t + g2 · ob
pick

t , ℓplacet ) = g1θ(g
−1
2 ) · argmax fplace(ot, ℓ

place
t ) (6)

where g1 ·ob
place

t +g2 ·ob
pick

t denotes g1 ∈ SE(2) and g2 ∈ SE(2) acting on the instructed placement216

bplace and the picked object bpick, respecitively. θ(g−1
2 ) denote the angle of the place action is rotated217

by −g2. Specifically, the RHS of Equation 6 indicates that the best place location is rotated by g1,218

and the place orientation is rotated by θ(g1)θ(g−1
2 ).1 Our place model is designed to satisfy the219

language-conditioned equivariance of Equation 6. Detailed proofs can be found in Appendix A.9.220

Place Model Architecture: Our language-conditioned place module is similar to the pick module.221

The place action distribution map is calculated as the cross-correlation between the semantic map222

Mplace
t and the place dynamic kernel. The place dynamic kernel is generated with an image crop223

centered on the pick action as described above instead of the language embeddings. Implementation224

details can be found in Appendix A.1.4.225

4 Experiments226

4.1 Simulation Experiments227

Tasks & Baselines For simulation tasks, we use 18 tasks provided by CLIPort Benchmark [8] for228

our simulation experiments. For baselines, we compare our method with three strong baselines:229

Transporter [20], CLIPort [8], VIMA [10]. Detailed descriptions of tasks and baselines can be230

found in Appendix A.10 and Appendix A.1.5.231

Figure 4: Performance Comparisons on VIMABench [10]. X-axis
and y-axis represent the number of demonstrations for training and task
success rate during evaluation in the visual manipulation task.

Simulation Results: In Ta-232

ble 1, we report the performance233

of our model and the base-234

lines trained with {10, 20, 100}235

demonstrations from CLIPort236

Benchmark [8]. We use “-multi”237

to denote the multi-task pol-238

icy. The best performance is239

highlighted in bold in each col-240

umn. Several conclusions can be241

drawn from Table 1. (1) GEM outperforms the baselines in all the tasks by a significantly large mar-242

gin. For example, in task separating-piles-unseen-colors, our method gets 97.6% success rate with243

1Please note the orientation component of aplace is the relative rotation between the pick and place pose.
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packing-box-pairs
seen-colors

packing-box-pairs
unseen-colors

packing-seen-google
objects-seq

packing-unseen-google
objects-seq

packing-seen-google
objects-group

packing-unseen-google
objects-group

Model 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100

Transporter-Lan [20] 50.4 72.4 86.8 41.2 40.4 60.7 36.3 57.0 83.2 31.7 46.8 54.9 49.6 57.0 81.2 56.6 59.4 77.4
CLIPort [8] 63.2 78.3 88.2 28.8 64.2 71.4 37.9 52.6 80.1 45.9 41.7 49.6 62.0 62.1 77.1 49.5 50.3 60.0
CLIPort-multi [8] 60.3 82.9 81.4 42.4 53.7 54.3 76.6 84.3 77.0 50.4 58.7 47.6 79.0 88.0 88.6 79.9 85.6 73.8
GEM (ours) 79.6 86.7 91.8 67.3 71.4 78.2 76.2 85.8 89.7 69.2 79.8 86.0 86.6 85.1 94.2 78.1 71.9 82.3
GEM-multi (ours) 90.6 90.7 93.8 73.8 78.2 78.2 93.7 91.0 90.3 86.3 79.7 75.7 94.5 93.1 94.2 89.7 90.9 88.5

stack-block-pyramid
seq-seen-colors

stack-block-pyramid
seq-unseen-colors

separating-piles
seen-colors

separating-piles
unseen-colors

towers-of-hanoi
seq-seen-colors

towers-of-hanoi
seq-unseen-colors

Model 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100

Transporter-Lan [20] 52.0 72.7 94.3 18.0 26.0 17.0 40.0 60.0 92.0 56.0 73.8 52.3 81.1 88.6 95.7 43.4 48.3 60.0
CLIPort [8] 22.8 39.5 50.5 21.8 19.2 27.7 53.1 56.0 74.8 56.4 66.0 72.5 75.1 75.0 91.1 57.6 47.3 99.4
CLIPort-multi [8] 74.7 87.7 93.3 45.7 28.3 33.0 59.7 72.2 75.0 67.8 65.2 58.8 78.3 95.4 97.4 60.3 69.4 69.7
GEM (ours) 70.7 82.7 96.3 59.3 73.7 84.3 82.3 75.4 78.8 60.0 91.8 96.6 88.3 93.4 100 83.1 87.7 98.0
GEM-multi (ours) 94.3 95.3 95.0 76.0 89.3 78.7 94.2 96.2 92.0 89.0 97.6 96.6 96.3 99.4 98.9 93.4 98.0 97.1

align-rope packing-unseen-shapes assembling-kits-seq
seen-colors

assembling-kits-seq
unseen-colors

put-blocks-in-bowls
seen-colors

put-blocks-in-bowls
unseen-colors

Model 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100

Transporter-Lan [20] 11.5 33.7 72.4 24.0 26.0 30.0 26.4 39.2 58.4 20.0 24.8 23.6 42.7 68.7 86.3 12.0 17.0 36.0
CLIPort [8] 30.0 16.9 51.5 29.0 24.0 34.0 17.8 24.8 39.4 16.6 20.6 36.6 37.2 55.6 92.7 50.8 41.7 51.8
CLIPort-multi [8] 39.7 42.4 40.8 52.0 46.0 52.0 28.8 42.8 32.0 28.4 27.2 18.8 84.0 96.0 98.0 38.7 48.0 44.0
GEM (ours) 31.6 38.6 69.0 54.0 44.0 52.0 42.8 47.2 62.4 34.4 40.0 62.8 94.0 98.3 100 87.7 92.0 94.3
GEM-multi (ours) 62.6 59.6 58.6 60.0 50.0 52.0 55.6 62.0 56.8 53.2 58.0 46.4 100 100 100 95.3 97.0 97.0

Table 1: Performance Comparisons on CLIPort Benchmark Tasks (%) on 50 testing episodes. {10, 20,
100} denotes the number of demonstrations used in training. “-multi” denotes multi-task models where they
are trained on 10 tasks and evaluated on each task separately. Best performances are highlighted in bold.

20 demos while the best baseline can only achieve 66.0%. (2) GEM is more sample efficient com-244

pared with the baseline. Trained with 10 demos, it can outperform the baselines with 20 and 100245

demos on 10 out of 18 tasks. For instance, in stack-block-pyramid-seq-seen-colors, our method246

trained with 10 demos gets 70.7% success rate while CLIPort only gets 50.5% success rate trained247

with 100 demos. (3) GEM demonstrates strong zero-shot learning ability. The performance gap248

between GEM and the baselines becomes larger when tested with unseen colors and shapes. In put-249

blocks-in-bowls with 100 demos, the performance difference between our method and the CLIPort250

increases from ∆7.3% to ∆42.5% when tested on unseen colors. (4) GEM is capable of scaling up251

to learning a generalizable multi-task policy from a diverse dataset. As shown in multi-task results,252

GEM-multi performs best on 41 out of 54 evaluation cases. Overall, the results in Table 1 demon-253

strate the state-of-the-art sample efficiency and generalization ability of our proposed method. In254

Figure 4, we compare GEM with VIMA on VIMABench [10], where ours achieves the same per-255

formance with 6 demos comparing VIMA with 6k demos.256

4.2 Real-world Experiments257

(a) pick-object-part-in-box (b) arrange-letter-to-word

(c) stack-block-pyramid (d) put-shapes-in-bowl

Figure 5: Tabletop Tasks.

For real-world experiments, we evaluate the few-258

shot and zero-shot learning ability of our model on259

two physical robot platforms: a table-top UR5 and a260

mobile Spot platform.261

Table-top Results: We evaluate our method in four262

tasks as shown in Figure 5 and report the results263

in Table 2. Objects and task descriptions can be264

found in Appendix A.11. Our single-task method265

outperforms the baseline on all tasks up to a margin266

of 87.5%. On pick-object-part-in-brown-box, our267

method trained with 5 demos reaches 92.5% success268

rate on seen objects while the baseline can only ob-269

tain 37.5% success rate. Besides, it shows strong270

generalization ability on unseen colors and shapes whereas the baseline fails to generalize well. For271

example, on the arrange-letter-to-word task, GEM can hit 75.0% success rate in arranging unseen272
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pick-object-
part-in-box

arrange-letter-
to-word

stack-
block-pyramid

put-shapes-
in-bowl

Model 1 3 5 1 3 5 5 15 20 5 15 20

CLIPort (seen) 37.5 47.5 37.5 5.6 50.0 50.0 33.3 43.3 76.7 0 25.0 62.5
CLIPort-multi (seen) 40.0 52.5 30.0 30.5 55.6 41.6 50.0 63.3 83.3 62.5 87.5 75.0
GEM (seen) 80.0 75.0 92.5 44.4 66.7 72.2 40.0 80.0 93.3 87.5 62.5 87.5
GEM-multi (seen) 47.5 67.5 82.5 47.2 44.4 80.5 50.0 60.0 83.3 50.0 75.0 75.0

CLIPort (unseen) 14.2 10.7 28.5 18.8 43.8 43.8 5.0 0 15.0 0 12.5 12.5
CLIPort-multi (unseen) 17.9 32.1 35.7 18.8 37.5 43.8 3.3 10.0 6.7 12.5 50.0 12.5
GEM (unseen) 32.1 35.7 82.1 62.5 56.3 75.0 30.0 53.3 63.3 12.5 37.5 62.5
GEM-multi (unseen) 17.9 53.6 82.1 25.0 68.8 68.8 36.7 40.0 66.7 50.0 62.5 62.5

Table 2: Performance Comparisons on Real-world Tabletop Tasks (%). {1, 3, 5}, {5, 15, 20} are the
numbers of demonstration episodes used in training. “(seen)” denotes that the model is evaluated on seen
objects which are included in the training set and “unseen” means that the model is firstly trained on training
objects and then is evaluated on novel objects. “-multi” denotes the multi-task model where one model is
trained using all data across task. Best performances are highlighted in bold.
letters while the baseline can only achieve 43.8%. The experiments on the real robot further prove273

the few-shot and zero-shot learning ability of GEM. The main failure mode we find is that CLIP is274

extremely sensitive to colors compared with shapes, which results in the wrong semantic map. The275

detailed analysis can be found in Appendix A.4. We also found that the image-based semantic map276

is crucial for real-world performance because it helps reduce noise on text-based semantic maps.277

Please refer to Appendix A.3 for a detailed ablation. For the multi-task models, our model also278

outperforms the baseline on 20 out of 24 evaluations.279

(a) Tabletop (b) Mobile Manipulation

Figure 6: Real-world Tabletop and Manipula-
tion Setup. Multi-view cameras are highlighted
by red circles and workspaces are labelled by blue.

Mobile Manipulation Results: We also eval-280

uate GEM on a Spot robot for language-281

conditioned pick and place tasks. We intro-282

duce an action parameterization trick (see Fig-283

ure A12) so that the policy can generalize to a284

multi-table environment though all demos are285

collected on one table. For seen objects, our286

model reaches a success rate of 80%. For un-287

seen objects, our model gets 50% success rate.288

A performance drop can be observed in our mo-289

bile manipulation results compared with table-290

top experiments. The major reason is that the291

relative pose estimation between Spot and the292

table is inaccurate, which introduces a discrep-293

ancy when executing pixel-based actions.294

5 Conclusion295

In this work, we analyze the inherent symmetry in language-conditioned manipulation and propose296

Grounded Equivariant Manipulation (GEM) that leverages such symmetry while preserving the297

zero-shot open-vocabulary ability via a novel technique to extract patch-level semantic maps from298

pre-trained VLMs. Our method is able to learn generalizable open-vocabulary manipulation pol-299

icy from a limited number of demonstrations and achieves a high success rate on seen and novel300

objects. We demonstrate its few-shot and zero-shot ability with various simulated and real-world301

experiments. A limitation of our approach is that our action space is in SE(2) which limits its ability302

to perform more complex tasks. In the future, we will extend our method in SE(3) action space303

and enable a larger workspace with full mobility with on-robot cameras. Worth mentioning, the304

language-conditioned pick and place symmetries we studied in Section 3 and Appendix A.9 are also305

applicable for SE(3) action space, which provides a solid foundation to extend our method to SE(3)306

language-conditioned manipulation in the future using 3D convolution methods like [48, 46]. For307

ablation studies, equivariant proof, and implementation details, please see the following appendix.308
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Appendix465

In the appendix, we provide the following sections. Section A.1 introduces the implementation466

details for the semantic module, the picking module, and the placing module. Section A.2 and Sec-467

tion A.3 provide a detailed ablation study to show how every component in our method contributes468

to the performance. Section A.4 discusses the failure modes of our method. Section A.5 provides469

an analysis of how our method scales given more demonstrations. Section A.6 compares the task470

performance between two VLMs: CLIP [3] and GroundingDINO [49]. Section A.7 presents im-471

plementation details and text-text similarity experiments for the image-conditioned semantic map472

generation. Section A.8 gives a background of symmetry groups. Section A.9 introduces detailed473

proofs for the steerable language-conditioned kernels and its equivariance property. Section A.10474

and Section A.11 provide task and object details for simulation and real-world experiments in the475

tabletop setting. Section A.12 includes implementation details for the mobile manipulation experi-476

ments. Section A.13 provides a discussion about how our method as a multi-task skill function can477

bridge high-level text-based planners and real-world manipulation policies.478

A.1 Implementation Details479

A.1.1 Patch-level Semantic Module480

In the semantic module, we grid the image into image patches using patch size p = 40 and stride481

p = 20. For CLIP, we use OpenAI’s clip-vit-base-patch32 pre-trained model. To extract accurate482

semantics, we integrate semantic maps from multi-view camera views and do re-projection from the483

point cloud to get a top-down semantic map. We found three cameras work well both in simulation484

and in real-world experiments. Before fusing the semantic map and the action map, we first use a485

topdown depth image to refine the map which aims to provide objectness into the semantic map.486

The depth image is sent into a two-layer CNN encoder. Then, we concatenate the raw semantic map487

and the output from the shape encoder and the concatenated features are linearly projected into the488

final semantic map using a single CNN layer. We set the text-text similarity threshold to 0.965. For489

the weighted averaging of text/image-conditioned semantic maps, we set w1 = 0.8 and w2 = 0.2490

for simulation experiments. For real-world experiments, we set w1 = 0.5 and w2 = 0.5.491

(a) Pick Maps (b) Place Maps

Figure A1: Pick&Place Semantic Extraction Comparison. OWL-ViT often fails to find the ob-
ject given open-vocabulary queries. Ours w/o image-conditioned semantic map is able to high-
light image regions that correlate with language instructions but it is noisy. By fusing text-image-
conditioned maps, the semantic maps perfectly align with the instructions.

We provide visualization in Figure A1. For picking, OWL-ViT fails to find the specific part of492

“banana crown”. It can only find out the banana only when given “banana” as a whole. It also fails493

to find anything given “blue mug handle” until we change the prompt to “blue mug”. On the other494

13



hand, our method can highlight correct objects. For placing, OWL-ViT fails to find either “yellow495

bowl”/“bowl”or “blue plate”. Our method can highlight correct objects.496

A.1.2 Pick Module Implementation497

Model #Parameters
GEM (ours) 5.7M
CLIPort 389M
VIMA 8M
Transporter-Lan 6.6M

Table A1: Number of Trainable Parameters. Our model is lightweight compared with baselines.

Our pick module is composed of two UNets [50]. Each UNet has 8 residual blocks and each block498

contains two convolution layers. The first four residual blocks trade spatial dimensions for channels499

with maxpooling in each block; the last four residual blocks upsample the feature embedding with500

bilinear-upsampling operations. ReLU [51] activations are interleaved inside the network. One501

UNet takes a 4-channel RGB-D image and the language feature. The other UNet takes the expanded502

language feature and outputs a three-channel square kernel R3×h×h. The kernel is rotated 180503

times to R180×3×h×h, and we apply the Fourier Transform to the first dimension to get its Fourier504

representation RF×3×h×h. After the cross-correlation, 72 rotations are uniformly sampled with505

inverse Fourier Transform per pixel. The place module shares the same architecture as the pick506

module.507

We feed the language embedding to a UNet ψpick and then rotate the output with a group of508

n rotations { 2πi
n |0 ≤ i < n}. This results in a stack of n rotated feature maps, Ψ(·) =509

{g0 · ψ(·), g2 · ψ(·), · · · , gn−1 · ψ(·)}, where gi = 2πi
n . Above each pixel, there is an n-dimension510

orbit-traversing signal. We apply the Fourier transform pixelwisely to the channels of Ψ(·) which511

preserves the channel distribution of each pixel of Ψ(·) as a set of Fourier coefficients that can512

approximate continuous SO(2) signals. In other words, the Fourier transform outputs a distinct513

vector of Fourier coefficients for each pixel in the feature map. The output is a dynamic steer-514

able kernel Ψpick(ℓpickt ) (we will write Ψpick
t for simplicity). The dynamic steerable kernel is515

cross-correlated with the dense feature map from the top to generate the pick action distribution,516

p(apickt ) = (Apick
t ⊗Mpick

t ) ∗ Ψpick
t , where ⊗ denotes elementwise multiplication and ∗ denotes517

2D convolution. Finally, an inverse FT is applied to return to the spatial domain. Notice that since518

Ψpick
t is represented with the Fourier coefficients, the cross-correlated result is also in the Fourier519

space. An arbitrary number of rotations can be sampled with inverse Fourier transform based on the520

task precision requirement. Notice that this model is equivariant with respect to rotations and trans-521

lations of the object in SO(2) ⋉ R2. R2 translational equivariance is achieved due to the property522

of cross-correlation [52]. The SO(2) rotation equivariance is achieved by the steerability [53] of the523

dynamic kernel Ψpick(ℓpickt ).524

A.1.3 Language-conditioned Kernel Visualization525

(a) “blue block” (b) “red block” (c) “scissor blade” (d) “scissor handle”

Figure A2: Visualization of Language-conditioned Adaptive Kernels. Given different language instruc-
tions, our language-conditioned kernel generator generates language-conditioned adaptive kernels.
In our picking module, the picking kernel generator ψ(ℓpick) is conditioned on language. A de-526

sired property of such kernels is that they are adaptive with respect to different language inputs.527
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We visualize four picking kernels of our multi-task model trained on data from four tabletop tasks528

in Figure A2. The kernels show interesting patterns where the kernels look similar given similar529

language instructions “blue block” and “red block”. And, given different language instructions like530

“scissor blade” or “scissor handle”, the kernels show different patterns.531

A.1.4 Place module architecture532

Figure A3: Place Module. The architecture of plac-
ing module is similar to picking module except that (1)
the placing kernel generator ψplace(ct) is conditioned
on the image crop ct centered at the previous pick-
ing action at, (2) ψplace(ct) is constrained to be fully
rotational-equivariant with E2CNN [54].

The language-conditioned place module is very533

similar to the pick module described earlier. In-534

stead of Apick, we have a distinct place model,535

Aplace. Also, the model is conditioned on the536

place language ℓplacet rather than the pick lan-537

guage. Perhaps the biggest difference is that538

the dynamic kernel is now conditioned on the539

place image crop rather than the pick language.540

That is, instead of evaluating ψpick(ℓpickt ), we541

evaluate ψplace(ct) where ct is an image crop542

centered on the position of the pick action cal-543

culated as described in the section above.544

A.1.5 Baselines545

For Transporter [20], it was originally a visual-546

only model. To encoder language information,547

we concatenate an additional language embed-548

ding obtained from the CLIP text encoder onto549

the bottleneck of its UNet-style affordance pre-550

diction module for both pick and place. We de-551

note it as Transporter-Lan. CLIPort [8] uses the552

pre-trained CLIP model (both the vision encoder and the language encoder) with a trainable two-553

branch architecture. It fuses pre-trained language and visual features by pixel-wise multiplication554

and 1× 1 convolution between different feature maps in its trainable layers. For fair comparison, all555

baselines use parsed language instructions and conduct data augmentations. The number of trainable556

parameters of each model is reported in Table A1.557

For VIMA [10], we use the 8M model for training and evaluation. We train VIMA from sractch558

only on the visual manipulation task in VIMABench [10] since visual manipulation is the only559

task of which its prompt is in the “pick something and place it into something” form. Other tasks560

that include goal-image-conditioned settings are out of scope of this paper. Because VIMA does561

not use image data augmentation in its original paper, for fair comparison, we also do not perform562

data augmentation for the VIMA & GEM comparison in Figure 4. Moreover, we replace the depth563

channels in our method into segmentation images given that VIMA assumes access to ground truth564

object masks. For results in Figure 4, we train our method for 100 epochs and VIMA for 70 epochs.565

We only use image-conditioned semantic map in VIMABench for fair comparison because VIMA566

takes multimodal prompts where all object names are represented by object images.567

A.1.6 Noun Parser568

The instruction parser assumption can be easily removed with some high-level interpreters, e.g.,569

LLMs. Our model will split this policy into p(apickt |ot, ℓpickt ) and p(aplacet |ot, ℓplacet , apickt ) and570

represent them as two different neural networks. We can reconstruct the full policy using the product571

rule, p(apickt , aplacet |ot, ℓpickt , ℓplacet ) = p(aplacet |ot, ℓplacet , apickt )p(apickt |ot, ℓpickt ), where we assume572

apickt is conditionally independent of ℓplacet given ℓpickt and that aplacet is conditionally independent573

of ℓpickt given apickt . Note that this policy can solve one-step tasks as well as multi-step tasks. In574

our experiments, the baselines and our methods have access to a ground truth parser that parses out575
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object names from language instructions. We tested GPT-4 [2] to demonstrate the effectiveness of576

GPT-4 as a noun parser from novel natural language instruction. The parsing success rate is 100%577

for seen instructions and 99% for novel language instructions.578

A.2 Ablation Study579

To investigate the functionality of each component of our model, we present a detailed ablation study580

as shown in Table A2. We conduct the ablation study in two different tasks (stack-block-pyramid-581

seq-seen/unseen-colors, packing-seen/unseen-google-objects-group) with 10, 100 demonstrations.582

For each task, we train a single-task model and evaluate the mean reward at 30k SGD steps. We583

remove different design choices from GEM separately to analyze its importance: (1) GEM without584

semantic map: we remove the entire semantic extraction module for this variation. (2) GEM without585

multi-view extraction: we only use one top-down RGB image for semantic map extraction. (3) GEM586

without steerable kernels: we directly use the unrotated output from ψpick(ℓpick) and ψplace(ℓplace)587

to do 2D convolution. (4) GEM without image-based semantic map: we only rely on the text-based588

semantic map without using image-based semantic map in this case. (5) GEM without language589

parsing: we feed the entire language instruction to the model without parsing it to the ℓpick and590

ℓplace. (6) GEM without language-conditioned attention module: we remove the language input for591

attention module Apick and Aplace.592

Table A2 summarizes the ablation experiment results. Below we discuss our findings: (1) Using593

semantic maps improves performances for all tasks and especially for unseen tasks. It indicates that594

the generalization ability of our model to novel objects mainly comes from our semantic map. (2)595

Multi-view semantic extraction is also vital for getting accurate semantic maps. Without multi-view596

extraction, pyramid-unseen-100 drops 50%. (3) Without leveraging SO(2) symmetry provided by597

the steerable kernels, the model fails to complete all tasks because the model leverages no rotation598

equivariance. (4) The image-based semantic map partnering with the text-image semantic map can599

benefit policy learning. (5) Parsing the language instruction to ℓpick and ℓplace slightly helps the600

policy learning for our model. (6) Using the language feature in the attention module Apick and601

Aplace introduces an inductive bias, especially for the unseen tests.

pyramid-seen-100 packing-seen-100 pyramid-unseen-100 packing-unseen-100

Ours 94.0 89.1 84.3 86.2
w.o Semantic map 91.7 (↓ 2.3) 87.3 (↓ 1.8) 21.0 (↓ 63.3) 53.8 (↓ 32.4)

w.o multi-view 63.0 (↓ 31.0) 83.6 (↓ 5.5) 34.3 (↓ 50.0) 65.5 (↓ 20.7)
w.o Steerable kernel 7.7 (↓ 84.0) 64.0 (↓ 25.1) 1.7 (↓ 82.6) 46.0 (↓ 40.2)

w.o image-based map 91.3 (↓ 2.7) 83.9 (↓ 5.2) 82.7 (↓ 1.6) 92.2 (↑ 6.0)
w.o Lan Parsing 93.0 (↓ 1.0) 86.7 (↓ 2.4) 84.3 (−) 90.2 (↑ 4.0)

w.o Lan-conditioning 90.7 (↓ 2.7) 89.3 (↑ 0.2) 61.3 (↓ 23.0) 77.3 (↓ 8.9)

Table A2: Ablation Study. Arrows indicate the performance difference between ours and each other ablation
variation. All variations are evaluated at 30k training steps with 50 testing episodes.

602

A.3 Ablation of Image-based Semantic Map in Real World603

arrange-letter-to-word pick-object-part-in-box

our (seen) 72.2 92.5
w/o image map (seen) 42.2 92.5

our (unseen) 75.0 82.1
w/o image map (unseen) 68.8 50.0

Table A3: Ablation on Image-based Semantic Map in Real-world Tasks. For both tasks, 5 demos are used
for training. We evaluate at 20k SGD steps. The image map denotes the image-based map.

We find that the image-based semantic map plays a crucial role in improving real-world performance604

as shown in Table A3. The hypothesis is that the text-based semantic map can be noisy for specific605

language instructions. Figure A1 shows that the text-based semantic fails to highlight the correct606

object given fine-grained instructions like “pick banana crown”. In this case, the picking action has607
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object-sorting (seen) object-sorting (unseen)

GEM (ours) 12/15 6/12

Table A5: Results on Real-world Mobile Manipulation Tasks for Seen and Unseen Objects. Each of the
15 seen objects and 12 novel objects is tested with the pick & place instruction.

a misalignment with the high-value regions in the generated semantic map. These demonstrations608

serve as “bad” data points during training because these samples force the model to ignore the609

semantic guidance provided by the semantic map. If such demonstrations commonly exist in the610

dataset, our model will learn to ignore the guidance from semantic maps during the evaluation. By611

adding image-based semantic maps, we can ensure that the action points always align with high-612

value regions in the corresponding semantic map during training. Hence, our model will trust the613

semantic map and try to take actions on high-value regions with high semantic scores, which allows614

zero-shot generalization on novel objects highlighted by the semantic map during evaluation. As615

shown in Figure A1 and Figure A1, ours without image-based semantic map (middle), i.e. text-616

based semantic map is noisier than the one with image-based semantic map. For example, the617

banana crown is highlighted more accurately than the text-based map which only highlights the618

banana as a whole. For placing, it also helps better reduce the color sensitivity of CLIP as shown in619

the “yellow bowl” example in Figure A1, where the high value is suppressed after adding the patch620

semantic map. In the simulation ablation A2, image-based semantic maps do not have such a huge621

influence presumably because the text-based semantic maps are often accurate in simulation.622

A.4 Failure Case Analysis623

A.4.1 Tabletop Experiments624

CLIP is highly sensitive to colors. Given an instruction like “pick up the yellow screwdriver”,625

the CLIP map will be more likely to highlight all the yellow objects rather than all screwdrivers.626

Especially when there is a bright yellow block and a dark yellow screwdriver, the color sensitivity627

of CLIP biases the semantic map to give a higher value to the “yellower” objects and occasionally628

guides our model to pick up the bright yellow block. Adding more data is one way to alleviate this629

color bias because our vision-language encoder can learn to give more credit to shapes when yellow630

objects are all equally highlighted by CLIP. By using image-based semantic maps introduced in631

Section 3.1, it also reduces such color-sensitivity noise. For example in Figure A1, given instruction632

“blue plate”, our method highlights plates in the scene while ours w/o image-based semantic map633

incorrectly highlights the blue letter F as well.634

Task #demo=1 #demo=3 #demo=5 #demo=10

arrange-letter-seen1 44.4 66.7 72.2 83.3
arrange-letter-unseen1 62.5 56.3 75.0 81.5

Task #demo=5 #demo=15 #demo=20 /

block-in-bowl-unseen2 12.5 (40.0) 37.5 (20.0) 62.5 (70.0) /
stack-pyramid-unseen2 30.0 (40.0) 53.3 (60.0) 63.3 (86.67) /

Table A4: Additional Results for Real-world Experiments. Dataset size and lightning conditions could
affect real-world performance. By adding more data1 and fixing lightning issues2, the performance of our
method increases. Bold numbers denoted the updated results.

Dataset size and lightning conditions could affect real-world performance. By adding more data1635

and fixing lightning issues2, the performance of our method increases. The results are in Figure A4.636
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(a) Zero-shot (seen) tasks (b) Few-shot (unseen) tasks

Figure A5: Data Scalability in Simulation Tasks. We visualize the average success rates across all simulation
tasks as data increases. Our method has more capacity as well as a higher success rate compared with the
baseline.

A.4.2 Spot experiments637

As stated in Section 4.2, most failure cases come from calibration errors when transforming pixel638

actions into real 3D actions. And, we observe the same color sensitivity of the CLIP-based semantic639

map where it often tends to highlight colors rather than shapes given an instruction like “pick the640

yellow screwdriver”.641

A.5 Scalability642

Figure A4: Data scalability in arrange-letter-
to-word in real-world. The x-axis denotes the
number of demonstrations. The y-axis denotes the
success rate. Given 10 demonstrations, the suc-
cess rate increases for both few-shot (seen) and
zero-shot (unseen) settings.

For real-world tasks, we collect more robot data in643

arrange-letter-to-word to demonstrate the data scal-644

ability. As shown in Figure A4, with more data, the645

model performance keeps increasing.646

For real-world industrial applications, a key question647

is the scalability of our method because it will get648

access to more data.649

In this section, it shows that our method scales with650

more data. And, it is capable of multi-task learn-651

ing and has the potential to benefit from a bigger652

multi-task dataset. Data scalability in simulation is653

shown in Figure A5. Given more data, the single-654

task model keeps getting better performance across655

all tasks. Meanwhile, multi-task models perform656

better than single-task in the low-data region. The657

result shows the data scalability and multi-tasking658

scalability of our method. An interesting finding is659

that the zero-shot tasks are converging to a lower660

overall success rate compared with few-shot tasks661

for two reasons: (1) zero-shot performance are con-662

strained by the open-vocabulary ability of CLIP which sets a hard performance upper bound; (2)663

few-shot (seen) tasks are scalable given that it is considered to be “close-vocabulary” because all664

objects appeared at least once in the training set.665

A.6 Semantic Extraction from Different VLMs666

We compare a popular open-vocabulary object detector OWL-ViT [55] which is used to ground lan-667

guage for robotic tasks in [56]. For OWL-ViT, we use owlvit-base-patch32 and set score threshold668
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(a) RGB observation

(b) CLIP (ours) (c) Grounding DINO

Figure A6: Semantic map visualization using different VLMs for “red blocks”. CLIP (ours) creates a
more uniform semantic map than Grounding DINO which is strongly biased by the objectness.

to 0.1. OWL-ViT fails to detect any object given “banana crown”, “blue mug handle”, “yellow669

bowl”, and “blue plate” as shown in Figure A1 and Figure A1. OWL-ViT is able to find out banana670

given the prompt “banana” instead of “banana crown”. Blue mug can be detected given “blue mug”671

but nothing detected given “blue mug handle”. However, it fails to detect the yellow bowls whether672

using “yellow bowl” or “bowl”.673

(a) block-in-bowl-seen (b) block-in-bowl-unseen

Figure A7: Task Success Rate Using Different
VLMs.

We also compare our method with another674

recent zero-shot open-vocabulary detection675

method. i.e. Grounding DINO [49]. In Fig-676

ure A6, Grounding DINO shows a stronger ob-677

jectness bias where our method using CLIP678

generates a more uniform semantic map. In679

Figure A7, we compare GEM (CLIP) and GEM680

(Grounding DINO) with patch-level maps gen-681

erated by CLIP (ours) and object-level maps682

generated by Grounding DINO. The results683

show that Grounding DINO reaches simi-684

lar performance compared with CLIP in seen685

tasks. However, its performance drops dramat-686

ically in unseen tasks. Our hypothesis is that687

Grounding DINO has a strong “objectness” inductive bias. If the Region Proposal Network in688

Grounding DINO fails to propose correct regions that include the desired object, the performance689

drops. Given the comparable performance in seen tasks, it shows that exploring more VLM varia-690

tions is an interesting future direction.691

A.7 Query Image Crops from Dataset via Text-text Similarity692

We calculate the text-to-text cosine similarities using CLIP’s text encoder between the given object693

name and all objects in the dataset to retrieve the corresponding image crop as introduced in Sec-694

tion 3.1. We set the text similarity threshold to be 0.965. If the returned text similarity is above the695

threshold, the corresponding image crop can be successfully retrieved. We found 0.965 is robust696

enough to exclude all incorrect objects in the dataset while adding certain free-form language adapt-697

ability. For example, as shown in Figure A8, given a language instruction “big bottle middle”, our698
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method can not only retrieve the correct image crop by identifying “big bottle middle”, but can also699

retrieve images labeled by synonyms like “big bottle body” if such a datapoint exists in the dataset.700

Figure A8: Query from Dataset. The yellow circles denote the objects and the purple circle denotes
the words that are considered synonyms given a threshold of 0.965. The numbers on the connection
lines show the text-text similarity scores. The word with scores bigger than the threshold is consid-
ered a successful query and vice versa.

A.8 Background on Symmetry Groups701

A.8.1 Group and Representation702

In this work, we are primarily interested in the SO(2) group and cyclic groupCn. SO(2) contains the703

continuous planar rotations {Rotθ : 0 ≤ θ < 2π}. Cn = {Rotθ : θ ∈ { 2πi
n |0 ≤ i < n}} contains704

only rotations by angles which are multiples of 2π/n. A d-dimensional representation ρ : G→ GLd705

of a groupG assigns to each element g ∈ G an invertible d×d-matrix ρ(g). Different representations706

of SO(2) or Cn help to describe how different signals are transformed under rotations.707

1. The trivial representation ρ0 : SO(2) → GL1 assigns ρ0(g) = 1 for all g ∈ G, i.e. no708

transformation under rotation.709

2. The standard representation710

ρ1(Rotθ) =

(
cos θ − sin θ
sin θ cos θ

)
represents each group element by its standard rotation matrix. Notice that ρ0 and ρ1 can be711

used to represent elements from either SO(2) or Cn.712

3. The regular representation ρreg of Cn acts on a vector in Rn by cyclically permuting its713

coordinates ρλ(Rot2π/n)(x0, x1, ..., xn−2, xn−1) = (xn−1, x0, x1, ..., xn−2).714

4. The irreducible representation ρiirrep could be considered as the basis function with the715

order/frequency of i, such that any representation ρ of G could be decomposed as a direct716

sum of them. Signals defined on the group SO(2) can be decomposed as limits of linear717

combinations of complex exponential functions (sin, cos).718

A.8.2 Feature Vector Field.719

We formalize images and 2D feature maps as feature vector fields, i.e., functions f : R2 → Rc,720

which assign a feature vector f(x) ∈ Rc to each position x ∈ R2. The action of an element721

g ∈ SO(2) on f is a combination of a rotation in the domain of f via ρ1 (this rotates the pixel722

positions) and a transformation in the channel space Rc (i.e., fiber space) by ρ ∈ {ρ0, ρ1, ρλ, ρirrep}.723

If ρ = ρ0, the channels do not change. If ρ = ρreg, then the channels cyclically permute according724

to the rotation. If ρ = ρirrep, then the channels shift.725
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Figure A9: Rotational equivariance of semantic map. The patch size and stride is set to 20 and 10 respec-
tively.

We denote this action (the action of g on f via ρ) by T ρ
g (f):726

[T ρ
g (f)](x) = ρ(g) · f(ρ1(g)−1x). (7)

A.8.2.1 Equivariant Mapping727

A function f : X → Y is considered to be SE(2)-equivariant if it can commutes the action of the728

SE(2) group f(T x
g ·x) = T y

g ·f(x) for all g ∈ SE(2), where T x
g and T y

g defines the group element g729

acts on the input and output of the function f . We sometimes omit the action space of g and denote730

it as f(g · x) = g · f(x).731

A.8.3 Steerable Kernel732

The most equivariant mappings between spaces of feature fields are realized by convolutions with733

G-steerable kernels [57]. The G-steerable kernels are convolution kernels K : Rn → Rdout×din734

satisfying the steerability constraint, where n is the dimensionality of the space, dout and din are the735

output and input field type736

K(g · x) = ρout(g)K(x)ρin(g)
−1 (8)

A.8.4 Language Steerable Kernel737

Given a 2D square tensor κ with the size of Rh×h, rotating κ with a group of n rotations { 2πi
n |0 ≤738

i < n} results a steerable kernel K with ρin = I . It was proved in [57, 58, 46]. The shortest answer739

is that a rotation g applied to κ (i.e., g · x) on the LHS of Equation 8 is equivalent to a channel740

permutation (i.e., ρout on the RHS of Equation 8) of K with the unrotated κ.741

A.8.5 Equivariant Property of Semantic Maps742

To guarantee a strict local equivariance property of our output action, it requires not only the steer-743

able kernels but also the attention maps and the semantic maps to be locally equivariant with respect744

to object movements in the input image. Firstly, UNet is known to be good at preserving geometric745

features from its input due to the residual connections mechanism. However, it is not clear whether746

the image-based semantic map also has such an equivariance-preserving property. We investigated747

this problem and found that CLIP is rotational invariance to a certain degree. Given a fixed lan-748

guage instruction ℓ and one image ot, the similarity score fCLIP (o, ℓ) is very close to the score749

fCLIP (g · o, ℓ), where g ∈ SO(2) rotates the image globally. Given this image-level rotational750

invariance property, it helps preserve the local equivariance when extracting patch-level semantic751

maps. To prove the point, we construct an equivariant version of our semantic map using the frame752
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averaging technique introduced by [59] and compare it with a normal semantic map in Figure A9.753

By calculating the error between the equivariant map and a normal semantic map, we get an absolute754

mean error of 0.02 which indicates that our semantic map preserves the local equivariance to some755

degree. Worth mentioning, we also found the equivariance error increases when we increase the756

patch size for semantic extraction.757

A.9 Theory and Proofs758

A.9.1 Steerable kernel for realizing local equivariance759

Our picking model is consist of language-conditioned kernel generator κpick and observation net760

ϕpick and can be written as761

f pick(ot, ℓ
pick
t ) = κ(ℓpickt ) ∗ ϕ(ot, ℓpickt ) (9)

Picking symmetry is realized by language-conditioned kernel762

argmax(g · κ(ℓpickt ) ∗ ϕ(ot, ℓpickt ))
=

g · argmax(κ(ℓpickt ) ∗ ϕ(ot, ℓpickt ))

(10)

The placing module is implemented as follows763

f place(ot, ℓ
place
t , ct) = κcrop(ct) ∗ ϕ(ot, ℓplace

t ) (11)

And placing symmetry is realized by crop-conditioned kernel764

f place(ot, ℓ
place
t , ct) = κcrop(ct) ∗ ϕ(ot, ℓplace

t ) (12)

A.9.2 Equivariance proof for language steerable kernel765

Proposition 1 if κ(ℓt) is a steerable kernel, it approximately satisfies the symmetry stated in Equa-766

tion 5.767

Intuitively, if ϕ is an identity mapping, the cross-correlation between a steerable kernel and the768

ot captures the exact symmetry. That is any transformed bl will be cross-correlated at one pixel769

location with the steerable kernel. Detailed proof of Proposition 1 can be found in the following770

section. Translational Equivariance. Since FCNs are translationally equivariant by their nature,771

if the target object bℓ is translated to a new location, the cross-correlation between κ(ℓt) ∗ ϕ(ot, ℓt)772

will capture this translation and there is no change in the change space.773

Rotation Equivariance. Assuming ϕ satisfies the equivariant property that ϕ(T 0
g ot, ℓt) =774

T 0
g ϕ(ot, ℓt) and the rotation of bℓ is represented by T 0

g ot, we start the proof with lemma 1 and775

lemma 2.776

Lemma 1 if k(x) is a steerable kernel that takes trivial-type input signal, it satisfies777

T 0
gK(x) = ρout(g

−1)K(x).778

Prove Lemma 1. ρ0(g) is an identity mapping. Substituting ρin with ρ0(g) and g−1 with g in779

Equation 8780

T 0
gK(x) = K(g−1x)

= ρout(g
−1)K(x)ρin(g)

= ρout(g
−1)K(x)

Lemma 2 Cross-correlation satisfies that781

(T 0
g (K ⋆ f))(v⃗) = ((T 0

gK) ⋆ (T 0
g f))(v⃗) (13)
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Prove Lemma 2. We evaluate the left-hand side of Equation:782

T 0
g (K ⋆ f)(v⃗) =

∑
w⃗∈Z2

f(g−1v⃗ + w⃗)K(w⃗).

Re-indexing the sum with y⃗ = gw⃗,783

=
∑
y⃗∈Z2

f(g−1v⃗ + g−1y⃗)K(g−1y⃗)

is by definition784

=
∑
y⃗∈Z2

(T 0
g f)(v⃗ + y⃗)(T 0

gK)(y⃗)

= ((T 0
gK) ⋆ (T 0

g f))(v⃗)

as desired.785

Given Lemma 1 and lemma 2, we can prove that786

κ(ℓt) ∗ ϕ(T 0
g ot, ℓt) =κ(ℓt) ∗ T 0

g ϕ(ot, ℓt)

=κ(ℓt) ∗ T 0
g ϕ(ot, ℓt)

=T 0
g T

0
g−1κ(ℓt) ∗ T 0

g ϕ(ot, ℓt)

=T 0
g [T

0
g−1κ(ℓt) ∗ ϕ(ot, ℓt)] lemma 2

=T 0
g [ρout(g)κ(ℓt) ∗ ϕ(ot, ℓt)] lemma 1

It states that if there is a rotation on ot, the grasp position is changed by T 0
g , and the rotation is787

changed by ρout(g). Since the cross-correlation is calculated for each pixel without stride, the ro-788

tated bℓ is captured by ρ(g). In our implementation, we generate the language-conditioned steerable789

kernel κ(ℓt) but remove the constraint of the equivariant property of ϕ. However, the U-Net archi-790

tecture with the long skip connection can maintain the equivariance a little bit, and extensive data791

augmentation is used to force the model to learn the equivariance.792

A.9.3 Proof of the Steerability of L(ψ(·))793

L(T 0
g ψ(·)) =T 0

g {T 0
g1ψ(·), T

0
g2ψ(·) · · · , T

0
gnψ(·)} gi ∈ Cn

={T 0
gg1ψ(·), T

0
gg2ψ(·) · · · , T

0
ggnψ(·)}

={T 0
g2ψ(·), T

0
g3ψ(·) · · · , T

0
gnψ(·), T

0
g1ψ(·)} if g = g1

=ρreg(g
−1)L(ψ(·))

Since L(T 0
g ψ(·)) = L(g−1x), we achieve that L(g−1x) = ρreg(g

−1)L(x). Substituting g−1 with794

g shows that κ(c) = L(ψ(·)) satisfies the steerability constraint shown in Equation 8 and it is a795

steerable kernel with regular-type output and trivial-type input. Since Fourier transformation on796

the channel space maps the discrete SO(2) signal above each pixel to the coefficients of the basis797

function. It realizes an irreducible steerable kernel that has trivial-type input and irrep-type out-798

put [54, 44].799

A.10 Simulation Tasks800

The simulator inherits the design of Ravens-10 [20]. It has 3 cameras (topdown, left, right) pointing801

towards a rectangular workspace. Each camera provides a 480x640 RGB-D image that can be used802

for a top-down RGB-D reconstruction. Each task owns an oracle agent that can generate the expert803

action given the current language instruction and the observation.804
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Figure A10: CLIPort benchmark tasks. We use tasks from the CLIPort benchmark [8] for evaluating our
method in simulation. For each task, we provide one initial scene (upper image) and one final state (bottom
image) with one specific language instruction example. In each scenario, one or more language instructions
may be involved to finish the task. The tasks are defined as followed: (a) align-rope, (b) assembling-kits-
seq-seen/unseen-colors, (c) packing-box-pairs-seen/unseen-colors, (d) packing-seen/unseen-google-objects-
groups, (e) packing-seen/unseen-google-objects-seq, (f) packing-unseen-shapes, (g) put-blocks-in-bowls-
seen/unseen-colors, (h) separating-tiles-seen/unseen-colors, (i) stack-block-pyramid-seq-seen/unseen-colors (j)
towers-of-hanoi-seq-seen/unseen.

The simulation experiment contains 18 tasks from CLIPort benchmark [8]. Tasks that include the805

“google” identifier sample objects from a subset of the Google-scanned dataset [60] which contains806

56 different objects. All 56 Google objects are separated into “seen-google” objects set with 37 ob-807

jects and “unseen-google” objects set with 19 objects. For “seen-google” task variations, the training808

and testing objects are all sampled from the full google set. For “unseen-google” task variations,809

the training objects are from seen-google set, and testing objects are sampled from unseen-google810

set. For “seen/unseen-color” tasks, CLIPort benchmark defines a seen-color set that contains seven811

colors {red, green, blue, yellow, brown, gray, cyan} and an unseen-color set {red, green, blue, or-812

ange, purple, pink, white}. These two sets share three colors {red, green, blue}. For “seen-color”813

task variations, the colors of the training and testing object are all sampled from the seen-color set.814

For “unseen-color” task variations, the colors of training objects are from seen-color set, and testing815

objects are sampled from unseen-color set. Tasks (b) and (f) share a geometric object set which816

contains 20 objects like “letter A shape”, “pentagon”, “star”. The geometric shape set is divided817

into a seen-shape set and an unseen-shape set that contains 14 and 7 objects respectively. Refer to818

[8] for more details. Specific task details are provided as follows.819

(a) Align-rope: The instruction template is “Align the rope from {direction}”. The objective820

of this task is to connect two end-points of a rope between 2 corners of a 3-sided square.821

(b) Assembling-kits-seq-seen/unseen-colors: The instruction template is “Put the {color}822

{object} in the {location} {object} hole”. This task requires the agent to pick an object823

and place it into a hole with the same shape. For example, “pick the green letter R shape824

and place into the green letter R block hole.”825

(c) Packing-box-pairs-seen/unseen-colors: The instruction template is “Pack all the826

{colors} blocks into the brown box”. The robot will be asked to pick blocks of two specific827

colors, the robot needs to identify all blocks with such colors and place them into the brown828

box. There are also blocks of other colors that serve as distractors.829

(d) Packing-google-objects-group-seen/unseen-colors: The instruction template is “Pack all830

the {object} in the brown box”. For each step, the robot will be asked to pick a specific831
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Model learning from demos few-shot zero-shot GT low-level skills GT objectness required Pre-trained model

ViLA [4] ✗ ✗ ✗ teleoperation not required GPT-4V
VoxPoser [5] ✗ ✗ ✓ required∗ OWL-ViT GPT-4V, OWL-ViT, SAM
MOO [56] ✓ ✗ ✓ not required OWL-ViT OWL-ViT
VIMA [10] ✓ ✗ ✗ not required Mask RCNN T5, Mask RCNN
CLIPort [56] ✓ ✓ ✗ not required not required CLIP
GEM (ours) ✓ ✓ ✓ not required not required CLIP

Table A6: Comparison Among Language-conditioned Manipulation Methods. Our model allows few-shot
and zero-shot generalization without ground truth training, object detectors, or segmentation models other than
per-trained CLIP. We define “few-shot” as the learning ability to reach a reasonable task success rate given less
than 20 demonstrations, and “zero-shot” as policy generalization on unseen objects. “GT objectness” means the
method needs robust object detector or segmentation models during training or testing. “GT low-level skills”
denotes whether the method assumes access to low-level policies that map pixels to actions. ∗Skill fine-tuning
via demonstrations available.

object and place into the box. In the scene, there are at least two objects in this category832

and at least two distractors from other categories. The robot needs to pick and place all the833

objects as instructed in the scene to finish the task.834

(e) Packing-google-objects-seq-seen/unseen-colors: The instruction template is “Pack the835

{object} in the brown box”. In this task, the agent is asked to pick the objects and place836

them in the brown box in a specific order based on the language descriptions. The robot837

needs to pick and place in the correct order as instructed.838

(f) Packing-unseen-shapes: The instruction template is “Pack the {object} in the brown839

box”. Training objects are samples from the geometric shape set and the seen color set.840

During evaluation, objects are randomly sampled from the shape set, and the color is sam-841

pled from the unseen color set.842

(g) Put-blocks-in-bowl-seen/unseen-colors: Instruction template is “Put the {color} blocks843

in a {color} bowl”. The agent is asked to pick the block with the instructed color and place844

it into the bowl. All the blocks are in the same shape.845

(h) Separating-piles-seen/unseen-colors: The instruction template is “Push the pile of {block846

color} blocks into the {square color} square”. In this scenario, there are two square zones847

with different colors and a stack of blocks with one specific color. One of the zones is848

considered as a distractor. The task asks the agent to push the pile of blocks in certain849

colors into a specific zone.850

(i) Stack-block-pyramid-seen/unseen-colors: The instruction template is “Put the {pick851

color} block on {place color}”. The robot needs to stack a 3-2-1 block pyramid by follow-852

ing step-by-step language instructions. At the beginning of each episode, six colored blocks853

are generated randomly and one plate with three colors is also placed in the workspace to854

indicate placing locations for the first three blocks.855

(j) Towers-of-hanoi-seq-seen/unseen-colors: The instruction template is “Move the {object}856

ring to the {location}”. In this scenario, there is one peg base and three rings of different857

sizes. The peg base also contains three stands. The objective of the task is to train the robot858

to pick the specific ring and place it into the correct peg stand.859

A.11 Real-world Table-top Tasks860

Setting: As shown in Figure A12, we use a UR5 robot arm with Robotiq gripper for the table-top861

setting. There are one Microsoft Kinect Azure Camera and two Realsense D455 cameras mounted862

around a 29cm × 21cm workspace to capture the multi-view RGB-D images. The topdown RGB-863

D observation has a size of 320 × 240 pixels to cover the workspace. We select CLIPort as our864

real-world baseline since it performs the best among the baselines in simulated tasks.865
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(a) pick-object-part-in-box (b) arrange-letter-to-word (c) stack-block-pyramid (d) put-shapes-in-bowl

Figure A11: Tabletop object set. The transparent arm shows the picking action and the solid arm
shows a successful placing action.

Tasks: We design 4 tasks with language instructions for our physical experiments to measure the866

performance of zero-shot learning and few-shot learning. Each task is tested with seen objects and867

unseen objects. Figure 5 shows the training and evaluation object set for different tasks. Our diverse868

object sets cover in-category objects, novel objects with unseen textures, unseen colors, and unseen869

shapes.870

i ) pick-object-part-in-brown-box: As shown in Figure 5, for each step, the robot is given a871

language instruction e.g., “pick the blue mug handle and place into brown box” and it needs to872

pick the specific part of objects instructed by the language instruction and place it into a brown873

box. In this task, there are 10 objects and each object has 2 parts, e.g., “mug brim” and “mug874

handle” are two parts for the object “mug”. The instruction template is “Pick the {object} and875

place into brown box”. In this task, the agent is asked to pick objects and place them into a box876

based on language instructions. The object is not only counted for picking as a whole but two877

specific parts on each object are expected to be picked, which increases the complexity of the878

task. For the unseen part, the open-world object sets are used for evaluation.879

ii ) arranging-letter-to-word: A step-by-step instruction is given to the model like “pick blue880

letter E block and place onto green plate”. The instruction template is “Pick the {color} letter881

{letter} and place on {color} plate”. This task aims to test the text recognition capability of882

our model. The agent was trained to pick up differently colored letter blocks and place them883

on colored plates. To improve orientation adaptability, black and white lines are painted on all884

alphabet blocks and plates to indicate the correct orientation of certain letters. A success rate of885

0.5 was counted if the letter was placed on the correct plate but with a wrong orientation. Unseen886

letters and numbers are also employed in the evaluation to test the model’s zero-shot ability.887

iii ) block-stacking-pyramid: The robot needs to stack a 3-2-1 block pyramid using color blocks.888

For each step, the instruction is similar to “pick yellow block and place on gray and red block.”889

To complete the task, the robot needs to successfully finish the pyramid following the instruc-890

tions. The instruction template is “Pick the {pick color} block on {place color1} and {place891

color2}) block”. If the robot is stacking the first pyramid layer, a plate with three different col-892

ors is placed in the workspace to indicate placing locations. For these steps, the instructions893

template is “Pick the {pick color} block on {place color1} plate”. In this task, the primary goal894

is to construct a pyramid using 6 blocks. The process involves stacking 6 colored blocks into a895

3-2-1 pyramid in each episode. Three of these blocks are chosen to form the base of the pyramid,896

and three colored, planar squares are used to determine the placement position and orientation.897

Instructions for placing the other three blocks on top are given in the format, “Pick color A block898

and place on color B and C blocks.” And the unseen version of this task where the evaluation899

involves blocks that have not been seen before.900

iv ) pick-shapes-in-bowl: As shown in Figure 5, for each episode, given an instruction like “pick901

the yellow pentagon block and place into green bowl”, the robot needs to rearrange the pentagon902

block into the green bowl. The instruction template is “Pick the {color} {shape} and place into903

{color} bowl”. The goal of this task is to test the model’s ability to recognize different colors904

and shapes. The agent is instructed to select a block that matches a specific color and shape and905

place it into a bowl with color. The model is tested on both seen and new colors and shapes.906
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Figure A12: The Stitch-and-split Trick in Mobile Manipulation. The first column shows observations on
two separate tables. By stitching the output action maps and then taking argmax for actions (step 2), we enable
our method to directly generalize to multiple workspaces. Please note the instructed pick target and the place
target are located in two different tables for this observation.

Training and Evaluation Details: For each task, we collect a data set of n expert demonstrations,907

where each demonstration contains a sequence of one or more (ot, ℓt, ā
pick
t , āplacet ). āpickt and āplacet908

denotes the expert pick action and place action. We use them to generate one-hot pixel maps as909

the ground truth labels for the pick module and the place module. The model is trained with cross-910

entropy loss end to end and we train our pick model and the place model separately. For both our911

method and baselines, we train each model for a total number of 30k SGD steps and evaluate the912

performance every 10k steps. Apart from training a single-task policy per method, we also train913

a multi-task policy for our methods and CLIPort [8]. Numbers of demonstrations for multi-task914

training are defined to be that we separately sample (10, 20, 100) from each task. For example,915

GEM-multi with 10 demonstrations is one model trained with a dataset that contains a total of 100916

demonstrations sampled from all ten tasks with their seen object sets and color sets. We train the917

multi-task models for 300k SGD steps and evaluate every 100k steps. We report the best perfor-918

mance in these three evaluations per model for each task.919

We measured the performance in the same way as used in CLIPort [8]. The metric is in the range of920

0 (failure) to 100 (success). Partial rewards are calculated in multi-step tasks. For instance, in the921

task of pushing colored piles into the colored square, pushing 10 piles out of 50 into the correct zone922

will be credited 10
50 × 100% rewards.923

In our semantic module, we set the patch size and stride as 40 and 20 to generate the semantic924

map for each side-view image. We combine the text-based and image-based semantic maps with a925

weighted sum (0.2:0.8).926

Training and Evaluation: Demonstrations are manually collected by humans and each demonstra-927

tion is defined as a one-time completion of the task. For instance, in pick-object-part-into-brown-928

box, one demo contains 20 pick&place actions where each object part is demonstrated once. For929

block-stacking-pyramid-seq, one demo includes six pick&place actions to finish one 3-2-1 block930

pyramid.931

We train a single-task policy and a multi-task policy for our model and the baseline with different932

numbers of demonstrations. Single-task models and multi-task models are trained for 20k and 100k933

SGD steps respectively. The performance is measured with seen and unseen objects separately. For934

each test, we randomly place seen and unseen objects in the workspace and the configurations are935

different from those in the training set. We run 20 evaluations per task per model.936
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Figure A13: Real-world Mobile Manipulation Object Set. Left is the training object set and right
is the unseen test set.

A.12 Mobile Manipulation937

For open-world manipulation, mobility is a must because the robot needs to move in an unstructured938

world. We evaluate our model on a mobile manipulation platform to demonstrate an interesting939

generalization case. With the translational equivariance of CNN, we can deploy our model directly940

to an arbitrary number of workspaces even if the data is only collected in one workspace. As shown941

in Figure A12, our model takes the images of two workspaces as inputs, and we can use the same942

pick kernel and place kernel to do the cross-correlation with the dense feature map of each workspace943

concurrently. The action can be queried with spatial argmax across two tables.944

The instruction in the object-sorting task is “pick {object name} and place into {symbol name}945

box”. We collected 5 pick and place demonstrations for each object in our training object set. With946

15 training objects, there is a total of 75 pick-and-place actions. There are two boxes for placing947

objects: a “gear box” and a “recycle box”. During the evaluation, there are 12 unseen objects and948

we replace the “gear box” with a “smile face box” as a novel box during evaluation.949

Setting: We use a Boston Dynamics Spot robot with an arm for the mobile manipulation setting.950

There are two 106 cm × 53 cm tables in the environment. For calibration simplicity, we use three951

Realsense D435 cameras for each table to get multi-view images of the workspace. The topdown952

RGB-D observation has a size of 320 × 160 pixels to cover each table. Each table is attached with953

an Apriltag [61] and the Spot could commute between two tables by detecting its relative pose to the954

tag. We leave the full mobility implementation without the AprilTag for future work.955

Task: We design an object-sorting task where the robot needs to do the pick & place between two956

tables. We do not designate the pick table and the place table. Objects and boxes are randomly957

placed on two tables. Given language instructions like “pick black headphone and place into recycle958

box”, the robot needs to pick up the correct object from one table and place it into the correct box.959

As shown in Figure A13, our training object set contains 15 objects and two boxes with a recycle960

symbol and a gear symbol. For the unseen object set, we have 10 novel objects and one novel box961

with a happy face symbol.962

Training and Evaluation: We collect 5 demos for each object and train our model for 50k SGD963

steps. During the evaluation, we evaluate two scenarios: (1) seen objects with novel spatial po-964

sitions and orientations and (2) unseen objects with random positions in the workspace. Given a965

language instruction, it is considered a success only if the robot picks and places the correct object966

into the correct box as instructed. During evaluation, we randomly initialize objects and boxes in967

the workspace. We evaluate pick and place for each object in our object set.968

A.13 Bridging Text-based Planner and Real-world Manipulation via969

Language-condition Policy:970

Acknowledging the impressive reasoning ability of LLMs, a language-conditioned manipulation971

policy can serve as a bridge between a high-level reasoning machine and a physical agent. In this972
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Figure A14: Our Language-conditioned Policy Bridges LLM-level Planning and Real-world Manipula-
tion. GPT-4 takes observation and a vague language goal and breaks it into step-by-step specific instructions
that can be executed successfully by our model in the real world.

section, we test our model with LLMs to solve semantically complicated and long-horizon tasks. As973

shown in Figure A14, we design a vague language goal, i.e., “pick all toys and place into brown box”974

and ask LLM to understand the goal and break it into step-by-step pick-and-place instructions. Our975

method then takes the step-by-step instruction to execute the action in the real world. Figure A14976

shows a real example of how can our method take advantage of LLMs like GPT-4 [2] to directly977

enable long-horizon policies in real-world tasks. We test our multi-task model with “pick all toys978

and place into brown box” in the real world. With GPT-4’s instructions, our model can pick up all979

three toys in three steps. Without GPT-4, it only picks up the toy hammer and fails to pick up other980

toys.981
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