
Published as a conference paper at ICLR 2026

UNSUPERVISED REPRESENTATION LEARNING -
AN INVARIANT RISK MINIMIZATION PERSPECTIVE

Yotam Norman, Ron Meir
Department of Electrical & Computer Engineering
Technion - Israel Institute of Technology
yotamnor@gmail.com

ABSTRACT

We propose a novel unsupervised framework for Invariant Risk Minimization
(IRM), extending the concept of invariance to settings where labels are unavail-
able. Traditional IRM methods rely on labeled data to learn representations
that are robust to distributional shifts across environments. In contrast, our ap-
proach redefines invariance through feature distribution alignment, enabling ro-
bust representation learning from unlabeled data. We introduce two methods
within this framework: Principal Invariant Component Analysis (PICA), a lin-
ear method that extracts invariant directions under Gaussian assumptions, and
Variational Invariant Autoencoder (VIAE), a deep generative model that sepa-
rates environment-invariant and environment-dependent latent factors. Our ap-
proach is based on a novel “unsupervised” structural causal model and supports
environment-conditioned sample-generation and intervention. Empirical evalua-
tions on synthetic dataset, modified versions of MNIST, and CelebA demonstrate
the effectiveness of our methods in capturing invariant structure, preserving rele-
vant information, and generalizing across environments without access to labels.

1 INTRODUCTION

Invariant Risk Minimization (IRM), introduced by Arjovsky et al. (2019), addresses the challenge
of learning robust models in the presence of distribution shifts across environments (domains). This
framework forms a cornerstone of the broader field of Out-Of-Distribution (OOD) learning, which
seeks to enable models to generalize effectively to unseen environments. IRM considers scenarios
with accessible training environments and inaccessible test environments, assuming that the under-
lying data distribution changes across environments. Within this setting, certain latent features of
the data remain stable across environments (invariant features), while others change and are referred
to as environmental or spurious features. The goal in IRM is to learn a representation of the data that
preserves invariant features while filtering out environmental ones. A predictor or classifier trained
on this representation is designed to exhibit robustness to distribution shifts, including shifts occur-
ring in unseen environments that share the same underlying generative process. This work extends
the concept of invariance in IRM to unsupervised settings, removing the dependency on labels or
target values. By redefining invariance in the unsupervised context, we unlock new opportunities
for research in IRM. Specifically, we propose methods to explore unsupervised algorithms within
the IRM framework and demonstrate the feasibility of achieving invariant representations for unla-
beled data. We present two novel approaches: Principal Invariant Component Analysis (PICA) and
Variational Invariant Autoencoder (VIAE). PICA, grounded in Gaussian and linearity assumptions
common in PCA literature, identifies a linear transformation that achieves invariant projections of
the data. This dimensionality reduction method effectively filters out dimensions subject to distri-
butional shifts while retaining invariant ones. VIAE, a variational autoencoder adapted for unsuper-
vised IRM, is aimed at separating the latent space into invariant and environmental parts, allowing
causal interventions for both generated samples and data points. This method is empirically tested on
datasets inspired by common benchmarks in IRM literature (Gulrajani & Lopez-Paz, 2020), mod-
ified to suit the unsupervised framework. These contributions pave the way for new explorations
in invariant representation learning, offering tools to handle distribution shifts in scenarios where
labeled data is unavailable and/or expensive.
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1.1 DEFINITIONS & FORMALIZATION

We consider a set of environments Eall, each inducing a distinct probability distribution over the
data: Xe ∼ P e for each e ∈ Eall. The set Eall is partitioned into two disjoint subsets: Etrain,
containing the environments observed during training, and Etest, containing environments that are
not available during training. At inference time, samples may originate from either Etrain or Etest,
depending on the context and the application.

Random vectors are denoted using uppercase letters (e.g., Zinv, Ze), where the subscripts inv and e
indicate whether the variable is invariant to the environment or environment-dependent, respectively.
Deterministic variables are denoted using lowercase letters. When a deterministic variable is written
as a function of e, it implies direct dependence on the environment, i.e., f(e) may vary across
different environments e.

1.2 SUPERVISED AND UNSUPERVISED IRM

In the supervised IRM setup, the data consists of triplets (X,Y, e), where X denotes the input vector,
Y is the label, and e specifies the environment. The data are assumed to be generated according to

(X,Y )e ∼ P e
X,Y (x, y),

where e is a known deterministic parameter that modulates the joint distribution over inputs and
labels (X,Y ). The IRM optimization objective, originally formulated by Arjovsky et al. (2019), is
given by:

min
ϕ:X→H
w:H→Y

∑
e∈Etrain

Re(w ◦ ϕ) ; s.t. w ∈ argmin
w̄:H→Y

Re(w̄ ◦ ϕ) ∀e ∈ Etrain. (1)

Where Re(·) denotes the risk under environment e. Unlike standard empirical risk minimization
(ERM), IRM introduces an additional constraint: the learned predictor w ◦ ϕ must be optimal for
each environment independently. Subsequent work (e.g. Zhou et al. (2022); Lin et al. (2022); Ahuja
et al. (2021); Chen et al. (2022)) has focused on proposing surrogate objectives and algorithms to
approximate solutions to this challenging bi-level optimization problem.

In this work, we extend the IRM framework to the unsupervised setting. Specifically, we investigate
whether it is possible to learn invariant representations from unlabeled data drawn from multiple
environments

Xe ∼ P e
X(x),

where the goal is to learn a feature map ϕ(X) such that

P e1(ϕ(X)) = P e2(ϕ(X)) ∀e1, e2 ∈ Eall.

In other words, the learned representation should be invariant to the environment. To this end, we
consider a generative model parameterized by θ, with environment-specific likelihoods P e

θ (X). Our
proposed objective is to maximize the sum of log-likelihoods across all environments, subject to
the constraint that the induced distribution of the learned features ϕ(X) (also parametrized by θ) is
identical across environments. This leads to the unsupervised IRM optimization problem:

max
θ

∑
e∈Etrain

logP e
θ (X|ϕ(X))P e

θ (ϕ(X)) ; s.t. P i
θ(ϕ(X)) = P j

θ (ϕ(X)) ∀i, j ∈ Etrain, (2)

where for x ∈ RD and z = ϕ(x) ∈ Rd, the notation P e
θ (X,Z) denotes a distribution over RD+d

such that Pr(X ∈ dx, Z ∈ dz) = PX(x)δ(z − ϕ(x))dxdz.

This formulation shares similarities with unsupervised representation learning approaches such as
Variational Autoencoders (VAE) (Kingma & Welling, 2014) and Probabilistic PCA (Vidal et al.,
2016), but crucially introduces an explicit constraint enforcing representation invariance across en-
vironments. Analogous to supervised IRM, the maximum likelihood term plays the role of the em-
pirical risk, while the constraint enforces an invariance property, here defined as equality of feature
distributions across environments.
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Figure 1: IRM Generative Structural Causal Models for supervised (left 3 figures) and unsupervised
(right figure) cases

1.3 GENERATIVE CAUSAL GRAPHS

The foundational assumptions underlying this work, and much of the broader IRM literature, are
rooted in causality theory (Peters et al., 2017; Bernhard Schölkopf, 2021), specifically a particular
family of causal generative processes. These processes are typically formalized using Structural
Causal Models (SCMs), which characterize the cause-and-effect relationships among the variables
in a system. In the IRM setting, prior works commonly assume SCMs that distinguish between
“Fully Informative Invariant Features” (FIIF) and “Partially Informative Invariant Features” (PIIF)
(Ahuja et al., 2021), as well as between causal and anti-causal label structures. A central con-
cept across these variants is the decomposition of the latent space into two components: Ze, the
environment-dependent features, and Zinv, the invariant features that remain stable across environ-
ments.

In this work, we introduce a new SCM tailored for the unsupervised setting, which we term Un-
supervised SCM. This model generalizes previous assumptions, providing a unified framework that
encompasses both FIIF and PIIF structures, as well as causal and anti-causal generative mecha-
nisms. By doing so, it lays the foundation for unsupervised invariant representation learning under
a broader and more flexible generative model.

2 RELATED WORK

The study of causality predates the formulation of Invariant Risk Minimization (IRM). In particular,
Peters et al. (2015) established a connection between causal relationships and invariance principles,
laying the foundation for the development of IRM. IRM was formally introduced by Arjovsky et al.
(2019), along with its first approximating objective, IRMv1. Following this, substantial research has
focused on designing improved objectives and algorithms. Notably, Zhou et al. (2022) and Lin et al.
(2022) proposed methods that perform better in the over-parameterized regime, while Ahuja et al.
(2021) introduced a bottleneck-based approach and also considered the differences between the FIIF
and PIIF cases. Lin et al. (2022) also leveraged stochastic networks, similarly to our method, though
their work remained within the supervised setting. In Salaudeen & Koyejo (2024), both the invariant
component Zinv and the environment-dependent component Ze of the latent representation were
parameterized and learned. We adopt a similar modeling choice, as data-point reconstruction and
generation cannot be achieved without the environmental part of the latent space. A more detailed
discussion on this observation appears in Section 4.3.

On the theoretical side, Rosenfeld et al. (2020) highlighted limitations of supervised IRM, demon-
strating that under mild assumptions, an impractically large number of environments may be re-
quired to guarantee generalization to unseen environments. Wald et al. (2022) further showed that
the interpolation property, common in over-parametrized learning algorithms, precludes invariance,
providing theoretical justification for the strategies proposed in Lin et al. (2022) and Zhou et al.
(2022). Finally, Toyota & Fukumizu (2023) established that, under suitable assumptions, the IRM
objective indeed leads to environment-robust solutions.

Outside the IRM framework, Neria & Nir (2024) explore an unsupervised approach to learning
representations that are optimized for downstream tasks rather than for robustness to distribution
shifts. Unsupervised invariant representation learning was also studied prior to the introduction of
IRM. For example, Romain Lopez (2018) and Daniel Moyer (2018) also used the variational auto-
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encoder framework toward this goal. Other notable works, relying on different sets of assumption
and frameworks, include Baochen Sun (2016) and Krikamol Muandet (2013).

3 PRINCIPAL INVARIANT COMPONENT ANALYSIS

The general objective for the unsupervised IRM problem, as given in equation equation 2, is to
maximize the likelihood under the constraint of invariant featurization. Before tackling the gen-
eral case, we focus on a simpler yet instructive setting: the linear and Gaussian case, where
Xe ∼ P e = N (µe

x,Σ
e
x) ∀e ∈ E . A well-known dimensionality reduction technique under sim-

ilar assumptions is Principal Component Analysis (Vidal et al., 2016). PCA falls within the broader
class of unsupervised learning algorithms, and in this section, we propose a variant tailored to the
IRM setting, which we denote as Principal Invariant Component Analysis (PICA). PICA aims to
eliminate “environmental dimensions,” or equivalently, to find an invariant projection across envi-
ronments.

Before we dive into the problem at hand, let us make an additional simplifying assumption. We
assume that the data in each environment is mean-centered, i.e., µe = 0 ∀e ∈ E . This can be easily
achieved by centering the data using Xe ← Xe − Ex∼P e [X] for each environment. The resulting
PICA optimization problem is

max
u

∑
e∈Etrain

Ex∼P e [(u⊤X)2] ; s.t. ||u||22 = 1, P i(u⊤X) = P j(u⊤X) ∀i, j ∈ Etrain. (3)

The objective seeks a vector u such that the random variable’s u⊤X second moment (variance) is
maximized across all training environments. Intuitively, this ensures that we retain the direction
containing the most information across environments, similar to standard PCA. The constraint has
two parts, first, ||u||22 = 1 eliminates scaling redundancy. The second constraint is where the IRM
part of the problem comes into play, this constraint limits u to be an invariant direction/dimension.
Given the zero-mean assumption, the problem simplifies to

max
u

∑
e∈E

u⊤Σe
xu ; s.t. ||u||22 = 1, u⊤Σi

xu = u⊤Σj
xu ∀i, j ∈ Etrain. (4)

For simplicity, we focus on the two environments case |Etrain| = 2. In this case, the invariance
constraint reduces to u⊤ (Σ1

x − Σ2
x

)
u = 0, meaning that u must lie in the null space of (Σ1

x −Σ2
x),

i.e., u ∈ ker(Σ1
x − Σ2

x). The objective, meanwhile, simplifies to u⊤(Σ1
x + Σ2

x)u. Thus, the PICA
solution can be found via the following two-step procedure:

1. Find U = ker
(
Σ1

x − Σ2
x

)
2. Choose u according to max

u∈U
u⊤ (Σ1

x +Σ2
x

)
u

The second step of the exact solution appears in the appendix. Finally, if we’re interested in finding
a dimensionality reduction scheme that keeps the dr ≤ dinv most varying invariant components, we
can simply repeat step two for dr times, choosing each time the next best vector in the null space -
the one which maximizes the objective.

Algorithm 1 PICA (Principal Invariant Component Analysis)
1: Input: Covariance matrices Σ1

x, Σ2
x; desired reduced invariant dimension dr ≤ dinv

2: Output: Matrix Ur ∈ Rn×dr containing the top dr invariant principal directions
3: Initialize Ur ← ∅
4: Compute the invariant subspace: U = {u ∈ Rn|(Σ1

x − Σ2
x)u = 0}

5: for i = 1 to dr do
6: Find u∗ = argmaxu∈U u⊤(Σ1

x +Σ2
x)u

7: Update Ur ← concat(Ur, u
∗)

8: Update U ← U \ {u∗}
9: end for

10: Return Ur
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Figure 2: Output of the PICA algorithm with dr = 1 on the synthetic dataset. The projection
captures the invariant component shared across both environments.

3.1 EXPERIMENTING WITH PICA

We illustrate PICA on a simple synthetic example based on the generative process

Xe = µe(e) +AinvZinv +AeZe + ϵ,

where

µe(1) = [0, 0, 0]⊤, µe(2) = [0, 0, 5]⊤, Ainv = [1, 1, 1]⊤, Ae = [1, 1,−1]⊤,
σ2
e(1) = 10, σ2

e(2) = 2, Zinv ∼ N (0, 1), Ze ∼ N (0, σ2
e(e)), ϵ ∼ N (0, 0.025).

We generate 1000 samples of X1 and 1000 samples of X2. We then apply PICA with target reduced
dimension dr = 1. The results are shown in Figure 2. Although the original data is divided between
two environments that are clearly characterized by different covariance matrices, the projection of
the data exhibits a constant distribution across environments.

4 VARIATIONAL INVARIANT AUTO-ENCODER

The main algorithm introduced in this work is the Variational Invariant Autoencoder (VIAE). It
follows the standard VAE (Kingma & Welling, 2014) framework, but with a key modification- it
is specifically designed to recover the structure of the proposed “unsupervised” SCM shown in
Figure 1(right). The block diagram in Figure 3 reflects this structure. The algorithm’s architecture
has the following favorable properties:

1. Factorized Latent Space: VIAE explicitly factorizes the latent space into two subspaces:
an invariant component Zinv and an environment-specific component Ze.

2. Latent Space Interventions: VIAE enables interventions on the latent space by sampling
Ze from different priors.

3. Bottleneck Architecture: VIAE enforces a narrow latent representation, acting as an in-
formation bottleneck. This aligns with findings in IRM literature (e.g., (Ahuja et al., 2021))
suggesting that bottlenecks improve the identification of invariant predictors.

Where properties 2 and 3 are inherited from the baseline VAE framework. VIAE contains one
decoder, one Invariant encoder to produce the Invariant part of the latent space, and |Etrain| environ-
mental encoders (one for each environment), to produce the environmental part of the latent space.
Another way to look at it is that the decoder’s and invariant encoder’s parameters are shared across
environments, while the environmental encoder’s parameters are unique for each environment.

By utilizing the causality constraints induced by the unsupervised SCM, we define the latent space
and the encoder and decoder probabilities.

For the Encoder, for a given environment e, the prior over latent variables is

P e(Zinv, Ze) = P e(Zinv)P
e(Ze) = P (Zinv)P

e(Ze),
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Figure 3: VIAE architecture. A shared invariant encoder produces Zinv, while environment-specific
encoders produce Ze. The decoder reconstructs X from both components.

where we used the causal graph to determine that Zinv ⊥⊥ Ze, Zinv ⊥⊥ e. For the invariant encoder,
we use the standard prior Zinv ∼ N (0, I). As for each environmental encoder, we introduce an
environment-specific prior Ze ∼ N (µe(e), I), µe(i) ⊥ µe(j) ∀i, j ∈ Eall, enabling controlled
sampling from a chosen environment during generation. The encoder posterior probability factor-
izes as

P e(Zinv, Ze|X) = P e(Zinv|Ze, X)P e(Ze|X) = P (Zinv|Ze, X)P e(Ze|X).

This factorization reflects two key causal properties (Peters et al., 2017). (i) Given Ze, Zinv is
conditionally independent of the environment e. (ii) Zinv and Ze become statistically dependent
when conditioning on X , due to the collider structure Zinv → X ← Ze.

As a consequence, the invariant encoder takes both X and Ze as input, while each environmental
encoder depends only on X .

The relevant distribution for the Decoder is the conditional likelihood probability P e(X|Zinv, Ze).
Invoking the causal structure, we note that when conditioned on Zinv and Ze, the environment e
provides no additional information about X . Thus

P e(X|Zinv, Ze) = P (X|Zinv, Ze) = P (X|Z).

This is a causal mechanism, meaning that it’s independent of its source Z distribution, which
means that any interventions (changes in the distribution) of Z won’t affect the decoder. Note that
the decoder does not receive any explicit information of the environment, as the invariant (causal)
mechanism is stable across different environments, as assumed in causality theory.

4.1 DATASETS

We evaluate VIAE on two synthetic datasets of our own design, inspired by benchmarks commonly
used in the IRM and domain adaptation literature (Gulrajani & Lopez-Paz, 2020).

SMNIST: We introduce SMNIST (Squares MNIST), a variant of MNIST (Bottou et al., 1994) with
artificial spurious features. It includes two training environments, each using half of the MNIST
training set. In e = 1, a 7×7 white square is added to the top-left corner; in e = 2, the square
appears in the bottom-right. Two analogous test environments use the MNIST test set with squares
in the top-right (e = 3) and bottom-left (e = 4) corners, respectively.

SCMNIST: Inspired by the commonly known CMNIST ((Arjovsky et al., 2019), (Gulrajani &
Lopez-Paz, 2020) and many more), we define SCMNIST (Single Colored MNIST). SCMNIST con-
tains two training environments and one test environment. In training, MNIST digits are encoded
into either the red RGB channel for e = 1 or to the green RGB channel for e = 2 (others set to
zero). The test environment (e = 3) encodes digits in the blue channel.

For experiments involving the more realistic CelebA dataset, please see The fariness section D.
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Figure 4: Generated samples conditioned on a fixed Zinv. Top row: samples with different Ze drawn
from P 1(Ze). Bottom row: samples with different Ze sampled from P 2(Ze). Left side: SMNIST
dataset, right side: SCMNIST dataset. Invariant features (in our case, the digits) are preserved for
all samples, with stable environment for each row.

4.2 SAMPLE GENERATION

To illustrate the capabilities of VIAE, we demonstrate that for a single instance of Zinv, sampled
from its prior, the output generated samples from the decoder have the same invariant properties
regardless of Ze. On the other hand, the generated samples environment is consistent with the
chosen prior of Ze, which means that the decoder is able to correctly produce samples from a specific
environment without it being provided any explicit information over the desired environment. This
is demonstrated in Figure 4.

4.3 ENVIRONMENT TRANSFER

Beyond sample generation, we leverage the VIAE framework to address the IRM problem. Con-
sidering our unsupervised framework, and specifically the VAE settings, some modifications to the
IRM goals are necessary. Traditionally, IRM seeks an invariant representation ϕ(X) such that a
downstream predictor w ◦ ϕ(X) performs well across all environments. In our case, the invariant
encoder naturally plays the role of the featurizer such that Ẑinv = ϕ(X), but the decoder cannot be
interpreted as a classifier nor a regressor. This raises an important question - what should a satis-
fying restoration look like? and/or what should the IRM objective be in our setting? We propose
that the IRM problem can be considered as “solved” if all data-points can be “transferred” to a
single environment, while preserving their invariant content. Since distribution shifts are assumed
to arise only across environments, if we manage to take a dataset that is divided between environ-
ments, and convert it to an equivalent dataset that contains a single environment, then the problem
reduces to an ordinary learning problem, and the IRM problem can be considered as solved. More
formally, the goal is to transform each data-point from its original environment es ∈ Eall into an
equivalent sample in a predetermined target environment et ∈ Etrain, while maintaining the invari-
ant features Zinv and adapting only the environmental ones Ze. That is, we would like to generate
X̂et ∼ P et(X|Zinv = ENCinv(Xes , Zes)), where ENCinv(·) is the invariant encoder function. To
illustrate, consider the well-known “camels and cows” example, where cows often appear in green
pastures and camels in deserts (as appears in many works, including Arjovsky et al. (2019)). Such
dataset contains spurious correlations between the classes and the image background. However,
if we can transform all images so that both cows and camels appear in the same environment (e.g.,
desert), these spurious background cues lose their predictive power. In such a scenario, we argue that
the IRM objective can be considered as solved, not by removing spurious features entirely, but by
aligning them across environments. An alternative, seemingly more “straightforward” idea might be
to generate “purely invariant” samples. However, we argue that such representations are ill-defined
in many domains. For instance, in medical imaging, brightness might be a spurious factor correlated
with equipment rather than pathology. What does a brightness-invariant X-ray look like? Removing
brightness altogether would destroy the data. Thus, transferring all data to a single environment,
rather than stripping away the environmental features, serves as a practical alternative that gets the
job done. This task resembles domain adaptation as explored in Tzeng et al. (2017) and Zhu et al.
(2017), but with a key distinction - VIAE enables, in some circumstances, to perform environment
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Figure 5: Environment Transfer for es ∈ Etrain

Figure 6: Environment transfer examples. es ∈ Etrain for the left part and es ∈ Etest for the right
part, demonstrated for the SMNIST (up) and SCMNIST (down) datasets.

transfer from unseen source environments es ∈ Etest. To our knowledge, previous methods typically
require both source and target environments to be seen during training.

4.3.1 ENVIRONMENT TRANSFER FOR SEEN & UNSEEN ENVIRONMENTS

Consider the case in which the source environment has been seen during training, i.e., es ∈
Etrain. Under this assumption, environment transfer can be performed using the following procedure

1. Sample a data-point from the source environment Xes ∼ P es , es ∈ Etrain
2. Pass Xes through the environmental encoder corresponding to the source environment to

obtain the source environmental features Ẑes ∼ P es(Ze|Xes)

3. Use Xes and Ẑes as inputs to the invariant encoder to get Ẑinv : Ẑinv ∼ P (Zinv|Xes , Ẑes)

4. Sample Ẑet from the target environment encoder prior: Ẑet ∼ P et(Ze) = N (µe(et), I)

5. Feed Ẑinv and Ẑet to the Decoder to get X̂et : X̂et = Dec(Ẑinv, Ẑet)

This process is illustrated in Figure 5 and demonstrated in Figure 6(left).

When the source environment is not part of the training set, i.e., es ∈ Etest, we encounter a
fundamental limitation - we do not possess an environmental encoder trained for es. Consequently,
generalization to arbitrary unseen environments is not guaranteed in the general case. However,
for some easier scenarios, we may attempt to estimate the environmental features by leveraging the
existing environmental encoders. Specifically, by using the approximation

Ẑes =
1

|Etrain|
∑

e∈Etrain

Ze ; Ze ∼ P e(·|Xes).

That is, we pass Xes through every one of the environmental encoders and average their outputs
to get an estimation of Zes . As shown in Figure 6 (right part), this approach works reasonably
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Table 1: Accuracy of the four defined classifiers, on test data-points from training environments.
Reported results are mean± standard deviation over 10 runs.

Classifier SMNIST SCMNIST
ŶI2L 0.845± 0.050 0.832± 0.072

Ŷe2L 0.362± 0.041 0.345± 0.045
êI2e 0.556± 0.066 0.583± 0.055
êe2e 1.0± 0 1.0± 0

well for the easier case of the SMNIST dataset. However, it fails for the more complex SCMNIST
dataset. This disparity can be understood using the insights from Rosenfeld et al. (2020). In essence,
generalization to unseen environments is possible only when the training environments sufficiently
“cover” the space of all possible environments. When this coverage is lacking, such generalization is
fundamentally out of reach. For example, in the SCMNIST case, for all of the training environments,
the blue color channel always equals zero. This means that even in the basic linear - algebraic sense,
the training environments don’t span the “blue dimension”.

4.4 BACK TO SUPERVISED LEARNING

Recall the original supervised IRM problem as formalized in equation 1. The goal is to learn an
invariant features extractor Ẑinv = ϕ(Xe) such that the prediction Ŷ = w ◦ ϕ(Xe) is invariant. Al-
though our own approach does not adopt this supervised setup, there is a natural similarity between
the invariant feature extractor in supervised IRM and the encoders in our model. The question we
would like to answer is whether our encoders perform well as such feature extractors, and if so, does
that mean our completely unsupervised algorithm solves the original supervised IRM problem? To

investigate this, consider the feature extractor Ẑ =
[
Ẑinv, Ẑe

]⊤
= ϕ(Xe). Where Ẑe is the out-

put of the environmental encoder and Ẑinv the output of the invariant encoder. We train four linear
classifiers on top of these features:

ŶI2L = w⊤
I2LZinv (Label prediction from invariant features)

Ŷe2L = w⊤
e2LZe (Label prediction from environmental features)

êI2e = w⊤
I2eZinv (Environment prediction from invariant features)

êe2e = w⊤
e2eZe (Environment prediction from environmental features)

By “environment prediction” we mean that the original environment from which each data point
came serves as a label, and the objective is to perform classification based on it. This experiment
aims to examine whether the model successfully learns a separated latent space, with invariant infor-
mation captured in Ẑinv and environmental information in Ẑe. We evaluate the performance of the
different classifiers on test data from the training environments Etrain. We train the VIAE network
from scratch 10 times. After each training run, we fit the aforementioned linear classifiers on top
of the encoders output and evaluate their accuracy on the test set. The results are reported in Ta-
ble 1. Let’s analyze these results. The label classifier using invariant features (ŶI2L) achieves high
accuracy (around 0.84− 0.83), indicating that the invariant encoder successfully retains the relevant
class information, in our case, the digit identity, which is invariant by construction. In contrast, the
label classifier using environmental features (Ŷe2L) achieves much lower accuracy (0.36 − 0.34).
While this is higher than random chance (0.1), suggesting some residual label correlation in the en-
vironmental features, it is significantly worse than the invariant-based classifier. The third classifier
(êI2e) attempts to predict the environment from the invariant features. It yields near-random accu-
racy (0.55− 0.58), close to the baseline of 0.5 for a trivial classifier with no information. We argue
that this is the most important result in this section. Much of the IRM literature focuses on filter-
ing out spurious (environmental) features to achieve robust generalization - even under distribution
shifts where spurious correlations invert (e.g., cows on sandy beaches at test time after only seeing
cows on grass and camels in deserts during training). While this result does not theoretically guar-
antee the absence of spurious correlations in Ẑinv, it provides a strong empirical indication that the
invariant space is indeed, invariant. Finally, the fourth classifier (êe2e) predicts the environment from

9



Published as a conference paper at ICLR 2026

environmental features and achieves perfect accuracy (1.0) for both datasets. This demonstrates that
the environmental latent space captures all the information needed to distinguish between environ-
ments, exactly as intended. These results further demonstrate that our model achieves the desired
separation in latent space, and motivates the possibility of using similar methods for downstream
supervised IRM objectives.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced an unsupervised approach to the IRM problem. We proposed two algo-
rithms, each designed to solve the problem under different assumptions and requirements. Looking
ahead, we hope this new unsupervised framework opens the door to novel insights and solutions for
IRM, ones that are difficult or impossible to achieve within the well-studied supervised paradigm.
We outline two concrete directions for future research. (i) Develop a theoretically complete scheme
for performing environment transfer from previously unseen environments, i.e., es ∈ Etest. (ii) In-
corporate more advanced learning architectures to improve empirical performance. Regarding the
first direction, we believe that meta-learning approaches (such as MAML (Finn et al., 2017)) may
enable effective unseen-environment transfer in few-shot or one-shot settings. For instance, it may
be possible to fine-tune environmental encoders to adapt to a new environment using only a few
examples. For true zero-shot transfer, however, a different model architecture is probably neces-
sary. As for the second direction, our work relied on the vanilla VAE architecture as baseline for
the VIAE scheme. Leveraging more modern generative models (such as GANS (Goodfellow et al.,
2014) and diffusion models (Ho et al., 2020)) could allow us to extend the success achieved on
SMNIST, SCMNIST and CelebA to more complex and realistic datasets.

The code we used for the experiments is available at https://github.com/Yotamnor/UIRM.

6 ACKNOWLEDGMENTS

This research was partially supported by grant no. 2022330 from the United States - Israel Bina-
tional Science Foundation (BSF), by Israel Science Foundation (ISF) grant no. 1693/22, and by the
Skillman chair (RM).

REFERENCES

Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio,
Ioannis Mitliagkas, and Irina Rish. Invariance Principle Meets Information Bottleneck for Out-
of-Distribution Generalization , 2021. URL https://arxiv.org/abs/2106.06607.
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Léon Bottou, Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon, Lawrence D. Jackel,
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Appendix

A PRINCIPAL INVARIANT COMPONENT ANALYSIS

A.1 ALGORITHM’S SOLUTION

In this section, we’ll focus on solving the two-steps procedure of the PICA algorithm described in 3.
The first step is done by simply solving for

(
Σ1

x − Σ2
x

)
u = 0. The solution to the second step can

be obtained by setting u = Uv, where v ∈ Rdinv is a normalized vector, and U ∈ RD×dinv is a
matrix whose columns span U . Substituting this term into the optimization objective yields

max
v

v⊤U⊤ (Σ1
x +Σ2

x

)
Uv

s.t. ||v||22 = 1.

This is equivalent to the standard PCA objective, with U⊤ (Σ1
x +Σ2

x

)
U playing the role of the

covariance matrix. The optimal u is given by u = Uv, where v is the eigenvector associated with
the largest eigenvalue of U⊤(Σ1

x+Σ2
x)U . For the subsequent u2, u3, . . . , udr dimensions, we simply

set ui = Uvi, where vi is the i-th eigenvector of U⊤(Σ1
x + Σ2

x)U , corresponding to the i-th largest
eigenvalue.
As a final note, we address the case with more than two environments, |E| > 2. Although the
derivations for this case were not carried out as part of this work, we believe that they can be
conducted as a natural extension for the two environments setting. The solution in this case would
most likely involve finding the direction that maximizes the quadratic form over the sum of all
environments, subject to the constraint that the projection lies in the intersection of the null spaces
of the pairwise difference matrices between all environments. The resulting two-step procedure is
as follows:

1. Compute
U =

⋂
i,j∈Etrain

ker
(
Σi

x − Σj
x

)
2. Choose u according to

max
u∈U

u⊤

( ∑
e∈Etrain

Σe
x

)
u

A complete derivation and empirical validation of this proposed extension are left for future work.

A.2 ANALYTICAL DERIVATION OF PICA

We motivate the PICA algorithm using the following assumed underlying linear Gaussian model

Xe = µe(e) +AinvZinv +AeZe + ϵ (5)

Where

Xe ∈ RD

Zinv ∈ Rdinv , Zinv ∼ N (0, I)

Ze ∈ Rde , Ze ∼ N (0, Iσ2
e(e))

ϵ ∼ N (0, Iσ2
ϵ ) Gaussain noise

From the causality graph 1: Zinv ⊥⊥ Ze, Ai = Aj ∀i, j ∈ E

Here, µe(e), Ainv, Ae are deterministic with appropriate dimensions. Importantly, µe(e) and σ2
e(e)

vary across environments, hence are written explicitly as functions of e, while the matrices Ainv and
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Ae remain stable across environments. From this model, the covariance in environment e can be
derived as

Σe
x = AinvA

⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I

Consequently, we have

Σ1
x − Σ2

x = (σ2
e(1)− σ2

e(2))AeA
⊤
e , Σ1

x +Σ2
x = 2AinvA

⊤
inv + (σ2

e(1) + σ2
e(2))AeA

⊤
e + 2σ2

ϵ I

First, observe that when σ2
e(1) = σ2

e(2) the problem reduces to a single environment case and we
simply perform standard PCA as demonstrated in Vidal et al. (2016). Thus, we henceforth assume
σ2
e(1) ̸= σ2

e(2). We can see that Σ1
x − Σ2

x contains only the environmental data component. There-
fore, by choosing principal components from its null space, we remove environment-dependent
dimensions. Further evaluating the objective yields

u⊤ (Σ1
x +Σ2

x

)
u = 2u⊤ (AinvA

⊤
inv + σ2

ϵ I
)
u+ (σ2

e(1) + σ2
e(2))u

⊤ (AeA
⊤
e

)
u

= 2u⊤ (AinvA
⊤
inv + σ2

ϵ I
)
u.

Where the second equality is due to the second term in vanishing for u in the null space of AeA
⊤
e .

Assuming that the invariant information signal AinvZinv dominates the noise ϵ, we get that maxi-
mizing the objective under the IRM constraint will yield a vector in the direction that maximizes the
invariant variance, as we would expect from an IRM version of PCA.

A.3 PROBABILISTIC PICA ALGORITHM

Building on the derivation presented in Vidal et al. (2016), we proceed to develop a generative
probabilistic (linear) model tailored to our IRM setting. By learning a generative model, we can
sample new synthetic examples from the underlying data distribution.
Consider the generative model presented in 5. The environment-specific expectation and covariance
matrix are

µXe
= µe(e), Σe

x = AinvΣinvA
⊤
inv +AeΣe(e)A

⊤
e +Σϵ = AinvA

⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I.

For simplicity, assume from now on that dinv = de = d.
In order to reconstruct the generative model, the objective in Probabilistic PICA is to extract the
model’s parameters µe(e), σ2

e(e), Ainv, Ae, σ2
ϵ from the population mean and the population

covariance. An immediate result is that for every environment, the environmental mean simply
equals to the population mean over the environment. Consider the covariance matrix, Since both
AinvA

⊤
inv and AeA

⊤
e have a rank of d, their D − d smallest eigenvalues are equal to zero, which

means that the D − 2d smallest eigenvalues of the covariance matrix are equal to σ2
ϵ .

In order to simplify the upcoming derivations, we consider from now on the two environments case
|E| = 2.
Consider

Σ1
x − Σ2

x = (σ2
e(1)− σ2

e(2))AeA
⊤
e

Without loss of generality, assume that σ2
e(1) ≥ σ2

e(2), which yields that the subtraction matrix
Σ1

x − Σ2
x is positive semi-definite (PSD). The special case of σ2

e(1) = σ2
e(2) corresponds to the

degenerate case in which there is no distribution shift. Therefore, we’ll assume σ2
e(1) > σ2

e(2). By
using the spectral decomposition of the subtraction matrix, we get that the estimation for Ae is

Âe =
1√

σ2
e(1)− σ2

e(2)
UsΛ

1/2
s .

With Us containing the d eigen vectors corresponding the the d highest eigenvalues of Σ1
x−Σ2

x and
Λs is a diagonal matrix containing the eigenvalues of Σ1

x−Σ2
x. Consider the mean of the covariance

matrices
Σ1

x +Σ2
x

2
= AinvA

⊤
inv +

σ2
e(1) + σ2

e(2)

2
AeA

⊤
e + σ2

ϵ I

AinvA
⊤
inv =

Σ1
x +Σ2

x

2
− σ2

e(1) + σ2
e(2)

2(σ2
e(1)− σ2

e(2))
(Σ1

x − Σ2
x)− σ2

ϵ I

Define

M(σ2
e(1), σ

2
e(2)) ≜ AinvA

⊤
inv =

Σ1
x +Σ2

x

2
− σ2

e(1) + σ2
e(2)

2(σ2
e(1)− σ2

e(2))
(Σ1

x − Σ2
x)− σ2

ϵ I
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The resulting estimation of Ainv is
Âinv = UaΛ

1/2
a .

With Ua containing the d eigen vectors corresponding the the d highest eigenvalues of
M
(
σ2
e(1), σ

2
e(2)

)
and Λa is a diagonal matrix containing the eigenvalues of M

(
σ2
e(1), σ

2
e(2)

)
arranged in decreasing order. In order to complete the generative model, an estimation for σ2

e(1)
and σ2

e(2) is needed. Without loss of generality, we can set σ̂2
e(1) = 1, as this is simply a matter of

rescaling Âe appropriately. Now, all that is left is to find a population-level term for σe(2). Consider
the following term:

tr(Σ1
x − Σ2

x)

tr(Σ1
x)

=
(σ2

e(1)− σ2
e(2))tr(AeA

⊤
e )

tr(AinvA⊤
inv) + σ2

e(1)tr(AeA⊤
e ) + σ2

ϵD
(6)

=
(1− σ2

e(2))tr(AeA
⊤
e )

tr(AinvA⊤
inv) + tr(AeA⊤

e ) + σ2
ϵD

.

In order to proceed, we must make further assumptions. Consider the case for which the envi-
ronmental signal is significantly stronger than the invariant one, this could also be looked at as
assuming that most of the information originates from the environmental features. This assumption
reflects a more challenging IRM setup, where a weaker invariant signal is buried in much stronger
environmental “noise”. Consequently, assume that the environmental features are “stronger” in the
following sense:

tr(AeA
⊤
e )≫ tr(AinvA

⊤
inv)≫ σ2

ϵD.

Using the above assumption together with σ2
e(1) = 1, we get from 6 that

σ̂2
e(2) ≈ 1− tr(Σ1

x − Σ2
x)

tr(Σ1
x)

=
tr(Σ2

x)

tr(Σ1
x)

.

Further evidence that this value represents a form of “worst-case” scenario can be obtained by noting
that both tr(AinvA

⊤
inv) and σ2

ϵD are positive, meaning that

1 = σ2
e(1) ≥ σ2

e(2) ≥
tr(Σ2

x)

tr(Σ1
x)

.

Consider the assumption σ2
e(2) < σ2

e(1). By setting σ2
e(2) to its lower bound, the resulting model

corresponds to the largest possible distribution shift between environments for the given data.

B VARIATIONAL INVARIANT AUTO-ENCODER

B.1 ELBO DEVELOPMENT

First introduced by Kingma & Welling (2014), the Evidence Lower Bound (ELBO) in our setting is
given by

Eqϕ(Z|X,e)[log pθ(X|Z)]−KL[qϕ(Z|X, e) ∥ pθ(Z|e)]

For notational convenience in the derivations of this section, we treat the environment as a given
conditional variable, writing pθ(· | e) rather than embedding it in the probability function as in
peθ(·).
As a reminder from the encoder derivation in section 4

qϕ(Z|X, e) = qϕ(Zinv, Ze|X, e) = qϕ(Ze|X, e)qϕ(Zinv|Ze, X),

we get

Eqϕ(Z|X,e)[log pθ(X|Z)]−KL[qϕ(Z|X, e) ∥ pθ(Z|e)]
=Eqϕ(Zinv,Ze|X,e)[log pθ(X|Zinv, Ze)]−KL[qϕ(Ze|X, e)qϕ(Zinv|Ze, X) ∥ pθ(Ze|e)pθ(Zinv)]
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Consider on the KL term

KL[qϕ(Ze|X, e)qϕ(Zinv|Ze, X) ∥ pθ(Ze|e)pθ(Zinv)]

=

∫
ze

∫
zinv

qϕ(Zinv|Ze, X)qϕ(Ze|X, e) log

[
qϕ(Zinv|Ze, X)qϕ(Ze|X, e)

pθ(Ze|e)pθ(Zinv)

]
dzinvdze

=

∫
ze

∫
zinv

qϕ(Zinv|Ze, X)qϕ(Ze|X, e) log

[
qϕ(Ze|X, e)

pθ(Ze|e)

]
dzinvdze

+

∫
ze

∫
zinv

qϕ(Zinv|Ze, X)qϕ(Ze|X, e) log

[
qϕ(Zinv|Ze, X)

pθ(Zinv)

]
dzedzinv

=

∫
ze

qϕ(Ze|X, e) log

[
qϕ(Ze|X, e)

pθ(Ze|e)

] ∫
zinv

qϕ(Zinv|Ze, X)dzinvdze

+

∫
ze

qϕ(Ze|X, e)

∫
zinv

qϕ(Zinv|Ze, X) log

[
qϕ(Zinv|Ze, X)

pθ(Zinv)

]
dzinvdze

= KL(qϕ(Ze|X, e) ∥ pθ(Ze|e)) + Eqϕ(Ze|X,e)[KL(qϕ(Zinv|Ze, X) ∥ pθ(Zinv))]

The total ELBO term is

Eqϕ(Z|X,e)[log pθ(X|Z)]−KL(qϕ(Ze|X, e) ∥ pθ(Ze|e))−Eqϕ(Ze|X,e)[KL(qϕ(Zinv|Ze, X) ∥ pθ(Zinv))]

It’s important to recall that e isn’t a random variable, but an index indicating a change in environment
- meaning a distribution shift. Therefore, for each such distribution, a different set of parameters is
used, leading each probability function conditioned on e to use a distinct set of parameters unique
to that environment. In order to differentiate between environment specific parameters and invariant
parameters, the environmental parameters will have a subscript e while the causal ones will have
subscript inv

Eqϕe (Ze|X)[Eqϕinv
(Zinv|Ze,X)[log pθinv(X|Zinv, Ze)]]

−KL(qϕe
(Ze|X) ∥ pθe(Ze))− Eqϕe (Ze|X)[KL(qϕinv

(Zinv|Ze, X) ∥ pθinv(Zinv))]

Assume that everything is Gaussian distributed as a function of the given variables, meaning that

pθinv(X|Zinv, Ze) = N (µinv(Z),Σinv(Z))

qϕinv
(Zinv|Ze, X) = N (µinv(X,Ze),Σinv(X,Ze)), pθinv(Zinv) = N (0, I)

qϕe
(Ze|X) = N (µe(X),Σe(X)), pθe(Ze) = N (µe(e), I) ∀e ∈ E

Resulting in

KL(qϕe
(Ze|X) ∥ pθe(Ze)) = Eqϕe (Ze|X)

[
log

qϕe
(Ze|X)

pθe(Ze)

]
= Eqϕe (Ze|X)

[
log

(2π)−d/2|Σe(X)|−1/2e−
1
2 (z−µe(X))⊤Σe(X)−1(z−µe(X))

(2π)−d/2e−
1
2 (z−µe(e))⊤(z−µe(e))

]
Using the common assumption that the covariance matrices are diagonal, we get

=
1

2

de∑
i=1

[
Σe(X)ii + (µe(X)i − µe(e)i)

2 − 1− log Σe(X)ii
]

Similarly, the invariant KL term can be written as

Eqϕe (Ze|X)[KL(qϕinv
(Zinv|Ze, X) ∥ pθinv(Zinv))]

=Eqϕe (Ze|X)

[
1

2

dinv∑
i=1

[
Σinv(X,Ze)ii + µinv(X,Ze)

2
i − 1− log Σinv(X,Ze)ii

]]
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The expectation Eqϕe
can be approximated using a sampled data point, analogous to the procedure

in stochastic gradient descent

Σ(X) =

[
Σinv(X,Ze(X)) 0

0 Σe(X)

]
µ(X) =

[
µinv(X,Ze(X))

µe(X)

]
µ(e) =

[
0

µe(e)

]
The resulting total KL term is simply

KL(qϕ(Ze|X, e) ∥ pθ(Ze|e)) + Eqϕ(Ze|X,e)[KL(qϕ(Zinv|Ze, X) ∥ pθ(Zinv))] =

1

2

de+dinv∑
i=1

[
Σ(X)ii + (µ(X)i − µ(e)i)

2 − 1− log Σ(X)ii
]

C ENVIRONMENT TRANSFER ANALYSIS

C.1 PRELIMINARIES

Let us return to the linear case. Assume the data generating process

Xe = µe(e) +AinvZinv +AeZe + ϵ.

Where

Xe ∈ RD

Zinv ∈ Rdinv , Zinv ∼ N (0, I)

Ze ∈ Rde , Ze ∼ N (0, Iσ2
e(e))

ϵ ∼ N (0, Iσ2
ϵ ) Gaussain noise

From the causality graph: Zinv ⊥⊥ Ze, Ai = Aj ∀i, j ∈ E

Using this model, we would like to find a closed-form analytical expressions for the en-
coders and the decoder operations under linearity constraints. The environmental en-
coder, invariant encoder and decoder weights are obtained by maximizing the probabilities
P e(Ze|Xe), P (Zinv|Ze, Xe), P (Xe|Zinv, Ze) respectively. In the linear Gaussian case, this objec-
tive reduces to minimizing the mean squared error (MSE), for which the optimal estimators are the
corresponding conditional expectations-

EP e(Ze|Xe), E(Zinv|Ze, Xe), E(Xe|Zinv, Ze).

Under the linearity assumption, the conditional expectation estimator is the Wiener estimator of the
form:

E[A|B] = E[A] + COV(A,B)VAR−1(B)(B − E[B])

Let us derive it for our model.
The environmental encoder is EP e [Ze|Xe]. The different components are:

E[Ze] = 0

E[Xe] = µe(e)

COV[Ze, Xe] = σ2
e(e)A

⊤
e

VAR(Xe) = AinvA
⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I

Leading to

Ẑe = EP e [Ze|Xe] = σ2
e(e)A

⊤
e

(
AinvA

⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I
)−1

(Xe − µe(e))
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It’s important to mention that the variance is invertible only due to the noise, as the other matrices
which compose it are of smaller rank. If we assume zero noise and/or want to avoid inverting this
close-to-singularity matrix, a computational method should be used instead of an analytic one.
The invariant encoder is E[Zinv|Xe, Ze]. The different components are:

E[Zinv] = 0

E

[[
Xe

Ze

]]
=

[
µe(e)
0

]
COV

[
Zinv,

[
Xe

Ze

]]
= [A⊤

inv, 0]

VAR

([
Xe

Ze

])
=

[
AinvA

⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I, σ2
e(e)Ae

σ2
e(e)A

⊤
e , σ2

e(e)I

]
Using the fact that the block matrices on the diagonal of the variance matrix are invertible (again,
thanks to the noise), we can invert the variance matrix using block-wise inversion formula and get[

AinvA
⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I, σ2
e(e)Ae

σ2
e(e)A

⊤
e , σ2

e(e)I

]−1

=

[
(AinvA

⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I − σ2
e(e)AeA

⊤
e )

−1, −(AinvA
⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I − σ2
e(e)AeA

⊤
e )

−1Ae

−A⊤
e (AinvA

⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I − σ2
e(e)AeA

⊤
e )

−1, σ2
e(e)I

]
=

[
(AinvA

⊤
inv + σ2

ϵ I)
−1, −(AinvA

⊤
inv + σ2

ϵ I)
−1Ae

−A⊤
e (AinvA

⊤
inv + σ2

ϵ I)
−1, σ2

e(e)I

]
Which yields

Ẑinv = E[Zinv|Xe, Ze] = A⊤
inv(AinvA

⊤
inv + σ2

ϵ I)
−1 (Xe − µe(e)−AeZe) .

Observe that the invariant encoder turned out to be independent of σ2
e(e).

The decoder function is E[Ze|Xe]. The different components are:
E[Xe] = µe(e)

E

[[
Zinv

Ze

]]
= 0

COV

[
Xe,

[
Zinv

Ze

]]
= [Ainv, σ

2
e(e)Ae]

VAR

([
Zinv

Ze

])
=

[
I, 0
0, σ2

e(e)I

]
We can easily invert the variance and get[

I, 0
0, σ2

e(e)I

]−1

=

[
I, 0
0, σ−2

e (e)I

]
and we finally get

X̂e = E[Xe|Zinv, Ze] = µe(e) +AinvZinv +AeZe

That is exactly the generative process (minus the noise), which is a nice and intuitive result.
After obtaining analytical expressions for each of the functions of the autoencoder components, the
next step is to analyze the specific cases for transferring between seen environments and transferring
from unseen environments.

C.2 ENVIRONMENT TRANSFER FOR SEEN ENVIRONMENTS

For seen environments, the environmental encoder is that of the source environment e = es ∈ Etrain:

Ẑes = EP es [Ze|Xe] = σ2
e(es)A

⊤
e

(
AinvA

⊤
inv + σ2

e(es)AeA
⊤
e + σ2

ϵ I
)−1

(Xe − µe(es))

The invariant encoder is directly dependent on es solely through the centering of Xe (the mean
term):

Ẑinv = E[Zinv|Xes , Zes ] = A⊤
inv(AinvA

⊤
inv + σ2

ϵ I)
−1 (Xes − µe(es)−AeZes)

Finally, the decoder uses an environmental component from the target environment:

X̂et = E[Xe|Zinv, Zet ] = µe(et) +AinvZinv +AeZet
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C.3 ENVIRONMENT TRANSFER FOR UNSEEN ENVIRONMENTS

For es ∈ Etest, we assume that Ae, Ainv, σ
2
ϵ and µe(e), σ

2
e(e) ∀e ∈ Etrain are known, and

µe(es), σ
2
e(es), es ∈ Etest are unknown. This requires us to derive the environmental encoder

again Ẑes = EP es [Ze|Xe].

E[Zes ] = 0

E[Xes ] = µe(es) : unkown

COV[Zes , Xes ] = σ2
e(es)A

⊤
e : σ2

e(es) unkown

VAR(Xes) = AinvA
⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I : σ2
e(es) unkown

C.3.1 HEURISTIC MOTIVATION

Let us give a quick motivation for our heuristic method for unseen environment transfer. For unseen
environment transfer, we’re trying to estimate an “equivalent” target data point from a seen envi-
ronment Xet , et ∈ Etrain to a data point from an unseen environment Xes , es ∈ Etest, using the
data we gathered from our training environments. We can therefore consider the following MSE
optimization problem

X̂et = argmin
X∗

et

∑
e∈Etrain

EP e

[
||Xe −X∗

et ||
2
2|Xes

]
.

The minimum is obtained by differentiating and locating a stationary point∑
e∈Etrain

(2X̂et − 2EP e [Xe|Xes ]) = 0,

and the resulting estimation is

X̂et =
1

|Etrain|
∑

e∈Etrain

EP e [Xe|Xes ] .

This derivation can also be repeated for Zes instead of Xet , that way, we can derive an expression
for the environmental encoder.

For Zes we get that

Ẑes = argmin
Z∗

es

∑
e∈Etrain

EP e

[
||Ze − Z∗

es ||
2
2|Xes

]
Ẑes =

1

|Etrain|
∑

e∈Etrain

EP e [Ze|Xes ]

=
1

|Etrain|
∑

e∈Etrain

σ2
e(e)A

⊤
e

(
AinvA

⊤
inv + σ2

e(e)AeA
⊤
e + σ2

ϵ I
)−1

(Xes − µe(e)) .

We use this result as motivation behind our heuristic estimation function of Zes for unseen source
environment, which is

Ẑes =
1

|Etrain|
∑

e∈Etrain

Ze ; Ze ∼ P e(·|Xes).

D APPLICATIONS TO FAIRNESS

Until now, we have examined the IRM framework primarily through the lens of robustness to distri-
bution shifts across environments. However, previous works, such as Hardt et al. (2016) demonstrate
that similar approaches can be effectively applied in the context of algorithmic fairness between sub-
populations. In this view, the environmental features correspond to sensitive attributes such as race,
gender, or age, variables we would like the model to be invariant to. This perspective is especially
relevant in socially sensitive applications such as hiring, admissions or lending, where it is essential
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to ensure that decisions are made based on meritocratic and relevant factors (e.g., qualifications, ex-
perience, or financial stability), rather than irrelevant or discriminatory ones. Extensive research has
been devoted to learning fair representations, underscoring the significance of this problem. Notable
contributions include Rich Zemel (2013), Elliot Creager (2019) and Francesco Locatello (2019).

Within our framework, we can interpret these relevant factors as invariant features, and the sensitive
or discriminatory attributes as environmental features. In this section, we explore the potential of the
VIAE algorithm for promoting fairness by separating invariant (relevant) and environment-specific
(irrelevant) components in the learned representation.
We use the architecture suggested in Subramanian (2020) for the decoder and invariant encoder,
while using a reduced encoder variant for each environmental encoder.

D.1 CELEBA DATASET

To demonstrate VIAE in the context of fairness, we use the CelebA dataset (Liu et al., 2015), which
contains over 200, 000 face images of celebrities annotated with 40 binary attributes. We focus
on the “Male” attribute to define two subpopulations: “male” and “female”. In our setup, this
attribute serves as the environmental variable, representing a sensitive feature we aim to disentangle
from invariant content. This is a natural choice, as gender-related biases in facial recognition and
classification systems can be a source of significant ethical concerns in real-world applications. Our
goal is to encompass the gender-related characteristic of the CelebA images in the environmental
part of the latent space, while the invariant part contains the other, non gender specific features.
Under this setting, we expect VIAE to generate gender-specific reconstructions conditioned on the
appropriate prior, enabling independent control over invariant and environment-specific aspects of
the generated samples. Furthermore, VIAE allows for environment transfer: converting a given
image from one subpopulation (gender) to the other, while preserving the invariant features such as
facial structure, expression, pose and so on. This setup provides a concrete use case for testing the
fairness-promoting capacity of VIAE: a model that can modify sensitive attributes without affecting
identity-relevant features can preclude discriminatory prediction biases and promote fairness.

D.2 SAMPLE GENERATION

Following the approach used for SCMNIST and SMNIST datasets, Figure 7 illustrates the genera-
tion behavior of VIAE on the CelebA dataset. Similarly to the SMNIST/SCMNIST cases, we draw
a single sample of the invariant features Zinv and generate images using five different samples from
each of the two environment-specific priors. The model successfully identifies the unique character-
istics of each subpopulation, corresponding to the “male” and “female” environments. It produces
coherent samples for each group, with the top five images generated from the “male” environment
prior and the bottom five from the “female” prior. Notably, we can notice a similarity between the
different samples, suggesting that they share some set of features which the model learned to be
“invariant to gender” in one way or another.

D.3 ENVIRONMENT TRANSFER

We further evaluate VIAE’s ability to perform environment transfer between seen environments.
Specifically, we change the environmental component of the latent space to transfer images from the
“male” domain to the “female” domain, while keeping the invariant representation fixed. As shown
in Figure 8, the algorithm successfully transforms “male” images into “female” counterparts. Im-
portantly, several identity-related features—such as facial structure, expression, and pose—remain
somewhat consistent between the original and transferred images, indicating that these attributes are
captured in the invariant representation. We emphasize that this experiment is not intended to com-
pete with current state-of-the-art generative models in terms of visual fidelity or realism. Rather, it
serves as a qualitative validation of VIAE’s capacity to disentangle and manipulate environmental
features independently. These preliminary results highlight the potential of the VIAE framework for
controlled generation and fairness applications, motivating future work to explore more advanced
architectures and training strategies.
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Figure 7: CelebA sample generation. The top five images were created using five samples from
Ze ∼ N (µe(1), I) (first environment, “male”), and the bottom five using five samples from Ze ∼
N (µe(2), I) (second environment, “female”), while keeping Zinv fixed.
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Figure 8: Environment transfer from the “male” subpopulation to the “female” subpopulation. The
top two rows show original images Xes , the next two rows show their respective reconstructions
X̂es and the last two rows show their respective transferred versions X̂et .
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