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Abstract

Al offers the important potential to enhance
Emergency Room (ER) triage efficiency but a
lack of trust from healthcare professionals and
patients limits its adoption due to concerns over
accuracy and reliability. To address this, we
introduce the Collaborative Intelligence-based
Clinical Triage Dataset (CICTD), a large-scale
benchmark containing patient requests and ER
doctor annotations for triage decision-making.
Along with CICTD, we define key evaluation
tasks, including diagnostic question generation,
ESI level prediction, triage recommendations,
and misdiagnosis prediction. Our approach em-
phasizes a human-in-the-loop framework, en-
suring Al escalates uncertain cases to experts,
balancing automation with trust and improving
ER triage efficiency.

1 Introduction

Despite the transformative potential of Al in health-
care, generative Al techniques face significant trust
challenges among health professionals and patients
due to concerns over accuracy and reliability. In
critical domains such as Emergency Room (ER)
triage, even subtle Al errors can lead to severe con-
sequences, undermining the adoption of Al in high-
stakes decision-making. However, recent COVID-
19 pandemic underscored the urgent need of ef-
ficient ER triage, as hospitals experienced over-
whelming patient surges, leading to delays, mis-
prioritized cases, and loss of lives due to resource
constraints. To address these challenges, Al must
be designed not as a replacement for human exper-
tise but as a collaborative tool that supports medical
professionals in high-pressure environments.

A key challenge in Al-powered ER triage is
trustworthiness - Al models need to be both ac-
curate and transparent in their decision-making.
Many existing Al models, like healthcare LLMs,
lack mechanisms to assess their own confidence
and determine when human intervention is neces-
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Figure 1: The CICTD dataset enables the AI-Human
Collaborative Triage system to integrate patient diagno-
sis with ER stress management, optimizing symptom
evaluation, test recommendations, and hospital assign-
ment to reduce wait times and improve efficiency.

sary. Additionally, there is a lack of benchmark
datasets that facilitate the development and evalu-
ation of Al models capable of collaborating with
human experts. Without standardized evaluation
tasks, it is difficult to measure Al performance in
real-world triage scenarios, where decisions must
account for both individual patients and broader
hospital resource constraints. More specifically,
the benchmark and evaluation tasks need to answer
two critical questions: (1) How can Al be effec-
tively integrated into healthcare, particularly ER
triage? (2) How can efficient collaborative intel-
ligence (CI) triage models be enabled to balance
trust and efficiency in ER services?

In this paper, we introduce the Collaborative
Intelligence-based Clinical Triage Dataset (CI-
CTD), a large-scale benchmark dataset compris-
ing patient requests for ER services and annota-
tions from ER doctors on triage decision-making.
Alongside CICTD, we propose a suite of evaluation
tasks for triage Al models, ranging from individual
tasks like diagnostic question generation, Emer-
gency Severity Index (ESI) level prediction, and
ER/triage recommendations to city-wide decisions



like triage efficiency and patient misdiagnosis pre-
diction. These tasks not only facilitate the design
of robust Al-based triage models but also support
human-in-the-loop (HITL) frameworks, where Al
identifies cases of low confidence and escalates
decision-making to domain experts. Our work es-
tablishes a foundation for trustful and efficient ER
triage systems by addressing the dual challenges
of Al adoption and reliability. The CICTD dataset,
coupled with the proposed evaluation framework,
aims to enable the next generation of Al systems
that balance automation with expert oversight, en-
suring equitable and high-quality care during criti-
cal moments. Our specific contributions are:

¢ Introducing CICTD, a large-scale benchmark
dataset with real-world patient ER requests
and expert annotations for triage decisions.

* Defining key evaluation tasks along with eval-
uation metrics, supporting both individual and
city-wide Al or Cl-driven triage decisions.

* Conceptualizing a human-in-the-loop Al
framework, ensuring Al models defer to ex-
perts when uncertainty is high, enhancing trust
and efficiency in ER decision-making.

* Providing a foundation for the development
of trustworthy AI systems in emergency
medicine, bridging the gap between Al au-
tomation and expert-driven healthcare.

2 Literature Review

Al Integration in Healthcare The application of
Al in healthcare has advanced rapidly with large
language models (LLMs) such as GPT-4 (Ope-
nAl, 2023), Med-PalLM (Singhal et al., 2023), and
BioBERT (Lee et al., 2020), which have been em-
ployed for diagnostic support, medical documenta-
tion, and patient triage assistance. These systems
have shown strong performance in processing clini-
cal text and supporting decision-making, including
Al-powered triage that aids in symptom assessment
and emergency prioritization (Yi et al., 2024).
Despite these advances, several challenges im-
pede clinical adoption. First, a lack of trust-
worthiness and interpretability remains a con-
cern(Schroeder and Wood-Doughty, 2024). LLMs,
while powerful, often generate responses without
explicit reasoning, making it difficult for healthcare
professionals to validate their outputs (Wang and
Zhang, 2024). Errors, hallucinations, and biases in
medical Al systems can have serious consequences

(Liu et al., 2024), leading to misdiagnoses or in-
correct triage decisions (Taylor et al.). Addition-
ally, Al models struggle with uncertainty estima-
tion (Thuy and Benoit, 2024), and they do not reli-
ably indicate when they are unsure, making blind
reliance on Al dangerous in critical medical con-
texts (Gao et al., 2025). Another challenge is data
scarcity and annotation cost (); medical datasets
require expert annotations, which are costly and
time-consuming, limiting the scale and diversity of
available training data.

To address these challenges, human-in-the-loop
(HITL) approaches have been proposed to combine
Al efficiency with human expertise in healthcare
(Mosqueira-Rey et al., 2023). HITL frameworks
ensure that Al models escalate uncertain cases to
experts, providing decision support rather than full
automation (Zhang et al., 2024). Prior work in
medical Al (Lee et al., 2020) has explored expert-
in-the-loop mechanisms for radiology (Fuchs et al.,
2023), clinical diagnosis (Bodén et al., 2021), and
medical chatbot systems (Sachdeva et al., 2024),
showing improved trust and performance when Al
collaborates with doctors. However, most HITL
studies focus on single-instance decision-making
rather than real-time adaptive collaboration in high-
stakes environments (Rastogi et al., 2022), which
can be problematic for ER triage adoptions. There
remains a need for benchmark datasets and evalua-
tion frameworks that support AlI-human collabora-
tion, allowing Al to learn when to defer decisions
and improve medical triage efficiency (Zhang et al.,
2024). Our work builds on these insights by intro-
ducing CICTD, a benchmark dataset specifically
designed for Al-assisted ER triage with human-
in-the-loop decision-making. We propose novel
evaluation tasks, including Critical Delay Sever-
ity Assessment (CDSA), to measure and mitigate
triage delays. By addressing the limitations of ex-
isting models and leveraging expert collaboration,
our work provides a foundation for trustworthy,
Al-assisted emergency care.

3 The CICTD dataset

Our CICTD dataset is designed to support the sim-
ulation of healthcare environments under realistic
stress, which not only incorporates patient-level
data but also factors such as time-of-day variations,
city diversity, availability of ED phycian and dif-
ferent system stress settings. The dataset is di-
vided into two components: (1) simulated ED visit
records and (2) an expert-annotated subset. De-



tailed statistics are provided in Appendix 4.

3.1 Simulated ED visit records

Our patient data was sourced from the MIMIC-
IV-ED v2.2 (Johnson et al., 2023) dataset and fur-
ther enhanced by merging with additional records
from MIMIC-IV v3.1 (Johnson et al., 2024) to cap-
ture more comprehensive ED information. The re-
sulting dataset includes key patient attributes such
as diagnosis codes, chief complaint descriptors,
etc.) To accurately emulate real-world consulta-
tions, we leveraged OpenAl GPT-4 to generate de-
tailed chief complaint description, along with a
simulated round of ED physician—patient question-
answer interactions. This process ensures that the
synthetic text remains both clinically coherent and
reflective of authentic ED data.

To build a realistic simulated patient environ-
ment, we address three key aspects. First, we strati-
fied our patient pool based on the Emergency Sever-
ity Index (ESI) (Association, 2023), a standardized
five-level triage system classifying patients by ur-
gency and resource needs—for example, ESI level
1 denotes the highest urgency (Cairns and Kang,
2024). Using this distribution, we sampled MIMIC
data to construct a dataset of 12,000 patients. The
detailed ESI distribution is shown in Appendix 4.

Second, to model intra-day variations in pa-
tient arrivals, we used a time-based distribution
from (Kang and Park, 2015), dividing daily visits
into four periods: late night (0:00—6:00), morning
(6:00-12:00, peak 1), afternoon (12:00-18:00), and
evening (18:00-24:00, peak 2).

Third, to simulate varying healthcare system
stress, we modeled 100 days of ED visits per city
under three conditions: normal periods, flu season,
and the COVID-19 pandemic. Using visit ratios
of 1:3:6 from Boston Public Health data (City of
Boston), we adjusted patient arrival rates to reflect
increased strain, ensuring realistic seasonal and
pandemic-induced variations across cities.
Emergency Department Setting We incorpo-
rate geographic diversity by selecting six cities:
Boston, Houston, and Minneapolis, representing
well-equipped emergency facilities, and St. Louis,
Detroit, and New Orleans, reflecting high-demand,
resource-constrained environments.

To define essential lab tests for ED settings, we
look up ED reports (Cairns and Kang, 2024), and
the MIMIC dataset, creating a standardized lab test
table. Our simulation includes both high-acuity
EDs and resource-limited urgent care facilities to

reflect real-world diagnostic variability.

For ED physician availability, we estimate
staffing needs based on annual visit volume. Ac-
cording to guidelines (Association, 2023), an ED
physician manages 2.5 patients per hour, equat-
ing to 10,950 annual visits per physician. Using
this, we approximate hospital staffing needs; for
instance, an ED with 85,000 visits (Hospital, 2024)
requires about eight physicians.

3.2 Expert-Annotated Dataset Subset

We generated an expert-annotated subset to ad-
dress the lack of evaluation labels in simulated ED
settings. A total of 300 patient records were ran-
domly selected, ensuring coverage of all ESI Lev-
els. These records were independently reviewed
by experienced emergency physicians. Each case
was annotated with key triage parameters, includ-
ing maximum safe waiting time 1). These expert-
labeled cases enable systematic analysis of triage
decisions, resource constraints, and patient out-
comes, providing a foundation for assessing the
alignment between expert annotations and model-
driven triage predictions, as well as evaluating re-
source allocation strategies.

4 Evaluation Tasks

To comprehensively evaluate both individual pa-
tient outcomes and overall system performance, we
define two task levels—Individual and Global—in
the ED simulation. Individual tasks assess local-
ized triage and diagnosis, while global tasks mea-
sure large-scale resource allocation and patient pri-
oritization.

We establish task-specific performance metrics,
summarized in Table 1 and referenced in the follow-
ing subsections, to ensure a structured assessment.
The notation table for evaluation equations is pro-
vided in Appendix 3.

4.1 Individual Tasks

Individual tasks independently assess patient-
specific predictions to improve Al-assisted triage.
The structured process includes: (1) Patient Infor-
mation Collection (chief complaint, history); (2)
Diagnosis Question Generation (simulating physi-
cian inquiries); (3) Triage Recommendations (as-
signing appropriate EDs); and (4) ESI Level Pre-
diction (estimating urgency via ESI).

By structuring tasks in this way, the evaluation
captures both the accuracy of individual decision-
making steps and their impact on triage efficiency.
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Table 1: Evaluation tasks and corresponding metrics. Most notations are self explanatory (e.g., p; for the i’th patient)

and the full list is provided in Appendix.

Diagnosis Question Generation (DSQ). Gener-
ated key diagnostic questions mimicking the in-
quiry process of emergency physicians during
triage. The generated questions are then evaluated
for their clinical relevance and essentiality in a real-
world emergency department context, ensuring that
they effectively support accurate and timely patient
assessment.

Triage Recommendations (TR). This task aims
to assess whether a model correctly assigns a pa-
tient to an emergency department (ED) that can
fulfill their actual lab test requirements. The evalu-
ation checks if the assigned hospital can meet the
patient’s actual lab test needs.

ESI Level Prediction. . This task assesses the
model’s accuracy in assigning Emergency Sever-
ity Index (ESI) levels, ranging from Level 1 (most
urgent) to Level 5 (least urgent), with misclassifica-
tion penalties weighted based on severity to reflect
the clinical impact of incorrect triage decisions.

4.2 Global (city-level) Tasks

Unlike individual tasks that focus on optimizing
patient-specific decisions, global tasks assess the
overall efficiency and resource management of the
emergency department network. These tasks evalu-
ate system-wide metrics to ensure optimal patient
flow and operational effectiveness across the city.
Triage Efficiency (TE). This task simulates a clin-
ical scenario where all patients undergo triage and
complete their care. Efficiency is assessed using an
ESI-weighted average of waiting times, reflecting
system-wide throughput and resource allocation
while ensuring timely care for high-acuity cases.
Critical Delay Severity Assessment(CSDA) This
task measures the proportion of annotated patients
whose waiting times exceed expert-defined safety
thresholds. By integrating these patients into the
simulation, it evaluates the system’s ability to up-
hold safety standards and ensure timely care.

Simulation Stress Level This task quantifies the
overall burden on the emergency department(ED)
system by analyzing real-time patient load, ED
resource utilization and waiting queue congestion
by leveraging queuing theory principles and stress-
testing methodologies. We adopt expected patient
waiting time as an indicator of simulation system
stress, reflecting both real-time congestion and the
efficiency of resource allocation.

4.3 Preliminary Experiment Results

We ran a preliminary simulation, where a Simu-
lated Human optimizes patient outcomes by se-
lecting hospitals and seeking direct consultations.
We evaluated open-source models (Llama, Qwen)
and a closed-source model (ChatGPT). As shown
in Table 2, Qwen achieves the highest efficiency
(TE = 123.26, CSDA = 22.22%), reducing queue
stress. All models struggled with ESI prediction
(Qwen2.5: 0.7433, Llama3-1: 0.7268), highlight-
ing risks in patient emergency assessment. This
underscores the challenge of balancing individual
care with system-wide optimization in Al-assisted
triage.

5 Conclusion

In this work, we address the critical challenge of
integrating Al into ER triage by introducing the
Collaborative Intelligence-based Clinical Triage
Dataset (CICTD) and defining key evaluation tasks.
Our benchmark supports both individual and city-
level triage decision-making while emphasizing a
human-in-the-loop framework to ensure Al defers
to experts in uncertain cases. By bridging automa-
tion with expert oversight, our work lays the foun-
dation for trustworthy and efficient Al-driven ER
triage, ultimately improving patient outcomes and
healthcare resource management.



6 Limitations

Despite the promising contributions of our work,
several limitations warrant discussion:
Limited Dataset Scale Due to High Annotation
Costs: The reliance on expert annotations by ER
doctors constrains the dataset size because their
time is both scarce and expensive. This limitation
challenges the scalability of our approach. Future
iterations, such as CICTD 2.0, could mitigate this
issue by incorporating Al-assisted labeling com-
bined with human verification to reduce the burden
on experts.
Static Annotation of Diagnostic Questions: Di-
agnostic questions were annotated simultaneously,
which does not fully capture the adaptive and dy-
namic nature of real-world triage interactions. In
clinical practice, questioning evolves in response
to patient feedback. Future work should aim to de-
velop dynamic annotation methods—such as adap-
tive question generation—to better reflect the itera-
tive decision-making process in emergency depart-
ment triage.
Trade-offs Between Individual and Global Op-
timization: Our study highlights a key challenge
in triage systems: balancing individual patient care
with overall system efficiency. The "Simulated Hu-
man" model, which focuses solely on maximizing
individual patient care, achieves excellent perfor-
mance in patient-centric tasks (e.g., triage recom-
mendations and diagnostic question generation),
but this focus comes at the expense of system-
wide efficiency. Conversely, global optimization
techniques, as demonstrated by large models like
Llama3-1 and Qwen2.5, improve overall triage effi-
ciency while compromising accuracy in individual
tasks such as ESI level prediction. This trade-off is
particularly critical when minor errors in assessing
high-risk patients can have severe consequences.
Challenges in Integrating Human-in-the-Loop
Approaches: While a hybrid approach combining
machine intelligence with human decision-making
shows promise, directly applying NLP techniques
like Mixture of Experts (MoE)(Shazeer et al., 2017)
in emergency department triage is less straightfor-
ward. Although MoE strategies improve efficiency
in NLP by activating only a subset of experts based
on input tokens, ED triage demands immediate and
comprehensive consideration of patient needs, lim-
iting the applicability of such methods.
Addressing these limitations will be crucial in
future research to develop a more robust and ef-

ficient emergency department triage system that
balances individual patient care with global system
performance.
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A Appendix

A.1 Simulation Assumption and Method

For this study, we adopt a simplified model to as-
sess the feasibility of our triage chatbot in an emer-
gency setting. Given the complexity of real-world
emergency department operations, our model is
designed to capture the essential elements of the
triage and treatment process while maintaining clar-
ity and efficiency in simulation.

First, we assume that the time required for
triage is consistent across all patients, regardless of
the number of individuals waiting to be assessed.
While, in reality, triage time may vary depending
on patient volume and the severity of each case, our
model applies an average triage time that reflects
typical emergency department conditions.

Second, our model features a single queue for
the doctor, where patients are seen in the order
they arrive after triage. While there is technically
a separate queue for the triage nurse in real-world
settings, we simplify this aspect by assuming all
patients experience the same average triage time
before entering the doctor’s queue.

Third, patient wait times for a doctor are deter-
mined by two key factors: (1) position in the queue,
which is based on arrival order after triage; and (2)
doctor availability, as each doctor can only treat
one patient at a time, though they may manage
multiple cases simultaneously up to a predefined
capacity.

By focusing on these fundamental assumptions,
our model provides a structured yet adaptable foun-
dation for evaluating the role of triage automation
in emergency care. Future iterations may incor-
porate additional complexities such as dynamic
triage wait times, real-time re-prioritization based
on patient condition, and variability in triage nurse
efficiency.
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Critical Time-Sensitive Tests

¢ Liver Function Tests (LFTs) e Serial lactate

* Coagulation Studies e Troponin-I/T

e Urinalysis (UA) o D-dimer

* Type and Screen * Lipase

* Electrolytes (Ionized Calcium, Magnesium,
Phosphate)

BNP (Brain Natriuretic Peptide)

¢ Renal Function Tests (BUN, Creatinine Clear- CK-MB (Creatine Kinase MB)

ance) Toxicology & Drug Screens
* Inflammatory Markers (CRP, ESR, Procalci- * Salicylate (Aspirin Level)
tonin
) * Acetaminophen Level
Advanced Tests

. . * Carboxyhemoglobin
Point-of-Care Testing (POCT)

* Fingerstick glucose

Methemoglobin

* Lactate level Opiates, Cocaine, Benzodiazepines

¢ Venous/Arterial Blood Gas (VBG/ABG)

Ethanol Level



Infectious Disease Tests
e HIV Screening (HIV Ag/Ab)

» Hepatitis Panel (HBsAg, Anti-HCV, etc.)
* COVID-19, Influenza, RSV
* Syphilis (RPR, Treponemal Ab)

Imaging Studies
Basic Imaging
o X-ray

* EKG (ECG)

Advanced Imaging

e Ultrasound
e CT scan

* MRI



Notation Description
S Medical simulation scenario
T Total number of days in the simulation S

P = {p17p27 7pn}
H = {hi,h2, ... h;m}
Laby,, Labn,,

Set of patients
Set of hospitals A
Set of lab tests supported by hospital h;

Dochj Number of available doctors in hospital h;
Queuen, Queue length in hospital h;
Cyp, Chief complaint description of patient p;
My, Past medical history of patient p;
tp, Time when patient p; enters the scenario
ESI,,, ESI s Ground truth and predicted ESI level of patient p;, where EST,, € {1,2,3,4,5}
Qp: = {d(p;,1)s 1 U(ps,10) } 10 Diagnosis Questions generated for patient p;, based on Cp; and M,
ﬁpi Hospital ID predicted by the model as the most suitable allocation for patient p;
Hy, Set of hospitals that support the ground truth lab test recommendation for patient p;
tp; The actual waiting time for patient p; in simulation S
Wesr,, Predefined urgency weight assigned based on EST,,
Tmax,p; The max waiting time for patient p; that is annotated by the ED doctor.
Table 3: Notation Table for Medical Simulation Scenario
Category Statistic Value / Distribution
Total ED Visits 12000
Unique Patients 11407
Overall Scale Expert-Annotated Cases 300

% ED Visits with Discharge Report  42.58%

Simulation Time Span 50 Days. (1/3 Normal, 1/3 flu,
1/3 Covid periods)

# of Cities 6 (Boston, Houston, Minneapo-
lis, St. Louis, Detroit, New Or-
leans)

# of Lab Test Covered 36 (CBC, BMP, etc)

ESI 1 640

ESI2 3817

ESI Distribution (# of Patients) ESI 3 6618

ESI 4 892

ESI 5 33

Hourly Patient Arrival Distribution

Late Night (0:00-6:00)
Morning (6:00-12:00)
Afternoon (12:00-18:00)
Evening (18:00-24:00)

Mean: 34.91, Std: 21.15

Mean: 85.714, Std: 51.71
Mean: 102.71, Std: 62.51
Mean: 119.51, Std: 72.93

ED Outcomes

% of Admitted
% of Went Home

31.45%
62.56%

Table 4: Emergency Department Statistics
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