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Abstract

AI offers the important potential to enhance001
Emergency Room (ER) triage efficiency but a002
lack of trust from healthcare professionals and003
patients limits its adoption due to concerns over004
accuracy and reliability. To address this, we005
introduce the Collaborative Intelligence-based006
Clinical Triage Dataset (CICTD), a large-scale007
benchmark containing patient requests and ER008
doctor annotations for triage decision-making.009
Along with CICTD, we define key evaluation010
tasks, including diagnostic question generation,011
ESI level prediction, triage recommendations,012
and misdiagnosis prediction. Our approach em-013
phasizes a human-in-the-loop framework, en-014
suring AI escalates uncertain cases to experts,015
balancing automation with trust and improving016
ER triage efficiency.017

1 Introduction018

Despite the transformative potential of AI in health-019

care, generative AI techniques face significant trust020

challenges among health professionals and patients021

due to concerns over accuracy and reliability. In022

critical domains such as Emergency Room (ER)023

triage, even subtle AI errors can lead to severe con-024

sequences, undermining the adoption of AI in high-025

stakes decision-making. However, recent COVID-026

19 pandemic underscored the urgent need of ef-027

ficient ER triage, as hospitals experienced over-028

whelming patient surges, leading to delays, mis-029

prioritized cases, and loss of lives due to resource030

constraints. To address these challenges, AI must031

be designed not as a replacement for human exper-032

tise but as a collaborative tool that supports medical033

professionals in high-pressure environments.034

A key challenge in AI-powered ER triage is035

trustworthiness - AI models need to be both ac-036

curate and transparent in their decision-making.037

Many existing AI models, like healthcare LLMs,038

lack mechanisms to assess their own confidence039

and determine when human intervention is neces-040
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abdominal pain…
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what I should do?

EHR: [Disease: Arrhythmias], 
[Drug: Potassium]…18:37

Individual Triage Tasks
(triage, diagnose accuracy)

ESI = 3; 
ER Recommendation: Blood test 
Hospital Recommendation: 2
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(ER system stress, average waiting time)

Diagnostic 
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Figure 1: The CICTD dataset enables the AI-Human
Collaborative Triage system to integrate patient diagno-
sis with ER stress management, optimizing symptom
evaluation, test recommendations, and hospital assign-
ment to reduce wait times and improve efficiency.

sary. Additionally, there is a lack of benchmark 041

datasets that facilitate the development and evalu- 042

ation of AI models capable of collaborating with 043

human experts. Without standardized evaluation 044

tasks, it is difficult to measure AI performance in 045

real-world triage scenarios, where decisions must 046

account for both individual patients and broader 047

hospital resource constraints. More specifically, 048

the benchmark and evaluation tasks need to answer 049

two critical questions: (1) How can AI be effec- 050

tively integrated into healthcare, particularly ER 051

triage? (2) How can efficient collaborative intel- 052

ligence (CI) triage models be enabled to balance 053

trust and efficiency in ER services? 054

In this paper, we introduce the Collaborative 055

Intelligence-based Clinical Triage Dataset (CI- 056

CTD), a large-scale benchmark dataset compris- 057

ing patient requests for ER services and annota- 058

tions from ER doctors on triage decision-making. 059

Alongside CICTD, we propose a suite of evaluation 060

tasks for triage AI models, ranging from individual 061

tasks like diagnostic question generation, Emer- 062

gency Severity Index (ESI) level prediction, and 063

ER/triage recommendations to city-wide decisions 064
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like triage efficiency and patient misdiagnosis pre-065

diction. These tasks not only facilitate the design066

of robust AI-based triage models but also support067

human-in-the-loop (HITL) frameworks, where AI068

identifies cases of low confidence and escalates069

decision-making to domain experts. Our work es-070

tablishes a foundation for trustful and efficient ER071

triage systems by addressing the dual challenges072

of AI adoption and reliability. The CICTD dataset,073

coupled with the proposed evaluation framework,074

aims to enable the next generation of AI systems075

that balance automation with expert oversight, en-076

suring equitable and high-quality care during criti-077

cal moments. Our specific contributions are:078

• Introducing CICTD, a large-scale benchmark079

dataset with real-world patient ER requests080

and expert annotations for triage decisions.081

• Defining key evaluation tasks along with eval-082

uation metrics, supporting both individual and083

city-wide AI or CI-driven triage decisions.084

• Conceptualizing a human-in-the-loop AI085

framework, ensuring AI models defer to ex-086

perts when uncertainty is high, enhancing trust087

and efficiency in ER decision-making.088

• Providing a foundation for the development089

of trustworthy AI systems in emergency090

medicine, bridging the gap between AI au-091

tomation and expert-driven healthcare.092

2 Literature Review093

AI Integration in Healthcare The application of094

AI in healthcare has advanced rapidly with large095

language models (LLMs) such as GPT-4 (Ope-096

nAI, 2023), Med-PaLM (Singhal et al., 2023), and097

BioBERT (Lee et al., 2020), which have been em-098

ployed for diagnostic support, medical documenta-099

tion, and patient triage assistance. These systems100

have shown strong performance in processing clini-101

cal text and supporting decision-making, including102

AI-powered triage that aids in symptom assessment103

and emergency prioritization (Yi et al., 2024).104

Despite these advances, several challenges im-105

pede clinical adoption. First, a lack of trust-106

worthiness and interpretability remains a con-107

cern(Schroeder and Wood-Doughty, 2024). LLMs,108

while powerful, often generate responses without109

explicit reasoning, making it difficult for healthcare110

professionals to validate their outputs (Wang and111

Zhang, 2024). Errors, hallucinations, and biases in112

medical AI systems can have serious consequences113

(Liu et al., 2024), leading to misdiagnoses or in- 114

correct triage decisions (Taylor et al.). Addition- 115

ally, AI models struggle with uncertainty estima- 116

tion (Thuy and Benoit, 2024), and they do not reli- 117

ably indicate when they are unsure, making blind 118

reliance on AI dangerous in critical medical con- 119

texts (Gao et al., 2025). Another challenge is data 120

scarcity and annotation cost (); medical datasets 121

require expert annotations, which are costly and 122

time-consuming, limiting the scale and diversity of 123

available training data. 124

To address these challenges, human-in-the-loop 125

(HITL) approaches have been proposed to combine 126

AI efficiency with human expertise in healthcare 127

(Mosqueira-Rey et al., 2023). HITL frameworks 128

ensure that AI models escalate uncertain cases to 129

experts, providing decision support rather than full 130

automation (Zhang et al., 2024). Prior work in 131

medical AI (Lee et al., 2020) has explored expert- 132

in-the-loop mechanisms for radiology (Fuchs et al., 133

2023), clinical diagnosis (Bodén et al., 2021), and 134

medical chatbot systems (Sachdeva et al., 2024), 135

showing improved trust and performance when AI 136

collaborates with doctors. However, most HITL 137

studies focus on single-instance decision-making 138

rather than real-time adaptive collaboration in high- 139

stakes environments (Rastogi et al., 2022), which 140

can be problematic for ER triage adoptions. There 141

remains a need for benchmark datasets and evalua- 142

tion frameworks that support AI-human collabora- 143

tion, allowing AI to learn when to defer decisions 144

and improve medical triage efficiency (Zhang et al., 145

2024). Our work builds on these insights by intro- 146

ducing CICTD, a benchmark dataset specifically 147

designed for AI-assisted ER triage with human- 148

in-the-loop decision-making. We propose novel 149

evaluation tasks, including Critical Delay Sever- 150

ity Assessment (CDSA), to measure and mitigate 151

triage delays. By addressing the limitations of ex- 152

isting models and leveraging expert collaboration, 153

our work provides a foundation for trustworthy, 154

AI-assisted emergency care. 155

3 The CICTD dataset 156

Our CICTD dataset is designed to support the sim- 157

ulation of healthcare environments under realistic 158

stress, which not only incorporates patient-level 159

data but also factors such as time-of-day variations, 160

city diversity, availability of ED phycian and dif- 161

ferent system stress settings. The dataset is di- 162

vided into two components: (1) simulated ED visit 163

records and (2) an expert-annotated subset. De- 164
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tailed statistics are provided in Appendix 4.165

3.1 Simulated ED visit records166

Our patient data was sourced from the MIMIC-167

IV-ED v2.2 (Johnson et al., 2023) dataset and fur-168

ther enhanced by merging with additional records169

from MIMIC-IV v3.1 (Johnson et al., 2024) to cap-170

ture more comprehensive ED information. The re-171

sulting dataset includes key patient attributes such172

as diagnosis codes, chief complaint descriptors,173

etc.) To accurately emulate real-world consulta-174

tions, we leveraged OpenAI GPT-4 to generate de-175

tailed chief complaint description, along with a176

simulated round of ED physician–patient question-177

answer interactions. This process ensures that the178

synthetic text remains both clinically coherent and179

reflective of authentic ED data.180

To build a realistic simulated patient environ-181

ment, we address three key aspects. First, we strati-182

fied our patient pool based on the Emergency Sever-183

ity Index (ESI) (Association, 2023), a standardized184

five-level triage system classifying patients by ur-185

gency and resource needs—for example, ESI level186

1 denotes the highest urgency (Cairns and Kang,187

2024). Using this distribution, we sampled MIMIC188

data to construct a dataset of 12,000 patients. The189

detailed ESI distribution is shown in Appendix 4.190

Second, to model intra-day variations in pa-191

tient arrivals, we used a time-based distribution192

from (Kang and Park, 2015), dividing daily visits193

into four periods: late night (0:00–6:00), morning194

(6:00–12:00, peak 1), afternoon (12:00–18:00), and195

evening (18:00–24:00, peak 2).196

Third, to simulate varying healthcare system197

stress, we modeled 100 days of ED visits per city198

under three conditions: normal periods, flu season,199

and the COVID-19 pandemic. Using visit ratios200

of 1:3:6 from Boston Public Health data (City of201

Boston), we adjusted patient arrival rates to reflect202

increased strain, ensuring realistic seasonal and203

pandemic-induced variations across cities.204

Emergency Department Setting We incorpo-205

rate geographic diversity by selecting six cities:206

Boston, Houston, and Minneapolis, representing207

well-equipped emergency facilities, and St. Louis,208

Detroit, and New Orleans, reflecting high-demand,209

resource-constrained environments.210

To define essential lab tests for ED settings, we211

look up ED reports (Cairns and Kang, 2024), and212

the MIMIC dataset, creating a standardized lab test213

table. Our simulation includes both high-acuity214

EDs and resource-limited urgent care facilities to215

reflect real-world diagnostic variability. 216

For ED physician availability, we estimate 217

staffing needs based on annual visit volume. Ac- 218

cording to guidelines (Association, 2023), an ED 219

physician manages 2.5 patients per hour, equat- 220

ing to 10,950 annual visits per physician. Using 221

this, we approximate hospital staffing needs; for 222

instance, an ED with 85,000 visits (Hospital, 2024) 223

requires about eight physicians. 224

3.2 Expert-Annotated Dataset Subset 225

We generated an expert-annotated subset to ad- 226

dress the lack of evaluation labels in simulated ED 227

settings. A total of 300 patient records were ran- 228

domly selected, ensuring coverage of all ESI Lev- 229

els. These records were independently reviewed 230

by experienced emergency physicians. Each case 231

was annotated with key triage parameters, includ- 232

ing maximum safe waiting time 1). These expert- 233

labeled cases enable systematic analysis of triage 234

decisions, resource constraints, and patient out- 235

comes, providing a foundation for assessing the 236

alignment between expert annotations and model- 237

driven triage predictions, as well as evaluating re- 238

source allocation strategies. 239

4 Evaluation Tasks 240

To comprehensively evaluate both individual pa- 241

tient outcomes and overall system performance, we 242

define two task levels—Individual and Global—in 243

the ED simulation. Individual tasks assess local- 244

ized triage and diagnosis, while global tasks mea- 245

sure large-scale resource allocation and patient pri- 246

oritization. 247

We establish task-specific performance metrics, 248

summarized in Table 1 and referenced in the follow- 249

ing subsections, to ensure a structured assessment. 250

The notation table for evaluation equations is pro- 251

vided in Appendix 3. 252

253

4.1 Individual Tasks 254

Individual tasks independently assess patient- 255

specific predictions to improve AI-assisted triage. 256

The structured process includes: (1) Patient Infor- 257

mation Collection (chief complaint, history); (2) 258

Diagnosis Question Generation (simulating physi- 259

cian inquiries); (3) Triage Recommendations (as- 260

signing appropriate EDs); and (4) ESI Level Pre- 261

diction (estimating urgency via ESI). 262

By structuring tasks in this way, the evaluation 263

captures both the accuracy of individual decision- 264

making steps and their impact on triage efficiency. 265
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Level Task Metrics Description

Individual
Diagnosis Question Generation NDCG10(pi) =

∑10
j=1 r(q(pi,j)) · wj∑10
j=1 r

∗(q(pi,j)) · wj

Generates key diagnostic questions based on the chief
complaint.

Triage Recommendation AccAlloc = |P |−1
∑
pi∈P

δ(ĥ(pi), H
∗(pi)) Allocates patients to the appropriate ED department.

ESI Level Prediction ETC = 1−
∑

pi∈P C(ESIpi ,
ˆESIpi)∑

pi∈P maxC(ESIpi , ·)
) Assesses patient urgency based on the chief complaint.

Global

Triage Efficiency PWWTI =

∑
pi∈P W ¯ESIpi

· tpi∑
pi∈P W ¯ESIpi

Measures the overall effectiveness of the triage system

Real-Time Queue Stress Index RQSI = min

(
1,max

(
0, 0.6× Twait

xthreshold
+ 0.4× max(Twait − xthreshold, 0)

xmax − xthreshold

))
Evaluates healthcare system load in a simulation.

Critical Delay Severity Assessment CSDA =
∑
pi∈P

[
W ¯ESIpi

·max

(
0,

tpi − Tmax,pi

Tmax,pi

)]
Calculates the percentage of annotated patients exceed-
ing the maximum safe waiting time

Table 1: Evaluation tasks and corresponding metrics. Most notations are self explanatory (e.g., pi for the i’th patient)
and the full list is provided in Appendix.

Diagnosis Question Generation (DSQ). Gener-266

ated key diagnostic questions mimicking the in-267

quiry process of emergency physicians during268

triage. The generated questions are then evaluated269

for their clinical relevance and essentiality in a real-270

world emergency department context, ensuring that271

they effectively support accurate and timely patient272

assessment.273

Triage Recommendations (TR). This task aims274

to assess whether a model correctly assigns a pa-275

tient to an emergency department (ED) that can276

fulfill their actual lab test requirements. The evalu-277

ation checks if the assigned hospital can meet the278

patient’s actual lab test needs.279

ESI Level Prediction. . This task assesses the280

model’s accuracy in assigning Emergency Sever-281

ity Index (ESI) levels, ranging from Level 1 (most282

urgent) to Level 5 (least urgent), with misclassifica-283

tion penalties weighted based on severity to reflect284

the clinical impact of incorrect triage decisions.285

4.2 Global (city-level) Tasks286

Unlike individual tasks that focus on optimizing287

patient-specific decisions, global tasks assess the288

overall efficiency and resource management of the289

emergency department network. These tasks evalu-290

ate system-wide metrics to ensure optimal patient291

flow and operational effectiveness across the city.292

Triage Efficiency (TE). This task simulates a clin-293

ical scenario where all patients undergo triage and294

complete their care. Efficiency is assessed using an295

ESI-weighted average of waiting times, reflecting296

system-wide throughput and resource allocation297

while ensuring timely care for high-acuity cases.298

Critical Delay Severity Assessment(CSDA) This299

task measures the proportion of annotated patients300

whose waiting times exceed expert-defined safety301

thresholds. By integrating these patients into the302

simulation, it evaluates the system’s ability to up-303

hold safety standards and ensure timely care.304

Simulation Stress Level This task quantifies the 305

overall burden on the emergency department(ED) 306

system by analyzing real-time patient load, ED 307

resource utilization and waiting queue congestion 308

by leveraging queuing theory principles and stress- 309

testing methodologies. We adopt expected patient 310

waiting time as an indicator of simulation system 311

stress, reflecting both real-time congestion and the 312

efficiency of resource allocation. 313

4.3 Preliminary Experiment Results 314

We ran a preliminary simulation, where a Simu- 315

lated Human optimizes patient outcomes by se- 316

lecting hospitals and seeking direct consultations. 317

We evaluated open-source models (Llama, Qwen) 318

and a closed-source model (ChatGPT). As shown 319

in Table 2, Qwen achieves the highest efficiency 320

(TE = 123.26, CSDA = 22.22%), reducing queue 321

stress. All models struggled with ESI prediction 322

(Qwen2.5: 0.7433, Llama3-1: 0.7268), highlight- 323

ing risks in patient emergency assessment. This 324

underscores the challenge of balancing individual 325

care with system-wide optimization in AI-assisted 326

triage. 327

5 Conclusion 328

In this work, we address the critical challenge of 329

integrating AI into ER triage by introducing the 330

Collaborative Intelligence-based Clinical Triage 331

Dataset (CICTD) and defining key evaluation tasks. 332

Our benchmark supports both individual and city- 333

level triage decision-making while emphasizing a 334

human-in-the-loop framework to ensure AI defers 335

to experts in uncertain cases. By bridging automa- 336

tion with expert oversight, our work lays the foun- 337

dation for trustworthy and efficient AI-driven ER 338

triage, ultimately improving patient outcomes and 339

healthcare resource management. 340
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6 Limitations341

Despite the promising contributions of our work,342

several limitations warrant discussion:343

Limited Dataset Scale Due to High Annotation344

Costs: The reliance on expert annotations by ER345

doctors constrains the dataset size because their346

time is both scarce and expensive. This limitation347

challenges the scalability of our approach. Future348

iterations, such as CICTD 2.0, could mitigate this349

issue by incorporating AI-assisted labeling com-350

bined with human verification to reduce the burden351

on experts.352

Static Annotation of Diagnostic Questions: Di-353

agnostic questions were annotated simultaneously,354

which does not fully capture the adaptive and dy-355

namic nature of real-world triage interactions. In356

clinical practice, questioning evolves in response357

to patient feedback. Future work should aim to de-358

velop dynamic annotation methods—such as adap-359

tive question generation—to better reflect the itera-360

tive decision-making process in emergency depart-361

ment triage.362

Trade-offs Between Individual and Global Op-363

timization: Our study highlights a key challenge364

in triage systems: balancing individual patient care365

with overall system efficiency. The "Simulated Hu-366

man" model, which focuses solely on maximizing367

individual patient care, achieves excellent perfor-368

mance in patient-centric tasks (e.g., triage recom-369

mendations and diagnostic question generation),370

but this focus comes at the expense of system-371

wide efficiency. Conversely, global optimization372

techniques, as demonstrated by large models like373

Llama3-1 and Qwen2.5, improve overall triage effi-374

ciency while compromising accuracy in individual375

tasks such as ESI level prediction. This trade-off is376

particularly critical when minor errors in assessing377

high-risk patients can have severe consequences.378

Challenges in Integrating Human-in-the-Loop379

Approaches: While a hybrid approach combining380

machine intelligence with human decision-making381

shows promise, directly applying NLP techniques382

like Mixture of Experts (MoE)(Shazeer et al., 2017)383

in emergency department triage is less straightfor-384

ward. Although MoE strategies improve efficiency385

in NLP by activating only a subset of experts based386

on input tokens, ED triage demands immediate and387

comprehensive consideration of patient needs, lim-388

iting the applicability of such methods.389

Addressing these limitations will be crucial in390

future research to develop a more robust and ef-391

ficient emergency department triage system that 392

balances individual patient care with global system 393

performance. 394
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A Appendix 509

A.1 Simulation Assumption and Method 510

For this study, we adopt a simplified model to as- 511

sess the feasibility of our triage chatbot in an emer- 512

gency setting. Given the complexity of real-world 513

emergency department operations, our model is 514

designed to capture the essential elements of the 515

triage and treatment process while maintaining clar- 516

ity and efficiency in simulation. 517

First, we assume that the time required for 518

triage is consistent across all patients, regardless of 519

the number of individuals waiting to be assessed. 520

While, in reality, triage time may vary depending 521

on patient volume and the severity of each case, our 522

model applies an average triage time that reflects 523

typical emergency department conditions. 524

Second, our model features a single queue for 525

the doctor, where patients are seen in the order 526

they arrive after triage. While there is technically 527

a separate queue for the triage nurse in real-world 528

settings, we simplify this aspect by assuming all 529

patients experience the same average triage time 530

before entering the doctor’s queue. 531

Third, patient wait times for a doctor are deter- 532

mined by two key factors: (1) position in the queue, 533

which is based on arrival order after triage; and (2) 534

doctor availability, as each doctor can only treat 535

one patient at a time, though they may manage 536

multiple cases simultaneously up to a predefined 537

capacity. 538

By focusing on these fundamental assumptions, 539

our model provides a structured yet adaptable foun- 540

dation for evaluating the role of triage automation 541

in emergency care. Future iterations may incor- 542

porate additional complexities such as dynamic 543

triage wait times, real-time re-prioritization based 544

on patient condition, and variability in triage nurse 545

efficiency. 546
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Figure 2: CICTD Dataset Patient Distribution in intra-day arrival and ESI level .

Model Params Individual Global
DQG TR ESI Prediction TE CSDA OSR

Simulated Human — 1.0 0.8840 1.0 1024.40 50% 0.5611
Qwen2.5 7B 0.9366 0.9180 0.7433 123.26 22.22% 0.0945
Llama3-1 8B 0.9104 0.8528 0.7268 638.31 44.44% 0.4740
ChatGPT — 0.9291 0.9875 0.8182 832.77 38.80% 0.4680

Table 2: Performance comparison of different models

Laboratory and Diagnostic Tests547

Core Laboratory Tests548

• Complete Blood Count (CBC)549

• Basic Metabolic Panel (BMP)550

• Liver Function Tests (LFTs)551

• Coagulation Studies552

• Urinalysis (UA)553

• Type and Screen554

• Electrolytes (Ionized Calcium, Magnesium,555

Phosphate)556

• Renal Function Tests (BUN, Creatinine Clear-557

ance)558

• Inflammatory Markers (CRP, ESR, Procalci-559

tonin)560

Advanced Tests561

Point-of-Care Testing (POCT)562

• Fingerstick glucose563

• Lactate level564

• Venous/Arterial Blood Gas (VBG/ABG)565

• PT/INR 566

• Urine hCG (for all reproductive-age females) 567

• Rapid influenza/COVID-19 antigen tests 568

Critical Time-Sensitive Tests 569

• Serial lactate 570

• Troponin-I/T 571

• D-dimer 572

• Lipase 573

• BNP (Brain Natriuretic Peptide) 574

• CK-MB (Creatine Kinase MB) 575

Toxicology & Drug Screens 576

• Salicylate (Aspirin Level) 577

• Acetaminophen Level 578

• Carboxyhemoglobin 579

• Methemoglobin 580

• Opiates, Cocaine, Benzodiazepines 581

• Ethanol Level 582
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Infectious Disease Tests583

• HIV Screening (HIV Ag/Ab)584

• Hepatitis Panel (HBsAg, Anti-HCV, etc.)585

• COVID-19, Influenza, RSV586

• Syphilis (RPR, Treponemal Ab)587

Imaging Studies588

Basic Imaging589

• X-ray590

• EKG (ECG)591

Advanced Imaging592

• Ultrasound593

• CT scan594

• MRI595
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Notation Description

S Medical simulation scenario
T Total number of days in the simulation S
P = {p1, p2, ..., pn} Set of patients
H = {h1, h2, ..., hm} Set of hospitals h
Lâbhj , Lâbhij Set of lab tests supported by hospital hj

Dochj Number of available doctors in hospital hj

Queuehj Queue length in hospital hj

Cpi Chief complaint description of patient pi
Mpi Past medical history of patient pi
tpi Time when patient pi enters the scenario
¯ESIpi ,

ˆESIpi Ground truth and predicted ESI level of patient pi, where ¯ESIpi ∈ {1, 2, 3, 4, 5}
Qpi = {q(pi,1), ..., q(pi,10)} 10 Diagnosis Questions generated for patient pi, based on Cpi and Mpi

ĥpi Hospital ID predicted by the model as the most suitable allocation for patient pi
H̄pi Set of hospitals that support the ground truth lab test recommendation for patient pi
tpi The actual waiting time for patient pi in simulation S

W ¯ESIpi
Predefined urgency weight assigned based on ¯ESIpi

Tmax,pi The max waiting time for patient pi that is annotated by the ED doctor.

Table 3: Notation Table for Medical Simulation Scenario

Category Statistic Value / Distribution

Overall Scale

Total ED Visits 12000
Unique Patients 11407
Expert-Annotated Cases 300
% ED Visits with Discharge Report 42.58%
Simulation Time Span 50 Days. (1/3 Normal, 1/3 flu,

1/3 Covid periods)
# of Cities 6 (Boston, Houston, Minneapo-

lis, St. Louis, Detroit, New Or-
leans)

# of Lab Test Covered 36 (CBC, BMP, etc)

ESI Distribution (# of Patients)

ESI 1 640
ESI 2 3817
ESI 3 6618
ESI 4 892
ESI 5 33

Hourly Patient Arrival Distribution

Late Night (0:00–6:00) Mean: 34.91, Std: 21.15
Morning (6:00–12:00) Mean: 85.714, Std: 51.71
Afternoon (12:00–18:00) Mean: 102.71, Std: 62.51
Evening (18:00–24:00) Mean: 119.51, Std: 72.93

ED Outcomes
% of Admitted 31.45%
% of Went Home 62.56%

Table 4: Emergency Department Statistics
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