
Published as a conference paper at ICLR 2025

EFFICIENT ONLINE PRUNING AND ABSTRACTION FOR
IMPERFECT INFORMATION EXTENSIVE-FORM GAMES

Boning Li
Institute for Interdisciplinary Information Sciences, Tsinghua University
li-bn22@mails.tsinghua.edu.cn

Longbo Huang ∗

Institute for Interdisciplinary Information Sciences, Tsinghua University
longbohuang@tsinghua.edu.cn

ABSTRACT

Efficiently computing approximate equilibrium strategies in large Imperfect In-
formation Extensive-Form Games (IIEFGs) poses significant challenges due to
the game tree’s exponential growth. While pruning and abstraction techniques are
essential for complexity reduction, existing methods face two key limitations: (i)
Seamless integration of pruning with Counterfactual Regret Minimization (CFR)
is nontrivial, and (ii) Pruning and abstraction approaches incur prohibitive com-
putational costs, hindering real-world deployment. We propose Expected-Value
Pruning and Abstraction (EVPA), a novel online framework that addresses these
challenges through three synergistic components: (i) Expected value estimation
using approximate Nash equilibrium strategies to quantify information set utili-
ties, (ii) Minimax pruning before CFR to eliminate a large number of sub-optimal
actions permanently, and (iii) Dynamic online information abstraction merging
information sets based on their current and future expected values in subgames.
Experiments on Heads-up No-Limit Texas Hold’em (HUNL) show EVPA outper-
forms DeepStack’s replication and Slumbot with significant win-rate margins in
multiple settings. Remarkably, EVPA requires only 1%-2% of the solving time to
reach an approximate Nash equilibrium compared to DeepStack’s replication.

1 INTRODUCTION

Imperfect Information Extensive-Form Games (IIEFGs) provide a robust framework for analyzing
sequential games with hidden information and multiple players. This framework is applicable across
various domains, such as Poker (Brown & Sandholm, 2019a), Mahjong (Li et al., 2020), and Strat-
ego (Perolat et al., 2022). Counterfactual Regret Minimization (CFR) and its variants (Zinkevich
et al., 2007b; Lanctot et al., 2009; Tammelin, 2014; Brown et al., 2019; Brown & Sandholm, 2019b;
Xu et al., 2024) stand out as the leading approaches for solving IIEFGs. However, the computational
overhead of CFR scales with the size of the game tree, making it challenging to compute approx-
imate equilibrium strategies for large IIEFGs, particularly in games such as Heads-Up No-Limit
Texas Hold’em (HUNL), which features a game tree with roughly 10165 states (Johanson, 2013).

Reducing the size of the game tree is essential for making equilibrium computation feasible (Sand-
holm, 2010). Pruning techniques (Blair et al., 1996) eliminate sub-optimal branches, speeding up
CFR convergence and reducing computational overhead (Brown & Sandholm, 2015a). Similarly,
abstraction techniques (Sandholm, 2015) group similar information sets into buckets, significantly
shrinking the game tree size. Combining pruning and abstraction methods can substantially reduce
the game tree size, making CFR more practical for large IIEFGs (Brown & Sandholm, 2016b; 2018).

Despite their utility, current pruning and information abstraction techniques have limitations. Exist-
ing pruning methods often depend on intermediate computed values during CFR iterations (Lanctot
et al., 2009; Brown & Sandholm, 2015a; 2017a), leading to dynamic and tentative pruning. This

∗Corresponding author.

1

Published as a conference paper at ICLR 2025

complexity requires tailored adjustments based on the specific CFR variant employed. More im-
portantly, when using generic techniques such as depth-limited solving (Moravčı́k et al., 2017) or
MCCFR (Lanctot et al., 2009), the computational overhead of these intermediate values may even
greatly exceed the original overhead of the iteration. Moreover, during early CFR iterations, the
game tree size remains unchanged, resulting in no reduction in memory usage.

Information abstraction methods can be broadly categorized into expectation-based abstraction
(Gilpin & Sandholm, 2007; Zinkevich et al., 2007a) and potential-aware abstraction (Gilpin et al.,
2007; 2008; Ganzfried & Sandholm, 2014). Expectation-based abstraction often neglects the future
evolution of information sets, making it less effective (Gilpin & Sandholm, 2008; Johanson et al.,
2013). While potential-aware abstraction is more comprehensive, it requires extensive simulation
and clustering, leading to significant computational overhead that can extend for months (Sand-
holm, 2010; Brown et al., 2015), making it impractical for online computation. Furthermore, when
utilizing subgame solving techniques (Ganzfried & Sandholm, 2015; Brown & Sandholm, 2017c),
previous methods often use the same pre-calculated abstraction across different subgames, which
can be sub-optimal.1 Additionally, many methods focus solely on the strength of information sets,
overlooking blocking effects (Sandholm, 2010).2

To address these challenges, we propose Expected-Value Pruning and Abstraction (EVPA), a novel
online method that integrates expected value estimation into pruning and abstraction processes. The
goal is to significantly reduce the solving time required to reach an ε-Nash equilibrium. EVPA
consists of three core components: expected value estimation of information sets, expected value-
based pruning, and information abstraction for subgames. Figure 1 illustrates how EVPA method
operates in a HUNL subgame example.

KdKh
+1025

5s5h
+956

KhQs
+313

KcQs
+313

JdTd
+317

3h3c
-96

7d6h
-7

5s4s
-4

5h3h
-44

5s4h
-44

8d2h
Pruned

7d2h
Pruned

KdKh
+1023

5s5h
+910

KhQs
+314

KcQs
+314

JdTd
+316

2h2c
-101

7d6h
-7

5s4s
-4

5h3h
-44

5s4h
-44

KdKh
+1027

5s5h
+957

KhQs
+314

KcQs
+314

JdTd
+317

2h2c
-117

7d6h
-7

5s4s
-4

5h3h
-44

5s4h
-44

KdKh
+1024

5s5h
+955

KhQs
+313

KcQs
+313

JdTd
+316

2h2c
-131

7d6h
-8

5s4s
-5

5h3h
-44

5s4h
-46

Check Bet 165 Bet 500

2h2c
-101

3h3c
-116

3h3c
-132

KdKh
+250

5s5h
+250

KhQs
+250

KcQs
+250

JdTd
+250

7d6h
+250

5s4s
+250

5h3h
+250

5s4h
+250

KdKh
+1161

5s5h
+1082

KhQs
+390

KcQs
+390

JdTd
+327

7d6h
-82

5s4s
-60

5h3h
-121

5s4h
-121

KdKh
+3966

5s5h
+2831

KhQs
-186

KcQs
-186

JdTd
+460

7d6h
-326

5s4s
-408

5h3h
-415

5s4h
-415

KdKh
-415

5s5h
-415

KhQs
-415

KcQs
-415

JdTd
-415

7d6h
-415

5s4s
-415

5h3h
-415

5s4h
-415

KdKh
+3975

5s5h
+2845

KhQs
-186

KcQs
-186

JdTd
+463

7d6h
-326

5s4s
-408

5h3h
-542

5s4h
-551

KdKh
+3941

5s5h
+2813

KhQs
-231

KcQs
-231

JdTd
+436

7d6h
-407

5s4s
-440

5h3h
-568

5s4h
-574

Player 1’s Action

Player 2’s Action

Hand
EV

Information set

Game Tree Public State

Subgame

Fold CallRaise 995

Player 1’s Action Fold Call Raise 3485

Flop: Ks9d5d
Pre Action: Raise250-Call-Check

Hand
EV

Pruned Information Set

…

… … …

… … …

… … …
Pruned Public State

3h3c
-96

Subgame Root

Figure 1: In the HUNL example with 200 big blinds (20, 000 chips), the player in the small blind
(Player 1) raises to 250 chips, and the player in the big blind (Player 2) calls during the pre-flop
stage. The flop reveals Ks9d5d, after which Player 2 checks, making it Player 1’s turn to act. The
figure illustrates a portion of the current subgame constructed by EVPA. First, EVPA estimates the
expected value of each information set within the subgame. It then prunes branches with signif-
icantly lower expected values, as indicated by gray blocks representing pruned information sets.
Finally, EVPA clusters the remaining information sets based on their current and future expected
values. Information sets of the same color in the figure are grouped into the same bucket, where a
“bucket” refers to a collection of information sets that share the same strategy within the subgame.

1For example, in HUNL, holding a bottom pair may be advantageous if both players check to the river, but
can be weaker if significant pot increases occur before the river.

2For instance, in HUNL, when the public cards on the river are KsTs9d6c5s, holding As3h and holding
Ac3h have equal strength, but it is less likely for the opponent to hold the nuts (the strongest hand) with As3h.

2

Published as a conference paper at ICLR 2025

The first component, expected value estimation of information sets, generates expected value estima-
tions for each information set in the subgame, based on the approximate Nash equilibrium strategy.
EVPA’s estimation does not rely on the probability distributions of information sets, allowing it to
efficiently sample data and avoid the overhead of probability distribution calculations typically re-
quired during CFR iterations (Kroer & Sandholm, 2015; Brown et al., 2018). The innovation of
EVPA lies in its ability to effectively harness these expected value estimations specifically for both
pruning and information abstraction before the CFR process begins. This capability optimizes the
decision-making process, enhancing computational efficiency while maintaining strategic depth.

The second component, expected value-based pruning, employs Minimax pruning (Blair et al., 1996)
based on the expected value estimation of information sets. By permanently and correctly eliminat-
ing sub-optimal branches before the CFR begins, EVPA enables the CFR to concentrate on the most
important branches, leading to a substantial increase in convergence speed. Notably, EVPA’s prun-
ing is efficient and does not require real-time computation of intermediate values, unlike previous
methods (Brown & Sandholm, 2015a; 2017a; Brown et al., 2017). Additionally, it can be seamlessly
integrated with various CFR variants (Lanctot et al., 2009; Brown & Sandholm, 2019b).

The third component, information abstraction for subgames, introduces a novel online algorithm that
merges information sets based on both current and future expected values. Compared to previous
methods (Gilpin & Sandholm, 2007; Ganzfried & Sandholm, 2014), EVPA’s information abstraction
considers relative strength, blocking effects, and potential strength of the information sets, while
achieving efficient abstraction in under 1 second. EVPA’s abstraction is effective in online CFR
solving and is scalable to larger IIEFGs such as Omaha (Farha & Reback, 2007). Furthermore, the
flexibility in selecting bucket sizes allows EVPA to balance solving time and abstraction granularity.

We evaluate EVPA using Heads-up No-Limit Texas Hold’em (HUNL) poker and compare its perfor-
mance against DeepStack’s replication (Moravčı́k et al., 2017) and strong open-source AI Slumbot
(Jackson, 2013). EVPA shows significant improvements, including reductions in game tree sizes
ranging from 42.67% to 79.51% across different abstraction settings and subgames. Notably, EVPA
reduces the solving time required to reach an ε-Nash equilibrium to just 1%-2% of the time needed
for DeepStack’s replication. EVPA also outperformed the DeepStack’s replication with win-rates of
930±23, 202±31, 82±60 mbb/h when the information set is touched 1×107, 1×108 and 1×109

times, respectively. Additionally, EVPA beats Slumbot with win-rates of 10±26, 96±43, 100±68
mbb/h under 0.02, 0.2 and 2 seconds of the solving time limits, respectively.

The main contributions of our work are as follows:

• Novel Expected Valued-Based Pruning. We introduce a highly effective pruning technique
that permanently and correctly eliminates sub-optimal actions from the game tree before
the CFR process begins. This approach achieves up to 98.6% reduction in exploitability in
HUNL subgames, enabling us to avoid traversing unnecessary paths. Notably, this pruning
method does not require complex computations and exhibits excellent scalability.

• Advanced Information Abstraction for Subgames. Our information abstraction method pro-
vides efficient abstractions that consider both current and future expected values, enabling
tailored online abstractions for different subgames with minimal computational overhead.
This abstraction method accelerates convergence significantly in HUNL subgames, and has
the potential to be applied to more complex games than HUNL.

• Super Performance on HUNL. EVPA effectively integrates the core techniques from pre-
vious superhuman performance HUNL AIs, such as Libratus (Brown & Sandholm, 2018)
and DeepStack. Experiments with limited solving time on HUNL demonstrate that EVPA
surpasses both DeepStack’s replication and strong bot Slumbot with significant win-rate
margins, indicating that EVPA can achieve super performance with minimal solving time.

2 RELATED WORK

Value Estimation in IIEFGs. Value estimation is predominantly used to substitute leaf node values
in depth-limited solving. DeepStack (Moravčı́k et al., 2017) achieved superhuman performance in
HUNL through probability distribution-based value estimation during CFR iterations. Subsequent
works like Supremus (Zarick et al., 2020) and ReBeL (Brown et al., 2020), further validated the

3

Published as a conference paper at ICLR 2025

reliability of this approach. Another method for estimating leaf node values involves selecting the
highest value from multiple strategies (Brown et al., 2018). Beyond depth-limited solving, value
estimation has applications in various IIEFG techniques, including Deep CFR (Brown et al., 2019),
action abstraction (Li et al., 2024) and variance reduction (Burch et al., 2018).

Pruning with CFR. In CFR, the value and reach probability of an information set change with each
iteration. This dynamic nature means that most previous pruning methods rely on temporary prun-
ing using intermediate computed values. For instance, regret-based pruning (Brown & Sandholm,
2015a) avoids traversing a path if either player takes actions leading to that path with zero proba-
bility. Furthermore, best-response pruning (Brown & Sandholm, 2017a) allows for the temporary
pruning of poorly performing actions. Additionally, partial pruning (Lanctot et al., 2009) and dy-
namic thresholding pruning (Brown et al., 2017) enable the pruning of actions with low probability.
A more detailed description of pruning methods in IIEFGs can be found in Appendix G.

Information Abstraction in IIEFGs. Information abstraction can be categorized into expectation-
based abstraction and potential-aware abstraction (Gilpin & Sandholm, 2008). Expectation-based
abstraction methods (Gilpin & Sandholm, 2007; Zinkevich et al., 2007a) classify information sets
based on their current strength of expectation, while potential-aware abstraction methods (Gilpin
et al., 2007; 2008) consider the performance of information sets across different future scenarios.
The imperfect-recall technique (Waugh et al., 2009; Ganzfried & Sandholm, 2014) allows players
to intentionally forget certain information, significantly reducing the size of the game tree. A more
detailed description of the abstraction can be found in Appendix H.

3 BACKGROUND AND NOTATION

In an Imperfect Information Extensive-Form Game (IIEFG), there is a finite set of players N =
{1, · · · , N}. A state, also known as history h, represents the sequence of all historical actions taken
from the initial state ∅. Performing an action a in a non-terminating state h transitions to a new
state h′, denoted as h · a = h′, where h is the parent of h′. If state h′ can be reached from h by
performing a sequence of actions, then h is an ancestor of h′. We use the notation h ⊑ h′ to mean
h is an ancestor of h′, and h ⊏ h′ to mean h is a strict ancestor of h′. A terminal state z is one
where no further actions are available, and up(z) represents the payoff for player p at terminal state
z. The acting player at a non-terminal state h is denoted by P(h) ∈ N ∪{c}, where c represents the
“chance player,” indicating events beyond the control of players in N .

For each player p ∈ N , imperfect information is represented by an information set Ip. All states
h, h′ ∈ Ip are indistinguishable to p. If p is the acting player, the information set Ip can be simply
denoted as I . The set of information sets is denoted by I. A strategy σ(I) is a probability distribution
over the available actions within an information set I . The probability of choosing action a at
information set I is denoted as σ(I, a). The strategy for player p in all information sets where they
act is denoted as σp, while the strategies for all other players are denoted as σ−p. A strategy profile
σ = (σp)p∈N is a collection of strategies, one for each player. The expected value (EV) of an
information set Ip under a strategy profile σ is denoted EVσ(Ip).

The best response for player p to σ−p is a strategy that maximizes player p’s payoff. Math-
ematically, BR(σ−p) = argmaxσ′

p
up(σ

′
p, σ−p). A Nash equilibrium σ∗ is a strategy profile

where each player’s strategy is a best response to the strategies of the other players. That is,
∀p, up(σ

∗, σ∗
−p) = maxσ′

p
up(σ

′
p, σ

∗
−p). The exploitability e(σp) of a strategy σp in a two-player

zero-sum game measures how much worse the strategy performs compared to a best response against
a Nash equilibrium strategy. Formally, e(σp) = up(σ

∗
p , BR(σ∗

p)) − up(σp, BR(σp)). A strategy
profile σ is an ε-Nash equilibrium if no player has an exploitability greater than ε under σ.

A subgame is a continuous portion of a game tree. Formally, a subgame S is a set of states such that
∀h ∈ S, if h ∈ Ip and h′ ∈ Ip then h′ ∈ S, and ∀x, z ∈ S, if x ⊏ y ⊏ z then y ∈ S. A public state
(or node) s contains the information known to all players. The unique public state corresponding to
a state h and an information set Ip is denoted as s(h) and s(Ip), respectively. If a state h ∈ S has
no descendants within S, it is called a leaf state, and the information sets and nodes containing h
are called leaf information sets and leaf nodes. Conversely, if h ∈ S has no ancestors within S, it is
called a root state, and the information sets and nodes containing h are called root information sets
and root nodes. The root node of S is denoted as Sr.

4

Published as a conference paper at ICLR 2025

4 EVPA ALGORITHM

In this section, we present the Expected-Value Pruning and Abstraction (EVPA) algorithm. The
EVPA algorithm is composed of three core components: (i) expected value estimation of informa-
tion sets (Section 4.1), which calculates the expected value of each information set to serve as a
foundation for subsequent operations; (ii) expected value-based pruning (Section 4.2), where sub-
optimal branches are permanently removed from the game tree before CFR using the estimated
expected values; and (iii) information abstraction for subgames (Section 4.3), which groups similar
information sets based on their current and future expected values in subgames to reduce complexity.
Figure 2 visually depicts the operation of these three components in a depth-limited subgame.

Game Tree Node

Information Sets

Min,Max
Values

…

Player 1’s Information Set

Expected
Value

Networks

Player 2’s Information Set

Features

2.Pruning

1.Expected Value Estimation

3.Abstraction

Unsolved Subgames

Depth-Limited
Subgame

History Actions
Root Node

Original Game Tree

Figure 2: Framework of EVPA. We begin by estimating the maximum, minimum, and average
expected values of each information set in the subgame using expected value networks. Next, we
prune the game tree based on the maximum and minimum values. Finally, we utilize the average
values as features for information abstraction.

4.1 EXPECTED VALUE ESTIMATION OF INFORMATION SETS

In this subsection, we detail the expected value estimation process of information sets within the
EVPA algorithm. We begin by using a framework similar to DeepStack’s (Moravčı́k et al., 2017) for
computing depth-limited subgame equilibrium strategies (further implementation details are avail-
able in Appendix D). This framework is trained using a large dataset of game states and actions from
a wide variety of IIEFG scenarios. Once the training process is completed, we leverage this trained
framework to estimate the expected values of approximate Nash equilibrium strategies for various
information sets in IIEFGs.

Our method involves sampling diverse subgames and calculating approximate Nash equilibrium
expected values for information sets within these subgames. The sampling process is outlined in
Algorithm 1. We start by generating a depth-limited subgame S from a random initial public state.
To ensure comprehensive action coverage, we utilize randomized action abstractions during sub-
game construction. We then compute the Nash equilibrium strategy for this subgame, calculate the
expected value for each information set, and incorporate these values into our training data. The
process continues by sampling a leaf node s of the subgame S. If s is not a terminal node, we then
solve the subgame rooted at s. We emphasize that, unlike DeepStack, the information set features
in EVPA contain only public information and player’s private hand information, and do not include
range information of both players.

Once we have collected sufficient data through the sampling process outlined in Algorithm 1, we
proceed to train neural networks for the purpose of expected value estimation. We train M inde-
pendent neural networks (with M = 10) using the Huber Loss (Huber, 1964) as our loss function.
Each neural network receives a feature vector describing the information set, and outputs a scalar
representing the expected value (relative to the pot size) of that information set.

5

Published as a conference paper at ICLR 2025

Algorithm 1: Algorithm for Sampling of Nash Equilibrium Expected Value of Information Sets.
Data← ∅, s←RandomInitPublicState()// Randomly initialization
while P(s) ̸= ∅ do

while P(s) = c do
s←TakeChance(s)// Process a random chance event

S ←DepthLimitedSubgame(s)// Build a depth-limited subgame with
randomized action abstractions

σ∗ ←StrategySolving(S) // Compute Nash equilibrium strategies
for Ip ∈ S do

EVσ∗(Ip)←CalculateExpectedValue(S, σ∗, Ip)
Add {Ip, EVσ∗(Ip)} to Data

s← SampleLeaf(S, σ∗) // Randomly sampling a leaf
Output: Data

The network architecture consists of 6 layers of Multi-Layer Perceptrons (MLPs), each with 1, 536
hidden units and ReLU activation functions (Glorot et al., 2011). Each network is trained on at least
10 billion samples using the Adam optimizer (Kingma & Ba, 2015). Each sample provides values
for all information sets within subgame S, resulting in a sampling size that is millions of times larger
than the one used by DeepStack within the same sampling time. Training the DeepStack replication
requires 70 days, with sampling time being the primary overhead. In contrast, training the expected
value network in EVPA takes only 4 days, with 1 day of sampling time.

Upon completing the training, we obtain M expected value estimation networks. For each infor-
mation set Ip, the expected value estimation from the i-th network is denoted as EVi(Ip). We
calculate the average expected value estimation as EV (Ip) = 1

M

∑M
i=1 EVi(Ip). Additionally,

we determine the maximum and minimum expected value estimations across the M networks as
EVmax(Ip) = max{EV1(Ip), . . . , EVM (Ip)} and EVmin(Ip) = min{EV1(Ip), . . . , EVM (Ip)}, re-
spectively. The computed average, maximum, and minimum expected values will serve as crucial
inputs for the pruning and abstraction steps, allowing us to make informed decisions on which parts
of the game tree to prune or abstract. The true innovation of EVPA lies in its effective use of these
expected value insights, enabling smarter decision-making and more efficient exploration of the
game tree. This ultimately enhances the overall performance of the algorithm.

4.2 EXPECTED VALUE-BASED PRUNING

In this subsection, we introduce the Expected Value-based Pruning component of the EVPA algo-
rithm, which is a crucial part of our approach to reduce the computational complexity of IIEFGs.
This pruning technique uses the expected value estimates from our previously trained networks to
make informed decisions about which parts of the game tree can be safely pruned.

The EVPA pruning method introduces a novel approach inspired by Minimax pruning (Blair et al.,
1996), based on the principle that an optimal player will not select an action for an information
set if another action has a higher expected value. For instance, in HUNL, discarding a pair of
Aces pre-flop is clearly sub-optimal compared to calling or raising, which yield higher expected
values. Formally, for an information set I , an action a, and a Nash equilibrium strategy σ∗, if
EVσ∗(I · a) < EVσ∗(I), then σ∗(I, a) = 0. Furthermore, if there exists another action a′ such that
EVσ∗(I · a) < EVσ∗(I · a′), then σ∗(I, a) = 0.

However, accurately calculating exactly expected value under Nash equilibrium can be computation-
ally prohibitive. To address this challenge, the EVPA method leverages estimates from M expected
value estimation networks to perform pruning efficiently before applying the CFR algorithm. This
integration enhances the effectiveness of pruning and significantly reduces computational overhead.

The details of the pruning algorithm are outlined in Algorithm 2. The MaximumJudge function
evaluates whether the child information set Ison

p of Ip has the highest expected value for player p.
The LegalFromRoot function innovates further by verifying that player p has not taken any sub-
optimal actions from the initial state up to Ip. The Pruning function orchestrates the overall pruning
process by using a queue to traverse the information sets and apply the pruning criteria. Ultimately,

6

Published as a conference paper at ICLR 2025

the function returns the necessary information sets to retain, completing the efficient permanent
pruning of the game tree before initiating the CFR algorithm.

Algorithm 2: Algorithm for EVPA subgame pruning.
Function MaximumJudge(Ip, Ison

p):
if P(Ip) ̸= p then

return True// If the acting player is not p, return true
MaxMin← −∞
for I ′p ∈ Ip · a do

if Ison
p ̸= I ′p ∧ EVmin(I

′
p) > MaxMin then

MaxMin← EVmin(I
′
p)

if EVmax(I
son
p) + δ > Min(MaxMin,EVmin(Ip)) then

return True
return False

Function LegalFromRoot(Ip):
if Parent(Ip) = ∅ then

return True
I ′p ← Parent(Ip)// There exists an action a such that I ′p · a = Ip
return MaximumJudge(I ′p, Ip) ∧ LegalFromRoot(I ′p)

Function Pruning(S):
Iroot, Isubgame ← ∅
for Ip ∈ Sr do

if LegalFromRoot(Ip) then
Add Ip to Iroot // Pruning root information sets

Iqueue, Isubgame ← Iroot
while Iqueue ̸= ∅ do

Ip ← TopElement(Iqueue), Iqueue ← Iqueue \ Ip
for I ′p ∈ Ip · a do

if s(I ′p) ∈ S ∧MaximumJudge(Ip, I ′p) then
Add I ′p to Iqueue, Isubgame

return Iroot, Isubgame

The parameter δ is introduced to mitigate errors generated by sampling data. When δ is no less than
the maximum average regret O(1√

T
) of CFR, where T is the CFR iterations, we can eliminate the

error generated by CFR with DeepStack.3 After δ elimination of errors generated by CFR iterations
in the sampling process, we can be confident that the sampled data fully reflects the exact expected
value of the information set. For the information set Ip, the value estimation of the neural network
can be expressed as EVσ∗(Ip)+ err, where err is the random error generated by the network itself.

Error Analysis. We consider a pruning error to occur when a branch Ison
p = I ·a with EVσ∗(Ison

p) =
EVσ∗(I) is pruned. In the worst-case scenario, all branches of the information set I have the same
expected value, making it incorrect to prune any branch. To analyze the probability of error, we
consider the sampling of estimates from M networks. We enumerate each sibling information set
Ibro
p of Ison

p , the pruning error occurs in the Ison
p branch if all M estimates about Ison

p are smaller than
the other 2M estimates about Ip and the sibling information set Ibro

p . The probability of selecting
exactly the M minimum values out of 3M random values is 1

(3MM)
. The Ison

p has |A| − 1 siblings,

and the upper bound pruning error probability of Ison
p is |A|−1

(3MM)
.

The pruning algorithm estimates the expected values of O(M ·D · |I|+M · |S| · |I|) information
sets, where M represents the number of expected value estimation networks, D is the current depth
of the subgame, |S| is the number of nodes in the subgame, and |I| denotes the number of distinct
information sets per node. Notably, the computational overhead of the pruning algorithm is minimal
compared to that of the CFR algorithm, highlighting its practicality and efficiency in large IIEFGs.

3The value of δ = 0.01 was chosen based on empirical evidence. We observed that with this value, the error
generated by discounted CFR (DCFR) algorithm (Brown & Sandholm, 2019b) can be effectively mitigated.

7

Published as a conference paper at ICLR 2025

By directly and correctly eliminating unimportant branches, EVPA’s pruning algorithm enables the
CFR algorithm to concentrate on more critical branches, significantly enhancing convergence and
overall performance. This strategic focus not only accelerates computation but also facilitates more
effective exploration of promising areas within the game tree.

4.3 INFORMATION ABSTRACTION FOR SUBGAMES

In this subsection, we describe the Information Abstraction for Subgames component of the EVPA
algorithm. This crucial part of our approach aims to simplify the game tree by merging similar
information sets, thus reducing computational complexity while maintaining strategic integrity.

EVPA’s information abstraction method innovatively clusters both current and future expected val-
ues of information sets as features. The core idea behind merging information sets I and I ′ is to
simplify the game tree by grouping similar information sets together. We consider them similar if
their current and future expected values are closely aligned. Specifically, we merge two information
sets I and I ′ when the following conditions are met: (1) s(I) = s(I ′), which ensures that the public
states of the two information sets are the same, and (2) for any action sequences a1, · · · , an (where
n ≥ 0), if ∀i < n, P(I · a1 · · · ai) ̸= P(I), then EVσ∗(I · a1 · · · an) ≈ EVσ∗(I ′ · a1 · · · an). This
second condition checks that for any sequence of actions, the expected values of both information
sets remain approximately equal. If these conditions hold, it follows that σ∗(I) ≈ σ∗(I ′), indicating
that the strategies for I and I ′ will be similar, and hence they can be merged.

This merging approach extends to subgame solving, allowing for the consolidation of root informa-
tion sets into K buckets within subgames. For player p, all information sets in bucket k are denoted
as Irootbucket,p,k. All information sets in Irootbucket,p,k adopt the same strategy in the subgame.

The details of the EVPA information abstraction algorithm are outlined in Algorithm 3. The process
begins by pruning all root information sets and storing the viable root information sets in Iroot.

Next, we enumerate each node s of the subgame S and predict the expected value of each root
information set Ip at that node. To estimate this expected value, we utilize the average output from
M expected value estimation networks. This estimated value is then multiplied by a significance
function f(g(s), n) and appended to the features of Ip. Here, g(s) encapsulates various pieces of
information about node s, while n represents the distance from the root node Sr to node s. In
the context of HUNL, we define the significance function as f(g(s), n) = 1

pot(s)·max{n,0.2} , where
pot(s) indicates the number of chips in the pot at node s.

Algorithm 3: Algorithm for EVPA information abstraction.
Function Abstraction(S,K):
Iroot, Isubgame ← Pruning(S)
for Ip ∈ Iroot do

feature(Ip)← ∅// Define features for information sets
for s ∈ S do

a1, · · · , an ← SequenceActions(Sr, s)// Actions from Sr to s
for Ip ∈ Iroot do

Append EV (Ip · a1 · · · an) · f(g(s), n) into feature(Ip)// Append weighted
average expected value to the feature vector of Ip

Irootbucket, Isubgamebucket ← ∅
for p ∈ N do
Irootbucket,p,1, . . . , Irootbucket,p,K ← k-means++({Ip, feature(Ip)}Ip∈Iroot ,K)
for s ∈ S do

a1, · · · , an ← SequenceActions(Sr, s)
for k = 1 to K do

for Ip ∈ Irootbucket,p,k do
if Ip · a1 · · · an ∈ Isubgame then

Add Irootbucket,p,k to Isubgamebucket,p,s
break// Exit loop once a match is found

return Irootbucket, Isubgamebucket

8

Published as a conference paper at ICLR 2025

After calculating expected value features, we cluster the root information sets for each player using
the k-means++ algorithm (Arthur & Vassilvitskii, 2007). The clustering process has a time com-
plexity of O(T ·K · |S| · |Iroot|), where T is the number of iterations of the k-means++ algorithm
(set to T = 8), K is the number of buckets, |S| is the number of nodes in the subgame, and |Iroot|
is the number of legitimate information sets at the root node. Remarkably, even for large IIEFGs
such as HUNL, the information abstraction process can be completed quickly, making it suitable for
real-time applications.

Following the clustering, we retain the original pruning results of the subgame in Isubgame. After
clustering, we check for buckets where all of their information sets are not in the previously pruned
subgame set Isubgame. These buckets are considered unnecessary and can be pruned, further reducing
the complexity of the game tree.

A key innovation of EVPA is its ability to provide dynamic, subgame-specific abstractions that effec-
tively integrate both current and future expected values. Compared to other information abstraction
methods, EVPA’s approach not only offers faster processing times (completing in under 1 second
on a standard server for HUNL) but also provides more accurate and dynamic abstractions tailored
to specific subgames, as it takes into account both current and future expected values. Additionally,
the flexibility in choosing the bucket size K allows for an optimal balance between solving time and
abstraction accuracy, further enhancing the algorithm’s applicability in real-time scenarios.

5 EXPERIMENTS

We conduct a series of experiments to comprehensively evaluate the performance of the EVPA algo-
rithm in the context of large IIEFGs. As in previous studies on large IIEFGs (Moravčı́k et al., 2017;
Brown & Sandholm, 2018), we use HUNL (see Appendix A for detailed rules) as our experimental
benchmark due to its representativeness and complexity. In our evaluation, players start with 200 big
blinds and switch positions every two hands, replicating conditions of the annual computer poker
competition (ACPC) (Bard et al., 2013). All experiments employed the leading DCFR algorithm
(Brown & Sandholm, 2019b), as outlined in Appendix C. To maintain strategy soundness, we uti-
lized subgame re-solving techniques (Burch et al., 2014; Brown & Sandholm, 2017c). Additionally,
the AIVAT technique (Burch et al., 2018) is applied to reduce variance in heads-up evaluations.

Training and experiments were executed on a server with 4 NVIDIA A100 80GB PCIe GPUs and
112 Intel(R) Xeon(R) Gold 6348 2.60GHz CPUs. For our evaluations, we replicated DeepStack
(Moravčı́k et al., 2017) as a baseline (BASE) and implemented three AIs using the EVPA algo-
rithm: EVPA-full (which employs pruning only), EVPA-169 (pruning combined with 169 buckets
for abstraction), and EVPA-30 (pruning combined with 30 buckets for abstraction).

Pruning Effectiveness. We randomly generated at least 10, 000 depth-limited subgames across
different stages of HUNL. The pruning rates are summarized in Table 1. EVPA-full achieved pruning
rates between 69.72% and 79.51%. EVPA-169 achieved pruning rates between 55.68% and 69.50%,
while EVPA-30 achieved pruning rates between 42.67% and 51.58%. These results clearly indicate
that EVPA effectively prunes a significant portion of the game tree across various settings.

Table 1: Game tree pruning rate of depth-limited subgame at each stage of HUNL.

EVPA AIs Pre-flop Flop Turn River

EVPA-full 69.72% 69.87% 77.00% 79.51%
EVPA-169 69.50% 55.68% 63.07% 65.31%
EVPA-30 51.58% 42.67% 49.60% 49.79%

Exploitability Evaluation. In our evaluation of exploitability at the river stage subgame, as illus-
trated in Figure 3, the EVPA AIs demonstrate a marked reduction in exploitability compared to
the baseline. Specifically, EVPA-full achieves the lowest exploitability with 1 × 108 information
set touches, reducing exploitability to approximately 1.4% of the baseline’s level. Further analysis
reveals that EVPA-169 reduces exploitability by 47% relative to EVPA-full with 1 × 107 touches,
while EVPA-30 achieves a 54% reduction relative to EVPA-169 with 1× 106 touches.

9

Published as a conference paper at ICLR 2025

1e6 1e7 1e8 1e9

Touched Information Sets

0.0001

0.001

0.01

0.1

1

E
xp

lo
ita

bi
lit

y

EVPA-169
EVPA-30
EVPA-full
BASE

Figure 3: The average exploitability (relative
to the current pot size) of various HUNL AIs
during river subgames is plotted against the
number of information sets touched by DCFR.

Notably, to reach an exploitability of no more than
0.08, the baseline requires around 1×108 informa-
tion set touches, whereas EVPA-30 achieves this
with only 1 × 106. Similarly, for an exploitabil-
ity threshold of 0.01, the baseline necessitates over
5 × 108 touches, while EVPA-169 can already
achieve this with just 1×107 touches. These results
underscore that EVPA can attain an ε-Nash equi-
librium with only 1%-2% of the information set
touches required by the baseline, highlighting the
significant improvement in exploitability reduction
achieved by EVPA.

Heads-up Evaluation Against Slumbot. We
conducted heads-up evaluations against Slumbot
(Jackson, 2013), a strong open-source HUNL AI
that won the 2018 ACPC. The results are presented
in Table 2. In the initial trials with a solving time
limit of 0.02 seconds, DeepStack’s replication suf-
fered a significant defeat, recording a win-rate of
−573± 28 mbb/h against Slumbot. In contrast, the EVPA algorithms—EVPA-full, EVPA-169, and
EVPA-30—demonstrated comparable performance levels to Slumbot, with EVPA-169 achieving a
win-rate of 10 ± 26 mbb/h. When the solving time was increased to 0.2 seconds, DeepStack’s
replication continued to struggle, showing a win-rate of −109± 52 mbb/h. Meanwhile, EVPA-full
succeeded in defeating Slumbot with a win-rate of 96 ± 43 mbb/h. When the solving time was
further increased to 2 seconds, DeepStack’s replication managed to beat Slumbot with a win-rate of
33 ± 65 mbb/h, but still fell short of EVPA’s performance. Overall, these results show that EVPA
algorithms are more competitive against Slumbot, especially under time-constrained scenarios.

Table 2: Heads-up results of AIs against Slumbot with solving time limits, measured in mbb/h.

Solving Time Limits BASE EVPA-full EVPA-169 EVPA-30

0.02 seconds −573± 28 8± 25 10± 26 −4± 28
0.2 seconds −109± 52 96± 43 31± 57 -
2 seconds 33± 65 100± 68 - -

Heads-up Evaluation Against DeepStack’s Replication. We further conducted heads-up evalua-
tion between DeepStack’s replication and various EVPA AIs, varying the limits on the number of
information set touches, as presented in Table 3. After the CFR algorithm touches the information
set 1 × 107 times, the EVPA algorithm significantly outperforms DeepStack’s replication, demon-
strating a win-rate of up to 930 ± 23 mbb/h. Even after 1 × 108 touches, EVPA maintained its
advantage, defeating DeepStack’s replication with a win-rate of 202± 31 mbb/h. When the number
of touched information sets came to 1 × 109, DeepStack’s replication was still outperformed by
EVPA, with recorded a win-rate of 82± 60 mbb/h. These results show that EVPA has a significant
win-rate against DeepStack’s replication, regardless of the number of information set touches.

Table 3: Heads-up results of EVPA AIs against DeepStack’s replication with different limits on the
number of information set touches, measured in mbb/h.

Touched Information Sets EVPA-full EVPA-169 EVPA-30

1× 107 844± 26 930± 23 865± 29
1× 108 202± 31 125± 27 -
1× 109 82± 60 - -

Overall, the experimental results show that EVPA is a highly effective algorithm for solving large
IIEFGs, particularly in settings with limited solving time.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China Grants 52450016
and 52494974.

REFERENCES

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In SODA, pp.
1027–1035. SIAM, 2007.

Anton Bakhtin, David J. Wu, Adam Lerer, Jonathan Gray, Athul Paul Jacob, Gabriele Farina,
Alexander H. Miller, and Noam Brown. Mastering the game of no-press diplomacy via human-
regularized reinforcement learning and planning. In ICLR. OpenReview.net, 2023.

Nolan Bard, John Alexander Hawkin, Jonathan Rubin, and Martin Zinkevich. The annual computer
poker competition. AI Mag., 34(2):112, 2013.

Nolan Bard, Michael Johanson, and Michael H. Bowling. Asymmetric abstractions for adversarial
settings. In AAMAS, pp. 501–508. IFAAMAS/ACM, 2014.

Jean R. S. Blair, David Mutchler, and Michael van Lent. Perfect recall and pruning in games with
imperfect information. Comput. Intell., 12:131–154, 1996.

Noam Brown and Tuomas Sandholm. Regret transfer and parameter optimization. In AAAI, pp.
594–601. AAAI Press, 2014.

Noam Brown and Tuomas Sandholm. Regret-based pruning in extensive-form games. In NIPS, pp.
1972–1980, 2015a.

Noam Brown and Tuomas Sandholm. Simultaneous abstraction and equilibrium finding in games.
In IJCAI, pp. 489–496. AAAI Press, 2015b.

Noam Brown and Tuomas Sandholm. Strategy-based warm starting for regret minimization in
games. In AAAI, pp. 432–438. AAAI Press, 2016a.

Noam Brown and Tuomas Sandholm. Baby tartanian8: Winning agent from the 2016 annual com-
puter poker competition. In IJCAI, pp. 4238–4239. IJCAI/AAAI Press, 2016b.

Noam Brown and Tuomas Sandholm. Reduced space and faster convergence in imperfect-
information games via pruning. In ICML, volume 70 of Proceedings of Machine Learning Re-
search, pp. 596–604. PMLR, 2017a.

Noam Brown and Tuomas Sandholm. Libratus: The superhuman AI for no-limit poker. In IJCAI,
pp. 5226–5228. ijcai.org, 2017b.

Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information
games. In NIPS, pp. 689–699, 2017c.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418–424, 2018.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
eaay2400, 2019a.

Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted regret
minimization. In AAAI, pp. 1829–1836. AAAI Press, 2019b.

Noam Brown, Sam Ganzfried, and Tuomas Sandholm. Hierarchical abstraction, distributed equi-
librium computation, and post-processing, with application to a champion no-limit texas hold’em
agent. In AAAI Workshop: Computer Poker and Imperfect Information, volume WS-15-07 of
AAAI Technical Report. AAAI Press, 2015.

Noam Brown, Christian Kroer, and Tuomas Sandholm. Dynamic thresholding and pruning for regret
minimization. In AAAI, pp. 421–429. AAAI Press, 2017.

11

Published as a conference paper at ICLR 2025

Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for imperfect-
information games. In NeurIPS, pp. 7674–7685, 2018.

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret min-
imization. In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 793–802.
PMLR, 2019.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games. In NeurIPS, 2020.

Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information games using
decomposition. In AAAI, pp. 602–608. AAAI Press, 2014.

Neil Burch, Martin Schmid, Matej Moravcik, Dustin Morrill, and Michael Bowling. AIVAT: A new
variance reduction technique for agent evaluation in imperfect information games. In AAAI, pp.
949–956. AAAI Press, 2018.

Theo SH Driessen. Cooperative games, solutions and applications, volume 3. Springer Science &
Business Media, 2013.

Sam Farha and Storms Reback. Farha on Omaha: Expert strategy for beating cash games and
tournaments. Triumph Books, 2007.

Sam Ganzfried and Tuomas Sandholm. Computing equilibria in multiplayer stochastic games of
imperfect information. In IJCAI, pp. 140–146, 2009.

Sam Ganzfried and Tuomas Sandholm. Action translation in extensive-form games with large ac-
tion spaces: Axioms, paradoxes, and the pseudo-harmonic mapping. In IJCAI, pp. 120–128.
IJCAI/AAAI, 2013a.

Sam Ganzfried and Tuomas Sandholm. Improving performance in imperfect-information games
with large state and action spaces by solving endgames. In Workshops at the twenty-seventh AAAI
conference on artificial intelligence, 2013b.

Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction with earth
mover’s distance in imperfect-information games. In AAAI, pp. 682–690. AAAI Press, 2014.

Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information games. In
AAMAS, pp. 37–45. ACM, 2015.

Sam Ganzfried, Tuomas Sandholm, and Kevin Waugh. Strategy purification. In AAMAS, pp. 1111–
1112. IFAAMAS, 2011.

Sam Ganzfried, Tuomas Sandholm, and Kevin Waugh. Strategy purification and thresholding: effec-
tive non-equilibrium approaches for playing large games. In AAMAS, pp. 871–878. IFAAMAS,
2012.

Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for imperfect infor-
mation games, with application to texas hold’em poker. In AAMAS, pp. 192. IFAAMAS, 2007.

Andrew Gilpin and Tuomas Sandholm. Expectation-based versus potential-aware automated ab-
straction in imperfect information games: An experimental comparison using poker. In AAAI, pp.
1454–1457. AAAI Press, 2008.

Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. Potential-aware automated abstrac-
tion of sequential games, and holistic equilibrium analysis of texas hold’em poker. In AAAI, pp.
50–57. AAAI Press, 2007.

Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. A heads-up no-limit texas hold’em
poker player: discretized betting models and automatically generated equilibrium-finding pro-
grams. In AAMAS (2), pp. 911–918. IFAAMAS, 2008.

12

Published as a conference paper at ICLR 2025

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudı́k (eds.), Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale,
USA, April 11-13, 2011, volume 15 of JMLR Proceedings, pp. 315–323. JMLR.org, 2011.

Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics,
35(1):73 – 101, 1964.

Eric Jackson. Slumbot nl: Solving large games with counterfactual regret minimization using sam-
pling and distributed processing. In AAAI Workshop on Computer Poker and Imperfect Informa-
tion, 2013.

Michael Johanson. Measuring the size of large no-limit poker games. CoRR, abs/1302.7008, 2013.

Michael Johanson, Neil Burch, Richard Anthony Valenzano, and Michael Bowling. Evaluating
state-space abstractions in extensive-form games. In AAMAS, pp. 271–278. IFAAMAS, 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Christian Kroer and Tuomas Sandholm. Extensive-form game abstraction with bounds. In EC, pp.
621–638. ACM, 2014.

Christian Kroer and Tuomas Sandholm. Limited lookahead in imperfect-information games. In
IJCAI, pp. 575–581. AAAI Press, 2015.

Christian Kroer and Tuomas Sandholm. Imperfect-recall abstractions with bounds in games. In EC,
pp. 459–476. ACM, 2016.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael H. Bowling. Monte carlo sampling for
regret minimization in extensive games. In NIPS, pp. 1078–1086. Curran Associates, Inc., 2009.

Boning Li, Zhixuan Fang, and Longbo Huang. RL-CFR: Improving action abstraction for imper-
fect information extensive-form games with reinforcement learning. In Forty-first International
Conference on Machine Learning, 2024.

Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, Chao Wang, Ruihan Yang, Li Zhao, Tao
Qin, Tie-Yan Liu, and Hsiao-Wuen Hon. Suphx: Mastering mahjong with deep reinforcement
learning. CoRR, abs/2003.13590, 2020.

Paul R Milgrom and Robert J Weber. A theory of auctions and competitive bidding. Econometrica:
Journal of the Econometric Society, pp. 1089–1122, 1982.

Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017. doi: 10.1126/science.
aam6960.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of
stratego with model-free multiagent reinforcement learning. Science, 378(6623):990–996, 2022.

Tuomas Sandholm. The state of solving large incomplete-information games, and application to
poker. AI Mag., 31(4):13–32, 2010.

Tuomas Sandholm. Abstraction for solving large incomplete-information games. In AAAI, pp.
4127–4131. AAAI Press, 2015.

Tuomas Sandholm and Satinder Singh. Lossy stochastic game abstraction with bounds. In EC, pp.
880–897. ACM, 2012.

David Schnizlein, Michael H. Bowling, and Duane Szafron. Probabilistic state translation in exten-
sive games with large action sets. In IJCAI, pp. 278–284, 2009.

13

Published as a conference paper at ICLR 2025

Arnold Snyder. Poker Tournament Formula. Cardoza Publishing, 2006.

Oskari Tammelin. Solving large imperfect information games using CFR+. CoRR, abs/1407.5042,
2014.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
texas hold’em. In IJCAI, pp. 645–652. AAAI Press, 2015.

Leigh Thompson. Negotiation behavior and outcomes: Empirical evidence and theoretical issues.
Psychological bulletin, 108(3):515, 1990.

Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David Schnizlein, and Michael H.
Bowling. A practical use of imperfect recall. In SARA. AAAI, 2009.

Hang Xu, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Dynamic discounted coun-
terfactual regret minimization. In ICLR. OpenReview.net, 2024.

Ryan Zarick, Bryan Pellegrino, Noam Brown, and Caleb Banister. Unlocking the potential of deep
counterfactual value networks. CoRR, abs/2007.10442, 2020.

Enmin Zhao, Renye Yan, Jinqiu Li, Kai Li, and Junliang Xing. Alphaholdem: High-performance
artificial intelligence for heads-up no-limit poker via end-to-end reinforcement learning. In AAAI,
pp. 4689–4697. AAAI Press, 2022.

Martin Zinkevich, Michael H. Bowling, and Neil Burch. A new algorithm for generating equilibria
in massive zero-sum games. In AAAI, pp. 788–794. AAAI Press, 2007a.

Martin Zinkevich, Michael Johanson, Michael H. Bowling, and Carmelo Piccione. Regret mini-
mization in games with incomplete information. In NIPS, pp. 1729–1736. Curran Associates,
Inc., 2007b.

14

Published as a conference paper at ICLR 2025

Appendix

A Heads-Up No-Limit Texas Hold’em Rules 15

B Breakthroughs in HUNL AIs 15

C Counterfactual Regret Minimization 16

D DeepStack’s Implementation 17

E Conclusion 18

F Future Directions for Research and Application 18

G Pruning with CFR 18

H Abstraction for Solving Large IIEFGs 19

A HEADS-UP NO-LIMIT TEXAS HOLD’EM RULES

Heads-up No-Limit Texas Hold’em (HUNL) is a two-player variant of Texas Hold’em poker, played
over four stages:

1. Pre-flop. Players start by posting a pre-specified number of chips: the “small blind” and the “big
blind,” with the small blind typically being half the size of the big blind. Each player is dealt two
private cards at the beginning.

2. Flop. Three public cards are revealed.

3. Turn. A fourth public card is revealed.

4. River. The final public card is revealed.

During the pre-flop stage, the small blind player acts first; thereafter, the big blind player acts first in
all subsequent stages. Players can fold, check/call, or bet/raise, with bets/raises ranging from the last
bet/raise amount to their remaining chips (all-in). If a player folds, the other wins the pot. If neither
folds by the end of the river stage, the players compare their best five-card hands, which consist of
two private cards and the five public cards. The player with the best hand wins the pot. Win-rate and
exploitability are measured in milli big blinds per hand (mbb/h). For instance, a win-rate of 0.1 big
blind per hand equates to 100 mbb/h.

B BREAKTHROUGHS IN HUNL AIS

Tartanian7 (Brown et al., 2015), Baby Tartanian8 (Brown & Sandholm, 2016b), and Slumbot (Jack-
son, 2013) — winners of annual computer poker competition (ACPC) (Bard et al., 2013) in 2014,
2016, and 2018, respectively — initially computed a blueprint strategy based on a post-abstraction
game tree (Ganzfried & Sandholm, 2014; Brown & Sandholm, 2014), followed by the strategy exe-
cution based on the blueprint strategy (Ganzfried et al., 2011; 2012; Ganzfried & Sandholm, 2013a;
Brown & Sandholm, 2016a). While this approach is effective for IIEFGs with fewer states, such as
limit Texas Hold’em (Tammelin et al., 2015), it struggles in HUNL. A significant challenge arises
when an opponent makes an “off-tree” action, in such cases, the AI must substitute an approximation
from the blueprint strategy (Schnizlein et al., 2009; Ganzfried & Sandholm, 2013a), potentially lead-
ing to sub-optimal performance (Ganzfried & Sandholm, 2013b; Bard et al., 2014). Additionally,
the blueprint strategy often lacks the granularity necessary for effective endgame solving (Ganzfried
& Sandholm, 2013b; 2015).

15

Published as a conference paper at ICLR 2025

Libratus (Brown & Sandholm, 2018) addressed these challenges through a safe and nested sub-
game solving technique (Brown & Sandholm, 2017c) and a self-improver to enhance its blueprint
strategy (Brown & Sandholm, 2017b), ultimately achieving superhuman performance. However, its
substantial computational resource requirements limit its implementation to supercomputers, and it
can only solve for fixed initial chip counts, which is impractical in real poker scenarios where chip
counts fluctuate (Burch et al., 2018).

DeepStack (Moravčı́k et al., 2017) achieved superhuman performance through depth-limited sub-
game solving (Kroer & Sandholm, 2015) and probability distribution-based value estimation of leaf
information sets. Subsequent works, such as ReBeL (Brown et al., 2020) and Supremus (Zarick
et al., 2020), further demonstrate the reliability of this approach. However, none of these AIs have
incorporated online pruning and abstraction of depth-limited subgames, suggesting potential areas
for improvement. Modicum (Brown et al., 2018) introduced a multiple-value depth-limited solv-
ing technique based on a pre-calculated blueprint strategy, which allows for minimal training and
solving time. Nevertheless, its performance remains constrained by the limitations of the blueprint
strategy. AlphaHoldem (Zhao et al., 2022), a reinforcement learning-based method, achieves decent
performance with short training and solving times. However, its lack of CFR integration makes it
susceptible to exploitation.

Table 4 compares the training and solving time of these AIs and the EVPA algorithm, along with
their win-rates against Slumbot or Baby Tartanian8. EVPA demonstrates significant advantages in
processing off-tree actions compared to blueprint strategy-based AIs, achieving higher win-rates
than these methods. Additionally, EVPA outperforms other subgame-solving AIs in solving time
while maintaining a comparable win-rate. Though it has similar solving times and win-rates to
AlphaHoldem, EVPA provides stronger guarantees against exploitability. 4

Table 4: This table compares various HUNL AIs based on estimated training and solving times
using 4 NVIDIA A100 80GB PCIe GPUs and 112 Intel(R) Xeon(R) Gold 6348 CPUs. Win-rates
indicate performance against Slumbot or Baby Tartanian8, measured in mbb/h. Note that Slumbot
is continually improved, so earlier results may not reflect its current performance. X is the training
days of the baseline strategy.

HUNL AI Name Training Time Solving Time Win-rate

Tartanian7 (Brown et al., 2015) 428 Days 0 seconds 33± 16
Baby Tartanian8 (Brown & Sandholm, 2016b) 744 Days 0 seconds 36± 12

Slumbot (Jackson, 2013) 93 Days 0 seconds 0± 0
DeepStack (Moravčı́k et al., 2017) 569 Days 2 seconds -

Libratus (Brown & Sandholm, 2018) 8, 370 Days 160 seconds 63± 28
Modicum (Brown et al., 2018) X + 1 Days 2 seconds 11± 9

ReBeL (Brown et al., 2020) 926 Days 1 second 45± 5
Supremus (Zarick et al., 2020) 351 Days 2 seconds 176± 44

AlphaHoldem (Zhao et al., 2022) 6 Days 0.003 seconds 112± 16
EVPA-full-0.2s (Ours) X + 4 Days 0.2 seconds 96± 43

EVPA-full-0.2s-confuseSlumbot (Ours) X + 4 Days 0.2 seconds 187± 66
EVPA-169-0.02s (Ours) X + 4 Days 0.02 seconds 10± 26

C COUNTERFACTUAL REGRET MINIMIZATION

Counterfactual Regret Minimization (CFR) is a prominent algorithm for solving large IIEFGs by
minimizing regret independently at each information set (Zinkevich et al., 2007b). CFR can find
ε-Nash equilibrium in two-player zero-sum IIEFGs.

4Notably, Supremus and AlphaHoldem often make decisions that deviate from Slumbot’s blueprint strategy,
which may confuse Slumbot. For a fairer comparison with Supremus and AlphaHoldem, we implemented an
EVPA-based AI using bet/raise sizes of 0.2, 0.4, 0.8, 1.6 times the pot (EVPA-full-0.2s-confuseSlumbot). The
results show that EVPA-full-0.2s-confuseSlumbot outperformed Slumbot, achieving a win-rate of 187 ± 66
mbb/h, surpassing both Supremus and AlphaHoldem.

16

Published as a conference paper at ICLR 2025

πσ(h) is the probability of reaching h if all players act according to strategy σ. πσ
−p(h) is

the probability of reaching h if all players expect p act according to strategy σ, and the player
p act to h. The counterfactual value (CFV) of an information set I under strategy profile σ
represents the expected utility to player P(I) if I has been reached, calculated as vσ(I) =∑

h∈I(π
σ
−P(I)(h|I)

∑
h⊑z(π

σ(z|h)uP(I)(z))). And the counterfactual value of an action a is cal-
culated as vσ(I, a) =

∑
h∈I(π

σ
−P(I)(h|I)

∑
h⊑z π

σ(z|h · a)uP(I)(z)).

Let σt denote the strategy profile at iteration t. The instantaneous regret for taking an action a at
information set I during iteration t is given by: rt(I, a) = vσ

t

(I, a) − vσ
t

p (I), where vσ
t

(I, a) is
the counterfactual value of taking an action a at I , and vσ

t

(I) is the counterfactual value of the
information set I . The accumulated counterfactual regret for taking an action a at information set I
after T iterations is: RT (I, a) =

∑T
t=1 r

t(I, a). At each iteration t, an action a at information set I

is selected with probability: σt(I, a) =
Rt−1

+ (I,a)∑
a′ R

t−1
+ (I,a′)

, where Rt
+(I, a) = max{0, Rt(I, a)}.5

Discounted CFR (DCFR) (Brown & Sandholm, 2019b) is an advanced variant of CFR designed for
large IIEFGs. DCFR introduces parameters α, β and γ to adjust the impact of accumulated coun-
terfactual regrets over time.6 Specifically, at each iteration t, positive accumulated counterfactual
regrets are multiplied by tα

tα+1 , negative accumulated counterfactual regrets are multiplied by tβ

tβ+1
,

and contributions to the average strategy σ are weighted by (t
t+1)

γ .

D DEEPSTACK’S IMPLEMENTATION

Our replication of DeepStack’s implementation builds upon several prior works (Moravčı́k et al.,
2017; Zarick et al., 2020; Brown et al., 2020). At each stage of the game, we construct a depth-
limited subgame up to the end of that stage and utilize a neural network to estimate the values of the
leaf information sets (excluding the river stage).

For the first two levels of the subgame, we employ raising scales of 0.25, 0.5, 1, and 2 times the pot,
along with an all-in option. For the third level, we use scales of 0.5 and 1 times the pot, plus all-in.
For subsequent levels, we apply a raising scale of 0.75 times the pot and an all-in option. To enhance
sample diversity, we randomly multiply all raising scales (except for all-in) by a factor between 0.7
and 1.4. 7

We train 6 neural networks corresponding to the following stages: pre-flop stage end, flop stage
start, flop stage end, turn stage start, turn stage end, and river stage start. Each network consists of 6
layers of Multi-Layer Perceptrons (MLPs) with ReLU activation functions (Glorot et al., 2011). The
networks are trained using the Adam optimizer (Kingma & Ba, 2015) and the Huber loss function
(Huber, 1964). The input layer has 2, 678 dimensions, corresponding to the probability of private
hands for both players and the public state information. Each hidden layer contains 1, 536 dimen-
sions, while the output layer has 2, 652 dimensions, representing the expected value of the private
hands.

Training progresses as follows: we first train the river stage network with 5 million randomly gener-
ated river subgames, followed by training the turn stage network with 3 million randomly generated
turn subgames, the flop stage network with 1 million randomly generated flop stage subgames, and
finally the pre-flop stage network with 100, 000 randomly generated pre-flop scenarios. After this
initial training, we regenerate samples from initial states (with initial chips between 50 and 250 big
blinds) to terminal states for 100 epochs, generating at least 36 million samples in total. After each
epoch, we retrain the neural networks using the most recent samples. In the EVPA process for sam-
pling and evaluation, we apply the depth-limited subgame building method and leverage the trained
neural networks to estimate the values of the leaf information sets.

It is important to note that DeepStack dedicates a significant amount of training time to computing
the information abstraction due to its reliance on offline abstraction methods. To reduce training
overhead, our implementation of the DeepStack replica omits this information abstraction step and

5If
∑

a′ R
t
+(I, a

′) = 0, an arbitrary strategy is used.
6In our experimental setup, we use α = 1.5, β = 0 and γ = 2.
7During sample generation, we use the DCFR algorithm (Brown & Sandholm, 2019b) for 1, 000 iterations.

17

Published as a conference paper at ICLR 2025

does not fix the initial chip count. Furthermore, inspired by methods such as Supremus (Zarick et al.,
2020) and ReBeL (Brown et al., 2020), we incorporate a warm-up phase and then the trained neural
network is used to generate subsequent data, allowing for more efficient training process.

E CONCLUSION

In this paper, we propose the Expected-Value Pruning and Abstraction (EVPA) algorithm, which
marks a significant advancement in solving large imperfect information extensive-form games.
EVPA is featured with three core components, namely expected value estimation of information
sets, expected value-based pruning, and information abstraction for subgames. Our extensive exper-
iments with Heads-up No-Limit Texas Hold’em (HUNL) show that EVPA enhances computational
efficiency while ensuring robust strategy development, achieving competitive performance with sig-
nificantly reduced solving time compared to existing benchmarks. Its dynamic adaptability positions
EVPA as a pivotal tool for advancing AI capabilities in complex strategic environments.

F FUTURE DIRECTIONS FOR RESEARCH AND APPLICATION

As EVPA demonstrates significant advancements in solving HUNL, several promising directions for
future research emerge.

• Generalization to Other IIEFGs. A compelling avenue for future research is to explore the
applicability of EVPA across a broader spectrum of IIEFGs. While the methodology has
been validated in HUNL, expanding its scope to games such as Omaha (Farha & Reback,
2007), Mahjong (Li et al., 2020) and Stratego (Perolat et al., 2022) could yield insights into
the versatility of the EVPA framework. Understanding how EVPA can efficiently manage
diverse information structures and player strategies in these contexts will contribute to more
generalized solutions in game theory.

• Online Strategy Solving Beyond Board Games. The development of EVPA positions it well
for applications beyond board games, particularly in online strategy solving. Many real-
world scenarios involve sequential decision-making under uncertainty, such as auctions
(Milgrom & Weber, 1982) and diplomacy (Bakhtin et al., 2023). Future work could focus
on adapting the EVPA framework to these domains, enabling robust online strategy solving
that leverages its expected value-based pruning and abstraction techniques. Implementing
EVPA in these settings could provide a powerful tool for developing competitive agents
capable of navigating complex interactions and dynamic information.

• Integration with Multi-Agent Systems. EVPA could potentially solve multi-player poker,
particularly in tournament settings (Snyder, 2006; Ganzfried & Sandholm, 2009), in mere
seconds. This capability provides a promising entry point for exploring EVPA’s application
in multi-agent systems. By expanding EVPA’s functionalities to operate effectively in both
collaborative and adversarial environments, we can investigate its adaptability to scenarios
involving multiple agents, each with unique strategies and objectives. This exploration will
facilitate more sophisticated strategic interactions, proving particularly valuable in domains
such as negotiations (Thompson, 1990) and cooperative games (Driessen, 2013).

By pursuing these research directions, future work can build on the successes of EVPA, enabling
the development of robust and adaptable strategies for a wide range of sequential decision-making
problems beyond poker. This expansion will contribute to the ongoing evolution of AI in complex
strategic environments, pushing the boundaries of what is achievable in the field of IIEFGs.

G PRUNING WITH CFR

Pruning techniques in CFR help the algorithm avoid exploring suboptimal branches of the game
tree, thus improving computational efficiency without sacrificing convergence guarantees (Brown &
Sandholm, 2015a). One of the most widely used pruning methods is partial pruning (Lanctot et al.,
2009)8, which reduces unnecessary computations when updating the regret of an information set

8Dynamic thresholding pruning (Brown et al., 2017) is similar to partial pruning in CFR.

18

Published as a conference paper at ICLR 2025

belonging to one player. Specifically, if the other player has zero probability of reaching any history
within an information set, the subgame rooted at that history can be pruned without affecting the
overall computation. Formally, for an information set I and the strategy profile σt at iteration t, if
history h ∈ I satisfies πσt

−P(I)(h) = 0, the subgame rooted at h can be pruned in iteration t. This
technique can be combined with EVPA or other pruning methods for even more effective pruning
during CFR iterations. However partial pruning techniques are unable to prune the information set
I belonging to the action player P(I), limiting its pruning rate.

Regret-based pruning (RBP) (Brown & Sandholm, 2015a) avoids traversing branches where either
player is unlikely to take actions with positive probability. If the cumulative counterfactual regret
R(I, a) ≤ 0 for an action a in information set I , RBP temporarily prunes the path from I to a for
⌊ −R(I,a)
U(I,a)−L(I)⌋ iterations, where U(I, a) is the upper bound of v(I, a) and L(I) is the lower bound of

v(I). Although RBP is efficient for standard CFR, many CFR variants (Brown & Sandholm, 2019b;
Xu et al., 2024) require more complicated computation of R(I, a), as it is not always a simple
cumulative quantity. Additionally, RBP necessitates computing both the upper and lower bounds
and recalculating the best response after pruning. These extra computations introduce significant
overhead, particularly in real-time solving scenarios.

Best-Response Pruning (BRP) (Brown & Sandholm, 2017a) is another approach that eliminates
suboptimal branches, based on the assumption that players will avoid suboptimal actions. For each
information set I and action a, BRP computes the best response against the player −P(I) in a sub-
game of non-suboptimal actions. A regret upper bound U for information set I and action a with
T iterations is derived. If U < 0, the path from I to a can be pruned for the next ⌊ U

L(I)⌋ itera-
tions. While BRP can improve both convergence speed and computational efficiency, it introduces
complexity by requiring the computation of the best response at each information set during every
iteration. This is particularly challenging in depth-limited solving, where best responses calculation
is costly compared to the depth-limited subgame solving (Moravčı́k et al., 2017).

Table 5: Comparison of Pruning Methods with CFR.

Pruning Methods Depth-limited Solving Permanent Pruning

Partial Pruning (Lanctot et al., 2009) ✔ ✘
RBP (Brown & Sandholm, 2015a) ✘ ✘
BRP (Brown & Sandholm, 2017a) ✘ ✘

EVPA(Ours) ✔ ✔

The comparison of EVPA with previous pruning algorithms is summarized in Table 5. The key dif-
ference between EVPA and other pruning methods is that EVPA offers permanent pruning, making
it compatible with techniques such as depth-limited solving. Furthermore, EVPA does not require
any additional overhead for intermediate value calculations after pruning is completed. This makes
EVPA not only more efficient but also more versatile, as it can be seamlessly integrated with various
CFR variants. As a result, EVPA offers substantial performance improvements without the added
computational burden associated with methods like RBP or BRP.

H ABSTRACTION FOR SOLVING LARGE IIEFGS

In large IIEFGs, the size of the game tree often makes it computationally prohibitive to compute an
equilibrium. Abstraction algorithms help address this challenge by simplifying the original game
into a smaller, abstracted version, which is then solved for equilibrium strategies. While abstraction
techniques necessarily sacrifice some accuracy, they are theoretically bounded (Kroer & Sandholm,
2016). However, determining the optimal abstraction remains an NP-complete problem (Sandholm
& Singh, 2012; Kroer & Sandholm, 2014).

Abstraction algorithms typically reduce the complexity of the game tree in the following ways: 1.
Information Abstraction (Gilpin & Sandholm, 2007; Ganzfried & Sandholm, 2014): This method
groups similar information sets together, treating them as a single entity with a shared strategy. 2.
Action Abstraction (Brown & Sandholm, 2014; 2015b; Li et al., 2024): By limiting the available

19

Published as a conference paper at ICLR 2025

actions in the game, action abstraction reduces the size of the game tree. 3. Depth-Limited Solving
(Kroer & Sandholm, 2015; Moravčı́k et al., 2017; Brown et al., 2018): This approach limits the
depth to which the game tree is explored, reducing the computational load. 4. Subgame Solving
(Ganzfried & Sandholm, 2013b; 2015; Brown & Sandholm, 2017c): Instead of solving the entire
game tree, subgame solving focuses on specific portions of the tree, starting from the current state,
to avoid unnecessary computation.

In EVPA, we leverage advanced techniques such as action abstraction, depth-limited solving, and
subgame solving simultaneously, while also introducing a novel approach to information abstraction.
This combination enables us to achieve substantial improvements in efficiency and performance.
The key advantages of EVPA include: 1. Online Execution: EVPA performs the abstraction in
less than 1 second for HUNL subgames, making it highly efficient in real-time applications. 2.
Efficient Performance: EVPA excels in abstraction quality, providing significant performances in
convergence speed and eventual exploitability. When combined with subgame solving techniques,
EVPA’s abstraction method has more significant advantages over other offline abstraction methods.

20

	Introduction
	Related Work
	Background and Notation
	EVPA Algorithm
	Expected Value Estimation of Information Sets
	Expected Value-based Pruning
	Information Abstraction for Subgames

	Experiments
	Heads-Up No-Limit Texas Hold'em Rules
	Breakthroughs in HUNL AIs
	Counterfactual Regret Minimization
	DeepStack's Implementation
	Conclusion
	Future Directions for Research and Application
	Pruning with CFR
	Abstraction for Solving Large IIEFGs

