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ABSTRACT
“Attention is all you need” has become a fundamental precept in
machine learning research. Originally designed for machine trans-
lation, transformers and the attention mechanisms that underpin
them now find success across many problem domains. With the ap-
parent domain-agnostic success of transformers, many researchers
are excited that similar model architectures can be successfully de-
ployed across diverse applications in vision, language and beyond.
We consider the benefits and risks of these waves of unification on
both epistemic and ethical fronts. On the epistemic side, we argue
that many of the arguments in favor of unification in the natural
sciences fail to transfer over to the machine learning case, or trans-
fer over only under assumptions that might not hold. Unification
also introduces epistemic risks related to portability, path depen-
dency, methodological diversity, and increased black-boxing. On
the ethical side, we discuss risks emerging from epistemic concerns,
further marginalizing underrepresented perspectives, the central-
ization of power, and having fewer models across more domains of
application.
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1 INTRODUCTION
In recent years, machine learning (ML) systems based on transform-
ers have achieved new heights across multiple domains. Originally
designed for translating languages [112], they have since proved
∗Both authors contributed equally to this research.
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effective in other Natural Language Processing (NLP) tasks and
in many other domains, from mainstays of ML research like com-
puter vision (CV) [27] to newer arenas like autonomous driving
[92] and protein folding [94]. Transformers do not just work, they
dominate the leaderboards that measure progress1 in ML: they are
the top models for most NLP tasks [83, 85, 87], but also in many
tasks outside NLP. Transformers are the top 5 models for the largest
image classification benchmark (Top 1 ImageNet accuracy) [82],
hold the top positions in image segmentation and object detection
[84, 86], and top the charts in speech recognition [88]. Those suc-
cesses cover the most active and well researched problems in ML,
at least according to the number of benchmark submissions.

The empirical success of transformers beyond NLP has excited
many researchers who have lauded the “unification” of different
domains and tasks in ML. Where understanding NLP papers used
to require specialized training in computational linguistics, CV
researchers now feel that they can easily read papers across the sub-
disciplinary divide, and vice versa, because of the shared underlying
architecture of transformers [10, 21]. Due to the newness of this
phenomenon, statements about it tend to be made in less formal
settings, industry blog posts/press releases [24, 69, 96] and the
popular press [81]. But we feel it is fair to claim there is a sense in
the community that 1) transformers offer a unified approach to ML
problems and 2) unification is beneficial for ML.

The rise of transformers is related to “foundation models” as
described in a Stanford workshop report [11]. That paper defines
a foundation model as “any model that is trained on broad data at
scale and can be adapted (e.g., fine-tuned) to a wide range of down-
stream tasks.” Most “foundation models” identified in that paper are
built using transformer architectures, but the two are conceptually
distinct. A variational autoencoder could be a foundation model
while not being a transformer; conversely AlphaFold, a transformer
that predicts protein structure, is trained for a particular prediction
problem rather than a general objective appropriate for fine-tuning
for downstream tasks.

These differences aside, Bommasani et al. identify what we call
“unification” (“homogenization” in their terms) as a key feature of
the history of ML as a field [11]. They pick out two discrete waves
of unification. First, the rise of deep learning around 2015, pushing
non-neural methods to the periphery of ML research (at least in CV
and NLP) and eliminating the need to customize feature pipelines
for each problem domain. This was carried out under the auspices
of end-to-end learning which could learn good models from “raw”2
feature inputs. The more recent development and promulgation of

1It is worth saying this “progress” is often fairly narrow; see [93] for a discussion of
benchmarks/leaderboards and their limitations.
2Although “raw data” is itself an oxymoron; see [39].
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transformers across ML forms a second wave of unification, further
accelerating these trends. Just as deep learning marginalized other
general purpose ML methods (like boosting or kernel methods),
transformers have further narrowed the scope of deployed ML
methods to a specific neural architecture. The success of end-to-
end learning went some way toward obviating the need for domain
expertise in developing ML models. Transformers continue in this
direction, unifying architectures across CV and NLP, fields that
had formerly been dominated by convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) respectively. In both
developments we can see two related phenomena: the unification of
general purpose ML methods and the convergence of the expertise
required to deploy these methods.

In this paper, we take a critical eye to the excitement that ML re-
searchers have expressed about unification being “the” way for ML
to progress, highlighting the benefits and risks on both epistemic
and ethical fronts. Our remit is less broad than what is covered in
[11]. We focus on the unification aspect of this new methodology,
leaving aside issues that are specifically due to models being large
or trained on large amounts of data.3

While transformers are our motivating example for investigating
unification, it is possible, or even likely, that transformers will
not be the single method that unifies AI research; that may be
something new that comes later. Even so, we believe that many of
the arguments in this paper will apply to any unified approach that
emerges out of a system like the current ML environment.4

We start by considering the connection between unification
and “artificial general intelligence” (Section 2). These connections
underpin some of the motivations underlying researchers’ pursuit
of unification. Then, we discuss the possible epistemic benefits
(Section 3), epistemic risks (Section 4), ethical benefits (Section 5.1),
and ethical risks (Section 5.2) of unification.

2 UNIFICATION AND THE PURSUIT OF
“ARTIFICIAL GENERAL INTELLIGENCE”

Unification is related to artificial general intelligence (AGI)5 in two
ways. The first is a more general pragmatic connection between
unification and AGI, while the second is more ontological and
particular to the current neural network paradigm in ML.

It has long been a staple idea of ML research that methods which
are promising for AGI should be able to be successfully deployed in
a variety of applications. Early work on AI was explicitly predicated
on the idea that deploying a “general purpose” learning method
on multiple tasks was evidence that the method could be extended
to fully realize AGI [65, 89, 99]. Although it is rarely as explicit in
modern ML research, this lineage still animates a pragmatist vein of
AGI optimism: if a particular general purpose learning framework
is working well across all the narrow tasks the field can throw at it,
then perhaps that framework is the one that will finally lead to the
white whale [72, 93].
3While most of the models that fall under our discussion are trained this way, we think
that our points will apply even if they are trained on smaller datasets. See [7] and [11]
for analyses of the risks of training on big data in particular.
4In fact, we believe many of the epistemic concerns we identify apply equally well
to unification in any methodological field. We do not discuss these wider issues, but
an interested reader can see [18] for an account of the epistemic risks entailed in the
social sciences’ unification behind the causal inference paradigm.
5Also known as strong AI or human-level machine intelligence.

A different perspective common in the field today is that, to
quote a popular deep learning textbook, “the brain provides a proof
by example that intelligent behavior is possible, and a conceptually
straightforward path to building intelligence is to reverse engineer
the computational principles behind the brain and duplicate its
functionality” [40]. As early as 2014 (before many of the most
impressive deep learning advances) a survey found that almost half
of ML experts believed that the route to AGI would be via cognitive
science, and a further 39% believed it would be specifically achieved
by artificial neural networks [73]. This view (implicitly) posits an
ontological basis for intelligence, supporting the belief that the way
to achieve artificial intelligence is to simulate that basis in relevant
ways.6

This connection between unification and AGI is adjacent to the
epistemic/ethical concerns we discuss below, which center around
the benefits and risks of unification regardless of whether it leads
to AGI. We completely bracket the ethical benefits or risks of AGI,
both due to the uncertainty about whether current approaches
will bring about AGI [57, 105] and in the interest of deferring to
the large literature on the subject [12, 13, 29]. However, AGI is
related to our discussion of the epistemic benefits of unification. On
certain philosophical views, a shared ontology of learning systems
(which underlies the connection between neural networks and AGI)
presents real epistemic benefits. In Section 3.1 we discuss whether
the ontological motivation for pursuing AGI applies to today’s
transformer-driven trends of unification.

Unlike the ontological case, the pragmatic case for the connection
between unification and AGI is essentially empiricist if we set aside
questions about whether it will actually bring about AGI: it simply
states that ML practitioners should pursue what works empirically.
We address the epistemology of this in Section 4.2 and 4.3. In doing
so, we question how “pragmatic” this methodology actually is.

3 EPISTEMIC BENEFITS OF UNIFICATION
Unification is often considered a virtue in science. Unification is a
methodological driving force in physics, as demonstrated by the
importance of the Standard Model in particle physics, or by the
widespread influence of a few "fundamental laws" in diverse areas
of physics.7 Similarly in biology, Darwinism and later the Modern
Synthesis were heralded partly because they provided unified ac-
counts of diverse biological phenomena [54, 91, 106]. Philosophers
of science have provided several reasons for why unification might
indeed be a virtue [20].

In light of this, perhaps it’s natural for AI practitioners to seek
unified approaches to AI. But when we consider the trends towards
unification in ML that were identified in Section 1, it becomes less
clear that unification in these senses is an epistemically desirable
move. In what follows, we’ll look at some general arguments for
the desirability of unification in the sciences, and consider whether
they transfer well to unification in ML.

6The metaphor of brain as computer may itself have ethical implications as well [6],
but we do not examine these here.
7We realize that there is disagreement over how unified physics actually is; see [19]
for a countervailing perspective. Our aim here is not to resolve this debate but to
investigate the extent to which arguments for unification in science can apply to
unification in AI.
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A note before we proceed: we rely on many accounts of unifica-
tion in science that are disputed by some philosophers. Resolving
these disputes is beyond the scope of this paper. Our intent here
is merely to pick out the few most prominent reasons for why we
might want unification in science, and see if they apply to the types
of unification in AI we consider. Of course, if these accounts of
unification are fundamentally flawed, then that could shed doubt
on whether they apply to unification in AI. Here we set aside the
possibility of these fundamental flaws and merely consider if these
accounts of unification can be transferred to the AI case, given the
differences between AI and the natural sciences.

3.1 Ontological unification
Unification is often seen as desirable in science because in many
cases, we think that the disparate phenomena we want to unify
share an ontological basis. Given this basis, it may be reasonable to
expect a shared model describing how that basis generates these
phenomena. One representative definition of ontological unification
is as follows: “Ontological unification is a matter of redescribing
apparently independent and diverse phenomena as manifestations
(outcomes, phases, forms, aspects) of one and the same small num-
ber of entities, powers, and processes” [63]. For example, our knowl-
edge that all matter is composed of the same finite set of elementary
particles governed by four fundamental forces leads us to expect
fruitful consequences from redescribing various phenomena in
terms of these particles and forces.

Could ontological unification be a reason to pursue unification
in ML? One reason it could be is if the deep learning architectures
we discuss have a shared ontological basis with the human mind.
In that case, we could redescribe both human minds and these ML
systems as manifestations of the same underlying structures of real
or simulated neurons. In other words, unifying ML systems could
be a good epistemic move if we expect that the unified architectures
represent the structure of the brain and if one of our goals is to
create human-like artificial intelligence or AGI. To understand the
appeal of ontological unification in ML, we’ll next interrogate the
extent to which current “state-of-the-art” artificial neural networks
(ANNs) resemble the human brain.

The ANNs used in deep learning were initially developed in
analogy to biological brains. ML researchers have claimed that they
are similar to brains [40, 64]. Many who write about the promise
of deep learning do indeed lean on this idea that ever bigger and
more sophisticated deep learning systems are the “right” systems
to study in pursuit of AGI [73]. Whether they are actually similar
to brains and, more importantly, whether improvements in ANNs
are driven by pushing ANNs to better approximate the functioning
of brains, is a central point in the ontological case for unification.

In 1998 O’Reilly laid out six bare-minimum principles for a net-
work to be considered biologically inspired [80]. These were 1)
biological plausibility, 2) distributed representations, 3) inhibitory
competition (there should be mechanisms limiting the number of
neurons that can fire at once), 4) bidirectional activation propa-
gation, 5) error-driven learning, 6) Hebbian learning (learning is
the product of local, not global, information). At the time, ANNs
satisfied only two of these (distributed representations and error-
driven learning). Today ANNs have not moved much further in

the direction of plausibility. They still lack inhibitory competition,
they are feed-forward (not bidirectional) for the most part , and
they (almost by definition) use global learning algorithms driven
by globally defined loss functions. Perhaps more to the point, they
are fundamentally not motivated by biological plausibility. Our
intention here is to elaborate on this last point by examining some
of the history of the microstructure [65] of ANNs to understand
at various moments whether development turned on biological or
pragmatic concerns. We will argue that the clear orientation toward
“what works” and the differences between artificial and biological
networks (both those outlined above and additional ones noted
below) render the leap from “human brains are AGI” to “ANNs can
be AGI” yet unwarranted. To be clear: it is possible that ANNs can
be brought closer and closer in line with biology, and even possible
that this will bring us closer and closer to AGI. We only intend to
point out that such an outcome is not a certainty, nor is it even
particularly strongly supported by current evidence.

The ANNs we know today are the descendants of the original
perceptron algorithm [99], which was based on a simplified mathe-
matical model of a single neuron [66, 103]. These earliest models
used hard connectivity restrictions to maintain biological plausi-
bility. Each neuron could only be connected to so many inputs,
mimicking the physical constraints on biological neurons. The lim-
itations of this model were at the heart of Minsky and Papert’s
original impossibility result, which proved that a perceptron could
not compute various quantities without being fully connected to all
inputs, that is, without being non-local (alternatively, the percep-
tron could be multi-layered, but this was dismissed as computation-
ally intractable) [71, 79]. Although the issues with multi-layered
networks were eventually resolved, ANNs today are almost always
fully connected in precisely the way that Minsky and Papert argued
they would need to be, defying biological plausibility.

In the 1980s two solutions emerged for training multi-layered
perceptrons: first the Boltzmann machine learning algorithm [2]
and second the backpropagation approach [101]. The Boltzmann
approach had the benefit of being biologically plausible, the up-
date step depending only on inputs and outputs of single neurons,
which is in line with the Hebbian plasticity found in the neural
cortex [103]. The backpropagation approach, on the other hand, is
inconsistent with biological brains because it is a global update step.
But backpropagation allowed for much more efficient training and
was widely adopted, despite its deviance from biological plausibil-
ity. The “non-locality” of ANNs was mentioned above, but it bears
repeating because it is probably the most central deviation from
biological plausibility; central in the sense that it is so fundamen-
tally structured into how practitioners work with deep networks.
Backpropagation is the defining method that unites the vast array
of methods now living under the “neural” umbrella: modern deep
learning libraries are effectively auto-differentiation engines built
to facilitate backpropagation [1, 15, 90].

Furthermore, while the original perceptron models certainly
worked as analogues for biological neurons, they were greatly sim-
plified. These simplifications are exemplified by two features of
biological neural networks strikingly absent from their artificial
counterparts: spiking behavior and dendritic non-linearities. In bio-
logical neural networks neuron activations are event-driven: the
neuron is activated by spikes in its inputs, responding only when
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inputs change. On a practical level, spiking neurons are much more
energy-efficient than contemporary ANNs, but this difference also
means that the kind of computation that artificial and biological
neural nets perform are fundamentally different [100]. Although
spiking behavior has been known about and proposed as an alter-
native to standard neural nets since the 1990s, it has never really
gained significant purchase in the ML community, in large part be-
cause it would be difficult to facilitate with standard computational
hardware [100].

Artificial and biological neurons also differ in their dendritic
non-linearities. In deep neural nets a neuron takes a linear com-
bination of its inputs and then applies the non-linearity, that is
f
(∑

i w
(i)x

(i)
in

)
, but in biological neurons dendrites impose non-

linearities on the inputs before summation, that is f
(∑

i w
(i)д(i)

(
x
(i)
in

))
[51]. This change would be very straightforward to implement in
modern ANNs, in many cases requiring changes to only a single
line of code. But it has not seen widespread adoption because bio-
logical plausibility is not the main force animating deep learning
research.

In contrast to perceptrons, the recent move to transformers had
no biological inspiration at all.8. Rather, they developed out of a
series of insights to improve language translation, the development
of the attention mechanism to improve RNNs, and the subsequent
realization that “attention is all you need” [112]. Transformers now
regularly outperform the biologically-inspired CNNs on precisely
the kind of CV tasks that CNN-like cells perform in the visual cortex
[22]. This may be an artefact of path dependency in research (see
Sec. 4.2), but if that were true it would only further validate our
point in this section: ML researchers are not primarily interested
in biological plausibility. If they are so not-motivated by biological
plausibility that they abandon biologically inspired architectures
capable of performing equally well without real cause, that may
be symptomatic of problems in the field, but it certainly does not
detract from the argument here.

We do not intend this to be an exhaustive outline of differences
between artificial and biological neural networks. Rather we have
argued two things we think most ANN researchers would agree
with. Firstly, we showed how ANN research is driven primarily
by methodological pragmatism rather than biological plausibility.
Secondly, we outlined how this pragmatism has pushed ANNs used
in practice away from biology, rather than towards it, over time.
Pragmatic reasons drove fully connected architectures, led to the
adoption of backpropagation over Hebbian update rules, underlie
the failure of spiking neurons to ever receive significant uptake,
and are why transformers swept the research landscape despite a
lack of any biological basis. We have not even touched on more fun-
damental9 differences between deep learning and cognition, such
as the non-causal, non-experimental and non-compositional nature
of the most successful ML models [57],10 the lack of ambiguity in
AI [8], or that intelligence is not all in the brain [72].
8Although CNNs, which previously dominated CV research, did stem from study of
complex cells in the visual cortex [33, 97]
9In the sense that architectural tweaks alone cannot fix them.
10Reinforcement learning (RL) models can bridge this gap to some extent, but the RL
models that achieve human-level performance invariably require architectures that
are highly biologically implausible. For example, AlphaGo [102] uses an explicit tree
search to plan, which is decidedly non-biological.

To be clear, these limitations do not mean ANNs cannot be useful
for investigating biological brains. Neuroscience has found some
use in ANNs as a model [97, 115]. But using ANNs in that way
requires careful construction and comparison to ensure meaningful
inferences can be drawn precisely because of these (and other) dis-
analogies baked into the technology. Failure to account for this can
lead to misleading conclusions and faulty science [14]. On the other
hand, nothing we have said means that ANNs cannot be brought
further in line with biology to fruitful ends. Post-hoc biological
analogies can point to promising avenues for taking the pragmati-
cally successful aspects of modern ANNs and “biologizing” them,11
and if that process (or more generally, the process of bringing ANNs
more in line with their biological counterparts) led to more per-
formant models, it could form the foundation of an argument for
a shared ontology. But that work has not yet been done, and so
cannot (yet) be used to demonstrate a shared ontological basis for
biological and artificial neural networks. As it stands, structural
differences sufficiently distinguish biological and artificial neural
networks to make simplistic analogies (“ANNs are simulations of
biological brains”) inadequate as grounds for a shared ontological
basis.

In short, we do not think the current trajectory of unifying ML
through transformers is well-motivated by a methodological prin-
ciple of ontological unification, because the current top candidates
for unification are too different from human brains and show no
sign of coming closer to them.

3.2 Explanatory unification
Having addressed the ontological argument for unification, we now
turn to more pragmatic reasons for unification.

One reason to pursue unification in science is that unification
is itself explanatory, and explanation is one of the goals of science.
Friedman uses the example of the kinetic theory of gases as having
“reduced a multiplicity of unexplained, independent phenomena to
one” [32]. Where before we had separate empirical laws like the
Boyle-Charles Law and Graham’s Law, we can now use the kinetic
theory of gases to understand why those laws andmany others hold.
This reduces “the total number of independent phenomena that we
have to accept as ultimate or given.”12 Similarly, onemight hope that
instead of accepting as a brute fact that many model architectures
work similarly well, having one or two model architectures that
perform better than others would improve our understanding of
AI.

We think that this reason to pursue unification does not apply
to the types of unification we’re addressing in this paper (at least
right now). In particular, as we outline below, researchers struggle
to explain how or why ANNs work in the settings where they are
successfully deployed today. Thus explainability is not currently
an epistemic benefit to the unification behind transformers (or
ANNs before them), because although these models may become
explainable, that is by no means guaranteed. To make this clear, it

11See [16], which constructs such an analogy for transformers.
12Examples of explanatory unification may overlap with ontological unification, be-
cause a shared ontology is often thought to be explanatory. We separate ontological
and explanatory unification here because we are leaving open the possibility that are
types of explanatory unification that aren’t identical to ontological unification.
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is worth delineating the possible phenomena that this unification
might explain.

3.2.1 Possible explananda 1: commonalities between AI systems
and human intelligence. One group of candidate explananda is the
alleged similarities betweenAI and human intelligence. The thought
is that if the human brain has a similar structure to some ANN that’s
successful across a broad range of tasks and domains in AI, that
could be explained by the hypothesis that the structure of that
neural network is the key to AGI.

Whether these are valid explananda for the AI architectures
in question depends on the issues we discuss in Section 3.1. As
we argue there, we do not think that current neuroscientific evi-
dence supports the hypothesis that the current crop of allegedly
general-purpose neural network architectures resemble the brain’s
architecture.

It’s possible that one day we will have a unifying AI architec-
ture that better resembles what we know of the brain’s structure.
If models with that architecture prove to resemble human intel-
ligence in their performance, then that architecture may explain
why humans and those AI systems are similarly intelligent. But
as things currently stand, the architectures being pursued in the
name of unification will not be able to explain these hypothetical
explananda.

3.2.2 Possible explananda 2: inductive biases. The structures of
ANNs encode particular inductive biases that allow them to perform
well across different tasks. This points to a second possible type of
explanatory unification: a unified explanation for these inductive
biases. In theML literature, “inductive biases” refers to “preferences”
for the kinds of functions a model represents [41]. For example,
ridge regression has an inductive bias for the coefficients to be
closer to zero, and the strength of this bias can be tuned by a
regularization parameter λ. The No Free Lunch theorem in ML
[114] essentially states that all ML algorithms will encode some
such set of inductive biases, and that these preferences over the
function space are necessary for ML models to generalize to new
data. Neural networks clearly encode some kind of inductive biases,
and these biases are almost by definition central to their ability
to generalize to new data. If the full array of inductive biases of
ANNs could be outlined, it would go a long way toward explaining
how and why AI models work. Unified models could help provide a
common basis for these shared inductive biases. This area has been
of central importance to the literature on the theory of deep learning
for a number of years [77], but deep learning is a fundamentally
empiricist field and the theory tends to lag far behind practice. As
it stands today, deep learning theory cannot outline the inductive
biases of simple multi-layer perceptron neural networks trained
with stochastic gradient descent, much less give an account of
the sophisticated architectures achieving state of the art results.
Ongoing work on this project is promising as a way forward for the
field [41]. If an account of the inductive biases induced by different
architectural choices could be constructed, that would go a long
way toward arguing for a unified ANN architecture on the basis of
explanatory unification.

3.2.3 Possible explananda 3: successful performance by one sys-
tem across different tasks and modalities. Another possible class of

Figure 1: Unified models may fall on a spectrum from hav-
ing a few mechanisms that generalize to many modalities
and tasks (left hand side), or to the other extreme of having
separate mechanisms for each task they can perform (right
hand side). Figure by Bommasani et al. [11], licensed under
CC BY 4.0.

explananda that unified models may explain is the mechanisms un-
derlying successful prediction across different tasks and modalities.
We suspect that this is part of why the expanded success of trans-
formers across modalities is so exciting to many researchers: they
hope that multi-modal, multi-task models are sharing information
across different modalities and tasks. Similarly, there is a hope of
shared mechanisms: if what we think transformers are doing with
sequential information in language is also what they’re doing with
image patches engineered to be sequential, then we can understand
predictive success in multiple domains using a similar mechanism.

It is as yet unclear if current trends towards unification will
bring about this type of unification-through-shared-mechanisms.
As Bommasani et al. point out, unified models fall on a spectrum
between one model with shared mechanisms for many tasks, or
many models that just happen to be “glued” together into one large
model (Figure 1):

As one model, behavior can be made interpretable by
identifying and characterising the finite number of
generalizable model mechanisms that the model uses
to produce behaviors across tasks (e.g., mechanisms
that assign meaning to words, compare quantities,
and perform arithmetic). As many models, explana-
tions of model behavior in one task are not necessarily
informative about behavior in other tasks; thus requir-
ing [sic] to study behavior independently in each task
[11].

Given this, if unified models are more like the “one model” end
of the spectrum, then they would be better at explaining the ex-
plananda described here. If they are more like the “many models”
end of the spectrum, then these explananda would not find a uni-
fied explanation within the model. Given the newness of these
unified models and the difficulties we have in understanding how
they make decisions [111], it is unclear at present where on the
spectrum they lie.

https://creativecommons.org/licenses/by/4.0/
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3.2.4 Review of explanatory unification arguments. In short, the
prospects for explanatory unification through the type of archi-
tectural unification we discuss in this paper are mixed. For now,
it is unclear if unification would be explanatory of intelligence as
a phenomenon, of shared inductive biases, or of success across
multiple tasks and domains. As the field develops and we get better
insight into the inner mechanisms of the unified models, we will
hopefully get a clearer picture of how far explanatory unification
can be a reason to prefer a unified model landscape.

3.3 Unification as parsimony
In addition to unification being itself explanatory, philosophers
of science have also put forward unification as a methodological
principle that helps us achieve the epistemic value of simplicity
or parsimony. The thought is that “simpler hypotheses, models or
theories present a higher likelihood of truth, empirical support and
accurate prediction [20].” This thought can be cashed out in different
statistical frameworks [75, 107], but we will make some general
points that do not assume any particular statistical framework.
In this view of unification-as-parsimony, having unified models
explaining diverse domains of phenomena is simpler than having
many different models for each domain.

How does ML unification fare under this argument? The verdict
is mixed here. On the one hand, unification does lead to fewer
models covering the same phenomena, and this could be viewed
as a simplification. On the other hand, this unification is typically
achieved by using more complex models than the counterfactual
domain-specific models. The more domains a model has to cover,
the more complex it typically is. The complexity consists not just in
its internal mechanisms, but in the shape of the predictive function.
It’s unclear how the unification-as-parsimony arguments would
assess this trade-off, as the canonical examples of unification they
discuss in science don’t have this trade-off. This issue is also related
to the one-model-many-models spectrum discussed in Section 3.2.3.
To the extent that unified models are near the end of the many-
models spectrum, they are likely to be less parsimonious.

A more fundamental problem with the unification-as-parsimony
argument is that it’s unclear how ML models of the type we’re
discussing relate to goals like “truth” and “empirical support”. These
models are selected on the basis of accurate prediction on a held-out
test set, so by definition they already satisfy the goal of accurate
prediction on past data. The emphasis on their utility as a tool for
prediction makes it hard to understand what their relationship to
“truth”, for example, is. In contrast, models in the natural sciences
are often aimed at revealing some true underlying mechanism of
nature. It is relatively intelligible to say of Darwinism, for example,
that it is true, or that it depicts the truth about some phenomena, but
it’s unclear what it would mean to say that a transformer-based ML
model depicts the truth.13 Given differences like this between ML
and the natural sciences, the unification-as-parsimony argument
may need to be modified before it can be intelligibly applied to ML.

13We are not endorsing the controversial thesis of scientific realism in this claim–we
ourselves take no position on whether scientific theories can be said to be true. We
make this point to address audiences who see truth as one of the aims of scientific
model-building, since one of the arguments for unification-as-parsimony appeals to
the allegedly greater likelihood of simpler models being true.

3.4 Unity of tools
While we have been somewhat skeptical of various arguments for
unification presented above, we do not want to deny the real epis-
temic advantages that unification can offer, which ML researchers
have gestured to in their commentary on the phenomenon. Re-
searchers are excited that they can now more easily read ML papers
in other domains and transfer techniques useful in one domain to
another domain [10, 21, 52]. These are not trivial benefits. When
we consider transformers as shared tools that are easily imported
between contexts, they can be thought of as “trading zones” or
“boundary objects” as defined by historians and sociologists of sci-
ence [34, 108]. Both material and abstract objects can provide this
kind of tool-based unity. In the “trading zones” and “boundary
objects” framings of shared tools, a key idea is that shared tools
provide a common ground for communication between collabora-
tors, drawing on each collaborator’s local understanding without
necessitating global agreement. Insofar as we see the facilitation of
such collaborations as an epistemic good, we can view transformers
as providing epistemic benefits.

4 EPISTEMIC RISKS
Having previously considered the possible benefits of having uni-
fied approaches to model-building across multiple tasks and do-
mains, we now consider some possible epistemic risks introduced
by greater model unification.

4.1 Turbocharging the tendency to ignore
domain experts

One epistemic disadvantage from having fewer, more unified mod-
els is the increased risk of falling into what Selbst et al. call the
“Portability Trap”: “Failure to understand how re-purposing algo-
rithmic solutions designed for one social context may be misleading,
inaccurate, or otherwise do harm when applied to a different con-
text” [104].

This trap has led to some high-profile ML failures [26, 53, 78].
As Selbst et al. point out, the Portability Trap arises from the mod-
ularity taught as good computer programming practice: creating
programs in a modular way so that modules can be easily applied
to instances outside the originally intended domain.

Another way to characterize the trap is that it’s generally a
good idea to design a model with the help of domain experts, who
can tell you what data to use, how to encode the data as features,
how to detect when outputs are not what they should be, and so
on. With the advent of unified models, the temptation to ignore
domain experts, for cost reasons or otherwise, increases. After all,
the model is supposed to work in multiple domains, modalities, and
tasks, seemingly obviating the need to customize it to particular
contexts.

Ignoring domain experts can also lead to a particular type of
ethical risk in which the viewpoints and knowledge marginalized
groups are unjustifiably ignored. We discuss this particular ethical
risk in Section 5.2.2.

4.2 Path dependency
Enormous amounts of time have been invested into software infras-
tructure like Tensorflow and Pytorch. Researchers have carefully
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refined skills and intuitions about ANNs and how to get them to
work well. The volume of published findings about ANNs and the
excitement around the area dwarfs that of any other subject in ML.
All of this means that investigating other existing paradigms is
structurally disincentivized: the lack of infrastructure means devel-
oping new models is more costly, the lack of intuition leads to a
lack of ideas and frustrations in implementation, and the lack of
excitement and new results means investments are unlikely to be
rewarded. Put another way, the “switching cost” is extremely high.

Additionally, the particular path ML has gone down is in many
senses arbitrary: it is the product of hardware lotteries and the ever
increasing availability of compute [49] combined with norms that
push for state of the art results on metrics that are riddled with prob-
lems [93]. It would be one thing if these concerns were speculative,
but there is evidence as well as a sense within the ML community
that these are real problems. Within ANN research, there are clear
cases of path dependency where technologies that work are aban-
doned or pursued for arbitrary reasons. One such case discussed
by historians is that of over-specialization in chess-playing [28].
Another example is where the combination of incentives to pub-
lish novel methods, expanding computational power, and a lack of
incentives to fine-tune baselines leads to older, simpler methods
being outcompeted by newer methods trained and fine tuned with
larger compute budgets. This is clearly what happened in metric
learning, where over a decade very little progress was made after
accounting for increased compute [74]. In a different but related
vein, transformers have found huge success in CV, but some of this
is due to engineering innovations in deep architecture design that
can be implemented in many kinds of ANNs; importing some of
these architectural innovations into convolutional ResNets leads
them to be competitive with transformers on large image datasets
[61].

These two facts—the high switching cost and the arbitrariness
of the current trajectory of research—mean that the ML commu-
nity, like almost all social communities [60, 62], is extremely path
dependent.

In social contexts, path dependency often leads to sub-optimal
social outcomes [62], which are of immediate ethical concern. In
ML, path dependence is an epistemic concern if the community fails
to fully explore alternative ways of developing machine learners.
It may be useful to think about path dependence in the context
of the explore/exploit trade off [5, 25], which philosophers of sci-
ence have found useful in thinking through epistemic communities
[42, 109]. Path dependence compounds the dilemma posed by the
explore/exploit trade off by lowering the cost of exploiting each
time the decision is made to exploit. Developing a Bayesian method
to compete with ANNs on image classification (for example) is risky
in the classic explore/exploit sense in that it might not work, but
the dice are loaded: the comparative lack of infrastructure, intuition,
and community make it extremely difficult to develop a model of
comparable sophistication in a non-deep learning paradigm. In the
end, the only way to know whether alternative approaches to ML
would be more effective would be to invest similar amounts of time
and energy into those alternatives. We take this to be a central
epistemic risk of any methodologically homogeneous community.

4.3 Methodological Diversity in the sciences
ML research is at least partly preoccupied with producing methods
that can be applied to generate knowledge in other fields, from
physics and biology to economics and history. The importance of
these “epistemic spillovers” to the epistemic value of ML research
creates another key risk in the unification of ML. In scientific enter-
prises, deriving the same answer from multiple different method-
ologies is an important tool for confirming hypotheses. This is
known as triangulation, and it leads to more robust scientific con-
clusions [46]. Importantly, this result holds even if one is unsure
which methods can be trusted. Such a powerful approach can un-
doubtedly be very helpful in the difficult non-parametric settings
where ML is often required. When ML becomes more unified, that
crowds out alternative methods (see Sec. 4.2) which undermines
the possibility of triangulation. If there are not enough methods
that work sufficiently well to ask the relevant questions, then the
answers cannot be triangulated to give the added confidence in the
conclusions.

Another argument for methodological plurality comes from re-
search on cognitive diversity [48]. This line of research argues that
a group of diverse problem solvers are (under a particular set of
assumptions) more effective than a group of individually effective
problem solvers. These arguments can be extended to epistemic
communities [116], although some caution is required. In particular,
Grim et al. note that the results proved in [48] show that under cer-
tain circumstances, a group of diverse problem solvers (models) can
outperform a homogeneous group of individually effective problem
solvers [43]. They also demonstrate that true “experts” (as opposed
to just more-effective problem solvers) can be substantially better
than a diverse group of non-experts. We agree that expert input in
the form of domain knowledge is often crucial, especially in science.
But that argument cuts against the premise of general purpose ML
tools, which tend to push domain experts out of the process (see
Sec. 4.1).

The diversity results in [48] apply equally to ML methods: a di-
verse ensemble of models can more effectively solve problems than
an ensemble of individually highly effective models. This fact has
also been noted independently within ML where diversity of base
classifiers empirically improves boosting [70] and diverse deep en-
sembles empirically improve performance and uncertainty quantifi-
cation [59]. The diversity version of the argument for methodolog-
ical pluralism more directly responds to the pragmatic argument
for ML unification (“do what performs well on benchmarks”): first,
if we consider ensembles, diverse base models empirically perform
well relative to homogenous base models; second, with respect to
the field’s epistemic spillovers, a diverse array of minimally viable
methods is likely epistemically preferable to a single best method.

Combining the benefits of diversity with the confirmatory basis
afforded by triangulation, there is a strong epistemic case against
unification in ML. Both of these arguments rely on the existence
of alternatives, but these alternatives must meet a bare threshold
of viability. By viability we mean that alternatives must be flexible
enough to accommodate the kinds of research questions practi-
tioners will seek to answer, computationally efficient enough to
return answers in a reasonable time frame, and refined enough
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for those answers to be meaningful (at minimum providing better-
than-random predictions). Considering the problems raised by path
dependency in ML, it is clear how the issues discussed in Section
4.2 compound these concerns about depriving non-ML researchers
of methodological pluralism.

4.4 Increased black-boxing
The drive to unification will, at least at first, have a tendency to
increase the opaque nature of the resulting models. Referring back
to the one model-many models concept introduced in Section 3.2.3,
unification often occurs by making an existing black-box ANN
more complicated. The following moves made in the service of
unification perpetuate this black-boxing tendency:

(1) Eliminating feature engineering makes the model less under-
standable to humans, because feature engineering is often a
stage where human-understandable features are created out
of data that is less human-understandable.

(2) Many of the more unified multi-modal, multi-domain models
come about by combining model architecture ideas inspired
by different modalities. How the resulting model generates
outputs becomes even more opaque than in the original
unimodal models that inspired it, because information from
different modalities is combined in ways that we don’t fully
understand.

Against this, it must be noted that advances in model explainabil-
ity might ameliorate some of these concerns. But it is by no means
guaranteed that such advances will occur or would improve explain-
ability enough to compensate for the model’s increased complexity.
Explainability for ANNs remains a contested issue. Criticisms of
well-known explanation methods abound, and the criteria for what
counts as a successful explanation are still being debated [36–38].

Increased black-boxing also has ethical consequences distinct
from the potentially higher risk of model failure. In many contexts,
model explainability may be considered to be an ethical obligation,
particularly when making high-stakes decisions. This is the intu-
ition behind explainability requirements in laws like the GDPR [31].
Increased black-boxing in these contexts, then, would be not just an
epistemic risk, but an ethical risk, as finding accurate explanations
for ANNs is much more difficult than for, say, generalized additive
models.

5 ETHICAL RISKS AND BENEFITS OF
UNIFICATION

5.1 Ethical Benefits
While subsequent sections will cover the many ethical risks that
further architectural unification in ML presents, it’s worth consid-
ering some possible ethical benefits that might result, given the
appropriate socio-economic conditions.

One benefit that has arguably resulted from the prevalence of
widely used open source software (OSS) in all kinds of software
applications is that many people gain access to the features of a
shared software library. This claim is contestable, since one might
argue that society would be better off without any of the software
that rely on widely-used open source packages, or that one could

have developed similarly good software without those open source
packages.

We do want to indicate the possibility, though, that ANNs with
unified architectures could be managed as OSS, open to anyone to
use and contribute to. Hugging Face is an example of a company that
claims to “democratize good machine learning” (emphasis theirs)
by making ANN models open source [30]. In some conceptions
of how society can and should work, this could lead to net social
benefits. However, the details around how to manage such unified
AI systems to avoid unintended negative consequences are still
under-specified. For that reason, we list this as a possible benefit
from unification, not an actual one.

Similarly, in analogy with OSS, if AI models were open sourced
they could be assessed for vulnerabilities or audited for discrimina-
tory biases. This is the “many eyeballs” model of security, and it has
certain additional advantages when considering ML systems [4, 35].
The benefit comes with an attendant risk: if a vulnerability does
escape the notice of many eyes, then the fact that one centralized
package is used by many different people can become a security
issue of staggering scale. The log4j vulnerability [68] is a recent
example, but within cybersecurity this tradeoff has been debated
for decades [47].

In short, we think having fewer, more unified models could have
some ethical benefits with the appropriate social and institutional
structures, but it’s unclear if these benefits would accrue in the
actual world.

5.2 Ethical Risks
The risks of large models have recently been discussed extensively
[7, 11]. Some of the points we make here will overlap with those
discussions, because the model types we’re considering overlap
with the model types discussed in those papers. However, we focus
particularly on the risks emanating from the unification of models.

5.2.1 Ethical Implications of Epistemic Risks. ML systems are de-
ployed in the real world and make decisions that affect the lives
of billions of people every day, from whose social media posts get
algorithmically boosted to which results appear on the first page
of search engine to the automatic annotation of personal photos.
This means that many of the epistemic risks we outline in Section 4
have immediate ethical implications. On a basic level, the tendency
to ignore domain experts (Section 4.1) and the issues around path
dependency (Section 4.2) may make ML systems less effective tools,
which for systems that are so widely used has immediate social
welfare implications.14 And as we discussed in Section 4.4, the trend
of increased black-boxing itself has distinct ethical implications
related to subjects’ rights to explanations.

5.2.2 Making it easier to ignore marginalized perspectives. As we
argued previously in Section 4.1, model unification can amplify the
existing tendency to ignore domain experts. This in turn adds to
an ongoing pattern of building models without getting input from
marginalized perspectives that could have informed key decisions
about the model. We think this is not just an epistemic risk, but also
an ethical risk. ML has a track record of disproportionately harming

14Although if those systems are designed to operate against the best interests of their
decision subjects, their suboptimality may be an ethical silver lining.
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marginalized groups, and many critics have pointed out that the
lack of diversity among the builders of ML probably doesn’t help
[17, 58, 67].

When a system could harm marginalized groups, it is reason-
able to think of members of these groups as domain experts on
the decisions made by the system. When domain experts are left
out of processes like determining what features are valid ones for
predictions, these marginalized perspectives will also be left out.
End-to-end learning is designed to cut humans out of the process of
determining what features are good ones for the model to rely on.
Having a plug-and-play model that can be easily used in different
domains will put more power in the hands of ML engineers and
adjacent roles, while taking power away from domain experts.

This will also abstract the systems further from their social con-
text. If any engineer can take a CV model and plug-and-play it into
an NLP setting, there is less friction in this process to encourage
the engineer to consult a language expert. One ethical repercussion
is that perspectives from sociolinguistics about language-related
harms will be more likely to be left out.

This is related to the feminist epistemological values of consider-
ing context and multiple points of view [44, 45]. If we think of each
model as giving us a certain perspective into its domains, feminist
epistemologists favor having multiple such perspectives, since each
perspective is influenced by its own particular background. There
is no one “best” perspective. Models, like perspectives, embed par-
ticular social values, and the fewer models we have, the more a few
privileged perspectives will get to determine the shape of the world.
Having one or even just a few general purpose model architectures
that supposedly can “understand” diverse domains is eerily close to
the notion of having a “view from nowhere” [76], which feminist
epistemologists have criticized as privileging the white masculine
gaze over more marginalized perspectives.

5.2.3 Further centralization of power. The increasing centraliza-
tion of power in AI has been discussed by various activists and
researchers, especially as it pertains to largeMLmodels [113]. There
is an additional aspect of unification that lends itself to centralized
power beyond the fact that these models are large. Unification ex-
pands the potential applications of a single model over many more
areas of life. The vision that some researchers have is to be able to
train a model on, say, a language corpus and then have it perform
tasks in CV, knowledge-based reasoning, and so on. This ambition,
to be general-purpose across different modalities, tasks, domains,
and features, means that whoever controls a pre-trained model of
this general purpose nature would wield broader power over more
areas of human life.

5.2.4 The “algorithmic leviathan” argument against algorithmic
monocultures. Another ethical risk of having a more unified model
landscape is that systematic arbitrariness in decision making can
be morally wrong in a way distinct from any wrongs that might be
attributed to arbitrariness in individual decisions. Creel and Hell-
man argue that arbitrariness in individual decisions may be morally
problematic sometimes, but in situations where the arbitrariness
does not violate fundamental rights, there could be an instrumen-
tal justification for arbitrariness [23]. In contrast, arbitrariness at
scale, where a single model is able to make arbitrary decisions that
affect many people in many domains, introduces an element of

wrongness over and above any wrongs wrought by individual arbi-
trary decisions. With arbitrariness at scale, an individual may face
an arbitrary decision from an algorithm not just in one instance,
but in many instances across many opportunities. This systematic
exclusion is morally problematic under many moral theories: it
could translate to a lack of capacities, lack of genuine freedom, or
being at the bottom of a social hierarchy of esteem or domination
[3, 95, 98]. Model unification increases the systematicity of arbi-
trariness, because it enables fewer models to make decisions over
more domains.

5.2.5 Epistemic homogeneity’s impact on social welfare. In Section
4.2, we put forward some epistemic considerations against narrow-
ing the path ofML research to bemore focused on unifiedmodels. In
addition to these potential epistemic drawbacks, emerging research
suggests that there could also be negative impacts on aggregate
social welfare if the models used by organizations to make deci-
sions are more accurate but more homogeneous. Kleinberg and
Raghavan argue that introducing a more accurate algorithm that’s
used by many organizations can drive society into an equilibrium
that’s worse than having many less accurate algorithms [55]. This
leads to the average quality of decisions across society being lower,
even if it makes sense for individual organizations to each opt for
the most accurate algorithm. Kleinberg and Raghavan make their
point using the case of ranking algorithms, so the implications for
other types of algorithms are unclear, but their work shows that
we should be wary of assuming that having everyone use the same
“state of the art” algorithm is necessarily better for society.

6 CONCLUSION
In this paper, we characterized key trends in recent AI research
that unify model architectures across different modalities and tasks.
We considered the potential benefits and risks of these trends on
both epistemic and ethical fronts. We’ve focused specifically on the
features of these models that are directly related to unification—that
is, directly related to the aspiration to provide model architectures
that can be applied across multiple domains, tasks, and modalities
with little to no adjustment. This provides a complementary per-
spective to previous work that has discussed the implications of
other properties of these models, such as their large size and their
reliance on large corpuses of training data [7, 11].

We argue that on current evidence, the epistemic benefits are
not as strong as analogous benefits from unification in the natural
sciences. We discuss multiple epistemic risks arising from having
too homogeneous a methodological community. Finally, we discuss
possible ethical benefits from open-source unified models, and eth-
ical risks like further marginalizing underrepresented perspectives
and facilitating centralized, homogeneous decisions.

Moving forward, we think there are further possible conse-
quences of unification that are worth exploring. For example, the
performativity ofMLmodels has been noted by other commentators—
models have the potential to change the behavior of decision sub-
jects, with this changed behavior in turn potentially reinforcing
the models’ “correctness”, and so on in a positive feedback loop
[9, 50, 56]. Do more unified models strengthen this dynamic where
it exists, or make such feedback loops more probable? What about
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the phenomenon of “Holy Grail performativity”—where the pres-
ence of an overarching goal of doing well across multiple predefined
tasks, modalities and domains changes researcher behavior to be
oriented around this quest, in a way that potentially forecloses
other possibilities [110]? We hope that these and other possible
consequences of a more unified model landscape will be explored
in future work.
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