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Abstract

Lexical ambiguity—where a single wordform001
takes on distinct, context-dependent meanings—002
serves as a useful tool to compare across dif-003
ferent large language models’ (LLMs’) ability004
to form distinct, contextualized representations005
of the same stimulus. Few studies have sys-006
tematically compared LLMs’ contextualized007
word embeddings for languages beyond En-008
glish. Here, we evaluate multiple bidirectional009
transformers’ (BERTs’) semantic representa-010
tions of Spanish ambiguous nouns in context.011
We develop a novel dataset of minimal-pair sen-012
tences evoking the same or different sense for013
a target ambiguous noun. In a pre-registered014
study, we collect contextualized human relat-015
edness judgments for each sentence pair. We016
find that various BERT-based LLMs’ contextu-017
alized semantic representations capture some018
variance in human judgments but fall short019
of the human benchmark, and for Spanish—020
unlike English—model scale is uncorrelated021
with performance. We also identify stereotyped022
trajectories of target noun disambiguation as023
a proportion of traversal through a given LLM024
family’s architecture, which we partially repli-025
cate in English. We contribute (1) a dataset of026
controlled, Spanish sentence stimuli with hu-027
man relatedness norms, and (2) to our evolving028
understanding of the impact that LLM specifi-029
cation (architectures, training protocols) exerts030
on contextualized embeddings.031

1 Introduction032

Large language models (LLMs) display a remark-033

able level of formal linguistic competence (Ma-034

howald et al., 2024). To date, however, we cur-035

rently lack a precise accounting of the mechanisms036

underlying LLMs’ fundamental linguistic capabili-037

ties. The opacity of model internals has motivated038

work probing the transformations that inputs un-039

dergo as they are processed through various model040

components (Tenney et al., 2019; Hu et al., 2020;041

Wang et al., 2022; Zou et al., 2023). This work has042

focused on LLMs trained with English-language 043

corpora, with a smaller subset of studies investi- 044

gating cross-linguistic representations in multilin- 045

gual models (Chang et al., 2022; Wendler et al., 046

2024; Michaelov et al., 2023) or comparing rep- 047

resentations across multiple monolingual models 048

(Edmiston, 2020). As others have noted (Blasi 049

et al., 2022b; Bender, 2009), an over-reliance on 050

English as a “model language” limits the generaliz- 051

ability of findings, as well as potential applications 052

(Blasi et al., 2022a). Here, we extend interpretabil- 053

ity work to Spanish, a language spoken by almost 054

600M people (with almost 500M native speakers)1. 055

Specifically, we: (1) evaluate the trajectory of am- 056

biguous Spanish words’ semantic representations 057

within mono- and multilingual LLMs and (2) iden- 058

tify layers along a model’s architecture whose se- 059

mantic representations best capture human judg- 060

ments of semantic relatedness. 061

Lexical ambiguity—where a given wordform 062

evokes multiple related or unrelated meanings— 063

offers a unique opportunity to dissociate a word’s 064

form from the contextualized, semantic represen- 065

tations that it can take on as it interacts with a 066

given model’s architecture. Specifically, we can 067

evaluate whether and how LLMs integrate the sur- 068

rounding lexical items in a sentence to produce 069

flexible, context-dependent representations. The 070

representation and processing of ambiguous words 071

is also well-studied in humans (Rodd et al., 2004; 072

Martin et al., 1999; Duffy et al., 1988), offering a 073

convenient comparison group. Finally, ambiguity 074

appears to pervade language, with some estimates 075

in English positing that more than 80% of words 076

have multiple meanings (Rodd et al., 2004); more 077

frequent words are also more likely to evoke mul- 078

tiple senses (Zipf, 1945; Piantadosi et al., 2012). 079

Ambiguity, then, is an important phenomenon to 080

1https://www.exteriores.gob.es/en/
PoliticaExterior/Paginas/ElEspanolEnElMundo.aspx
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contend with in LLMs and a useful tool to under-081

stand LLM representations.082

We first provide a survey of related work on am-083

biguity and interpretability in LLMs (Section 2),084

then present a novel dataset of human relatedness085

judgments about Spanish ambiguous words—in086

context (SAW-C) (Section 3). Section 4 documents087

our use of this dataset to empirically probe the rep-088

resentation of ambiguous words in pre-trained span-089

ish LLMs, focusing first on pre-registered analy-090

ses2 of the monolingual BETO (Cañete et al., 2020).091

We next systematically compare LLM architectures092

(multiple monolingual Spanish and multilingual093

BERT-based models) (Section 5). We conclude094

with a discussion of the implications of the cur-095

rent results (Section 6), as well as limitations and096

directions for future work (Section 7).097

2 Related work098

To date, lexical ambiguity has been largely ex-099

plored within English monolingual models (Haber100

and Poesio, 2020; Trott and Bergen, 2021; DeLong101

et al., 2023). Less work is available with models102

trained on other languages, such as Spanish (Gar-103

cia, 2021; Garí Soler and Apidianaki, 2021), and104

crucial distinctions emerge across studies within105

this literature: (1) the operationalization of SAME106

and DIFFERENT SENSE conditions, (2) the degree107

to which sentential context is controlled around108

the target word, and (3) the degree to which hu-109

man semantic judgments are leveraged to set usage-110

based expectations for the context-dependence and111

graded quality of ambiguous word meanings (Erk112

et al., 2013; Trott and Bergen, 2023).113

In Spanish, mono- and multilingual BERT-based114

models can capture information about semantic re-115

lationships between homonyms and their synonyms116

(Garcia, 2021) and can approximate words’ degree117

of polysemy (Garí Soler and Apidianaki, 2021).118

However, this work tends to leverage naturalis-119

tic sentence stimuli from sense-annotated corpora.120

While valuable, the variability in token sequence121

length and target word position within naturalis-122

tic sentential contexts may make it challenging to123

isolate the precise effect of the context’s semantic124

content from the uncontrolled effects of sentence125

frame (Haber and Poesio, 2020). We thus follow126

as closely as possible the experimental structure127

leveraged (for English) in Trott and Bergen (2021),128

2A link to the pre-registration, code, and data will be pro-
vided after the anonymity period has passed.

creating Spanish-language sentence pairs that vary 129

along a single context cue evoking either the same 130

or different sense of the target ambiguous noun 131

(see Section 3.1). For our dataset, we document 132

the extent to which context cues presented true 133

minimal pairs (e.g. zero-token-differences across 134

sentence pairs) for the LLMs tested (see Appendix 135

A.1; Table 3). 136

Using more controlled sentence stimulus design, 137

coupled with empirically collected human bench- 138

marks, prior studies in English have shown that 139

BERT-based models’ contextualized embeddings 140

capture some—though not all—variance in human 141

similarity (Haber and Poesio, 2020) and relatedness 142

(Trott and Bergen, 2021; DeLong et al., 2023) judg- 143

ments for ambiguous English words. Some of this 144

work has also argued that the continuous nature of 145

LLM contextualized representations makes them 146

well-suited as models of human word meanings, 147

which are likely graded to some extent (Elman, 148

2009; Li and Armstrong, 2024; Li and Joanisse, 149

2021; Trott and Bergen, 2023; Rodd et al., 2004; 150

Nair et al., 2020)—though importantly, may also 151

exhibit marked categoriality compared to LLM rep- 152

resentational spaces (Trott and Bergen, 2023). 153

Finally, another important line of work has used 154

techniques like classifier probes (Tenney et al., 155

2019) and activation patching (Meng et al., 2022; 156

Wang et al., 2022; Merullo et al., 2024) to decode 157

the putative functional role of different model com- 158

ponents (e.g., layers, attention heads, etc.) in pro- 159

ducing observed behavior. 160

To our knowledge, there is little to no work com- 161

bining these strands of research: i.e., making use of 162

graded human judgments about ambiguous Spanish 163

words to trace the dynamics of contextualized repre- 164

sentations in pre-trained Spanish language models. 165

This is the gap we aim to address. 166

3 Human Annotation Study 167

We created a dataset containing graded human judg- 168

ments about Spanish ambiguous words—in context 169

(SAW-C). This process involved first producing and 170

curating materials (i.e., target words and sentences), 171

collecting judgments from native Spanish speak- 172

ers, and validating those judgments for quality and 173

reliability. As noted previously, this study was pre- 174

registered on OSF. 175
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3.1 Materials176

All sentences were developed by two native Span-177

ish speakers. 102 target words were drawn from178

noun lists collected in earlier studies of Spanish lex-179

ical ambiguity (Estévez Monzó, 1991; Fraga et al.,180

2017), as well as spontaneously generated and181

then verified using the online Real Academia Es-182

pañola3 dictionary. We excluded wordform mean-183

ings that corresponded to distinct parts of speech,184

but we accepted a small fraction (8/102) of nouns185

whose grammatical gender changed across mean-186

ings. Each target ambiguous noun was embed-187

ded within sentence pairs that differed by a single188

modifier4, termed context cue5. The average num-189

ber of words in sentences was 4.72. The context190

cues across the sentence pair could evoke either the191

SAME or DIFFERENT sense of the word across the192

contexts.193

1a. Compró el aceite de oliva ([S/he] bought the194

olive oil)195

1b. Compró el aceite de cocina ([S/he] bought196

the cooking oil)197

2a. Compró el aceite de motor ([S/he] bought the198

motor oil)199

2b. Compró el aceite de carro ([S/he] bought the200

car oil)201

The minimum number of sentence pairs per tar-202

get noun was 6, with a maximum of 28 (M = 7.96).203

A total of 812 sentence pairs and 102 target nouns204

were included in the dataset.205

Finally, for the purpose of human norming, the206

812 sentence pairs were assigned to 10 experimen-207

tal lists using a Latin Square design, where each208

list had approximately 81 or 82 sentence pairs.209

3.2 Participants210

Our goal was to collect a minimum of 10 judg-211

ments per sentence pair (i.e., a minimum of 100212

participants). Because we anticipated a non-zero213

exclusion rate, our pre-registration specified: 1)214

an initial goal of 120 participants; and 2) a plan to215

sample more participants as needed, if any sentence216

3https://www.rae.es/
4For 187/812 sentence pairs, the modifiers varied along

more than just a single word, as was the case when the modi-
fiers required different prepositions, or the grammatical gender
of the modifier differed across sentences and required distinct
determiners and contractions. Of these, 173 pairs differed by
1 word; 14 differed by 2 words.

5Context cues were adjectival modifiers for 100/102 target
nouns; verbs for 2/102.

pairs had fewer than 10 observations after applying 217

the pre-registered exclusion criteria. 218

Using the two-step process described above, we 219

recruited an initial pool of 139 participants through 220

Prolific. Participants received $2.40 for participat- 221

ing and the median completion time was 12 min- 222

utes and 23 seconds, for an average rate of $11.64 223

per hour. On Prolific, we screened for participants 224

who reported that their primary language was Span- 225

ish; we specifically recruited participants from the 226

United States, as well as countries in which the 227

dominant language was Spanish (including Chile, 228

México, and Spain). 229

We excluded participants (1) who failed “catch” 230

trials (where the sentences in the pair were identi- 231

cal), (2) whose task completion times exceeded the 232

sample mean by 3 standard deviations, (3) whose 233

inter-annotator agreement for the items they rated 234

was very low (Pearson’s r2 < 0.1), and (4) who 235

self-identified as non-native Spanish speakers. Af- 236

ter all exclusions, we considered data from a total 237

of 131 participants. 238

Participants’ self-identified nationalities corre- 239

sponded heavily to México (69), Spain (39), and 240

Chile (20); 1 participant was from the United States 241

and 2 participants were from Venezuela.6 54 par- 242

ticipants self-identified as female (74 male, 3 non- 243

binary). The average age was 30.97 (median = 28), 244

and ranged from 20 to 59. 245

3.3 Procedure 246

After providing consent, participants were given 247

instructions explaining that some words can have 248

different meanings in different contexts (using an 249

example that was not included in the experimen- 250

tal materials), and that the goal of the experiment 251

was to collect ratings about the relatedness of the 252

meanings expressed by a given word across two 253

sentence contexts. 254

Each sentence pair was presented on a separate 255

page. Participants were instructed to rate each word 256

on a scale from 1 (totalmente sin relación, “totally 257

unrelated”) to 5 (mismo significado, “same mean- 258

ing”). The target word (e.g., aceite, “oil”) was 259

centered in larger font, and the target sentences 260

were presented side-by-side (the side was random- 261

ized across trials). Participants indicated their re- 262

sponse via button-press; see Figure 1 for an ex- 263

ample. We also included one “catch” trial in the 264

6As described in Section 3.4, we found relatively high
correlations between mean relatedness judgments produced
by participants across Chile, México, and Spain.
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Figure 1: Sample item from task. Participants emitted
graded relatedness judgments from a scale of 1 (totally
unrelated) to 5 (same sense) for a given target word
(here: aceite – oil), using information provided by the
context cue across the sentence pair (here: de oliva / de
motor – olive / motor).

experiment, which simply contained the same sen-265

tence, repeated (i.e., the correct answer was 5).266

The entire experiment (including consent form,267

instructions, and debrief page) was conducted in268

Spanish. Participants were randomly assigned to269

lists, and the order of items within each list was270

randomized. After completing the primary experi-271

ments, participants read a debrief form explaining272

once more that the goal of the experiment was to273

collect judgments about ambiguous Spanish words,274

and that their data would be anonymized before275

analysis and publication.276

3.4 Validation of Final Dataset277

We validated the final dataset using several ap-278

proaches. First, we applied multiple exclusion cri-279

teria (Section 3.2) and collected a minimum of 10280

ratings per sentence pair. The average number of281

ratings per pair was 13.1; the maximum was 17.282

After applying exclusion criteria, we recalcu-283

lated inter-annotator agreement to estimate the re-284

liability of the ratings in the final dataset. Follow-285

ing past work (Hill et al., 2015; Trott and Bergen,286

2021) we calculated inter-annotator agreement us-287

ing a leave-one-annotator-out scheme. For each288

of the final 131 participants, we calculated Spear-289

man’s ρ between the judgments produced by that290

participant and the mean judgment for those same291

sentence pairs, leaving out that participant’s data.292

The resulting distribution of correlation coefficients293

ranged from 0.39 to 0.88, with an average corre-294

lation of 0.77. This number is comparable to past295

work using similar methods (Hill et al., 2015; Trott 296

and Bergen, 2021). 297

Finally, we compared average relatedness judg- 298

ments across the three main demographic groups 299

reported by participants (Chile, México, and Spain). 300

Judgments across each group were all strongly cor- 301

related (r > 0.82 in all cases). 302

3.5 Relatedness of Same vs. Different Sense 303

Contexts 304

We then asked whether and how human relatedness 305

judgments varied as a function of whether two uses 306

of a word (e.g., “aceite”) corresponded to the SAME 307

SENSE or DIFFERENT SENSE. These will hereafter 308

be considered the levels of the binary variable we 309

call Sense Relationship. 310

Using the entire dataset of trial-level judgments 311

(10639 observations), we fit a linear mixed effects 312

model in R using the lme4 package (De Boeck 313

et al., 2011), which had Relatedness as a dependent 314

variable and a fixed effect of Sense Relationship. 315

The model also contained by-participant and by- 316

list random slopes for the effect of SAME SENSE, 317

and random intercepts for participants, lists, and 318

words. (The specification of random effects was 319

determined by beginning with the maximal model, 320

then reducing as needed for model convergence 321

(Barr et al., 2013).) The full model explained 322

significantly more variance than a reduced model 323

omitting only the effect of Sense Relationship 324

[χ2(1) = 39.59, p < .001]. As expected, SAME 325

Sense contexts were rated as more related on av- 326

erage (M = 4.35, SD = 1.14) than DIFFERENT 327

Sense contexts (M = 2.11, SD = 1.41; Figure 328

2). 329

4 Analysis of BETO, a Pre-Trained 330

Spanish LLM 331

Using SAW-C as a probe, we conducted multi- 332

ple pre-registered analyses on how BETO—a pre- 333

trained monolingual Spanish LLM (Cañete et al., 334

2020)—represents ambiguous words in context, 335

whether and to what extent these representations 336

are predictive of human semantic representations, 337

and which layers of the model contained the most 338

information (Tenney et al., 2019). Table 1 summa- 339

rizes the research questions and their results. 340

4.1 Model Details 341

Our pre-registered analyses used the cased ver- 342

sion of a Spanish monolingual BERT-based model: 343
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Figure 2: Density plot representing the distribution of
mean relatedness judgments for sentence pairs. As ex-
pected, word meanings were rated as more related when
used in SAME Sense than DIFFERENT Sense contexts.

BETO, comprised of 12 layers, each made up of 12344

self-attention heads, and hidden size of 768, trained345

on a corpus of approximately 3B words (Cañete346

et al., 2020)7. Exploratory analyses leveraged the347

models summarized in the Appendix A.1 (Table 2).348

Each sentence in the dataset (bracketed by special349

tokens [CLS] and [SEP]) was tokenized separately350

according to each model’s tokenizer. Sentences351

did not contain periods, to match the version of the352

sentences viewed by human participants. We report353

sentence pair tokenization differences across mod-354

els in Table 3 (Appendix A.1). When the target355

noun was represented by multiple subword tokens,356

we took the average embedding across tokens. We357

extracted embeddings from each model layer.358

4.2 Which layer of BETO best captures sense359

boundaries?360

We first assessed which layers of BETO produced361

representations that best distinguished between362

SAME SENSE and DIFFERENT SENSE uses of363

word. To address this question, we calculated the364

Cosine Distance between these contextualized rep-365

resentations of the target word from each sentence366

pair for each layer. Concretely, this yielded 812367

Cosine Distance values for each layer of BETO.368

Then, we asked how Cosine Distance evolved369

through the network’s layers with respect to the370

SAME/DIFFERENT SENSE distinction. We built371

a series of logistic regression models in R with372

Sense Relationship as a dependent variable, and373

Cosine Distance from a given layer ℓi of BETO374

7Accessed via https://huggingface.co/dccuchile/
bert-base-spanish-wwm-cased

Figure 3: Average Cosine Distance between the contex-
tualized representations of the target ambiguous word
across each layer of BETO, depicted as a function of
whether the contexts cued the SAME SENSE or DIFFER-
ENT SENSE.

as an independent variable. We then measured the 375

Akaike Information Criterion (or AIC) (Akaike, 376

2011; Burnham and Anderson, 2004) of the result- 377

ing model as a measure of model fit. The best- 378

fitting model used Cosine Distance from layer 5. 379

Figure 3 highlights the change in Cosine Distance 380

across layers of BETO as a function of Sense Re- 381

lationship, suggesting that the difference between 382

conditions was largest at this layer. 383

4.3 Which layer of BETO best predicts 384

relatedness? 385

Our second question was whether certain layers 386

of BETO produced representations that better pre- 387

dicted human relatedness judgments than others. 388

For each layer, we calculated the correlation coeffi- 389

cient (both Pearson’s r and Spearman’s ρ) between 390

Cosine Distance values obtained from BETO and 391

the distribution of Mean Relatedness judgments 392

obtained for each sentence pair. We also calcu- 393

lated R2 as an estimate of the amount of variance 394

explained in human relatedness judgments as a 395

function of Cosine Distance from that layer alone. 396

As depicted in Figure 7, the layer of BETO 397

with the highest R2 was layer 7 (R2 = 0.33, r = 398

−.57, ρ = −.59). However, performance did 399

not meaningfully improve beyond layer 5 (R2 = 400

0.328). This suggests that the operations performed 401

by later layers were less useful in terms of produc- 402

ing contextualized representations that captured rel- 403

evant variance in relatedness judgments (see also 404

Appendix A.2). 405
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Figure 4: Distribution of human inter-annotator agree-
ment scores, calculated using a leave-one-annotator out
scheme. The vertical dashed line represents the corre-
lation between human judgments and Cosine Distance
values extracted from BETO.

4.4 BETO under-performs inter-annotator406

agreement407

We then compared the best-performing layer (ℓ =408

7) to human inter-annotator agreement (calculated409

in Section 3.4). The correlation of the best-410

performing layer (ρ = 0.58) was considerably411

lower than the average inter-annotator agreement412

(X̄ρ = 0.77), with BETO’s performance lying in413

the bottom 5% of the distribution of agreement414

values (Figure 4).415

4.5 BETO is Less Sensitive to Sense416

Boundaries417

Past work conducted in English (Trott and Bergen,418

2021, 2023) suggests that LLMs are less sensi-419

tive to sense boundaries—the distinction between420

SAME and DIFFERENT SENSE—than humans.421

However, it is unclear whether this effect gener-422

alizes to Spanish speakers and Spanish LLMs.423

We constructed a linear mixed effects model in424

R with Relatedness as a dependent variable, fixed425

effects of Cosine Distance and Sense Relationship,426

by-participant random slopes for both fixed effects,427

and random intercepts for participants, words, and428

lists. The full model explained significantly more429

variance than a model omitting only the effect of430

Sense Relationship [χ2(1) = 331.55, p < .001].431

The full model also explained more variance than432

a model omitting only Cosine Distance [χ2(1) =433

208.27, p < .001]. Further, the R2 of a linear re-434

gression model predicting Mean Relatedness using435

Sense Relationship alone (R2 = .61) explained436

almost twice as much variance as Cosine Distance437

Figure 5: Residuals of linear regression models fit for
each LLM, predicting relatedness from the interaction
between cosine distance and layer position; residual
distributions are separable as a function of Sense Rela-
tionship.

alone (R2 = 0.33); adding both predictors resulted 438

in a modest improvement over the Sense Relation- 439

ship model (R2 = 0.66). 440

Finally, we extracted the residuals of a linear re- 441

gression model predicting Mean Relatedness from 442

Cosine Distance alone. We then plotted the distribu- 443

tion of these residuals according to Sense Relation- 444

ship. As illustrated in Figure 5, BETO (as well as 445

all the Spanish language models tested in Section 446

5) consistently underestimated the relatedness of 447

SAME sense pairs, and consistently overestimated 448

the relatedness of DIFFERENT sense pairs. 449

5 Comparing Pre-Trained Spanish 450

Language Models 451

Section 4 tested several pre-registered hypotheses 452

(Table 1) with respect to a single pre-trained Span- 453

ish LLM. Here, we extend this work in exploratory 454

analyses of additional pre-trained Spanish LLMs. 455

Testing multiple models is an important step to- 456

wards establishing the external validity of a find- 457

ing; additionally, it is useful for testing hypotheses 458

about model scale (Kaplan et al., 2020) or other 459

model specifications (e.g., architecture, multilin- 460

gual status). 461

5.1 Models 462

We considered 10 monolingual Spanish language 463

models (including BETO) and 2 multilingual mod- 464

els. LLMs varied in their training procedures (e.g., 465

BERT vs. RoBERTa; Liu et al. (2019)), tokeniza- 466

tion scheme, number of layers, training corpus size, 467

total number of parameters, and whether or not 468
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Research Question Result Section

Do humans judge SAME

SENSE uses to be more
related than DIFFERENT

SENSE uses?

Yes 3.5

Which layer of BETO
is most sensitive to
the SAME/DIFFERENT

SENSE distinction?

ℓ = 5 4.2

Which layer of BETO
is most correlated with
human relatedness judg-
ments?

ℓ = 7 4.3

Does BETO match
human inter-annotator
agreement?

No 4.4

Does BETO “explain
away” the effect of
categorical Sense Rela-
tionship in humans (e.g.
“sense boundaries”)?

No 4.5

Table 1: Summary of pre-registered research questions
and their results.

they were multilingual (Table 2).469

5.2 Impact of model scale470

Past work (Kaplan et al., 2020) suggests that in-471

creases in a model’s number of parameters may472

correlate with metrics of model performance (e.g.,473

perplexity). At the same time, there is some evi-474

dence that increasing scale does not always produce475

more human-like representations, i.e., large models476

with lower perplexity do not always better predict477

human reading times (Kuribayashi et al., 2021).478

To assess this question, we compared the max-479

imum R2 achieved by each of the 12 language480

models8 and asked whether an LLM’s best R2481

was related to its size. We found virtually no482

evidence that a model’s size was correlated with483

its ability to predict human relatedness judgments484

(Figure 6). The best-performing model (BETO-485

cased) was not the largest tested, and larger models486

(e.g., ALBERT-xxlarge or XLM-RoBERTa) per-487

formed just as poorly as models with many fewer488

parameters. None of the models approached the489

variance explained in average judgments by indi-490

vidual human annotators (i.e., inter-annotator R2).491

8I.e., the R2 from the best-performing layer of each model.

Figure 6: Maximum R2 achieved by each model by
number of parameters and multilingual status. Horizon-
tal dashed line depicts the average variance explained a
leave-one-annotator-out scheme.

Figure 7: Depiction of seven pre-trained Spanish LLMs’
ability to predict human relatedness judgments across
layers (measured as R2). For ease of illustration, this
plot shows only LLMs with 12 layers.

Of course, this was not an ideal test of the scal- 492

ing hypothesis, given that many features of these 493

models (e.g., amount of training data, specific train- 494

ing corpus, model architecture) were not controlled. 495

It is worth noting, however, than even among the 496

Spanish ALBERT family of models (Cañete et al., 497

2022), there was not a clear, consistent relationship 498

between size and performance. 499

5.3 Performance across layers 500

In Section 4, we found that cosine distance mea- 501

sures extracted from the middle layers of BETO 502

were most useful for predicting whether two con- 503

texts belonged to the same sense, and for predicting 504

human relatedness judgments. Do other models or 505

model families show the same trajectory of perfor- 506

mance across layers? 507

Models varied in their number of layers. Thus, 508

7



Figure 8: Depiction of LLM ability to predict mean
relatedness judgments (measured as R2), broken down
by Model Family and Layer Depth Ratio, i.e., with each
layer divided by the the total number of layers in a given
model. 4 BERT models (1 multilingual), 3 RoBERTa
models (1 multilingual), and 5 ALBERT models.

we first compared the trajectory of R2 across lay-509

ers for the subset of models with the same number510

of layers, i.e., 12 layers (Figure 7) or 24 layers511

(Figure 9). In each case, we identified two quali-512

tatively distinct “classes” of trajectory: a rise and513

plateau trajectory, in which performance improves514

up until a point (e.g., layer 6) and then stays rela-515

tively stable; and a rise and fall trajectory, in which516

performance improves and then decays substan-517

tively in the final layers (Figure 8).518

In order to compare all models on the same axis,519

we calculated the layer depth ratio, which divides520

each layer position in a given network by the total521

number of layers in that network. We then visual-522

ized the average R2 by layer depth ratio across the523

three model families tested: ALBERT, BERT, and524

RoBERTa. As Figure 8 suggests, the two putative525

trajectories appear to covary with model family:526

the ALBERT family of models shows a rise and527

fall trajectory, while the BERT and RoBERTa fam-528

ily of models shows a rise and plateau trajectory.529

5.4 Sensitivity to sense categoriality across530

models531

Finally, we asked whether any of the models tested532

explained away the sense boundary effect in hu-533

mans. Each model showed the same pattern as534

BETO: Cosine Distance underestimated the related-535

ness of SAME SENSE meanings and overestimated536

the relatedness of DIFFERENT SENSE meanings537

(Figure 5).538

6 Discussion 539

We introduced a novel dataset (SAW-C) contain- 540

ing human relatedness judgments about ambigu- 541

ous Spanish words in controlled, minimal pair con- 542

texts. Using this dataset, we probed pre-trained 543

LLMs’ representations of ambiguous words, find- 544

ing that: 1) LLM representations correlate with 545

human judgments but do not match inter-annotator 546

agreement, and exhibit systematic errors; 2) per- 547

formance varies across layers, with model families 548

showing distinct trajectories of performance; and 549

3) there was no discernible effect of model size. 550

The systematic underestimation and overestima- 551

tion errors observed with respect to SAME vs. DIF- 552

FERENT sense contexts (Figure 5) is consistent 553

with past work conducted in English (Trott and 554

Bergen, 2021, 2023). One explanation for this is 555

that the initial (static) embedding for an ambiguous 556

wordform might entangle all of its multiple mean- 557

ings (Grindrod, 2024), which must then be “teased 558

apart” in context—but which might nevertheless 559

persist as “attractors” in subsequent layers. Disam- 560

biguation could be made even more difficult by the 561

presence of minimal pair contexts (Garcia, 2021). 562

Psycholinguistic research suggests that humans 563

also activate uncued, dominant meanings in certain 564

tasks (Duffy et al., 1988; Martin et al., 1999); here, 565

however, humans appeared to distinguish target 566

meanings with relative ease. It is possible that hu- 567

mans represent distinct homonymous (though not 568

necessarily polysemous) meanings along clearly 569

differentiable regions of meaning space (Rodd 570

et al., 2004; Trott and Bergen, 2023, 2021; Haber 571

and Poesio, 2020), which would be consistent with 572

the fact that categorical sense boundaries (SAME vs. 573

DIFFERENT SENSE conditions) explained an over- 574

whelming share of human relatedness judgments 575

(Section 4.5, Trott and Bergen (2023)). 576

Lastly, this work contributes to expanding the 577

linguistic diversity of both human-annotated bench- 578

marks and interpretability research. Although 579

Spanish ranks among the most widely spoken lan- 580

guages, it suffers from a surprising dearth of re- 581

sources, pre-trained models, and interpretability 582

research—particularly when compared to English. 583

In one study, a sample of 550 corpora (spanning 22 584

languages) contained >50% English-language cor- 585

pora, while <10% represented Spanish-language 586

corpora (Anand et al., 2020). A wider research 587

perspective—considering varied languages—is crit- 588

ical for ensuring the generalizability of findings. 589

8



7 Limitations590

The current work is limited both in terms of the591

novel dataset we created, as well as the analyses592

we conducted. The sections below address each593

issue in turn.594

7.1 Limitations of the Dataset595

SAW-C is limited in scope, containing only 812596

sentence pairs. This is considerably smaller597

than many English benchmarks, such as BLiMP598

(Warstadt et al., 2020), which contain tens of thou-599

sands of examples. However, it is larger than or600

comparable in size to other, more targeted datasets601

involving crowd-sourced human annotations (Erk602

et al., 2013; Haber and Poesio, 2020; Trott and603

Bergen, 2021). Relative to specifically Spanish-604

language datasets, ours is the only one we are aware605

of that collects human judgments for target ambigu-606

ous words embedded within minimal pair stimuli9.607

Importantly, SAW-C includes not only the sentence608

pairs but also over 10000 validated human judg-609

ments from 131 participants about those sentence610

pairs.611

Another limitation concerns the generation pro-612

cess for the materials. The ambiguous nouns613

included in our dataset were spontaneously pro-614

duced by native Spanish speakers, or selected from615

previously published lists (Estévez Monzó, 1991;616

Fraga et al., 2017), rather than via automated617

searches. Spontaneous production of ambiguous618

words may (1) overrepresent homonymous words619

(Estévez Monzó, 1991), and (2) underrepresent620

words whose multiple meanings have large domi-621

nance asymmetries (Duffy et al., 1988). In future622

work, we intend to collect dominance norms for623

these items.624

Finally, our sentence pairs are not naturalistic.625

The creation of controlled minimal pairs was an626

intentional design feature of the dataset, which en-627

abled us to identify key differences between LLM628

and human representations, e.g., LLMs display629

less sensitivity than humans to the manipulation630

of word meaning across minimal pair contexts631

(Figure 5). At the same time, it is important to632

know whether and to what extent the current re-633

sults replicate with naturalistic stimuli. Thus, we634

aim to augment SAW-C with naturalistic examples635

9For examples of other Spanish-language datasets that
collect human judgments under different experimental condi-
tions, see Estévez Monzó (1991); Gómez-Veiga et al. (2010);
Domínguez et al. (2001); Haro et al. (2017); Fraga et al.
(2017).

of the target ambiguous words, which would also 636

increase its scope. 637

7.2 Limitations of the Analysis 638

All the analyses presented here are essentially cor- 639

relational. As others have noted (Hewitt and Liang, 640

2019; Niu et al., 2022; Zhou and Srikumar, 2021), 641

supervised methods for probing LLM representa- 642

tions are more informative about the ability of the 643

probe to learn specific features than the question 644

of whether the LLM “naturally” encodes that fea- 645

ture and deploys it for token prediction. Future 646

work would benefit from the selective application 647

of “knock-out” methods or “activation patching” 648

(Meng et al., 2022), both of which have proven 649

more successful in characterizing the causal, mech- 650

anistic role of model components. We view the 651

current work as a useful starting point, which can 652

motivate future work isolating the mechanistic role 653

of specific model circuits within each layer. 654

Similarly, the finding that distinct model fami- 655

lies exhibit distinct trajectories in performance ( 656

Figure 8) is intriguing, but due to its exploratory 657

nature, it is unclear to what extent this finding is 658

reliable and robust to different datasets or prob- 659

ing methods. In a supplementary analysis (see 660

Appendix 11), we found qualitatively similar clus- 661

ters of trajectories in pre-trained English models, 662

though these differences appeared considerably 663

weaker than in the Spanish models. Thus, future 664

work could build on the question of whether—and 665

more importantly, why— distinct model architec- 666

tures and training schemes lead to different pro- 667

cessing mechanisms. 668

8 Ethical Considerations 669

This research was conducted with IRB approval. 670

All data from human participants has been fully 671

anonymized before analysis and publication. 672
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A Appendix946

A.1 LLM Specifications and Dataset947

Tokenization948

See Table 2 for a summary of the LLMs considered949

in Section 5, including architecture, multilingual950

status, corpus size, tokenization scheme, training951

objective, number of layers, and number of parame-952

ters. Because models used different tokenizers, we953

also calculated summary statistics about the num-954

ber of tokens in each sentence in each sentence pair,955

as well as the average number of token differences 956

(i.e., 5 vs. 4 tokens across the members of a given 957

pair) for each tokenizer (see Table 3). 958

A.2 Analysis of Expected Layer 959

In the primary manuscript, we identified which 960

layers of BETO provided the best fit, i.e., which 961

were most effective for predicting Sense Relation- 962

ship (layer 5) and which were most effective at 963

predicting Mean Relatedness judgments (layer 7). 964

However, in some cases, the improvements across 965

layers are fairly marginal. Thus, in this supple- 966

mentary analysis, we implemented a version of the 967

Expected Layer analysis described by Tenney et al. 968

(2019). This analysis considers the size of the im- 969

provement across layers and estimates the layer at 970

which particular kinds of information is expected 971

to resolve in the network. 972

A.2.1 Methods 973

The Expected Layer statistic considers the improve- 974

ment in performance (measured here as AIC or 975

R2, depending on the analysis in question) across 976

progressively more complex regression models fit 977

with cosine distance information from each layer. 978

This improvement in performance measure was 979

defined as: 980

∆ℓ = Score(P ℓ
T )− Score(P ℓ−1

T ) (1) 981

Where Score(P ℓ
T ) is defined as the performance 982

(AIC or R2) of a regression model equipped with 983

cosine distance information from a given layer ℓ 984

and each previous layer, i.e., such that the num- 985

ber of parameters in the regression model was 986

equal to ℓ. (Note that this was distinct from the 987

approach taken in the primary manuscript, in which 988

distinct univariate regression models were fit for 989

each layer.) The Expected Layer statistic itself was 990

defined as follows: 991

Ē∆[ℓ] =

∑L
ℓ=1 ℓ ·∆

(ℓ)
T∑L

ℓ=1∆
(ℓ)
T

(2) 992

A.2.2 Results 993

Using this approach, we obtained Expected Layer 994

statistics for both predicting Sense Relationship 995

(3.2) and for predicting Mean Relatedness (2.98). 996

1110: See https://github.com/google-research/
bert/blob/master/multilingual.md for available details
on language-specific corpus size selection.

11See https://github.com/google-research/bert for
notes on the English BERT pre-training update using whole-
word masking.
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Model # Lang Corpus Tokenization Trn Obj # Layers # Params

BETO 1 ∼ 3B SentencePiece DM, WWM 12 ∼ 110M
BETO-uncased 1 ∼ 3B SentencePiece DM, WWM 12 ∼ 110M
mBERT 104 ? WordPiece MLM, WWM?, NSP 12 ∼ 178M

DistilBETO 1 ∼ 3B SentencePiece DistilLoss, MLM 6 ∼ 66M

ALBETO-tiny 1 ∼ 3B SentencePiece MLM 4 ∼ 5M
ALBETO-base 1 ∼ 3B SentencePiece MLM 12 ∼ 12M
ALBETO-large 1 ∼ 3B SentencePiece MLM 24 ∼ 18M
ALBETO-xlarge 1 ∼ 3B SentencePiece MLM 24 ∼ 59M
ALBETO-xxlarge 1 ∼ 3B SentencePiece MLM 12 ∼ 223M

RoBERTa-BNE-base 1 ∼ 135B byte-BPE MLM (DM?) 12 ∼ 125M
RoBERTa-BNE-large 1 ∼ 135B byte-BPE MLM (DM?) 24 ∼ 355M
XLM-RoBERTa 100 ? SentencePiece MLM 12 ∼ 278M

Table 2: (Spanish) Language model properties and training procedures. Models are cased (distinguish between upper
and lowercase characters) unless otherwise specified. All monolingual models are trained on Spanish-language
corpora; multilingual models include Spanish-language corpora. Model Notes: For mBERT, (a) the corpus size per
language varied and we are unsure of the total corpus size10, (b) it was unclear to us whether the current version
of the model on HuggingFace is updated with the whole-word masking (WWM) technique11during pre-training.
For RoBERTa-BNE models, it was unclear to us whether authors used dynamic masked (DM) modeling, as in the
English RoBERTa. For XLM-RoBERTa, the corpus size per language may have varied, but we were uncertain to
what extent pretraining text was sampled proportionally to its representation in the corpus (Conneau et al., 2020).
Acronyms: BNE: Biblioteca Nacional de España (National Library of Spain); byte-BPE: byte-level Byte-Pair
Encoding; DistilLoss: Distillation loss (Sahn et al., 2019; Cañete et al., 2022). MLM: Masked Language Modeling;
DM: Dynamic Masking (Liu et al., 2020); WWM: Whole-Word Masking; NSP: Next Sentence Prediction. This
summary represents our best attempt at gathering and reconstructing some model specifications—they are necessarily
incomplete, and may contain inaccuracies borne from either a lack of knowledge regarding more recent updates or
an imperfect understanding of the training protocols as described in the relevant primary literature and repositories.

.
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Model Avg ; Modal ; Max Target Noun
Token Differences # Tokens

BETO ∼ 0.682 ; 1 ; 3 ∼ 1.07
BETO-uncased ∼ 0.670 ; 1 ; 3 ∼ 1.03
mBERT ∼ 0.997 ; 1 ; 4 ∼ 1.27

DistilBETO ∼ 0.670 ; 1 ; 3 ∼ 1.03

ALBETO-tiny ∼ 0.619 ; 1 ; 3 ∼ 1.04
ALBETO-base ∼ 0.619 ; 1 ; 3 ∼ 1.04
ALBETO-large ∼ 0.619 ; 1 ; 3 ∼ 1.04
ALBETO-xlarge ∼ 0.619 ; 1 ; 3 ∼ 1.04
ALBETO-xxlarge ∼ 0.619 ; 1 ; 3 ∼ 1.04

RoBERTa-BNE-base ∼ 0.643 ; 0 ; 3 ∼ 1.05
RoBERTa-BNE-large ∼ 0.643 ; 0 ; 3 ∼ 1.05
XLM-RoBERTa ∼ 0.929 ; 1 ; 4 ∼ 1.28

Table 3: Average, modal, and maximum token differences across sentence pairs per LLM. Tokenization schemes
for all Spanish monolingual LLMs were heavily represented by either non-zero or single-token differences across
sentence pair stimuli, whereas the multilingual models tested here tended to more frequently generate non-zero
token differences across the sentence pairs.

Figure 9: Depiction of three pre-trained Spanish LLMs’
ability to predict human relatedness judgments across
layers (measured as R2). For ease of illustration, this
plot shows only LLMs with 24 layers.

Note that in both cases, the Expected Layer was997

smaller than the layer at which optimal perfor-998

mance was achieved; this is consistent with the ob-999

servation that past a certain point, additional LLM1000

layers resulted in only marginal gains in prediction.1001

A.3 Additional analyses of pre-trained1002

English LLMs1003

In the primary manuscript, we reported the results1004

of work using ambiguity as a probe for understand-1005

ing and interpreting how pre-trained Spanish LLMs1006

process word meanings. We found two intrigu-1007

ing results: first, that larger models did not ex-1008

hibit consistently better performance; and second,1009

that different model families exhibited different tra-1010

Figure 10: Pre-trained monolingual English language
models show evidence of scaling, i.e., models with more
parameters achieve a higher R2 in predicting human
relatedness judgments about ambiguous English words.

jectories of performance across layers. We asked 1011

whether these results replicated in pre-trained En- 1012

glish models, using an openly available dataset of 1013

relatedness judgments about ambiguous English 1014

words, in context (RAW-C) (Trott and Bergen, 1015

2021). 1016

A.3.1 A correlation between model scale and 1017

performance 1018

We tested English versions of the Spanish language 1019

models tested in the primary manuscript (with the 1020

exception of ALBERT-tiny, and with the addition of 1021

two different versions of ALBERT-base). We then 1022

asked whether there was a relationship between the 1023
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Figure 11: Depiction of English LLMs’ ability to predict
mean relatedness judgments (measured as R2), broken
down by Model Family and Layer Depth Ratio, i.e., with
each layer divided by the the total number of layers in a
given model.

number of parameters in each model and the maxi-1024

mum R2 achieved in predicting human relatedness1025

judgments about English words, in context. Un-1026

like Spanish, we found a clear, positive relationship1027

between the logarithm of the number of parame-1028

ters and the maximum R2 (see Figure 10): a linear1029

model estimating maximum R2 from number of1030

parameters and a model’s multilingual status esti-1031

mated that for every order of magnitude increase in1032

a model’s number of parameters, R2 increased by1033

approximately 0.2 [β = 0.198, SE = 0.03, p <1034

.001]. On average, multilingual models also per-1035

formed worse (adjusting for number of parameters),1036

though the small number of multilingual models1037

tested makes it difficult to determine whether this1038

is a reliable finding.1039

A.3.2 Layer-wise trajectories by model family1040

We also asked whether different model families1041

displayed different performance trajectories across1042

layers. In the primary manuscript, we found that1043

the ALBERT family models displayed a rise and1044

fall trajectory, while both BERT and RoBERTa1045

displayed rise and plataeau trajectories (see Figure1046

8). Surprisingly, we found qualitatively similar1047

(albeit weaker) classes of trajectories using the pre-1048

trained English models on the RAW-C dataset (see1049

Figure 11).1050

A.4 Analysis of GPT-4 Turbo1051

In the primary manuscript, we found that the Large1052

Language Models tested produced representations1053

that were correlated with human judgments, but1054

nonetheless systematically underestimated how re-1055

lated people judged SAME SENSE meanings to1056

be—and overestimated how related people judged1057

DIFFERENT SENSE meanings to be (see Figure 5). 1058

However, recent work (Trott, 2024; Dillion et al., 1059

2023) suggests that state-of-the-art LLMs like GPT- 1060

4 are capable of producing “norms” that accurately 1061

predict human judgments across various domains, 1062

including the relatedness of English words. 1063

Because these models are “closed source”, this 1064

work typically relies on prompting the models with 1065

instructions and directly eliciting a judgment (e.g., 1066

a relatedness rating). Thus, a key limitation is that 1067

even if these judgments are highly correlated with 1068

human judgments, it is very difficult (in some cases 1069

impossible) to know why, i.e., which representa- 1070

tions or mechanisms give rise to the behavior in 1071

question—making them less well-suited to ques- 1072

tions about model interpretability. 1073

Nonetheless, the question of the empirical fit 1074

between these LLM judgments and human judg- 1075

ments is still an interesting one—particularly be- 1076

cause past work has primarily focused on judg- 1077

ments in English, and it is unclear whether these 1078

LLMs would excel at other languages. Thus, in this 1079

supplementary analysis, we asked whether GPT-4 1080

Turbo, a state-of-the-art LLM, produced judgments 1081

that were more predictive of human judgments than 1082

the models tested in the primary manuscript. 1083

A.4.1 Methods 1084

Following past work (Trott, 2024; Dillion et al., 1085

2023), we prompted GPT-4 Turbo (gpt-4-1106- 1086

preview) using the OpenAI Python API. GPT-4 1087

Turbo was presented with a system prompt contain- 1088

ing the same instructions (in Spanish) that were 1089

presented to human participants, explaining the 1090

purpose of the task. Then, for each sentence pair, 1091

Turbo was presented with the same instructions 1092

given to human participants (again in Spanish) ask- 1093

ing them to rate the relatedness of the target word 1094

across the two contexts. The two sentences were 1095

presented on separate lines, as was the target word 1096

(e.g., “Word: aceite”). Finally, we included an ad- 1097

ditional instruction requesting a single number in 1098

response. Turbo was prompted using a temperature 1099

of 0 and its responses were limited to a maximum 1100

of 3 tokens. 1101

A.4.2 Results 1102

The ratings produced by Turbo were highly corre- 1103

lated with human judgments, approaching or even 1104

exceeding average human inter-annotator agree- 1105

ment (ρ = 0.79). 1106

We then asked whether Turbo’s ratings explained 1107
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Figure 12: Residuals from a linear regression predict-
ing Mean Relatedness from ratings elicited from GPT-4
Turbo. Although Turbo’s ratings are highly correlated
with human judgments, they still systematically under-
estimate the relatedness of Same Sense pairs and over-
estimate the relatedness of Different Sense pairs.

away the sense boundary effect observed in the pri-1108

mary manuscript. First, we fit a linear model with1109

Mean Relatedness as a dependent variable and two1110

predictors: Rating (from GPT-4 Turbo) and Sense1111

Relationship. The coefficients assigned to each1112

predictor were significant, suggesting that they1113

explained some amount of independent variance:1114

both Rating [β = 0.45, SE = 0.02, p < .001] and1115

SAME SENSE [β = 1.12, SE = 0.05, p < .001]1116

exhibited a positive relationship.1117

As in Figure 5, we also visualized the residuals1118

of a linear model containing only Rating as a pre-1119

dictor (Figure 12). Notably, even though Rating1120

was highly correlated with Mean Relatedness, the1121

residuals suggest that Turbo’s ratings follow a sim-1122

ilar pattern with respect to sense boundaries as was1123

observed with BETO and the other models tested:1124

GPT-4 consistently underestimates the relatedness1125

of SAME SENSE pairs, and consistently overesti-1126

mates the relatedness of DIFFERENT SENSE pairs.1127

A.4.3 Discussion1128

In this supplemental analysis, we found that a larger1129

model trained with Reinforcement Learning from1130

Human Feedback (RLHF) produced behavior that1131

was much more correlated with human relatedness1132

judgments than the other Spanish language models1133

tested.1134

On the one hand, this analysis has considerable1135

limitations: as noted above, a major challenge with1136

relying on LLMs such as GPT-4 is that, despite1137

their impressive performance, much is still unclear1138

about how exactly they were trained—either in1139

terms of the original training data or the procedure1140

for implementing RLHF. Thus, as a tool for test-1141

ing scientific hypotheses, they may be less useful1142

than open-source models, i.e., the ones tested in 1143

the primary manuscript, especially if the scientific 1144

question under investigation concerns the represen- 1145

tations or mechanisms used by the LLM. These are, 1146

of course, the kinds of questions that research on 1147

interpretability is generally interested in. 1148

On the other hand, the fact that an LLM produces 1149

behavior that rivals inter-annotator agreement sug- 1150

gests that the representations required to produce 1151

this behavior can be learned provided sufficient 1152

training data and fine-tuning; in this case, direct 1153

data contamination is an unlikely concern given 1154

that the materials were entirely novel and the rat- 1155

ings had never been published before. This analy- 1156

sis is also notable in that it reveals that even a very 1157

large-scale model trained with RLHF appears to 1158

be less sensitive to sense boundaries than human 1159

judgments, as depicted in Figure 12. 1160

However, because Turbo is a closed-source 1161

model, it is difficult to draw firm conclusions from 1162

these results precisely because we cannot inves- 1163

tigate where or how this behavior emerges. For 1164

example, we cannot investigate which layer of 1165

GPT-4 Turbo appears to be most helpful for pro- 1166

ducing high-quality relatedness judgments. Future 1167

work would thus benefit from investigating which 1168

architectural features, training objectives, or fine- 1169

tuning procedures are likely candidates for produc- 1170

ing this improvement in performance, ideally in 1171

open-source Spanish language models. 1172
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