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Abstract001

Recent developments in Conversational Recom-002
mender Systems (CRSs) have focused on sim-003
ulating real-world interactions between users004
and CRSs to create more realistic evaluation005
environments. Despite considerable advance-006
ments, reliably assessing the capability of CRSs007
in eliciting user preferences remains a signif-008
icant challenge. We observe that user-CRS009
interactions in existing evaluation protocols010
resemble a guessing game, as they construct011
target-biased simulators pre-encoded with tar-012
get item knowledge, thereby allowing the CRS013
to shortcut the elicitation process. Moreover,014
we reveal that current evaluation metrics, which015
predominantly emphasize single-turn recall of016
target items, suffer from target ambiguity in017
multi-turn settings and overlook the interme-018
diate process of preference elicitation. To ad-019
dress these issues, we introduce PEPPER, a020
novel CRS evaluation protocol with target-free021
user simulators that enable users to gradually022
discover their preferences through enriched in-023
teractions, along with detailed measures for024
comprehensively assessing the preference elici-025
tation capabilities of CRSs. Through extensive026
experiments, we validate PEPPER as a reliable027
simulation environment and offer a thorough028
analysis of how effectively current CRSs per-029
form in preference elicitation and recommenda-030
tion. https://anonymous.4open.science/031
r/User_Simulator-3906032

1 Introduction033

Conversational recommender systems (CRSs) have034

played an increasingly important role in enhancing035

personalized experiences by providing tailored rec-036

ommendations through interactive dialogues (Sun037

and Zhang, 2018; Jannach et al., 2021; Lin et al.,038

2023a). Throughout the interaction, these systems039

are expected to perform two key tasks: (1) pref-040

erence elicitation - exploring and uncovering user041

preferences by encouraging them to express their042
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That’s not what i’m looking for. I want an animated movie with 
emotional touch and someting with old grandpa appear..  

No. I’m looking for a movie with quirky 
companions that is heart warming..

How about ‘Mary and Max’ ? This film,... Any recent movies had  
a strong impact on you? It’ll help me better recommend your..

I see. I think you might prefer animations with more emphasis 
on the storyline. Do you prefer something adventurous or more 
lighthread and purely fun? 

I’m glad that you like it. If you like the idea of 
Inside Out, you might also like ‘Up’ which..

Figure 1: While existing target-biased user simulators
directly reveal attributes of target items for CRS evalua-
tion (Upper), our target-free user simulator engages with
more general preference (Lower), making preference
elicitation crucial to provide accurate recommendations.

likes and dislikes, and (2) recommendation - retriev- 043

ing personalized items based on the preferences 044

inferred from the dialogue. In the field of CRSs, au- 045

tomatically evaluating the system’s capability has 046

remained challenging (Friedman et al., 2023; Wu 047

et al., 2024; Zhao et al., 2024; Lin et al., 2023b; Zhu 048

et al., 2024). Conventional offline approaches rely- 049

ing on static, pre-collected dialogues from datasets 050

often neglect the system’s responsibility to dynam- 051

ically shape the dialogue itself, whereas evaluat- 052

ing with real user interactions is costly and time- 053

consuming (Zhang and Balog, 2020; Gao et al., 054

2021; Yoon et al., 2024). 055

Recently, many studies (Zhang and Balog, 2020; 056

Friedman et al., 2023) have explored leveraging 057

Large Language Models (LLMs) to simulate user 058

conversations with CRSs, creating more realistic 059
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evaluation environment that reflect the complexity060

of human-agent dialogue. However, while effec-061

tive at assessing recommendation quality, these062

approaches still face challenges in reliably evalu-063

ating the process of preference elicitation. Specifi-064

cally, we highlight two major limitations in existing065

user simulation paradigms: (1) Target-biased user066

simulation: Existing methods assume scenarios067

where users have specific items in mind, thereby068

constructing user simulators that are explicitly in-069

formed by the target item attributes. However, rely-070

ing on the target items to model the user simulator071

significantly hinders user-CRS interactions, as it072

tends to generate static responses that repeatedly073

expose the same target attributes, causing the CRS074

to take shortcuts to the target items. (2) Lack of075

reliable metrics: Existing evaluation metrics are076

typically limited to measuring single-turn recall of077

target items, without accounting for the interme-078

diate elicitation process. As a result, they fail to079

fully assess how well the CRS guides the conver-080

sation to uncover the user’s evolving preferences081

or how effectively it addresses the user’s diverse082

tastes throughout the interaction.083

Motivated by these, this paper begins by investi-084

gating two key research questions: (1) How does085

reliance on target items affect the quality of user-086

CRS interactions? We reveal that target-biased087

user simulators reduce interactions to a simplistic088

guessing game (Yoon et al., 2024), where the CRS089

succeeds by repeatedly guessing the target items090

rather than meaningfully eliciting user preferences.091

This oversimplified interaction inflates CRS perfor-092

mance and leads to substantial performance dispar-093

ities across target items, ultimately distorting eval-094

uation results. (Figure 1 Upper). (2) How reliable095

is Recall@K as a metric for evaluating CRS in096

multi-turn dialogues? We observe that Recall@K097

suffers from target ambiguity in multi-turn settings,098

where the system may hit different target items at099

each turn yet receive the same score—failing to100

capture meaningful differences in recommendation101

behavior. This limitation makes it difficult to dis-102

tinguish whether the CRS is genuinely guiding the103

conversation to uncover new target items or merely104

reiterating previous recommendations.105

To tackle these challenges, we propose a106

novel Protocol for Evaluating Personal Preference107

Elicitation and Recommendation of CRS, named108

PEPPER. To address the target-biased interactions109

of user simulators, PEPPER adopts target-free user110

simulators, modeled on diverse preferences drawn111

from real user interaction histories and reviews. 112

Built upon real user data, our simulators personal- 113

ize their initial behavior based on the review-driven 114

user profiles, instead of relying on fixed target item 115

attributes. In particular, we encourage users to ac- 116

tively participate in conversations with the CRS, 117

enabling them to gradually discover their own pref- 118

erences through interaction (Figure 1 Lower). To 119

achieve this, we simulate users to continuously 120

enrich the responses by incorporating implicit pref- 121

erences derived from reflecting their general pref- 122

erences on items emerging within the interaction. 123

Moreover, we introduce both quantitative and 124

qualitative measures to comprehensively evaluate 125

preference elicitation capabilities of CRSs. For 126

quantitative measure, we propose a new metric, 127

PREFERENCE COVERAGE, to assess how effec- 128

tively the CRS elicits each user’s diverse prefer- 129

ences with high coverage evolving throughout the 130

conversation. For qualitative measure, we propose 131

fine-grained scoring rubrics to evaluate three differ- 132

ent aspects of preference elicitation: proactiveness, 133

coherence and personalization. 134

To summarize, our contributions are as follows: 135

• We provide detailed analysis of two key limi- 136

tations in existing CRS evaluation protocols: 137

(1) target-biased user simulation and (2) lack 138

of reliable metrics. 139

• We propose PEPPER, a novel CRS evaluation 140

protocol with target-free user simulators, en- 141

abling realistic user-CRS dialogues without 142

falling into simplistic guessing games. 143

• We present detailed measures for comprehen- 144

sively evaluating the preference elicitation ca- 145

pabilities of CRSs, encompassing both quan- 146

titative and qualitative approaches. 147

• Through extensive experiments, we demon- 148

strate the validity of PEPPER as a simulation 149

environment and conduct a thorough analysis 150

of how effectively existing CRSs perform in 151

preference elicitation and recommendation. 152

2 Related Work 153

2.1 Conversational Recommender Systems 154

Conversational Recommender System (CRS) aims 155

to elicit user preferences and provide personalized 156

recommendations through conversations. In the 157

field of CRSs, one line of research (Wang et al., 158

2022a,b) has focused on refining architectural de- 159

signs to improve recommendation accuracy, while 160

another (Kostric et al., 2021; Ziegfeld et al., 2025) 161
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Method Dataset
(Movie Domain)

User Simulation CRS Evaluation

User Profile Input Target-free Free-form Interaction Strategy Pref. Elicit. Recommend.

iEvaLM (Wang et al., 2023) Redial, OpenDialKG Target Item Title ✗ ✗ ✗ ✗ ✓

SimpleUserSim (Zhu et al., 2024) Redial, OpenDialKG Target Item Attr. ✗ ✗ ✗ ✗ ✓

CSHI (Zhu et al., 2025) MovieLens Target Item Attr., Long-term Pref. ✗ ✓ Intent Understanding ✗ ✓

CONCEPT (Huang et al., 2024) LLM-Generated Target Item Attr., Personality ✗ ✓ Feeling Generation ✗ ✓

PEPPER (Ours) IMDB General Preference ✓ ✓ Preference Reflection ✓ ✓

Table 1: Comparison of existing CRS evaluation protocols with LLM-based user simulators.

has emphasized enhancing the preference elicita-162

tion process to support more personalized interac-163

tions. Despite significant advancements, previous164

evaluation protocols have predominantly focused165

on measuring final recommendation accuracy us-166

ing pre-collected dialogue datasets (Chen et al.,167

2019; Wang et al., 2022b,a), often overlooking the168

interactive process of preference elicitation. Conse-169

quently, automatic evaluation of CRSs has emerged170

as a key challenge in CRS, as it requires to create171

more realistic testing environments that reflect the172

complexity of human-agent dialogue.173

2.2 CRS Evaluation with User Simulator174

Recently, researchers have focused on develop-175

ing user simulators for evaluating the performance176

of CRSs (Zhang and Balog, 2020; Yoon et al.,177

2024). iEvaLM (Wang et al., 2023) addresses the178

limitations of traditional offline evaluation meth-179

ods by dynamically extending pre-collected dia-180

logues through free-form interactions. While effec-181

tive, concerns have been raised about data leakage,182

where target item titles are disclosed in existing di-183

alogue histories or user prompt, leading to inflated184

evaluation results. To mitigate this, (Zhu et al.,185

2024; Huang et al., 2024; Zhu et al., 2025) have186

tried to model user preferences using only target187

item attributes (e.g., genres). However, this sim-188

plification still falls short of fully addressing the189

core issue, as providing target attributes can still190

shortcut the recommendation process by implicitly191

narrowing the candidate space. A summary of the192

existing simulation methods is shown in Table 1.193

3 Preliminary Analysis194

3.1 Focus and Task195

Focus: We focus on unveiling the impact of target-196

biased user simulation and the limitations of current197

evaluation metrics in assessing CRS performance.198

Specifically, we analyze how (1) reliance on prede-199

fined target items and (2) the use of Recall as an200

evaluation metric distort the evaluation process.201

Task: CRSs aim to identify a user’s target items202

through multi-turn, preference-eliciting dialogues.203

Formally, given a user-item dataset, U and I denote 204

the sets of users and items, respectively. For each 205

user u ∈ U , the preference is modeled with a set 206

of target items iu ⊂ I . During interaction, the user 207

provides utterances ut at each turn, either stating 208

their preferences or giving feedback on prior rec- 209

ommendations. The CRS then generates a response 210

rt along with a predicted item list Pt ⊂ I. The 211

ultimate goal of the CRS is to recommend items 212

contained in the user’s target set iu. 213

3.2 Evaluation Setup 214

Dataset: We use IMDB1 movie dataset to initial- 215

ize user simulators and conduct our experiments 216

on CRSs trained with Redial (Li et al., 2018) and 217

OpenDialKG (Moon et al., 2019) datasets. To en- 218

sure a reliable evaluation, we have aligned movie 219

entities in IMDB with each CRS dataset by retain- 220

ing only the items shared between them. Further 221

details on the dataset is described in A.1. 222

Metric. To reflect how the CRS performs through- 223

out the interaction, we use Recall@(t,K), which 224

measures the proportion of target items success- 225

fully retrieved at the t-th turn. 226

CRS Baselines. We evaluate four representative 227

CRSs, including three supervised models—KBRD, 228

BARCOR, and UniCRS —and one LLM-based 229

method, ChatGPT. The implementation details of 230

these models are provided in Appendix A.2 231

Target-biased User Simulation. Following (Zhu 232

et al., 2024), we initialize the preferences of the 233

target-biased user simulators by excluding movie 234

titles and relying solely on item attribute informa- 235

tion (i.e., genres, directors, stars, and plot sum- 236

maries). To explore how target-item reliance im- 237

pacts user-CRS interaction, we further divide the 238

target item set into two parts: a randomly sampled 239

subset, denoted as the selected set, and the remain- 240

ing subset, denoted as the residual set. We then 241

implement target-biased user simulators using only 242

the attributes from the selected set. We hypoth- 243

esize that user preferences modeled solely from 244

1https://www.imdb.com/
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Figure 2: Comparison between selected and residual re-
call for revealing target-item reliance in user simulators.

the selected target attributes fail to fully capture245

the diversity of human interests. Otherwise, such246

attribute-based representations would be sufficient247

to generalize and allow the CRS to discover the full248

range of target items, including the residual set. To249

examine this, we compare CRS performance on the250

selected and residual sets. Further implementation251

details are provided in Appendix A.3.252

3.3 Results and Analysis253

Target-biased user simulation results in a guess-254

ing game. As shown in Figure 2, the results re-255

veal a significant performance disparity for target-256

biased user simulation. For example, on the257

IMDBOpenDialKG dataset, ChatGPT achieves an av-258

erage score of 0.86 for the selected set but only 0.12259

for the residual set. Similar trends are observed260

in other CRS models and in the results from the261

IMDBReDial dataset, further confirming the pres-262

ence of significant bias. We interpret this bias as263

a consequence of target disclosure, where target-264

biased user simulators tend to prioritize certain265

target items based on their known attributes, re-266

sulting in static and narrowly focused preferences267

that fail to generalize to the residual set. Moreover,268

target-biased simulators tend to provide shortcuts269

for CRSs by explicitly revealing the target item270

attributes, reducing the need for meaningful prefer-271

ence elicitation and substantially inflating evalua-272

tion results. This calls into question the reliability273

of existing evaluation protocols and highlights the274

need for a more realistic user simulation approach.275

Recall@K fails to reflect meaningful prefer-276

ence elicitation. Preference elicitation in con-277

versational recommendation involves progressively278

uncovering users’ diverse preferences through inter-279

active dialogue. However, relying solely on Recall280

exhibits structural limitations that prevent it from281

properly reflecting this elicitation process. Specif-282

ically, Recall@K (1) permits redundancy by al-283

lowing repeated counting of identical items across284

turns (refer to as target ambiguity) and (2) measures 285

performance independently at each turn, ignoring 286

previously discovered or missed preferences. For 287

example, as shown in Figure 3, ChatGPT consis- 288

tently explores new items at each turn, indicated by 289

its high Jaccard distance, whereas KBRD rarely up- 290

dates its recommendations (low Jaccard distance). 291

Although ChatGPT actively explores new prefer- 292

ences, Recall@K captures only the low hit rate 293

per turn, failing to acknowledge its consistent ef- 294

forts and treating both models similarly, despite 295

substantial differences in their preference explo- 296

ration behaviors. Therefore, Recall@K alone fails 297

to capture the process of preference elicitation and 298

points to the need for a metric that reflects diverse 299

preference discovery throughout the dialogue. 300
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Figure 3: (Upper) Recall@50 of the different CRSs
across 20 dialogue turns on the IMDBReDial dataset.
(Lower) Average Jaccard distance between consecutive
recommendation lists of CRS at each turn.

4 PEPPER: Target-free CRS Evaluation 301

Guided by the limitations of existing evaluation 302

protocols, we introduce PEPPER, a novel evalua- 303

tion protocol designed to comprehensively assess 304

both preference elicitation and recommendation 305

abilities of CRSs, addressing key shortcomings of 306

prior approaches. Specifically, it incorporates two 307

key components: (1) target-free user simulators 308

with richly expressed preferences derived from real 309

user interaction histories and reviews, and (2) pref- 310

erence elicitation metrics that thoroughly measure 311

a CRS’s ability to uncover diverse user preferences 312

and deliver accurate recommendations. 313
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storytelling and stunning 
peformances...

    [Likes]: Smooth Direction 
Intelligent and Creative 

    [Dislikes]: Lacking 
emotional engage, .. 

<Reflected Preference>

I recently rewatched ‘The Dark Knight’, 
and its deeper themes left a strong 
impression on me. The philosophical 
message.. 

If you enjoyed that, you might like 
‘Her’ as well. It explores profound.. 

I haven’t seen Her yet, but I’ve heard 
about it. I like the idea of ... But I’ve also 
heard that the moral..

I get that—Her can 
definitely leave you with 
mixed emotions. If you..

: User Simulator

Input-output trajectories 

at each turn

: CRS

Unseen: Her 

[Like]: Unique 
concept, emotional 
depth 

[Dislike]: Vague 
morale, Depressing

Seen: Dune 

[Like]: Emotional 
Story line, thoughtful 
provoking theme. 

[Dislike]: Pacing felt 
slow at time. 

Reflection

Figure 4: Overview of PEPPER. Within our protocol, a user simulator and a CRS interact via (1) item interface
and (2) dialogue interface. The user simulator is initialized with general preferences derived from real-world
datasets (i.e., IMDB). [Blue line] At each interaction, the user simulator first inspects top-k recommendations in
the item interface, classifying the items into seen and unseen sets. It then uses these classifications and the general
preferences to generate reflected preferences. Finally, it provides a tailored response enriched with detailed personal
preferences. [Green line] In response, the CRS generates an utterance and presents new item recommendations.

4.1 Target-free User Simulator314

Unlike prior approaches (Wang et al., 2023; Zhu315

et al., 2024, 2025; Huang et al., 2024), which as-316

sume scenarios where users have predefined tar-317

get items in mind, we design our user simulators318

with diverse preferences derived from actual user319

experiences. We aim to construct target-free simu-320

lators, instructing them to seek target items without321

any predefined target information. Instead, these322

user simulators gradually elaborate on their pref-323

erences through ongoing conversations, mirroring324

how real users naturally articulate and discover325

their interests. To achieve this, we introduce two326

core components: General Preferences and Re-327

flected Preferences. Specifically, general prefer-328

ences are established as a foundational profile for329

the user simulator, providing a broad base of in-330

terests and inclinations. Reflected preferences, on331

the other hand, enrich the conversation context by332

allowing the user simulator to dynamically adapt to333

the interaction, accordingly refine its preferences,334

and thoughtfully respond to the CRS. Figure 4 illus-335

trates the overall interaction flow of our framework.336

General Preferences. To establish general pref-337

erences, we leverage a real-world user database338

with extensive interaction histories and informative339

reviews. These reviews provide insights into per-340

sonal preferences that extend beyond simple item341

attributes, capturing nuanced opinions on aspects342

such as storyline, pacing, and emotions. However, 343

given that user-generated reviews often contain 344

noise and ambiguous expressions, following (Kim 345

et al., 2024), we employ ChatGPT to extract and 346

transform each collected reviews into clear, struc- 347

tured binary preferences categorized into Likes and 348

Dislikes. We then partition each user’s interaction 349

history into two distinct subsets: seen items and 350

target items. The seen items refer to those the 351

user has previously interacted with. In contrast, 352

the target set, reserved for CRS evaluation, con- 353

sists exclusively of highly rated items, ensuring 354

a reasonable basis for their use as the evaluation 355

set. When generating general preference, we pro- 356

vide ChatGPT with metadata and corresponding 357

binary preferences derived solely from the seen 358

items. The model is then instructed to generate de- 359

scriptive narratives highlighting the most represen- 360

tative features. These narratives are subsequently 361

used to initialize our simulators, each tailored to 362

mimic a distinct instance from the user database. 363

Through this approach, we ensure that user sim- 364

ulators remain uninformed of target items while 365

being robustly grounded in detailed general pref- 366

erences. This grounding allows their preferences 367

to be sufficiently generalizable to discover target 368

items, thereby closely emulating real users. 369

Reflected Preferences. Beyond simply articulat- 370

ing general preferences, real users evaluate items 371
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through the lens of their past interactions. They372

tend to uncover their implicit preferences while373

interacting with recommendation systems, show-374

ing a dynamic and adaptable nature. Reflected375

preference functions to capture this nuanced user376

behavior, enabling user simulators to reflect their377

preferences with regard to current recommenda-378

tions responsively. To achieve this, we categorize379

the items recommended by the CRS at each turn380

into two sets: a seen set and an unseen set. For381

seen items, we allow the user simulators to revisit382

their corresponding reviews and recalling what they383

liked or disliked. For unseen items, we prompt the384

user simulators to shape opinions based on their385

general preferences, identifying what they are ex-386

pected to like or dislike. These reflected prefer-387

ences are then provided as additional input for the388

user’s subsequent response. This approach enables389

user simulators to proactively provide feedback on390

both previously interacted items and newly encoun-391

tered ones, consequently enriching the dialogue.392

4.2 Evaluation on Preference Elicitation393

Since the preference elicitation ability can be de-394

fined as "how proactively a CRS leads the conver-395

sation in a natural and engaging manner, guiding396

the user through discovering a diverse range of397

preferences to achieve a satisfactory experience",398

we consider the following key aspects:399

(1) Preference Coverage: evaluates how effec-400

tively CRS discover the diverse preferences of users401

through the dialogue. (2) Proactiveness (Deng402

et al., 2024): characterizes a CRS that actively403

guides the conversation by making suggestions or404

asking relevant questions to actively uncover and405

clarify the user’s preferences. (3) Coherence Dziri406

et al. (2019): reflects the CRS’s proficiency in main-407

taining fluid and natural interactions, providing408

contextually appropriate responses. (4) Personal-409

ization (Lin et al., 2023a): refers to how well the410

system provides recommendations and information411

that align with the user’s preferences, ensuring a412

satisfying interaction experience.413

Based on these key aspects, we analyze CRSs414

both quantitatively and qualitatively. For quantita-415

tive analysis, we measure PREFERENCE COVER-416

AGE to assess how the CRS identifies each user’s417

target items with high coverage throughout the con-418

versation. For qualitative analysis, we evaluate419

Proactiveness, Coherence, and Personalization to420

assess how effectively the CRS integrates the pref-421

erence elicitation process into the conversation.422

Quantitative Metric. To quantitatively measure 423

how well the system understands user’s evolving 424

preferences and makes accurate recommendations 425

as the conversation progresses, we propose novel 426

metrics, PREFERENCE COVERAGE (PC) and PREF- 427

ERENCE COVERAGE INCREASE RATE (PCIR). 428

Specifically, PC is defined as follows: 429

PCt =
1

|U |
∑
u∈U

|(
⋃t

x=1 P
u
x ) ∩ Y (u)|

|Y (u)| (1) 430

Here, U denotes the set of users, Y (u) is the set 431

of target items for user u ∈ U , and P u
x represents 432

the list of items recommended to user u at turn x. 433

This metric cumulatively measures the capability 434

of a CRS to address diverse user preferences and 435

provide accurate recommendations. Building on 436

this concept, we additionally define PREFERENCE 437

COVERAGE INCREASE RATE at round t as follows: 438

PCIRt = PCt − PCt−1 (2) 439

PCIRt indicates the change of PREFERENCE COV- 440

ERAGE between round t−1 and t. The incremental 441

rate of PC reflects how effectively the system dis- 442

covers new preferences and delivers corresponding 443

recommendations at each turn. 444

Qualitative Metric. To qualitatively analyze the 445

preference elicitation ability of CRSs, following 446

(Liu et al., 2023), we adopt an automated approach, 447

employing an LLM (i.e., GPT-4o) as the evaluator. 448

Specifically, we task the LLM with fine-grained 1- 449

to-5 scoring rubrics with specified criteria for each 450

rating to evaluate Proactiveness, Coherence, and 451

Personalization based on generated dialogues and 452

each simulator’s general preferences. 453

5 Experiments 454

We conduct comprehensive experiments to demon- 455

strate the reliability of PEPPER. Detailed settings 456

for user simulation are provided in Appendix A.4, 457

and the implementation details for qualitative eval- 458

uation are presented in Appendix A.5.1. 459

5.1 Reliability of PEPPER 460

Target-free user simulator of PEPPER closely 461

reflects human preferences. We investigate the 462

extent to which our target-free user simulator can 463

truly represent human preferences. To achieve this, 464

we structure our experiments using rating informa- 465

tion, as it provides a clear and quantifiable indica- 466

tion of user preferences for items. For comparison, 467
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we provide baseline user simulators initialized with468

raw reviews and binary preferences (e.g., Likes469

and Dislikes) to study the effectiveness of general470

preference described in Section 4.1. As shown in471

Table 2, we observe that our simulator impressively472

identifies high-rated items that align with its ac-473

tual user ratings, achieving an accuracy of 69.5%.474

In contrast, our findings reveal that raw reviews475

and binary preferences are less effective at repre-476

senting real user preferences. This highlights the477

importance of reducing noise and ambiguity in raw478

reviews and modeling user preference with detailed479

narratives rather than simplistic binary expressions.480

User Preference Representation Types Accuracy (%)

Raw review 50.6
Binary preference 60.8
PEPPER (General Preference) 69.5

Table 2: Evaluation results of target-free user simula-
tor’s capability to reflect human preference.

Target-free user simulator of PEPPER closely481

emulates human behavior. To further demon-482

strate the efficacy of our approach, we conduct a483

human evaluation via Amazon Mechanical Turk484

(AMT). Specifically, we compare the quality of485

generated dialogues from target-biased and target-486

free user simulations, focusing on how effectively487

the user simulators provide meaningful feedback488

and how naturally the dialogue flows without re-489

sembling a guessing game. We compare 100 ran-490

domly sampled dialogues from both user simula-491

tions. The results, shown in Figure 5, demonstrate492

that our approach achieves superior performance493

in capturing diverse user behaviors and maintain-494

ing a fluid dialogue progression, highlighting its495

effectiveness in producing realistic interactions.

0 20 40 60 80 100

User Engagement  
& Feedback Quality

Win Ratio (%)

Preference 
Diversity

Naturalness  
& Coherence

78.3 %

64.7 %

79.7 % 20.3 %

35.3 %

21.7 %

: Target-free simulator : Target-biased simulator

Figure 5: Human evaluation on the quality of generated
dialogues from Target-free vs Target-biased simulator.496

Target-free user simulator of PEPPER mitigates497

bias. We provide a comparative analysis to further498

reveal the extent of bias introduced by target-biased499

user simulations. Our findings in Section 3.3 shows500

that target-biased simulations result in significant501

performance disparities; this limitation becomes502

even more evident when measured with PC. As503

shown in Table 3, biased simulators significantly 504

inflate the performance for the selected set. In con- 505

trast, target-free simulators demonstrate consistent 506

PC, indicating balanced exploration across all tar- 507

get items. This suggests that target-free approach 508

ensures unbiased simulation, providing a reliable 509

framework for evaluating preference elicitation. 510

Dataset CRS Target-biased Target-free

PCsel PCres ∆ PCsel PCres ∆

IMDB
Redial

KBRD 0.040 0.030 -0.010 0.060 0.050 -0.010
BARCOR 0.285 0.165 -0.120 0.135 0.160 +0.025
UniCRS 0.410 0.160 -0.250 0.130 0.110 -0.020
ChatGPT 0.850 0.090 -0.760 0.120 0.125 +0.005

IMDB
OpenDialKG

KBRD 0.125 0.095 -0.030 0.125 0.090 -0.035
BARCOR 0.155 0.115 -0.040 0.155 0.155 +0.000
UniCRS 0.305 0.105 -0.200 0.125 0.120 -0.005
ChatGPT 0.950 0.245 -0.705 0.200 0.200 +0.000

Table 3: Recommendation Accuracy of CRSs under
target-biased and target-free user simulations. We report
PCselected@50, PCresidual@50, and their difference (∆)
from 100 randomly sampled user instances.

Qualitative measure of PEPPER aligns with hu- 511

man judgement. To further validate the reliability 512

of the qualitative metric in PEPPER, we conduct 513

a meta-evaluation to verify its alignment with hu- 514

man judgments. Specifically, we collect human 515

ratings for a total of 100 samples. Each response 516

is evaluated by three human annotators based on 517

the same rubric for Proactiveness, Coherence, and 518

Personalization. We then compute the percentage 519

of agreement and Randolph’s Kappa between the 520

human ratings and the automatic scores produced 521

by PEPPER. From the results in Table 4, the agree- 522

ment rates between PEPPER and human annotators 523

reach 88% for Proactiveness, 92% for Coherence, 524

and 96% for Personalization, with corresponding 525

Cohen’s Kappa of 0.81, 0.87, and 0.93, respec- 526

tively, indicating a strong alignment between the 527

model’s judgments and human assessments. 528

Evaluation Criteria Agreement Cohen’s Kappa (95%CI)

Proactiveness 88.00 0.81
Coherence 92.00 0.87
Personalization 96.00 0.93

Table 4: Both human evaluators and PEPPER rate the
samples on a 1–5 Likert scale. We report the agreement
rate and Cohen’s Kappa between PEPPER and human.

5.2 CRS Evaluation with PEPPER 529

Leveraging the PEPPER, we evaluate and analyze 530

the performance of existing CRS baselines with 531

both quantitative and qualitative measures. 532
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Dataset CRS
Evaluation Metric

PC20@5 PC20@10 PC20@20 PC20@50 Recall@5 Recall@10 Recall@20 Recall@50

IMDBRedial

KBRD 0.0081 0.0127 0.0194 0.0477 0.0066 0.0120 0.0178 0.0353
BARCOR 0.0155 0.0307 0.0472 0.0911 0.0072 0.0128 0.0225 0.0525
UniCRS 0.0097 0.0186 0.0447 0.0905 0.0035 0.0052 0.0177 0.0375
ChatGPT 0.0334 0.0495 0.0671 0.1041 0.0011 0.0035 0.0053 0.0135

IMDBOpenDialKG

KBRD 0.0128 0.0197 0.0422 0.0926 0.0081 0.0096 0.0126 0.0281
BARCOR 0.0128 0.0300 0.0567 0.1220 0.0040 0.0133 0.0261 0.0651
UniCRS 0.0163 0.0275 0.0534 0.1174 0.0060 0.0067 0.0106 0.0200
ChatGPT 0.0573 0.0826 0.1236 0.2082 0.0083 0.0083 0.0168 0.0480

Table 5: Evaluation of CRSs under our evaluation protocol. We report PREFERENCE COVERAGE and Avg.Recall
across 20 conversation turns to evaluate both the preference elicitation and recommendation accuracy of CRSs.

CRS
Evaluation Metric

PCIRavg Proactiveness Coherence Personalization

IM
D

B
R

eD
ia

l

KBRD 0.0019 1.88 2.54 2.04
BARCOR 0.0019 2.03 2.03 1.46
UniCRS 0.0030 2.14 2.74 2.25
ChatGPT 0.0043 4.59 4.83 4.89

IM
D

B
O

pe
nD

ia
lK

G KBRD 0.0016 1.70 1.93 1.76
BARCOR 0.0030 2.31 2.82 2.11
UniCRS 0.0050 2.15 2.62 2.20
ChatGPT 0.0081 4.51 4.95 4.35

Table 6: Comparison on preference elicitation perfor-
mances of the CRSs. The PCIRavg denotes the average
PCIR value per turn across the entire conversation.

Quantitative Evaluation. From Table 5, ChatGPT533

outperforms other models in terms of PC, benefit-534

ing from its advanced conversational abilities that535

support effective preference elicitation. BARCOR536

and UniCRS show moderate PC improvements537

over turns, attributed to the basic conversational538

understanding of their underlying PLMs (BART539

and DialoGPT). In terms of the difference between540

PC and Recall, KBRD and ChatGPT show sim-541

ilar Recall values but present a clear gap in PC.542

This further strengthen the findings in Section 3.3,543

indicating that while Recall is effective for measur-544

ing per-turn target item accuracy, it fails to assess545

preference elicitation at the dialogue level.546

To gain deeper insights into how preference elic-547

itation unfolds over time, we analyze PC at each548

turn of the dialogue. As shown in Figure 6, Chat-549

GPT maintains a consistently upward trend in PC550

over turns, suggesting a sustained effort to explore551

user preferences incrementally rather than rely-552

ing solely on previously revealed information. In553

contrast, BARCOR and UniCRS exhibit slower554

PC growth, reflecting more reactive conversational555

strategies. These trends are further supported by the556

PCIR scores in Table 6, where ChatGPT achieves557

the highest score, highlighting its proactive explo-558

ration of evolving user preferences and its ability to559

adapt recommendations throughout the dialogue.560

Figure 6: PC values of the CRSs for every turn t in the
IMDBReDial dataset.

Qualitative Evaluation. According to Table 6, 561

ChatGPT significantly outperforms other base- 562

line models in terms of Proactiveness, Coher- 563

ence, and Personalization. Specifically, ChatGPT 564

demonstrates superior Proactiveness, attributed to 565

its advanced language understanding capabilities, 566

whereas other models are constrained by their re- 567

liance on fixed datasets. In terms of Coherence, 568

ChatGPT generates more fluent and natural re- 569

sponses, closely resembling human dialogues. It 570

also excels in Personalization, effectively tailor- 571

ing contexts to individual user preferences. These 572

results, also supported quantitatively by Figure 6, 573

show that ChatGPT rapidly achieves higher PC 574

scores, demonstrating its ability to effectively cap- 575

ture context shifts throughout the dialogue and 576

seamlessly adapt to user feedback. 577

6 Conclusion 578

In this work, we proposes PEPPER, a novel evalu- 579

ation protocol that comprehensively assesses both 580

preference elicitation and recommendation accu- 581

racy in CRSs. PEPPER incorporates target-free 582

user simulators, along with both quantitative and 583

qualitative metrics, targeting four distinct aspects 584

of the preference elicitation process. Through ex- 585

tensive experiments, we demonstrate the effective- 586

ness of PEPPER, offering valuable insights into the 587

limitations of existing CRS evaluation protocols. 588
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Limitations589

While our study offers valuable insights into evalu-590

ating preference elicitation in CRS, it is not without591

limitations. One limitation is that our experiments592

are conducted solely in the movie domain, where593

user preferences are well-articulated through re-594

views. This setting allows us to simulate nuanced595

behaviors in a controlled environment, but general-596

izing to other domains remains an open challenge.597

We believe the design of our simulator is domain-598

agnostic and can be adapted to new settings, though599

further validation is required.600

Another limitation lies in our reliance on propri-601

etary LLMs such as GPT-4o-mini for both simula-602

tion and evaluation, which may introduce genera-603

tion patterns not fully representative of other mod-604

els. To reduce this concern, we provide additional605

results using LLaMA-3.1-8B-Instruct, confirming606

the robustness of our framework across different607

architectures. Nonetheless, broader comparisons608

with diverse model backbones are encouraged to609

further establish generalizability.610

A further limitation is that while PEPPER611

presents new evaluation metrics and perspectives612

for understanding CRS behaviors, it does not ex-613

plore methods for improving CRS models them-614

selves. The focus of this work is to analyze how615

existing systems perform in eliciting user prefer-616

ences through dialogue. Future work could build617

on these insights to develop CRS architectures that618

better support preference elicitation and adapt more619

effectively to evolving user needs.620

Ethical Consideration621

Text generated by LLMs may contain content that622

is harmful, biased, or offensive. However, in our623

research, we take several steps to minimize these624

risks. The source dataset, IMDb Movies, is publicly625

available under the CC0 Public Domain license and626

includes human-annotated data. Additionally, we627

manually inspect and filter the dialogues generated628

through user–CRS interactions to eliminate toxic,629

offensive, or biased language. For human evalua-630

tion, we recruit three independent annotators per631

unit task via Amazon Mechanical Turk (AMT), en-632

suring fair compensation. Each annotator is paid633

$0.15 per task. The textual content presented in this634

paper contains no personally identifiable informa-635

tion and poses no risk of re-identifying individuals636

or groups.637
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A Appendix790

A.1 Dataset791

IMDB is a comprehensive movie database that fea-792

tures extensive user profiles with rich interaction793

histories and detailed reviews. Redial is a CRS794

dataset focused on movie recommendations, cre-795

ated using crowd-sourced dialogues through Ama-796

zon Mechanical Turk (AMT). OpenDialKG is also797

a CRS dataset with a broader range of domains,798

including movies, sports, books and music. How-799

ever, in this study, we focus on the movie domain800

due to its accessibility and prominence in CRS re-801

search (Jannach et al., 2021). We have manually802

enriched the OpenDialKG dataset by collecting803

movie plots from the IMDB website, as it does not804

provide movie plots in its metadata. To ensure reli-805

able preference modeling, we also excluded users806

with fewer than 10 interactions. The statistics of807

the processed IMDB user dataset are summarized808

in Table 7.

Dataset #Users #Interaction Histories

IMDBReDial 3,306 66,075
IMDBOpenDialKG 2,666 47,337

Table 7: Statistics of processed datasets.

809

A.2 CRS Baselines810

We follow (Wang et al., 2023) for the implemen-811

tation of CRS models, including KBRD (Chen812

et al., 2019), BARCOR (Wang et al., 2022a),813

UniCRS (Wang et al., 2022b) and ChatGPT.814

We integrate a recommender module using the815

text-embedding-ada-002 model (Neelakantan816

et al., 2022) for ChatGPT to constrain the output817

space of LLM based methods, as they tend to gen-818

erate items that are beyond the scope of evaluation819

datasets. Inspired by (Friedman et al., 2023; Zhang820

et al., 2024), we introduce an item interface, en-821

abling users to view and interact with the current822

recommendations. This approach more closely mir-823

rors real-world scenarios, where users actively en-824

gage with recommendations and provide implicit825

feedback, facilitating the dynamic refinement of826

their preferences. Recommendations are retrieved827

using each CRS’s specific retrieval model. Once828

retrieved, the items are manually augmented with829

corresponding plots and incorporated into the re-830

flection generation prompts of our user simulators.831

• KBRD (Chen et al., 2019): enhances the se- 832

mantic understanding of entities mentioned 833

in conversation history by bridging the rec- 834

ommendation module and transformer-based 835

conversation module through knowledge prop- 836

agation. 837

• BARCOR (Wang et al., 2022a): presents a 838

unified framework based on BART (Lewis, 839

2019) that integrates both recommendation 840

and response generation tasks into a single 841

model. 842

• UniCRS (Wang et al., 2022b): proposes a uni- 843

fied framework based on DialoGPT (Zhang 844

et al., 2019) that incorporates a semantic fu- 845

sion module and knowledge-enhanced prompt 846

learning to improve the association between 847

dialogue history and knowledge graphs. 848

• ChatGPT: is an LLM that demonstrates re- 849

markable text understanding and generation 850

abilities. In this study, we employ gpt-4o- 851

mini (Ouyang et al., 2022) as the conversation 852

module and text-embedding-ada-002 (Nee- 853

lakantan et al., 2022) as the retrieval module. 854

A.3 Target-biased User Simulation 855

we use gpt-4o-mini as the backbone language 856

model to simulate the target-biased user simula- 857

tor. Following prior work (Zhu et al., 2024; Huang 858

et al., 2024; Zhu et al., 2025; Wang et al., 2023), 859

the user simulator is modeled with target item at- 860

tributes, including genres, directors, stars, and plot 861

summaries, with the item title intentionally ex- 862

cluded. Each dialogue is simulated for up to 20 863

turns, allowing sufficient interaction for preference 864

elicitation. We evaluate the performance using 100 865

sampled user instances from each dataset. 866

A.4 Target-free User Simulation 867

A.4.1 Interaction Environment 868

Our interaction environment comprises two gen- 869

erative agents: a target-free user simulator and a 870

CRS. These agents engage through a dialogue inter- 871

face and an item interface. The dialogue interface 872

bridges communication between the user and the 873

CRS, while the item interface presents top-K rec- 874

ommendations predicted by the CRS at each turn, 875

along with their metadata (i.e., movie plots). By 876

incorporating the item interface, we closely emu- 877

late real-world scenarios where users can access 878

detailed information about the recommended items. 879

For user simulation, we start by extracting the 880

most representative preferences from a user’s raw 881
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reviews and categorize them into Likes and Dis-882

likes. These preferences are then transformed into883

descriptive narratives, depicting the general prefer-884

ences of the user simulator. Next, the user simulator885

initiates a entirely new conversation by requesting886

recommendations that align with its general prefer-887

ences. In response, the CRS generates an utterance888

and presents the top-K item suggestions through889

the item interface. As interactions continue, the890

user simulator not only communicates with the rec-891

ommender but also engages with the item interface892

by carefully examining each suggested item. For893

previously interacted items (i.e., seen), it retrieves894

past reviews, while for newly encountered items895

(i.e., unseen), it shapes opinions based on its gen-896

eral preferences. This dual engagement allows the897

simulator to elicit its own preferences and provide898

detailed feedback during subsequent interactions,899

thereby enriching the dialogue to better align with900

the user’s interests and facilitating the discovery of901

relevant items.902

A.4.2 Implementation Detail903

We conduct experiments using 500 user simulators904

for each dataset. We adopt gpt-4o-mini for our905

target-free user simulations, comprising (1) pref-906

erence extraction, (2) general preference genera-907

tion, (3) reflected preference generation, and (4) re-908

sponse generation. We leverage zero-shot prompt-909

ing to guide the model through each process. To910

maintain consistent and deterministic outputs, we911

fix the temperature parameter for user simulation912

at 0. The number of items presented in the item913

interface is set to 4, and each simulated dialogue914

continues up to 20 turns.915

A.4.3 Evaluating Simulator’s Capability to916

Represent Human Preference917

In Section 5.1, we provide a study to evaluate how918

closely the proposed target-free user simulator re-919

flects real human preferences. The experiment is920

conducted as follows: first, a user simulator takes921

a pair of target items rated by its corresponding922

user. Then, we instruct the simulator to select the923

item that aligns more closely with its general prefer-924

ences. Afterward, we assess the simulator’s ability925

to correctly identify the item with the higher rating926

based on the actual user scores.927

A.4.4 Target-free user simulation with an928

open-source LLM929

We verify the reproducibility of PEPPER through930

experiments using Llama-3.1-8B-Instruct as the931

CRS
PEPPERLlama

PC15@5 PC15@10 PC15@20 PC15@50

IM
D

B
R

eD
ia

l

KBRD 0.0020 0.0020 0.0020 0.0091
BARCOR 0.0165 0.0215 0.0365 0.0737
UniCRS 0.0115 0.0185 0.0400 0.0835
ChatGPT 0.0287 0.0318 0.0523 0.0926

IM
D

B
O

pe
nD

ia
lK

G KBRD 0.0050 0.0091 0.0320 0.0670
BARCOR 0.0167 0.0207 0.0498 0.0993
UniCRS 0.0233 0.0350 0.0617 0.1022
ChatGPT 0.0287 0.0545 0.0877 0.1829

Table 8: Recommendation Accuracy of CRS Models
with Target-Free User Simulations using LLaMA-3.1-
8B-Instruct.

base model for our target-free user simulators. 932

The experiments involve 100 user samples, with 933

each conversation simulated for up to 15 turns. 934

The results, presented in Table 8, reveal that 935

LLaMA-3.1-8B-Instruct shows consistent eval- 936

uation performance across different CRSs as Chat- 937

GPT. These findings validate not only the repro- 938

ducibility of our framework with open-source mod- 939

els but also its effectiveness for CRS evaluation. 940

A.5 Qualitative Evaluation 941

A.5.1 Implementation Details 942

Following (Liu et al., 2023), We employing an 943

LLM (i.e., GPT-4o) as the evaluator. We task the 944

LLM with fine-grained scoring rubrics on a 1-to-5 945

scale, with clear criteria for each rating. The in- 946

puts to our qualitative evaluation process comprise 947

generated dialogues and the general preferences 948

unique to each user simulator. In assessing Proac- 949

tiveness and Coherence, the LLM is instructed to 950

carefully analyze the full dialogue history, exam- 951

ining how proactively the system discovers user 952

needs while maintaining a fluent conversational 953

tone. For Personalization, we leverage the LLM 954

to evaluate whether the recommender’s responses, 955

including recommendations and explanations, are 956

consistent with the simulator’s general preferences. 957

A.6 Impact of Item Quantity in Item Interface 958

We explore whether changing the number of items 959

in the item interface influences the quality of user- 960

CRS interactions, as having more items allows the 961

user simulator to better generate its reflected pref- 962

erences. We conduct experiments using 100 user 963

simulators, with the number of items set to 0, 4, 7, 964

and 10, where 0 is the setting in which preference 965
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reflection is excluded. Each dialogue is simulated966

for 15 turns, and the results are shown in Table 9.967

We observe a significant performance gap when968

the preference reflection process is excluded from969

the interaction, indicating its critical role in enhanc-970

ing the quality of user-CRS interactions. However,971

when preference reflection is included, we observe972

that increasing the item count has no measurable973

impact on the interactions. We attribute this to974

the behavior of our user simulators, which tend to975

prioritize reflecting preferences for the most rele-976

vant recommendations rather than engaging with977

all available options. In fact, some CRSs, such as978

UniCRS, exhibit a slight decrease in performance979

as the item count increases. This indicates that sim-980

ply adding more items may instead introduce noise981

into the interaction process.

CRS
# of items

0 4 7 10

IM
D

B
R

eD
ia

l

KBRD 0.0199 0.0121 0.0138 0.0129
BARCOR 0.0715 0.0825 0.0873 0.0842
UniCRS 0.0860 0.0938 0.0936 0.0772
ChatGPT 0.1038 0.1130 0.1039 0.1187

IM
D

B
O

pe
nD

ia
lK

G KBRD 0.1060 0.0845 0.0737 0.0662
BARCOR 0.0817 0.0968 0.1043 0.1005
UniCRS 0.1275 0.1485 0.1410 0.1278
ChatGPT 0.1865 0.2262 0.2243 0.2033

Table 9: CRS performance in user simulations with dif-
ferent numbers of items presented in the item interface.
We assess PC@50 for evaluation.982

B Case Study983

Table 10 presents a dialogues generated from984

IMDBOpenDialKG, demonstrating a clear alignment985

between our user simulator’s responses and the986

corresponding real user preferences. For instance,987

regarding the movie "Ocean’s Eleven," the user988

mentions in their raw review an appreciation for the989

film’s photography, describing it as "simply won-990

derful: tinsel colours, beguiling bright lights, tight991

framing," and praises that "the heist itself is pleas-992

ingly clever, it’s a charming film." Correspondingly,993

the user simulator generates reflected preferences994

stating: "[like] Vibrant animation style, entertain-995

ing heist plot", which aligns with the user’s original996

sentiments. Notably, the user simulator achieves997

this without any target item information, validating998

the effectiveness of our approach in representing999

diverse human preference and evaluating CRSs.1000

Ground Truth (Target Items): "Ocean’s Eleven",
"Armageddon", ...

Dialogue Context
. . .
Recommender: I would recommend the movie
“Ocean’s Eleven.” This film features a group of
charismatic and intelligent characters who plan and
execute a heist in a stylish and entertaining manner.
User: Ocean’s Eleven seems like a promising
recommendation with its cool characters and
entertaining heist plot. I appreciate the potential for a
stylish and engaging storyline. I’m a bit concerned
about the possibility of lackluster acting and
unsatisfying resolutions, but I’m intrigued to see how it
all unfolds.
. . .

Item Interface
1. [Ocean’s Eleven] Danny Ocean gathers a group of
his World War II compatriots to pull off the ultimate
Las Vegas heist . . .
2. [Inside Out] An agoraphobic must give up his
sheltered life and venture outside after a series of
personal and financial problems. . . .
3. . . .

User’s General Preferences
You enjoy vibrant animation styles, entertaining heist
plots, and cool, intelligent characters with clever
dialogue. On the other hand, you tend to dislike movies
with contrived endings...
Raw Review
[Ocean’s Eleven] : ... but the photography in "Ocean’s
Eleven" is, at heart, simply wonderful: tinsel colours,
beguiling bright lights, tight framing ... Danny and Tess
shouldn’t have got back together - reaching an amicable
understanding would have been better for both them
and the audience ... And the heist itself is pleasingly
clever. It’s a charming film ...
Reflected Preferences
Item: “Ocean’s Eleven”:
Like: Vibrant animation style, entertaining heist plot.
Dislike: Possibility of lackluster acting, unsatisfying
. . .

Table 10: An example of interactions between our user
simulator and CRS (ChatGPT).
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Figure 7: Human evaluation interface.
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