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Abstract

To benefit the learning of a new task, meta-learning has been proposed to transfer a
well-generalized meta-model learned from various meta-training tasks. Existing
meta-learning algorithms randomly sample meta-training tasks with a uniform
probability, under the assumption that tasks are of equal importance. However,
it is likely that tasks are detrimental with noise or imbalanced given a limited
number of meta-training tasks. To prevent the meta-model from being corrupted
by such detrimental tasks or dominated by tasks in the majority, in this paper,
we propose an adaptive task scheduler (ATS) for the meta-training process. In
ATS, for the first time, we design a neural scheduler to decide which meta-training
tasks to use next by predicting the probability being sampled for each candidate
task, and train the scheduler to optimize the generalization capacity of the meta-
model to unseen tasks. We identify two meta-model-related factors as the input
of the neural scheduler, which characterize the difficulty of a candidate task to
the meta-model. Theoretically, we show that a scheduler taking the two factors
into account improves the meta-training loss and also the optimization landscape.
Under the setting of meta-learning with noise and limited budgets, ATS improves
the performance on both miniImageNet and a real-world drug discovery benchmark
by up to 13% and 18%, respectively, compared to state-of-the-art task schedulers.

1 Introduction

Meta-learning has emerged in recent years as a popular paradigm to benefit the learning of a new task
in a sample-efficient way, by meta-training a meta-model (e.g., initializations for model parameters)
from a set of historical tasks (called meta-training tasks). To learn the meta-model during meta-
training, the majority of existing meta-learning methods randomly sample meta-training tasks with
a uniform probability. The assumption behind such uniform sampling is that all tasks are equally
important, which is often not the case. First, some tasks could be noisy. For example, in our
experiments on drug discovery, all compounds (i.e., examples) in some target proteins (i.e., tasks) are
even labeled with the same bio-activity value due to improper measurement. Second, the number of
meta-training tasks is likely limited, so that the distribution over different clusters of tasks is uneven.
There are 2, 523 target proteins in the binding family among all 4, 276 proteins for meta-training,
but only 55 of them belong to the ADME family. To fill the gap, we are motivated to equip the
meta-learning framework with a task scheduler that determines which tasks should be used for
meta-training in the current iteration.

Recently, a few studies have started to consider introducing a task scheduler into meta-learning, by
adjusting the class selection strategy for construction of each few-shot classification task [17, 19],
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directly using a self-paced regularizer [3], or ranking the candidate tasks based on the amount of
information associated with them [11]. While the early success of these methods is a testament to the
benefits of introducing a task scheduler, developing a task scheduler that adapts to the progress of
the meta-model remains an open challenge. Such a task scheduler could both take into account the
complicated learning dynamics of a meta-learning algorithm better than existing manually defined
schedulers, and explicitly optimize the generalization capacity to avoid meta-overfitting [23, 30].

To address these limitations, in this paper, we propose an Adaptive Task Scheduler (ATS) for meta-
learning. Instead of fixing the scheduler throughout the meta-training process, we design a neural
scheduler to predict the probability of each training task being sampled. Concretely, we adopt a
bi-level optimization strategy to jointly optimize both the meta-model and the neural scheduler.
The meta-model is optimized with the sampled meta-training tasks by the neural scheduler, while
the neural scheduler is learned to improve the generalization ability of the meta-model on a set of
validation tasks. The neural scheduler considers two meta-model-related factors as its input: 1)
the loss of the meta-model with respect to a task, and 2) the similarity between gradients of the
meta-model with respect to the support and query sets of a task, which characterize task difficulty
from the perspective of the outcome and the process of learning, respectively. On this account, the
neural scheduler avoids the pathology of a poorly generalized meta-model that is corrupted by a
limited budget of tasks or detrimental tasks (e.g., noisy tasks).

The main contribution of this paper is an adaptive task scheduler that guides the selection of meta-
training tasks for a meta-learning framework. We identify two meta-model-related factors as building
blocks of the task scheduler, and theoretically reveal that the scheduler considering these two factors
improves the meta-training loss as well as the optimization landscape. Under different settings (i.e.,
meta-learning with noisy or a limited number of tasks), we empirically demonstrate the superiority of
our proposed scheduler over state-of-the-art schedulers on both an image classification benchmark
(up to 13% improvement) and a real-world drug discovery dataset (up to 18% improvement). The
proposed scheduler demonstrates great adaptability, tending to 1) sample non-noisy tasks with smaller
losses if there are noisy tasks but 2) sample difficult tasks with large losses when the budget is limited.

2 Related Work

Meta-learning has emerged as an effective paradigm for learning with small data, by leveraging
the knowledge learned from previous tasks. Among the two dominant strands of meta-learning
algorithms, we prefer gradient-based [4] over metric-based [26] for their general applicability in
both classification and regression problems. Much of the research up to now considers all tasks to
be equally important, so that a task is randomly sampled in each iteration. Very recently, Jabri et
al. [8] explored unsupervised task generation in meta reinforcement learning according to variations
of a reward function, while in [11, 20] a task is sampled from existing meta-training tasks with the
probability proportional to the amount of information it offers. Complementary to these methods
specific to reinforcement learning, a difficulty-aware meta-loss function [15] and a greedy class-pair
based task sampling strategy [17] have been proposed to attack supervised meta-learning problems.
Instead of using these manually defined and fixed sampling strategies, we pursue an automatic
task scheduler that learns to predict the sampling probability for each task to directly minimize the
generalization error.

There has been a large body of literature that is concerned with example sampling, dating back to
importance sampling [12] and AdaBoost [5]. Similar to AdaBoost where hard examples receive more
attention, the strategy of hard example mining [25] accelerates and stabilizes the SGD optimization of
deep neural networks. The difficulty of an example is calibrated by its loss [16], the magnitude of its
gradient [31], or the uncertainty [2]. On the contrary, self-paced learning [13] presents the examples
in the increasing order of their difficulty, so that deep neural networks do not memorize those noisy
examples and generalize poorly [1]. The order is implemented by a soft weighting scheme, where
easy examples with smaller losses have larger weights in the beginning. More self-paced learning
variants [9, 28] are dedicated to designing the scheme to appropriately model the relationship between
the loss and the weight of an example. Until very recently, Jiang et al. [10] and Ren et al. [24]
proposed to learn the scheme automatically from a clean dataset and by maximizing the performance
on a hold-out validation dataset, respectively. Nevertheless, task scheduling poses more challenges
than example sampling that these methods are proposed for.
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Figure 1: Illustration of ATS: (1) ATS calculates the meta-model-related factors for each candidate
task (i.e., grey arrow). (2) ATS leverages the neural scheduler to sample tasks from the candidate
tasks and use them to learn the temporal meta-model θ̃0, which is in turn used to optimize the neural
scheduler according to the feedback from validation tasks (i.e., blue arrow). (3) The updated neural
scheduler is used to resample the tasks and update the meta-model (i.e., orange arrow).

3 Preliminaries and Problem Definition

Assume that we have a task distribution p(T ). Each task Ti is associated with a data set Di, which is
further split into a support set Dsi and a query set Dqi . Gradient-based meta-learning [4], which we
focus on in this work, learns a well-generalized parameter θ0 (a.k.a., meta-model) of a base predictive
learner f from N meta-training tasks {Ti}Ni=1. The base learner initialized from θ0 adapts to the i-th
task by taking k gradient descent steps with respect to its support set (inner-loop optimization), i.e.,
θi = θ0 − α∇θL(Dsi ; θ). To evaluate and improve the initialization, we measure the performance
of θi on the query set Dqi and use the corresponding loss to optimize the initialization as (out-loop
optimization):

θ
(k+1)
0 = θ

(k)
0 − β

N∑
i=1

L(Dqi ; θi), (1)

where α and β denote the learning rates for task adaptation and initialization update, respectively.
After training K time steps, we learn the well-generalized model parameter initializations θ∗0 . During
the meta-testing time, θ∗0 can be adapted to each new task Tt by performing a few gradient steps on
the corresponding support set, i.e., θt = θ∗0 − α∇θL(Dst ; θ).

In practice, without loading all N tasks into memory, a batch of B tasks {T (k)
i }

B
i=1 are sampled

for training at the k-th meta-training iteration. Most of existing meta-learning algorithms use the
uniform sampling strategy, except for a few recent attempts towards manually defined task schedulers
(e.g., [11, 17]). Either the uniform sampling or manually defined task schedulers may be sub-optimal
and at a high risk of overfitting.

4 Adaptive Task Scheduler

To address these limitations, we aim to design an adaptive task scheduler (ATS) in meta-learning to
decide which tasks to use next. Specifically, as illustrated in Figure 1, we design a neural scheduler
to predict the probability of each candidate task being sampled according to the real-time feedback of
meta-model-based factors at each meta-training iteration. Based on the probabilities, we sample B
tasks to optimize the meta-model and the neural scheduler in an alternating way. In the following
subsections, we detail our task scheduling strategy and bi-level optimization process.

4.1 Adaptive Task Scheduling Strategy

The goal for this subsection is to discuss how to select the most informative tasks via ATS. We define
the scheduler as g with parameter φ and formulate the sampling probability w(k)

i of each candidate
task Ti at training iteration k as

w
(k)
i = g(Ti, θ(k)0 ;φ(k)), (2)
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where w(k)
i is conditioned on task Ti and the meta-model θ(k)0 at the current meta-training iteration.

To quantify the information covered in Ti and θ
(k)
0 , we here propose two representative factors:

1) the loss L(Dqi ; θ
(k)
i ) on the query set, where θ(k)i is updated by performing a few-gradient steps

starting from θ
(k)
0 ; 2) the gradient similarity between the support and target sets with respect to the

current meta-model θ(k)0 , i.e.,
〈
∇
θ
(k)
0

L(Dsi ; θ
(k)
0 ),∇

θ
(k)
0

L(Dqi ; θ
(k)
0 )
〉

. Here, we use inner product as an
exemplary similarity measurement, other metrics like cosine similarity can also be applied in practice.
They are associated with the learning outcome and learning process of the task Ti, respectively.
Specifically, the gradient similarity signifies the generalization gap from the support to the query set.
A large query loss may represent a true hard task if the gradient similarity is large; a task with noises
in its query set, however, could lead to a large query loss but small gradient similarity. Considering
these two factors simultaneously, we reformulate Eqn. (2) as:

w
(k)
i = g

(
L(Dqi ; θ

(k)
i ),

〈
∇
θ
(k)
0

L(Dsi ; θ
(k)
0 ),∇

θ
(k)
0

L(Dqi ; θ
(k)
0 )
〉
;φ(k)

)
. (3)

After obtaining the sampling probability weight w(k)
i , we directly use it to sample B tasks from the

candidate task pool for the current meta-training iteration, where a larger value of w(k)
i represents

higher probability. The out-loop optimization is revised as:

θ
(k+1)
0 = θ

(k)
0 − β 1

B

B∑
i=1

L(Dqi ; θ
(k)
i ). (4)

4.2 Bi-level Optimization with Gradient Approximation

In this subsection, we aim to discuss how to jointly learn the parameters of neural scheduler φ and
the meta-model θ0 during the meta-training process. Instead of directly using the meta-training tasks
to optimize both meta-model and the neural scheduler, ATS aims to optimize the loss on a disparate
validation set with Nv tasks, i.e., {Tv}Nvv=1, where the performance on the validation set could be
regarded as the reward or fitness. Specifically, ATS searches the optimal parameter φ∗ of the neural
scheduler by minimizing the average loss 1

Nv

∑Nv
v=1 Lval(Tv; θ

∗
0(φ)) over the validation tasks, where

the optimal parameter θ∗0 is obtained by optimizing the meta-training loss 1
B

∑B
i=1 Ltr(Ti; θ0, φ) over

the sampled tasks. Formally, the bi-level optimization process is formulated as:

min
φ

1

Nv

Nv∑
v=1

Lval(Tv; θ∗0(φ)), where θ∗0(φ) = argmin
θ0

1

B

B∑
i=1

Ltr(Ti; θ0, φ) (5)

It is computational expensive to optimize the inner loop in Eqn. (5) directly. Inspired by the
differentiate hyperparameter optimization [18], we propose a strategy to approximate θ∗0(φ) by
performing one gradient step starting from the current meta-model θ(k)0 as:

θ∗0(φ
(k)) ≈ θ̃(k+1)

0 (φ(k)) = θ
(k)
0 − β∇

θ
(k)
0

1

B

B∑
i=1

Ltr(Ti; θ(k)i , φ(k)).

s.t. θ
(k)
i = θ

(k)
0 − α∇θL(Dsi ; θ),

(6)

where the task-specific parameter θ(k)i is adapted with a few gradient steps starting from θ
(k)
0 . As

such, for each meta-training iteration, the bi-level optimization process in Eqn. (5) is revised as:

φ(k+1) ← min
φ(k)

1

Nv

Nv∑
v=1

Lval(Tv; θ̃(k+1)
0 (φ(k))),

s.t., θ̃
(k+1)
0 (φ(k)) = θ

(k)
0 − β∇

θ
(k)
0

1

B

B∑
i=1

Ltr(Ti; θ(k)0 , φ(k)).

(7)

We then focus on optimizing the neural scheduler in the outer loop of Eqn. (7). In ATS, tasks are
sampled from the candidate task pool according to the sampling probabilities w(k)

i . It is intractable
to directly optimizing the validation loss Lval, since the sampling process is non-differentiable. We
thereby use a policy gradient method to optimize φ(k), where REINFORCE [29] is adopted. We also

4



Algorithm 1 Meta-training Process with ATS

Require: learning rates α, β, task distribution p(T ), batch size B, candidate task pool size Npool

1: Initialize the meta-model θ0 and the neural scheduler φ
2: for each training iteration k do
3: Randomly select Npool tasks and construct the candidate task pool
4: for each task Ti in the candidate task pool do
5: Compute two factors L(Dqi ; θ

(k)
i ) and

〈
∇
θ
(k)
0

L(Dsi ; θ
(k)
0 ),∇

θ
(k)
0

L(Dqi ; θ
(k)
0 )
〉

by using the
support set Dsi and the query set Dqi

6: Calculate the sampling probability w(k)
i by Eqn. (2)

7: end for
8: Sample B tasks from the candidate task pool via the sampling probabilities W(k)

9: Calculate the training loss and obtain a temporal meta-model via 1-step gradient descent
10: Sample Nv validation tasks
11: Calculate the accuracy (reward) R(k)

i using the temporal meta-model θ̃(k+1)
0

12: Update the neural scheduler by Eqn. (8) and get φ(k+1)

13: Sample another B tasks {T
′
i }Bi=1 by using the updated task scheduler φ(k+1)

14: Update the meta-model as: θ(k+1)
0 (φ(k)) = θ

(k)
0 − β∇

θ
(k)
0

1
B

∑B
i=1 Ltr(T

′
i ; θ

(k)
0 , φ(k+1))

15: end for

equip a baseline function for REINFORCE to reduce the gradient variance. Regarding the accuracy
of each sampled validation task Ti as the reward R(k)

i , we define the optimization process as:

φ(k+1) ← φ(k) − γ∇φ(k) logP (W(k);φ(k))(
1

Nv

Nv∑
i=1

R
(k)
i − b), (8)

where W(k) = {w(k)
i }

B
i=1 and the baseline b is defined as the moving average of validation accuracies.

After updating the parameter of neural scheduler φ, we use it to resample B tasks from the candidate
task pool and update the meta-model from θ

(k)
0 to θ

(k+1)
0 via Eqn. (7). The whole optimization

algorithm of ATS is illustrated in Alg. 1.

5 Theoretical Analysis

In this section, we would extend the theoretical analysis in [6] to our problem of task scheduling,
to theoretically study how the neural scheduler g improves the meta-training loss as well as the
optimization landscape. Without loss of generality, here we consider a weighted version of ATS with
hard sampling, where the meta-model θ0 is updated by solving the meta-training loss weighted by
the task sampling probability wi = g(Ti, θ0;φ) over all candidate tasks in the task pool, i.e.,

θ∗0 = argmin
θ0

Npool∑
i=1

wiL(Dqi ; θi), θi = θ0 − α∇θL(Dsi ; θ). (9)

Denote the meta-training loss without and with the task scheduler as L(θ0) = 1
Npool

∑Npool

i=1 L(Dqi ; θi)
and Lw(θ0) =

∑Npool

i=1 wiL(Dqi ; θi), respectively. Then we have the following result:
Proposition 1. Suppose that w=[w1,· · · ,wNpool ] denotes the random variable for sampling prob-
abilities, Lθ0 = [L(Dq1; θ0), · · · ,L(D

q

Npool
; θ0)] denotes the random variable for the loss using the

meta-model, and ∇θ0 = [〈∇θ0L(Ds1; θ0),∇θ0L(D
q
1; θ0)〉 , · · · ,

〈
∇θ0L(DsNpool ; θ0),∇θ0L(D

q

Npool
; θ0)

〉
]

denotes the random variable for the inner product between gradients of the support and query sets
with respect to the meta-model. Then the following equation connecting the meta-learning losses
with and without the task scheduler holds:

Lw(θ0) = L(θ0) + Cov(Lθ0 ,w)− αCov(∇θ0 ,w). (10)

From Proposition 1, we conclude that the task scheduler improves the meta-training loss, as long as
the sampling probability w is negatively correlated with the loss but positively correlated with the
gradient similarity between the support and the query set. Specifically, if the loss L(Dqi ; θi) is large
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as a result of a quite challenging or noisy task Ti, the sampling probability wi is expected to be small.
Moreover, a large value of wi is anticipated, when a large inner product between the gradients of the
support and the query set with respect to the meta-model 〈∇θ0L(Dsi ; θ0),∇θ0L(D

q
i ; θ0)〉 signifies

that the generalization gap from the support set Dsi to the query set Dqi is small.

Consistent with [6], the optimal meta-model is assumed to also minimize the covariance Cov(Lθ0 ,w)
and maximize the covariance Cov(∇θ0 ,w), i.e., θ∗0 = argminL(θ0) = argmin[Cov(Lθ0 ,w) −
αCov(∇θ0 ,w)]. Under this assumption, the task scheduler does not change the global minimum, i.e.,
θ∗0 = argminL(θ0) = argminLw(θ0), while modifies the optimization landscape as the following.

Proposition 2. With the sampling probability defined as

w∗i =
e−
[
L(Dqi ;θ

∗
0 )−α〈∇θ0L(Dsi ;θ∗0 ),∇θ0L(Dqi ;θ∗0 )〉

]
∑B
i=1 e

−
[
L(Dqi ;θ∗0 )−α〈∇θ0L(Dsi ;θ∗0 ),∇θ0L(Dqi ;θ∗0 )〉

] , (11)

the following hold:

∀θ0 : Cov(Lθ0 − α∇θ0 , e
−(Lθ∗0

−α∇θ∗0
)
) ≥ 0, Lw(θ0)− Lw(θ∗0) ≥ L(θ0)− L(θ∗0),

∀θ0 : Cov(Lθ0 − α∇θ0 , e
−(Lθ∗0

−α∇θ∗0
)
) ≤ −Var(Lθ∗0

− α∇θ∗0
), Lw(θ0)− Lw(θ∗0) ≤ L(θ0)− L(θ∗0).

Proposition 2 sheds light on how the optimization landscape is improved by an ideal task sched-
uler: 1) for those parameters θ0 that are far from the optimal meta-model θ∗0 (i.e., Cov(Lθ0 −
α∇θ0 , e

−(Lθ∗0
−α∇θ∗0

)
) ≥ 0), the gradients towards the direction of θ∗0 become overall steeper

for speed-up; 2) for those parameters θ0 that are within the variance of the optimum (i.e.,
Cov(Lθ0 − α∇θ0 , e

−(Lθ∗0
−α∇θ∗0

)
) ≤ −Var(Lθ∗0

− α∇θ∗0
)), the minima tends to be flat with bet-

ter generalization ability [7, 14]. Though the optimal meta-model θ∗0 remains unknown and the ideal
task scheduler with the sampling probabilities in (11) is inaccessible, we learn a neural scheduler to
dynamically accommodate the changes of both the loss Lθ0 and the gradient similarity ∇θ0 . Detailed
proofs of Proposition 1 and 2 are provided in Appendix A.

6 Experiments

In this section, we empirically demonstrate the effectiveness of the proposed ATS through compre-
hensive experiments on both regression and classification problems. Specifically, two challenging
settings are studied: meta-learning with noise and limited budgets.

Dataset Description and Model Structure. We conduct comprehensive experiments on two datasets.
First, we use miniImagenet as the classification dataset, where we apply the conventional N-way, K-
shot setting to create tasks [4]. For miniImagenet, we use the standard model with four convolutional
blocks, where each block contains 32 neurons. We report accuracy with 95% confidence interval over
all meta-testing tasks. The second dataset aims to predict the activity of drug compounds [21], where
each task as an assay covers drug compounds for one target protein. There are 4,276 assays in total,
and we split 4,100 / 76 / 100 tasks for meta-training / validation / testing, respectively. We use two
fully connected layers in the drug activity prediction as the base model, where each layer contains
500 neurons. For each assay, the performance is measured by the square of Pearson coefficient (R2)
between the predicted values and the actual values. Follow [21], we report the mean and medium R2

as well as the number of assays with R2 > 0.3, all of which are considered as reliable metrics in the
pharmacology domain. We provide more detailed descriptions of datasets in Appendix B.1.

In terms of the neural scheduler φ, we separately encode the loss on the query set and the gradient
similarity by two bi-directional LSTM network. The percentage of training iterations are also fed
into the neural scheduler to indicate the progress of meta-training. Finally, all encoded information
are concatenated and feed into a two-layer MLP for predicting the sampling probability (More detail
descriptions are provided in Appendix B.2).

Baselines. We compare the proposed ATS with the following two categories of baselines. The
first category contains easy-to-implement example sampling methods that can be adapted for task
scheduling, including focal loss (FocalLoss) [16] and self-paced learning loss (SPL) [13]. The
second category covers state-of-the-art task schedulers for meta-learning that are non-adaptive, which
includes DAML [15], GCP [17], and PAML [11]. Note that GCP is a class-driven task scheduler
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Table 1: Overall performance on meta-learning with noise. For miniImagenet, we report the average
accuracy with 95% confidence interval. For drug activity prediction, the performance is evaluated by
mean R2, medium R2, and the number of assays with R2 > 0.

Model miniImagenet-noisy Drug-noisy
5-way 1-shot 5-way 5-shot mean medium >0.3

Uniform 41.67 ± 0.80% 55.80 ± 0.71% 0.202 0.113 21
SPL 42.13 ± 0.79% 56.19 ± 0.70% 0.211 0.138 24
FocalLoss 41.91 ± 0.78% 53.58 ± 0.75% 0.205 0.106 23

GCP 41.86 ± 0.75% 54.63 ± 0.72% N/A N/A N/A
PAML 41.49 ± 0.74% 52.45 ± 0.69% 0.204 0.120 24
DAML 41.26 ± 0.73% 55.46 ± 0.70% 0.197 0.113 24

ATS (Ours) 44.21 ± 0.76% 59.50 ± 0.71% 0.233∗ 0.152∗ 31∗

* means the result are significant according to Student’s T-test at level 0.01 compared to SPL

and thus it can not be applied to regression problems such as drug activity prediction here. We
also slightly revise the loss of DAML so that it can be applied to both classification and regression
problems. For all baselines and ATS, we use the same base model and adopt ANIL [22] as the
backbone meta-learning algorithm.

6.1 Meta-learning with Noise

Experimental Setup. We first apply ATS on meta-learning with noisy tasks, where each noisy task is
constructed by only adding noises on the labels of the support set. Therefore, each noisy task contains
a noisy support set and a clean query set. In this way, adapting the meta-model on the support set
causes inaccurate task-specific parameters and leads to negative impacts on the meta-training process.
Specifically, for miniImagenet, we apply the symmetry flipping on the labels of the support set [27].
The default ratio of noisy tasks is set as 0.6. For the drug activity prediction, we sample the label
noise ε from a Gaussian distribution η ∗ N (0, 1), where the noise scalar η is used to control the noise
level. Note that, empirically we find that the effect of adding noise on the drug activity prediction is
not as great as adding noise on the miniImagenet, and thus we add noise to all assays and use the
scalar η to control the noise ratio. By default, we set the noise scalar as 4 during the meta-training
process. Besides, since ATS uses the clean validation task, for fair comparison, all other baselines
are also fine-tuned on the validation tasks. Detailed experimental setups and hyperparameters are
provided in Appendix C.
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Figure 2: Distribution comparison of
sampling weights between clean and
noisy tasks.

Results. Table 1 reports the overall results of ATS and other
baselines. Our key observations are: (1) The performance
of non-adaptive task schedulers (i.e., GCP, PAML, DAML)
is similar to the uniform sampling, indicating that manually
designing the task scheduler may not explain the complex
dynamics of meta-learning, being sub-optimal. (2) ATS
outperforms traditional example sampling methods and non-
adaptive task schedulers, demonstrating its effectiveness on
improving the robustness of meta-learning algorithms by
adaptively adjusting the scheduler policy based on the real-
time feedback of meta-model-related factors. The findings
are further strengthened by the distribution comparison of
sampling weights between clean and noisy tasks in Figure 2,
where ATS pushes most noisy tasks to small weights (i.e.,
less contributions in meta-training).

Ablation Study. We further conduct an ablation study under the noisy task setting and investigate
five ablation models detailed as follows.
• Rank by Sim/Loss: In the first ablation model, we heuristically determine and select tasks by ranking

tasks according to a simple combination of the loss and the gradient similarity, i.e., Sim/Loss. We
assume that tasks with higher gradient similarity but smaller losses should be prioritized.

• Random φ: In Random φ, we remove both meta-model-related factors, where the model parameter
φ of the neural scheduler is randomly initialized at each meta-training iteration.
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Table 2: Ablation Study under the meta-learning with noise setting.

Ablation Model miniImagenet-noisy Drug-noisy
5-way 1-shot 5-way 5-shot mean medium >0.3

Random φ 41.95 ± 0.80% 56.07 ± 0.71% 0.204 0.100 22
Rank by Sim/Loss 42.84 ± 0.76% 57.90 ± 0.68% 0.181 0.109 22
φ+Loss 42.45 ± 0.80% 56.65 ± 0.75% 0.212 0.122 27
φ+Sim 42.28 ± 0.82% 56.71 ± 0.72% 0.214 0.122 29
Reweighting 42.19 ± 0.80% 56.48 ± 0.72% 0.217 0.118 28

ATS (φ+Loss+Sim) 44.21 ± 0.76% 59.50 ± 0.71% 0.233∗ 0.152∗ 31∗

* means the result is significant according to Student’s T-test at level 0.01 compared to Weighting

Table 3: Performance w.r.t. Noise Ratio. Under the miniImagenet 1-shot setting (Image), the noise
ratio is controlled by the proportion of noisy tasks. In drug activity prediction, the noise ratio is
determined by the value of noise scaler η. BNS represents the best non-adaptive scheduler.

Image

Noise Ratio 0.2 0.4 0.6 0.8

Uniform 43.46 ± 0.82% 42.92 ± 0.78% 41.67 ± 0.80% 36.53 ± 0.73%
BNS 44.04 ± 0.81% 43.36 ± 0.75% 42.13 ± 0.79% 38.21 ± 0.75%

ATS (Ours) 45.55 ± 0.80% 44.50 ± 0.86% 44.21 ± 0.76% 42.18 ± 0.73%

Drug

Noise Scaler η=2 η=4 η=6 η=8

Uniform 0.222 0.139 26 0.202 0.113 21 0.196 0.131 22 0.194 0.100 21
BNS 0.229 0.136 31 0.211 0.138 24 0.208 0.116 24 0.200 0.101 24

ATS∗ (Ours) 0.235 0.160 33 0.233 0.152 31 0.221 0.136 28 0.219 0.133 28

* means all results are significant according to Student’s T-test at level 0.01 compared to BNS

• φ+Loss or φ+Sim: The third (φ+Loss) and forth (φ+Sim) ablation models remove the gradient
similarity between the support and query sets, as well as the loss of the query set, respectively.

• Reweighting: Instead of selecting tasks from the candidate pool, in the last ablation model, we
direct reweigh all tasks in a meta batch, where the weights are learned via the neural scheduler.

We list the results of all ablation models in Table 2, where ATS (φ+Loss+Sim) is also reported for
comparison. The results indicate that (1) simply selecting tasks according to the ratio Sim/Loss
significantly underperforms ATS since the contribution of each metric is hard to manually define.
Besides, the contribution of each metric evolves as training proceeds, which has been ignored in such
a simple combination but modeled in the neural scheduler with the percentage of training iterations
as input; (2) the superiority of φ+Loss and φ+Sim over Random φ shows the effectiveness of both
the query loss and the gradient similarity; (3) the performance gap between Reweight+Loss+Sim and
ATS is potentially caused by the number of effective tasks, where more candidate tasks are considered
by ATS; (4) including all meta-model-related factors (i.e., ATS) achieves the best performance,
coinciding with our theoretical findings in Section 5.

Effect of Noise Ratio. We analyze the performance of ATS with respect to the noise ratio and show
the results of miniImagenet and drug activity prediction in Table 3. The performances of the uniform
sampling and the best non-adaptive scheduler (BNS) are also reported for comparison. We summarize
the key findings: (1) ATS consistently outperforms the uniform sampling and the best non-adaptive
task scheduler, indicating its effectiveness of adaptively sampling tasks to guide the meta-training
process; (2) With the increase of the noise ratio, ATS achieves more significant improvements. In
particular, the results of ATS in miniImagenet are almost stable even with a very large noise ratio,
suggesting that involving an adaptive task scheduler does improve the robustness of the model.

Analysis of the Meta-model-related Factors. To analyze our motivations about designing the meta-
model-related factors, we randomly select 1000 meta-training tasks and visualize the correlation
between the sampling weight wki and each factor in Figures 3a-3d. In these figures, we rank the
sampling weight wki and normalize the ranking to [0, 1], where a larger normalized ranking value is
associated with a larger sampling weight. Then, we split these tasks into 20 bins according to the rank
of sampling weights. For tasks within each bin, we show the mean and standard error of their query
losses and gradient similarities. According to these figures, we find that tasks with larger losses are
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Figure 3: Correlation between sampling weight wi and (a)&(c) query set loss L(Dqi ; θi); (b)&(d):
gradient similarity between Dsi and Dqi under the meta-learning with noise setting. The larger
normalized rank of weights correspond to larger sampling weights.

Table 4: Overall performance on meta-learning with limited budgets. For miniImagenet, we control
the number of meta-training classes. For drug activity prediction, all meta-training tasks are used for
meta-training under this setting.

Model miniImagenet-Limited Drug-Full
5-way 1-shot 5-way 5-shot mean medium >0.3

Uniform 33.61 ± 0.66% 45.97 ± 0.65% 0.233 0.140 33
SPL 34.28 ± 0.65% 46.05 ± 0.69% 0.232 0.135 29
FocalLoss 33.11 ± 0.65% 46.12 ± 0.70% 0.229 0.140 28

GCP 34.69 ± 0.67% 46.86 ± 0.68% N/A N/A N/A
PAML 33.64 ± 0.62% 45.01 ± 0.69% 0.238 0.144 32
DAML 34.83 ± 0.69% 46.66 ± 0.67% 0.227 0.141 28

ATS (Ours) 35.15 ± 0.67% 47.76 ± 0.68% 0.252∗ 0.179∗ 36∗

* means the result is significant according to Student’s T-test at level 0.01 compared to PAML

associated with smaller sampling weights, verifying our assumption that noisy tasks (large query loss)
tend to have smaller sampling weight (Figures 3a, 3c). Our motivation is further strengthened by the
fact that tasks with more similar support and query sets have larger sampling weights (Figures 3b, 3d).

6.2 Meta-learning with Limited Budgets

Experimental Setup. We further analyze the effectiveness of ATS under the meta-learning setting
with limited budgets. Follow [4], In few-shot classification problem, each training episode is a
few-shot task by subsampling classes as well as data points and two episodes that share the same
classes are considered to be the same task. Thus, we treat the budgets in meta-learning as the
number of meta-training tasks. In miniImagenet, the original number of meta-training classes is
64, corresponding to more than 7 million 5-way combinations. Thus, we control the budgets by
reducing the number of meta-training classes to 16, resulting in 4,368 combinations. For drug activity
prediction, since it only has 4,100 tasks, we do not reduce the number of tasks and use the full dataset
for meta-training. We provide more discussions about the setup in Appendix D.

Results. We report the performance on miniImagenet and drug activity prediction in Table 4.
Aligning with the meta-learning with noise setting, ATS consistently outperforms other baselines with
limited budgets. Besides, compared with the results in miniImagenet, ATS achieves more significant
improvement in the drug activity prediction problem under this setting. This is what we expected – as
we have discussed in Section 1, the drug dataset contains noisy and imbalanced tasks.

The effectiveness of ATS is further strengthened by the ablation study under the limited budgets
setting, where we report the results in Table 5. Similar to the findings in the noisy task setting, the
ablation study further verifies the contributions of the proposed two meta-model-related factors on
the meta-training process.

Analysis of the Meta-model-related Factors. Under the limited budgets setting, we analyze the
correlation between the sampling weight and the meta-model-related factors in Figure 4a-4d. From
these figures, we can see that the gradient similarity indeed reflects the task difficulty (Figure 4b, 4d),
where larger similarities correspond to more useful tasks (i.e., larger weights). Interestingly, the
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Table 5: Performance (accuracy ± 95% confidence interval) of different ablated versions of ATS
under the setting of meta-learning with limited tasks.

Ablation Model miniImagenet-Limited Drug-Full
5-way 1-shot 5-way 5-shot mean medium >0.3

Random φ 33.97 ± 0.63% 46.37 ± 0.70% 0.238 0.159 35
Rank by Sim/Loss 33.42 ± 0.64% 46.38 ± 0.70% 0.187 0.099 24
φ+Loss 34.08 ± 0.66% 46.48 ± 0.67% 0.241 0.171 36
φ+Sim 34.46 ± 0.65% 47.34 ± 0.70% 0.246 0.161 34
Reweighting 35.03 ± 0.65% 46.70 ± 0.65% 0.248 0.158 32

ATS (φ+Loss+Sim) 35.15 ± 0.67% 47.76 ± 0.68% 0.252 0.179 36
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Figure 4: Correlation between weight wi and (a)&(c) query loss; (b)&(d): gradient similarity. Larger
normalized rank of weights correspond to larger sampling weights.

correlation between the query loss and the sampling weight under the limited budgets setting is
opposite to the correlation under the noisy setting. It is expected since tasks with larger query
losses are associated with “more difficult” tasks under this setting, which may contain more valuable
information that further benefits the meta-training process.

Effect of the Budgets. In addition, we analyze the effect of budgets by changing the number of
meta-training tasks in miniImagenet. The results of uniform sampling, GCP (best non-adaptive
task scheduler), ATS under 1-shot scenario are illustrated in Table 6. We observe that our model
achieves the best performance in all scenarios. In addition, compared with uniform sampling, ATS
achieves more significant improvements with less budgets, indicating its effectiveness on improving
the meta-training efficiency.

Table 6: Performance w.r.t. budgets (the number of meta-training classes). Accuracy ± 95%
confidence interval is reported.

Budgets 16 32 48 64

Uniform 33.61 ± 0.66% 40.48 ± 0.75% 44.07 ± 0.80% 45.73 ± 0.79%
GCP 34.69 ± 0.67% 41.27 ± 0.74% 44.30 ± 0.79% 45.35 ± 0.81%

ATS (Ours) 35.15 ± 0.67% 41.68 ± 0.78% 44.89 ± 0.79% 46.27 ± 0.80%

7 Conclusion and Discussion

This paper proposes a new adaptive task sampling strategy (ATS) to improve the meta-training
process. Specifically, we design a neural scheduler with two meta-model-related factors. At each
meta-training iteration, the neural scheduler predicts the probability of each meta-training task being
sampled according to the received factors from each candidate task. The meta-model and the neural
scheduler are optimized in a bi-level optimization framework. Our experiments demonstrate the
effectiveness of the proposed ATS under the settings of meta-learning with noise and limited budgets.

One limitation in this paper is that we only consider how to adaptively schedule tasks during the
meta-training process. In the future, it would be meaningful to investigate how to incorporate the task
scheduler with the sample scheduler within each task. Another limitation is that using ATS is more
computationally expensive than random sampling since we alternatively learn the neural scheduler
and the meta-model. It would be interesting to explore how to reduce the computational cost, e.g.,
compressing the neural scheduler.
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