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ABSTRACT

Sign language pre-training has gained increasing attention for its ability to en-
hance performance across various sign language understanding (SLU) tasks.
However, existing methods often suffer from a gap between pre-training and fine-
tuning, leading to suboptimal results. To address this, we propose Uni-Sign, a
unified pre-training framework that eliminates the gap between pre-training and
downstream SLU tasks through a large-scale generative pre-training strategy and a
novel fine-tuning paradigm. First, we introduce CSL-News, a large-scale Chinese
Sign Language (CSL) dataset containing 1,985 hours of video paired with textual
annotations, which enables effective large-scale pre-training. Second, Uni-Sign
unifies SLU tasks by treating downstream tasks as a single sign language transla-
tion (SLT) task during fine-tuning, ensuring seamless knowledge transfer between
pre-training and fine-tuning. Furthermore, we incorporate a prior-guided fusion
(PGF) module and a score-aware sampling strategy to efficiently fuse pose and
RGB information, addressing keypoint inaccuracies and improving computational
efficiency. Extensive experiments across multiple SLU benchmarks demonstrate
that Uni-Sign achieves state-of-the-art performance across multiple downstream
SLU tasks. We will release the source code and the dataset to the public.

1 INTRODUCTION

Sign languages are the primary means of communication for the Deaf/Hard of Hearing individ-
uals, conveyed via hand gestures, facial expressions, and movements (Braem & Sutton-Spence,
2001). Considering the critical benefits for barrier-free communication between Deaf/Hard of Hear-
ing and hearing communities, sign language understanding (SLU) has been extensively studied for
decades (Camgoz et al., 2018; Yin et al., 2021). SLU presents unique challenges that necessitate a
comprehensive understanding of the visual cues embedded in individual sign signals, as well as the
distinctive linguistic rules of sign language. SLU can be subdivided into several sub-tasks, including
isolated sign language recognition (ISLR), continuous sign language recognition (CSLR), and sign
language translation (SLT). ISLR concentrates on classifying individual sign language movements,
while CSLR aims to learn the alignment of sequences between sign language and their correspond-
ing glosses. In contrast, SLT requires the model to generate textual descriptions corresponding to
sign language sequences. All these tasks impose indispensable demands on the model’s fine-grained
comprehension and context awareness capabilities.

Recently, more and more studies have shifted their attention towards the exploration of pre-training
techniques for SLU, which benefit from large-scale data to learn discriminative representations.
One main thread attempts to utilize large-scale self-supervised learning to unleash the statistics in
unlabeled data (Hu et al., 2021a; 2023a; Zhao et al., 2024b). SignBERT+ designs self-supervised
learning strategies in a masking-and-reconstructing manner. Although these methods demonstrate
promising improvements in SLU tasks, they primarily focus on capturing visual cues from massive
pre-training sign language data and lack joint modeling on the textual information, causing the gap
with downstream task like SLT. To tackle this issue, some methods try to directly leverage video-
gloss/video-text pairs to conduct pre-training, such as sign-to-gloss recognition (Chen et al., 2022b),
video-text contrastive learning (Zhou et al., 2023), and pseudo-gloss prediction (Wong et al., 2024).
Despite the incorporation of gloss/text data has been proven effective, they are generally limited by
the scale of the video-gloss/video-text paired data or the transferring capability of downstream tasks.
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Figure 1: Comparison of paradigm and performance between previous SOTA pre-training meth-
ods and ours. Lpt, Lts, and Llm represent the pretext-task loss, task-specific loss, and language
modeling loss, respectively. Our method could mainly adopt the pre-training parameters and a uni-
fied fine-tuning paradigm, which narrow the gap between pre-training and fine-tuning and therefore
embeds versatility capability on multiple benchmarks across different downstream tasks, including
ISLR, CSLR, and SLT.

To address these challenges, we introduce a unified pre-training framework that eliminates the
gap between pre-training and downstream tasks, while operating at scale. As shown in Figure 1
(a,b), unlike previous pre-training methods, Uni-Sign utilizes generative pre-training on large-scale
datasets, enforcing the model to capture the semantics embedded in sign language. Our approach
consists of two key innovations. First, we introduce CSL-News, a large-scale Chinese Sign Lan-
guage (CSL) dataset that spans 1,985 hours of videos with corresponding textual annotations, sig-
nificantly surpassing existing CSL datasets in size and diversity. This dataset provides the foundation
for large-scale pre-training. Second, we propose Uni-Sign, a pre-training model that unifies SLU
tasks by treating downstream tasks as a single SLT task, ensuring seamless knowledge transfer be-
tween pre-training and fine-tuning. To further enhance performance, we integrate a prior-guided
fusion (PGF) module and a score-aware sampling strategy, addressing keypoint inaccuracies and
improving computational efficiency. In summary, our contributions are as follows

• We propose a unified pre-training framework, Uni-Sign, that achieves state-of-the-art performance
across SLU tasks by eliminating the gap between pre-training and downstream tasks.

• We introduce CSL-News, a large-scale dataset with 1,985 hours of Chinese Sign Language videos
and text annotations, enabling effective large-scale pre-training for SLU.

• We unify the pre-training and fine-tuning paradigm with shared objectives and incorporate a prior-
guided fusion (PGF) module and a score-aware sampling strategy, which further improve perfor-
mance by addressing keypoint inaccuracies and balancing speed with accuracy.

2 RELATED WORKS

2.1 SIGN LANGUAGE UNDERSTANDING

SLU encompasses various research fields, including ISLR, CSLR, and SLT.

ISLR and CSLR. ISLR focuses on classifying sign language movements. Previous works (Hu
et al., 2021b; Li et al., 2020b; Zuo et al., 2023) have achieved superior performance by utilizing tai-
lored models. CSLR aims to learn the sequence alignment between sign language and sign glosses,
where each gloss is a manual transcription for a sign. Thanks to the capability of Connectionist
Temporal Classification (CTC) loss (Graves et al., 2006) to effectively handle the alignment of two
unsegmented sequences without precise alignment, it has become a mainstream approach in recent
years (Min et al., 2021; Hu et al., 2023d;b; Jiao et al., 2023).
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SLT. SLT requires the model to generate the corresponding text sequence by fully understanding
sign language. It can be divided into two paradigms, gloss-based and gloss-free. By employing
the gloss-based paradigm, the model acquires intermediate representation of glosses, leading to
improved text generation capabilities. SLRT (Camgoz et al., 2020) pioneers the application of a
transformer encoder-decoder framework in SLT and incorporates gloss-level supervision into the
transformer encoder through CTC loss. STMC-T (Zhou et al., 2022) tackles the SLT through multi-
cue modeling. SLTUNET (Zhang et al., 2023a) and MMTLB (Chen et al., 2022b) attempt to transfer
knowledge from large-scale external text corpus and pre-trained language models into SLT to im-
prove performance. However, the costly gloss labeling limits dataset and model scalability, prompt-
ing researchers to shift their attention toward the gloss-free paradigm. GFSLT-VLP (Zhou et al.,
2023) novelly proposed text-video contrastive loss to pre-train translation models, which signifi-
cantly boosted the performance of gloss-free methods. Sign2GPT (Wong et al., 2024) and Sign-
LLM (Gong et al., 2024) aimed to take advantage of the linguistic knowledge inherent in large
language models (LLMs) to enhance gloss-free SLT. In this paper, we also focus on gloss-free SLT,
which is more challenging and easier to scale up in terms of both the model and the dataset.

Unlike the task-specific methods, we introduce a unified framework to handle these SLU tasks.
Meanwhile, by eschewing any task-specific designs during the fine-tuning phase, our method main-
tains simplicity while consistently achieving remarkable performance across various SLU tasks.

2.2 SIGN LANGUAGE PRE-TRAINING

Sign language pre-training approaches leverage pretext tasks to capture semantic representations
during the pre-training phase, resulting in notable performance improvements on diverse down-
stream tasks. Some researchers (Hu et al., 2021a; 2023a; Zhao et al., 2024b) attempt to leverage
self-supervised learning to enhance representation capabilities from massive unlabeled data. No-
tably, the series of SignBERT (Hu et al., 2021a; 2023a) employs a masking-and-reconstructing
strategy to mine contextual information of sign language, achieving promising performance im-
provements in SLU. However, these self-supervised sign language pre-training approaches primarily
focus on learning low-level visual semantics while neglecting the acquisition of textual knowledge,
resulting in a gap with downstream tasks such as SLT. Some studies have insightfully identified this
issue and attempt to leverage video-gloss/video-text pair data to inject linguistic knowledge into the
pre-trained model. MMTLB (Chen et al., 2022b) achieves precise alignment between sign language
and text by employing three sub-tasks (sign-to-gloss, gloss-to-text, and sign-to-text), thereby un-
locking the potential of pre-trained language models. GFSLT-VLP (Zhou et al., 2023) proposes a
contrastive learning pretext task that effectively aligns sign language and text in a joint space, signif-
icantly advancing the development of gloss-free SLT. Inspired by GFSLT-VLP, MSLU (Zhou et al.,
2024) and C2RL (Chen et al., 2024a) further introduce the pretext tasks of keypoint reconstruction
and language modeling, respectively. Despite the effectiveness of incorporating gloss/text data, they
are generally limited by the scale of the video-gloss/video-text paired data or the transferring capa-
bility of downstream tasks. YouTube-ASL (Uthus et al., 2024) directly employs language modeling
task for large-scale pre-training, demonstrating the potential of generative pre-training and empha-
sizing the importance of scaling datasets. In contrast to prior pre-training methods (Hu et al., 2021a;
2023a; Zhao et al., 2023; Zhou et al., 2023), we propose a framework that benefits from large-scale
pre-training and a unified pre-training and fine-tuning paradigm, thereby fully unlocking the SLU
potential of the pre-trained model and transferring it to downstream tasks.

2.3 UNIFYING VIA LANGUAGE MODELING

Inspired by the success of sequence-to-sequence (seq2seq) modeling in natural language processing,
previous studies (Chen et al., 2022a; Wang et al., 2022) employ seq2seq approaches to unify a vari-
ety of tasks. Built on these advancements, vision LLMs (Li et al., 2023; Zhu et al., 2024) extend the
capabilities of LLMs to vision-language understanding by leveraging language modeling objective.
LLaVA (Liu et al., 2023) demonstrates remarkable multimodal instruction-following capabilities
by utilizing the extensive world knowledge embedded in LLMs. VisionLLM-v2 (Wu et al., 2024)
utilizes language modeling to tackle hundreds of vision-language tasks, further highlighting the ef-
fectiveness of the unified paradigm. Motivated by these advancements, we propose Uni-Sign, which
aims to address various SLU tasks via language modeling, while also achieving both simplicity and
scalability.
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Name Language Vocab. Hours Source

KETI (Ko et al., 2019) KVK 419 28 Lab
SWISSTXT (Camgöz et al., 2021) DSGS - 88 TV
VRT-RAW (Camgöz et al., 2021) VGT - 100 TV
PHOENIX-2014T (Camgoz et al., 2018) DGS 3K 11 TV
DGS Corpus (Hanke et al., 2020) DGS - 50 Lab
BOBSL (Albanie et al., 2021) BSL 77K 1,447 TV
How2Sign (Duarte et al., 2021) ASL 16K 79 Lab
OpenASL (Shi et al., 2022) ASL 33K 288 Web
YouTube-ASL (Uthus et al., 2024) ASL 60K 984 Web
SP-10 (Yin et al., 2022) various 17K 14 Web
AfriSign (Gueuwou et al., 2023b) various 20K 152 Web
CSL-Daily (Zhou et al., 2021) CSL 2K 23 Lab

CSL-News (Ours) CSL 5K 1,985 TV

Table 1: Summary statistics for different SLT datasets.
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Figure 2: Distribution of video
durations and text lengths.

这就相当于给聋哑人士配备了一个贴身手语翻译。
(This is equivalent to providing deaf individuals with a personal sign language interpreter.)

TV program

新年新愿望，只要努力，未来可期。
(New year, new hopes. With diligent effort, a bright future awaits.)

TV program

Figure 3: Samples of videos and text annotations in the CSL-news dataset. The signer’s face is
masked in here to protect their privacy.

2.4 SIGN LANGUAGE UNDERSTANDING DATASETS

Collecting large-scale and high-quality datasets is crucial for improving neural network perfor-
mance and has been widely explored. For ISLR, various benchmarks (Joze & Koller, 2019; Li
et al., 2020a; Hu et al., 2021c) have been proposed to comprehensively evaluate model performance.
Phoenix2014-T (Camgoz et al., 2018) CSL-Daily (Zhou et al., 2021) are introduced to tackle CSLR
and SLT tasks. Although numerous efforts (Shi et al., 2022; Duarte et al., 2021; Yin et al., 2022;
Hanke et al., 2020) have been made to develop high-quality datasets to boost SLU, the field is
still constrained by the size of the available datasets. BoBSL (Albanie et al., 2021) and YouTube-
ASL (Uthus et al., 2024) insightfully identified this issue and proposed a 1,447 hours British Sign
Language (BSL) dataset and a 984 hours American Sign Language (ASL) dataset, respectively.
Additionally, YouTube-SL-25 (Tanzer & Zhang, 2024) and JWSign (Gueuwou et al., 2023a) have
also collected large-scale multilingual sign language datasets, which are crucial for training unified
multilingual sign language models. Previous works primarily focused on collecting BSL (Albanie
et al., 2021) and ASL (Shi et al., 2022; Uthus et al., 2024; Tanzer & Zhang, 2024) datasets, leaving
CSL datasets relatively underexplored. To fill this gap, we propose CSL-News, a 1,985 hours CSL
translation dataset.

3 METHOD

3.1 LARGE-SCALE DATA CURATION: CSL-NEWS

Currently, the larger publicly available SLT datasets are mainly sourced from ASL (Shi et al., 2022;
Uthus et al., 2024; Tanzer & Zhang, 2024) and BSL (Albanie et al., 2021), there still exists an urgent
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Figure 4: The overview of our two key innovations: (a) Pipeline for large-scale data curation. (b)
Unified pre-training and fine-tuning, utilizing pre-training parameters and a single language model-
ing loss to address diverse SLU tasks.

need to collect a large-scale CSL dataset. As illustrated in Table 1, CSL-Daily (Zhou et al., 2021)
is currently the largest existing CSL dataset which only contains a total duration of 23 hours and is
insufficient to train a robust CSL model. We therefore gather the CSL-News dataset, a large-scale
SLT dataset with 1,985 hours of videos, approximately 86 times larger than the previous CSL-Daily
dataset.

To construct this dataset, we primarily collect four TV programs1 from three different TV station to
construct our dataset. The duration statistics for each TV station are as follows: CCTV-13, 1,342
hours; Dragon TV, 623 hours; and Hebei Radio and TV Station, 20 hours. After downloading the
massive TV programs and considering the strong temporal alignment between sign language and
news broadcasts, we employ the FunASR (Gao et al., 2023) toolkit to extract textual annotations
from the audio. Subsequently, the news videos are segmented based on the timestamps of punctua-
tion marks (。,？,！) to generate video-text pairs. Finally, we crop the sign language videos using
predefined relative coordinates to eliminate background interference. Through these processes, we
curate a large-scale CSL translation dataset that plays a crucial role in the pre-training of a large-
scale CSL model. As shown in Figure 2, the dataset comprises video clips with an average duration
of 9.5 seconds and an average text length of 40 words in a total of 751,320 video clips. More discus-
sion could be found in Appendix A.5. Figure 3 illustrates the videos and text annotations within the
CSL-news dataset, while Figure 4 (a) presents the complete pipeline for large-scale data curation.

3.2 UNIFIED PRE-TRAINING AND FINE-TUNING

For training efficiency, the process is divided into three stages, Stage 1: pose-only pre-training,
Stage 2: RGB-pose interaction continue pre-training, and Stage 3: downstream task fine-tuning.
The framework of Uni-Sign is illustrated in Figure 5 (a).

Preliminaries. Given 133 keypoints, we selectively utilize 69 keypoints, categorizing them into
three sub-pose groups: 21 for each hand, 9 for the body, and 18 for the face. The keypoints sequence
of group i is then processed by its corresponding pose encoder, producing gesture features Fp

i ∈

RT×Ni×C . Here, T represents the length of the pose sequence, Ni denotes the number of keypoints
in group i, C is the dimension of the features, and i ∈ {lh, rh, b, f}. In this paper, pose encoder of
group i is composed of a three-layer spatial GCN.

Following the idea of decoupling visual cues, the vision encoder focuses on learning representa-
tions from both hands rather than the entire image. To achieve this, videos cropped using keypoint
coordinates and resized to 112 × 112 pixels are processed by the vision encoder, producing vision
features denoted as Fr

lh ∈ RT×h×w×C and Fr
rh ∈ RT×h×w×C . Notably, in Stage 2, we fuse Fp

i and
Fr

i to compensate for the visual information lost due to inaccurate keypoints, obtaining the fused

1Common-Concerns, Primetime-News, News-30’, Sign-Language-News
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features F̃p
i . Specific details of the fusion module will be provided in Section 3.3. After those

processes, we employ a three-layer ST-GCN (Yan et al., 2018) to construct the short-term temporal
encoder. The features from each group (Fp

i or F̃p
i ) are then fed into the temporal encoders, aggre-

gated intra-group via a mean pooling layer, and concatenated across all groups to produce the final
feature Fsign ∈ RT×4C , which is subsequently input to the language model.

Pre-training Uni-Sign. Previous works (Chen et al., 2022b;c; Zhao et al., 2024a; Wong et al., 2024;
Chen et al., 2024b; Zhou et al., 2023) have designed indirect pretext tasks (e.g., gloss-to-text transla-
tion, pseudo-gloss prediction) to unlock the pre-trained language model’s potential. Different from
them, we directly employ the generative pre-training paradigm to utilize the knowledge embedded
within the pre-trained large language model. Specifically, we project the feature Fsign to match the
dimension of the language model and then feed it into the language model. The loss function is as
follows:

Llm = −
U

∑
u=1

log p(su∣s<u,Fsign), (1)

where su represents the u-th token, and s<u denotes all preceding tokens in the sentence s. During
the pre-training phase, we leverage Llm as the objective function, denoted as LPSLT, as depicted in
Figure 4 (a).

Fine-tuning Uni-Sign. Although there are specific fine-tuning methods tailored to each task (e.g.,
ISLR employs an MLP head for classification, while CSLR commonly utilizes CTC loss to enforce
temporal constraints), we innovatively treat ISLR, CSLR, and SLT as a single SLT task, allowing us
to employ a unified fine-tuning paradigm to fine-tune all SLU tasks without the bells-and-whistles,
as shown in Figure 4 (b). To construct supervision targets, ISLR uses action description, CSLR
employs sequences of glosses separated by spaces, and SLT utilizes the translation text, denoted as
yword, ygloss, ysentence, respectively. Through this setting, the robust SLU capabilities integrated into
the model during the large-scale pre-training phase will be seamlessly transferred to downstream
tasks, thereby unlocking the full potential of the pre-trained model.

In summary, the objective function of each phase are as follows:

Pre-training {LPSLT = Llm(Fsign, ysentence)

Fine-tuning

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

LISLR = Llm(Fsign, yword)
LCSLR = Llm(Fsign, ygloss)
LSLT = Llm(Fsign, ysentence)

(2)

3.3 MULTI-MODAL FUSION

Prior-guided fusion. Multimodal networks (Chen et al., 2022c; Jiang et al., 2024; 2021a;b; Zuo
et al., 2023) have been widely explored in SLU. However, most existing methods simply perform
spatial-temporal fusion (e.g., concatenation, cross-attention) without considering the fine-grained
spatial relationships, which are crucial for narrowing the representational gap between modalities.
Hence, we propose a prior-guided fusion (PGF) module that leverages keypoint coordinates as priors
to model fine-grained spatial consistency between modalities, as illustrated in Figure 5 (b). Given
Fp

i,t and Fr
i,t, where i = {lh, rh}, we first employ a multi-head attention module to incorporate

the global RGB information into Fp
i,t. Then, by utilizing the keypoint coordinates Js

i,t as priors to
initialize the reference points in deformable attention (Xia et al., 2022), fine-grained spatial modeling
across modalities is achieved. The fused features are denoted as F̂p

i,t. Finally, Fp
i,t and F̂p

i,t are fed
into a gater to expedite convergence during Stage 2 training. The implementation details are as
follows:

g = Gate([Fp
i,t, F̂

p
i,t]), (3)

F̃p
i,t = (1 − g) ∗ Fp

i,t + g ∗ F̂p
i,t, (4)

where Gate is a gate module initialized to zero, aimed to preserve the knowledge learned in Stage 1
at the beginning of Stage 2. The notation [⋅, ⋅] indicates the concatenation operation. Although {Fp

b ,
Fp

f } are not fused with RGB, we also convert their notation to {F̃p
b , F̃p

f } for ease of expression.
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Figure 5: (a) The framework of Uni-Sign. In the pose-only setting, the keypoints are divided into
sub-pose (hands, face, and body) and fed into pose encoders and temporal encoders to capture the
fine-grained visual cue. Subsequently, features from each part at the same time step are concatenated
along the feature dimension and processed by a pre-trained large language model to generate text.
In the RGB-pose setting, a score-aware sampling strategy is introduced to sample low-confidence
frames and crop the corresponding hand regions. The hands are further encoded by a vision encoder,
interacting with hand pose features through a PGF module to mitigate the impact of inaccurate
keypoints. (b) The overview of PGF module, which fuses RGB and pose features frame by frame.

Score-aware sampling strategy. Although RGB-pose fusion compensates for the visual cues lost
due to inaccurate keypoints, the inclusion of RGB poses a significant challenge to computational
resources. Considering the information redundancy between RGB and high-confidence keypoints,
we propose a score-aware sampling strategy that selectively chooses RGB frames corresponding to
low-confidence keypoints, thus balancing performance and speed. To this end, we use the average
confidence of hand keypoints as the reliability score rs, subsequently calculating the sampling score
as 1 − rs. Next, we randomly sample Psamp% of RGB frames based on these sampling scores.
Finally, by employing indexing, the sampled RGB frames are efficiently interacted with their corre-
sponding pose features. The relevant pseudocode is presented in Appendix A.3.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Config Stage 1 Stage 2 Stage 3
optimizer AdamW
base learning rate 3e-4
weight decay 1e-4
optimizer momentum β1, β2=0.9, 0.999
learning rate schedule cosine decay
training epochs 20 5 20
batch size 16 4 8
gradient accumulation 8 8 1

Table 2: Training recipe of each stage.

For Stage 1 and Stage 2, we utilize CSL-News
and YouTube-ASL (Uthus et al., 2024) as pre-
training datasets for CSL and ASL, respectively. In
Stage 3, fine-tuning is conducted separately for each
downstream dataset. We implement Uni-Sign us-
ing PyTorch (Paszke et al., 2019), employing mT5-
Base (Xue et al., 2021) as our pre-trained language
model. The mT5-Base model benefits from pre-
training on the mC4 (Xue et al., 2021) corpus, which
enhances its multilingual understanding capabilities.
Additionally, the vision encoder is an EfficientNet-B0 (Tan & Le, 2019) pre-trained on Ima-
geNet (Deng et al., 2009). We did not use any data augmentation during training. The detailed
training recipe is presented in Table 2.

4.2 DATASETS AND EVALUATION METRICS

Datasets. We evaluate our model on various benchmarks to demonstrate its effectiveness. For ISLR,
we adopt WLASL (Li et al., 2020a) and MSASL (Joze & Koller, 2019) datasets for evaluation.
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Method Modality MSASL100 MSASL1000 WLASL100 WLASL2000
Pose RGB P-I P-C P-I P-C P-I P-C P-I P-C

ST-GCN† (Yan et al., 2018) ✔ 50.78 51.62 34.40 32.53 50.78 51.62 34.40 32.53
SignBERT (Hu et al., 2021a) ✔ 76.09 76.65 49.54 46.39 76.36 77.68 39.40 36.74
BEST (Zhao et al., 2023) ✔ 80.98 81.24 58.82 54.87 77.91 77.83 46.25 43.52
SignBERT+ (Hu et al., 2023a) ✔ 84.94 85.23 62.42 60.15 79.84 80.72 48.85 46.37
MSLU (Zhou et al., 2024) ✔ 91.54 91.75 74.07 71.81 88.76 89.25 56.29 53.29
HMA (Hu et al., 2021b) ✔ 73.45 74.59 49.16 46.27 - - 37.91 35.90
TCK (Li et al., 2020b) ✔ 83.04 83.91 - - 77.52 77.55 - -
NLA-SLR (Zuo et al., 2023) ✔ ✔ 90.49 91.04 72.56 69.86 91.47 92.17 61.05 58.05

Uni-Sign (Ours) ✔ 93.26 93.16 77.88 76.55 92.24 92.75 63.13 60.90
Uni-Sign (Ours) ✔ ✔ 93.79 94.02 78.16 76.97 92.25 92.67 63.52 61.32

Table 3: ISLR results on various benchmarks. † denotes meth-
ods reproduced by (Hu et al., 2021a). Blue and Green denote
the best results of previous methods and ours, respectively.

Method Modality CSL-Daily
Pose RGB Dev Test

MSLU (Zhou et al., 2024) ✔ 28.6 27.9
CoSign (Jiao et al., 2023) ✔ 28.1 27.2
SignBT (Zhou et al., 2021) ✔ 33.2 33.2
AdaBrowse (Hu et al., 2023d) ✔ 31.2 30.7
SEN (Hu et al., 2023c) ✔ 31.1 30.7
CorrNet (Hu et al., 2023b) ✔ 30.6 30.1
C2ST (Zhang et al., 2023b) ✔ 25.9 25.8
TS-SLR (Chen et al., 2022c) ✔ ✔ 25.4 25.3
Uni-Sign (Ours) ✔ 28.2 27.4
Uni-Sign (Ours) ✔ ✔ 26.7 26.0

Table 4: CSLR results on CSL-
Daily dataset with WER scores.

Method Modality Dev Test
Pose RGB BLEU1 BLEU4 ROUGE BLEU1 BLEU4 ROUGE

Gloss-based

SLRT† (Camgoz et al., 2020) ✔ 37.47 11.88 37.96 37.38 11.79 36.74
ConSLT (Fu et al., 2023) ✔ - 14.80 41.46 - 14.53 40.98
SignBT (Zhou et al., 2021) ✔ 51.46 20.80 49.49 51.42 21.34 49.31
SLTUNET (Zhang et al., 2023a) ✔ - 23.99 53.58 54.98 25.01 54.08
MMTLB (Chen et al., 2022b) ✔ 53.81 24.42 53.38 53.31 23.92 53.25
CV-SLT (Zhao et al., 2024a) ✔ - 28.24 56.36 58.29 28.94 57.06
TS-SLT (Chen et al., 2022c) ✔ ✔ 55.21 25.76 55.10 55.44 25.79 55.72

Gloss-free

MSLU (Zhou et al., 2024) ✔ 33.28 10.27 33.13 33.97 11.42 33.80
SLRT‡ (Camgoz et al., 2020) ✔ 21.03 4.04 20.51 20.00 3.03 19.67
GASLT (Yin et al., 2023) ✔ - - - 19.90 4.07 20.35
NSLT† (Camgoz et al., 2018) ✔ 34.22 7.96 34.28 34.16 7.56 34.54
GFSLT-VLP (Zhou et al., 2023) ✔ 39.20 11.07 36.70 39.37 11.00 36.44
FLa-LLM (Chen et al., 2024b) ✔ - - - 37.13 14.20 37.25
Sign2GPT (Wong et al., 2024) ✔ - - - 41.75 15.40 42.36
SignLLM (Gong et al., 2024) ✔ 42.45 12.23 39.18 39.55 15.75 39.91
C2RL (Chen et al., 2024a) ✔ - - - 49.32 21.61 48.21
Uni-Sign (Ours) ✔ 53.24 25.27 54.34 53.86 25.61 54.92
Uni-Sign (Ours) ✔ ✔ 55.30 26.25 56.03 55.08 26.36 56.51

Table 5: SLT results on CSL-Daily dataset. † and ‡
denote methods reproduced by (Zhou et al., 2021)
and (Zhou et al., 2023), respectively. Underline
indicates the best gloss-based SLT result.

Method Modality Test
Pose RGB BLEU1 BLEU4 ROUGE BLEURT

How2Sign

GloFE-VN (Lin et al., 2023) ✔ 14.9 2.2 12.6 31.7
YouTube-ASL (Uthus et al., 2024) ✔ 37.8 12.4 - 46.6
MSLU (Zhou et al., 2024) ✔ 20.1 2.4 17.2 -
SLT-IV (Tarrés et al., 2023) ✔ 34.0 8.0 - -
C2RL (Chen et al., 2024a) ✔ 29.1 9.4 27.0 -
FLa-LLM (Chen et al., 2024b) ✔ 29.8 9.7 27.8
SignMusketeers (Gueuwou et al., 2024) ✔ 41.5 14.3 - -
SSVP-SLT (Rust et al., 2024) ✔ 43.2 15.5 38.4 49.6

Uni-Sign (Ours) ✔ 40.4 14.5 34.3 48.6
Uni-Sign (Ours) ✔ ✔ 40.2 14.9 36.0 49.4

OpenASL

GloFE-VN (Lin et al., 2023) ✔ 21.56 7.06 21.75 36.35
Conv-GRU† (Camgoz et al., 2018) ✔ 16.11 4.58 16.10 25.65
I3D-transformer (Shi et al., 2022) ✔ 18.31 5.66 18.64 28.82
OpenASL (Shi et al., 2022) ✔ 20.92 8.59 21.02 31.09
C2RL (Chen et al., 2024a) ✔ 31.46 13.21 31.36 -

Uni-Sign (Ours) ✔ 49.10 22.67 42.77 60.08
Uni-Sign (Ours) ✔ ✔ 49.35 23.14 43.22 60.40

Table 6: Gloss-free SLT results on How2Sign
and OpenASL. † indicates methods repro-
duced by (Shi et al., 2022).

For CSLR, we utilize CSL-Daily (Zhou et al., 2021). SLT task is conducted on the CSL-Daily,
How2Sign (Duarte et al., 2021), and OpenASL (Shi et al., 2022) datasets.

Evaluation metrics. Following previous works (Hu et al., 2021a; Zhou et al., 2024), we report
per-instance (P-I) and per-class (P-C) Top-1 accuracy, as well as word error rate (WER), to eval-
uate ISLR and CSLR, respectively. For SLT, we adopt BLEU (Papineni et al., 2002) from the
SacreBLEU (Post, 2018) library and ROUGE-L (Lin, 2004) as evaluation metrics. For English SLT
datasets, we also report BLEURT (Sellam et al., 2020) scores using the BLEURT-20 checkpoint, as
it has been shown to correlate strongly with human judgments.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

To validate the effectiveness of our framework, we conduct a series of experiments across a diverse
range of SLU tasks. To provide additional references for future research, we present both the perfor-
mance of the RGB-pose setting and the pose-only setting, where the pose-only experiments bypass
the training in Stage 2 entirely. Due to page limitations, the qualitative visualization is presented in
Appendix A.4.

Results on ISLR and CSLR. We compare the results of Uni-Sign with previous studies on ISLR
benchmarks in Table 3. Our model surpasses previous SOTA on these benchmarks without any
task-specific designs. Compared to the previous state-of-the-art methods (MSLU and NLA-SLR),
our approach achieves improvements of 4.09% and 2.47% in per-instance Top-1 accuracy on the
challenging MSASL1000 and WLASL2000 datasets, respectively. Moreover, we evaluate the per-
formance on CSLR, as shown in Table 4. Despite not employing CTC loss to impose temporal
constraints on sign language, our model still shows competitive performance, with only a 1.3% and
0.7% performance drop compared to TS-SLR. We argue that the performance gap between Uni-Sign
and TS-SLR may be attributed to the more complex model architecture and the dense intermediate
state constraints incorporated in TS-SLR. The experiments demonstrate that our approach learns ro-
bust SLU capabilities via pre-training and successfully transfers the knowledge through generative
fine-tuning to downstream tasks.
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Setting
MSASL1000 (ISLR) CSL-Daily (CSLR)

P-I P-C Dev Test
Top-1↑ Top-1↑ WER↓ WER↓

Task-specific fine-tuning paradigm

Fsign 56.92 53.67 37.4 36.4
Flm enc 70.97 68.54 39.2 38.3

Unified fine-tuning paradigm

Ours 77.88 76.55 28.2 27.4

Table 7: Impact of fine-tuning
paradigm in pose-only setting.

Setting
CSL-Daily (CSLR) CSL-Daily (SLT)

Dev Test Dev Test
WER↓ WER↓ BLEU4↑ ROUGE↑ BLEU4↑ ROUGE↑

0% 74.7 73.6 3.75 20.46 3.51 20.56
25% 31.5 31.0 20.68 49.68 21.13 49.9
50% 31.5 30.1 21.85 50.98 22.58 51.62
75% 28.8 28.5 24.74 54.28 24.95 54.87

100% 28.2 27.4 25.27 54.34 25.61 54.92

Table 8: Impact of pre-training data scale in pose-only set-
ting.

Psamp Time
CSL-Daily (CSLR) CSL-Daily (SLT)

Dev Test Dev Test
WER↓ WER↓ BLEU4↑ ROUGE↑ BLEU4↑ ROUGE↑

0 % 1.0× 28.2 27.4 25.27 54.34 25.61 54.92
10 % 1.3× 26.7 26.0 26.25 56.03 26.36 56.51
25 % 1.7× 27.0 26.2 26.37 56.11 26.55 56.48
50 % 2.2× 26.8 26.4 26.30 56.39 26.86 57.43

Table 9: Impact of score-aware sampling strategy
in RGB-pose setting.

Setting
CSL-Daily (CSLR) CSL-Daily (SLT)

Dev Test Dev Test
WER↓ WER↓ BLEU4↑ ROUGE↑ BLEU4↑ ROUGE↑

CA 27.3 27.0 25.74 55.63 26.11 56.22
DA 26.7 26.0 26.30 56.03 26.36 56.51

Table 10: Impact of fusion module in RGB-
pose setting.

Results on SLT. Table 5 and 6 present comparisons of SLT performance between our method and
prior approaches on the CSL-Daily, How2Sign, and OpenASL datasets. We observe that Uni-Sign
beats previous gloss-free SOTA on CSL-Daily and OpenASL, with a substantial performance in-
crease in BLEU4. On the CSL-Daily dataset, under the same gloss-free paradigm, Uni-Sign sur-
passes previous SOTA, achieving improvements of 14.02 and 4.75 in the BLEU4 scores on the dev
and test sets, respectively. Moreover, we surprisingly found that Uni-Sign also outperforms certain
gloss-based SLT models, such as SLTUNET and TS-SLT, which integrated gloss information into
their frameworks through CSLR training. The series of results above emphasizes the importance
of large-scale generative pre-training, which endows the model with robust SLU capabilities. On
the OpenASL dataset, our method outperforms C2RL by 9.93 in BLEU4 and achieves a remark-
able BLEURT score (60.40 vs. 36.35). Meanwhile, our performance on How2Sign is also notable,
achieving comparable results with RGB-based models (SignMusketeers, SSVP-SLT) under the same
pre-training dataset. Although SSVP-SLT employs a larger-scale vision encoder, a more complex
pre-training strategy, and a longer pre-training duration, Uni-Sign demonstrates only a slight perfor-
mance difference in terms of BLEU4 (14.9 vs. 15.5), highlighting its competitive potential.

4.4 ABLATION STUDY

We conduct various ablation studies to investigate the contribution of each key component in
Uni-Sign. Specifically, the MSASL1000 dataset is selected for ISLR, while the CSL-Daily dataset
is used for the other tasks. Due to page limitations, some ablation studies are shown in the Ap-
pendix A.2.

Impact of fine-tuning paradigms. We separately utilize features from the temporal encoders and
the language model encoder as the representations of sign language, denoted as Fsign and Flm enc,
respectively. These features are then performed task-specific fine-tuning settings to investigate the
impact of different fine-tuning paradigms. For ISLR, the selected features undergo mean pool-
ing followed by a classification head, supervised by cross-entropy loss. For CSLR, the features
are passed through an LSTM layer and optimized by CTC loss. As depicted in Table 7, our pro-
posed fine-tuning paradigm achieves the best performance, demonstrating a notable margin over
task-specific fine-tuning paradigms. We also observe that the features Flm enc yield better results
in ISLR than Fsign, while performing worse in CSLR. This suggests that while Flm enc captures
high-level semantics of sign language, it compromises short-term temporal understanding. Despite
the rich semantic information encoded in Flm enc, an improper fine-tuning method resulted in a
performance drop of 6.91% for P-I and 8.01% for P-C in ISLR. Furthermore, the unified fine-tuning
paradigm leverages its robust SLU understanding and linguistic restructuring capabilities, signifi-
cantly outperforming the mainstream CSLR fine-tuning paradigm that uses CTC loss for temporal
constraints (28.2 vs. 37.4 and 27.4 vs. 36.4). The above results highlight that our proposed unified
fine-tuning paradigm can effectively transfer the SLU capabilities within the pre-trained model.
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Impact of pre-training data scale. We randomly sample a portion of data from the CSL-News
dataset for pre-training to explore the impact of pre-training data scale on model performance. In
Table 8, we observe that as the quantity of pre-training data increases, the performance of various
tasks progressively improves, indicating that our model can benefit from larger datasets and high-
lighting the critical role of large-scale pre-training.

Impact of score-aware sampling strategy. To evaluate the effectiveness of the score-aware sam-
pling strategy, we perform hyperparameter selection on the sampling probability Psamp. As illus-
trated in Table 9, increasing Psamp results in a gradual improvement in SLT, achieving a maximum
gain of 1.25 BLEU4 on the CSL-Daily test set when Psamp reaches 50%. However, time consump-
tion also increases significantly. To balance performance and time consumption, we select 10% as
the default value, which still yields promising results.

Impact of fusion module. To evaluate the impact of the fusion module, we replace the deformable
attention (DA) in the PGF module with cross-attention (CA). The results presented in Table 10
demonstrate that DA outperforms CA in the CSLR, and SLT tasks, highlighting the effectiveness of
using keypoint coordinates as priors.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce Uni-Sign, a unified pre-training framework that leverages a large-scale
generative pre-training strategy and a novel fine-tuning paradigm, narrowing the gap between pre-
training and downstream SLU tasks. Specifically, we first propose CSL-News, a large-scale CSL
translation dataset containing 1,985 hours of video-text pairs, which enables effective large-scale
pre-training. Next, we unify the fine-tuning paradigm by treating downstream SLU tasks as a single
SLT task, which significantly narrows the gap between pre-training and fine-tuning while facilitating
the transfer of SLU capabilities to these tasks. Moreover, we introduce the PGF module and a
score-aware sampling strategy to efficiently capture visual cues from both RGB and pose modalities
while achieving a trade-off between performance and speed. Despite the simplicity of Uni-Sign, we
achieve remarkable results across multiple SLU tasks, demonstrating a notable improvement over
previous state-of-the-art methods.

In the future, we are interested in exploring large-scale pre-trained multilingual SLU models and
SLU tasks in complex scenarios (such as complex backgrounds, multi-signer situations, long-
duration sign language understanding). We are also keen to investigate sign language production, a
research field as important as SLU, to ensure that the Deaf/Hard of Hearing communities can equally
benefit from technological advancements.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have provided details of the training settings in Section 4.1, with
further details of our framework to be presented in Appendix A.1. The CLS-News dataset and
the code of Uni-Sign will be open-sourced after the paper is accepted, aiming to promote further
research on SLU.
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A APPENDIX

A.1 FRAMEWORK IMPLEMENTATION

Keypoints extraction. We employ the RTMPose-x (Jiang et al., 2023) from MMPose to extract
whole-body keypoints. The visualization of whole-body keypoints are shown in Figure 6. As men-
tioned in Section 3.2, we divide the pose into sub-pose (left hand, right hand, face, and body). We
select the indices for the left hand ({92-112}), right hand ({113-133}), body ({1, 4-11}), and face
({24, 26, 28, 30, 32, 34, 36, 38, 40, 54, 84-91}) to represent each group. Additionally, we select 92,
113, and 54 as the root indices for the hands and face to normalize the keypoints, while the body is
not normalized using root coordinates.

Figure 6: The visualization of the whole-body 133 keypoints, derived from (Jin et al., 2020).

Feature extraction. We detail the output dimensions of feature extraction in Table 11. It is im-
portant to note that the weights are not shared among each group. Hence, we create three separate
linear layers, pose encoders, and temporal encoders to capture the representation of each group
individually.

Layer Dimensions Temporal kernel

Linear 64 None
Pose encoder [64, 128, 256] None
Temporal encoder [256, 256, 256] 5

Table 11: Output dimension of each layer in feature extraction.

Pre-trained large language model. We leverage the HuggingFace library for the pre-trained large
language model from https://huggingface.co/google/mt5-base.

Parameters of Uni-Sign. The parameters of Uni-Sign is shown in Table 12, while the parameters for
the compared methods are estimated based on their original papers. Compared to previous methods,
Uni-Sign demonstrates significant advantages in both parameter efficiency and performance.

Method Visual encoder Language model Auxiliary text encoder

FLa-LLM ResNet18 (11.7M) MBart-large-cc25 (610.8M) -
Sign2GPT DinoV2 (ViT-S/14) (22.0M) XGLM-1.7B (1732.9M) -
SignLLM ResNet18 (11.7M) LLaMA-7B (6738.4M) -
C2RL ResNet18 (11.7M) MBart-large-cc25 (610.8M) MBart Encoder (408.2M)
Uni-Sign EfficientNet-B0 + GCN (5.2M + 4.5M) mT5-Base (582.4M) -

Table 12: Comparison of parameters across different methods.
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A.2 ADDITIONAL ABLATION STUDIES

Impact of different sub-pose. To conduct experiments to explore the impact of different sub-pose,
we directly use the training from scratch pose-only settings to reduce the time consumption. As
presented in Table 13, each sub-pose is indispensable, prompting us to incorporate all sub-poses
into our model.

hands body face
MSASL1000 (ISLR) CSL-Daily (CSLR)

P-I P-C Dev Test
Top-1↑ Top-1↑ WER↓ WER↓

✔ 36.07 34.20 54.3 53.9
✔ ✔ 41.56 38.28 53.0 52.9
✔ ✔ ✔ 43.45 41.10 51.2 50.7

Table 13: Impact of sub-pose in pose-only setting.

A.3 PSEUDOCODE OF SCORE-AWARE SAMPLING STRATEGY

In order to provide a more detailed explanation of this strategy, we present the pseudocode of score-
aware sampling strategy here.

Algorithm 1 Pseudocode of the score-aware sampling strategy in a PyTorch-like style.

1 # feat_h: pose features of hand, shape [T, 21, C].
2 # score_h: keypoints confidence of hand, shape [T, 21].
3 # coor_h: coordinates of hand, shape [T, 21, 2].
4 # P_samp: sampling probability.
5
6 # Step 1: Pre-define the total duration of the sign language sequence
7 T = feat_h.shape[0]
8
9 # Step 2: Calculate reliability scores (rs) based on keypoint confidence

10 rs = [confidence.mean(-1) for confidence in score_h]
11
12 # Step 3: Calculate sampling scores as 1 - rs
13 sampling_scores = [1 - score for score in rs]
14
15 # Step 4: Perform random sampling
16 sampled_indices = random.choices(range(T), weights=sampling_scores, k=int(T * P_samp))
17
18 # Step 5: Extract RGB frames, pose features and coordinates
19 RGB_frames = [read_hand_image(i) for i in sampled_indices]
20 pose_features = [feat_h[i] for i in sampled_indices]
21 pose_coordinates = [coor_h[i] for i in sampled_indices]
22
23 # Step 6: Interact the RGB modality with the pose modality
24 RGB_features = vision_encoder(RGB_frames)
25 cross_modality_features = PGF(RGB_features, pose_features, pose_coordinates)
26
27 # Step 7: Fuse cross modality features to pose features
28 feat_h[sampled_indices] = cross_modality_features

A.4 QUALITATIVE EXAMPLES

Visualization on ISLR and CSLR. Figure 7 presents representative examples from the ISLR task,
showcasing the capability of Uni-Sign to effectively address ISLR challenges. Table 14 presents
the CSLR results on the CSL-Daily dataset. Uni-Sign demonstrates powerful SLU capabilities by
achieving notable performance on the CSLR task, emphasizing large-scale generative pretraining
as a promising direction for scaling up CSLR models. However, failure cases reveal challenges in
distinguishing semantically similar words (e.g., “你 们” (you) → “你们” (you), “收” (receive) → “
接受” (receive), “兴奋” (excited) → “高兴” (happy)), underscoring the importance of fine-grained
control over output targets, which could further enhance model performance and reliability.
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Uni-Sign: enjoy

Uni-Sign: nice

Reference: enjoy t

t

Reference: nice t

Uni-Sign: enjoy

Uni-Sign: nice

Reference: big Uni-Sign: big

Reference: hope Uni-Sign: hope t

Figure 7: Visualization examples derived from the WLASL and MSASL datasets.

Reference: 中午 去 什么 吃 在 学校 饭店
Uni-Sign: 中午 去 什么 吃 在 学校 饭店

Reference: 人们 排队 排队 清楚 这 是 好 习惯
Uni-Sign: 人们 排队 排队 清楚 这 是 好 习惯

Reference: 这 项目 是 你 们 努力 成功 争取
Uni-Sign: 这 项目 是 你们 努力 成功

Reference: 哥哥 接受 书 清楚 华 大学 录取 成功 心 兴奋
Uni-Sign: 哥哥 收 书 清楚 华 大学 录取 成功 他 高兴

Table 14: Visualization examples derived from the CSL-Daily dataset.
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SLT examples. In Table 15, 16 and 17, we present several SLT results across different datasets.
We found that our model successfully captures semantic information in sign language, generating
sentences that are close in meaning to the references, despite occasional differences in sentence
structure. However, we also observed that the model sometimes fails to translate complex sentence
structures, as demonstrated in the last example of Table 16 and 17.

Reference: 下雪了，今天真冷。
(It’s snowing and it’s really cold today.)

Uni-Sign: 下雪了，今天很冷。
(It’s snowing and it’s very cold today.)

Reference: 我的爷爷会手语，有很多聋人朋友。
(My grandfather knew sign language and had many deaf friends.)

Uni-Sign: 我爷爷会打手语，他有很多聋人朋友。
(My grandfather can sign language and he has many deaf friends.)

Reference: 今天出门忘记带手机，真是太倒霉了。
(I forgot to bring my mobile phone when I went out today, which is really
unlucky.)

Uni-Sign: 今天出门时，我的手机忘了，真倒霉。
(When I went out today, I forgot my cell phone. What a bad luck.)

Reference: 哥哥接到了清华大学的录取通知书，很高兴。
(My brother received the admission notice from Tsinghua University and was
very happy.)

Uni-Sign: 不难想像，哥哥接到清华大学录取通知书时,心情是多么激动。
(It is not difficult to imagine how excited my brother was when he received
the admission notice from Tsinghua University.)

Table 15: Translation examples on the CSL-Daily dataset.

Reference: Alright.
Uni-Sign: Okay.

Reference: A little speed.
Uni-Sign: Just a little bit faster.

Reference: A really basic coil to do for ropes that are kind of medium length.
Uni-Sign: The basic coil we’re going to do for ropes is some kind of medium length.

Reference: After you are dealt the three cards, you would look down at your cards and
you would decide if you wanted to continue to play.

Uni-Sign: I’m going to cut three of these out and I’m going to decide if I want to con-
tinue.

Table 16: Translation examples on the How2Sign dataset.

Reference: An official letter, right.
Uni-Sign: So it’s a letter.

Reference: Before the meeting, you should share with your captioner what topics will be
discussed, so the captioner will be better prepared for your meeting.

Uni-Sign: Before the meeting, you should discuss with your captioner what topics should
be discussed, so that the meeting is smooth.

Reference: After I graduated, I went to Gallaudet University and double majored in Biol-
ogy and Chemistry.

Uni-Sign: Eventually, I graduated and went to Gallaudet University for my Bachelor s in
Biology.

Reference: Besides the dog, Lieutenant Dan, there is a mini horse, pig, llama, hamster,
duck and two cats.

Uni-Sign: In addition to the dogs, the dogs and other volunteers include miniature horses,
elephants, llamas and hamstrings.

Table 17: Translation examples on the OpenASL dataset.
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A.5 MORE DISCUSSION ABOUT CSL-NEWS DATASET

To facilitate a more detailed comparison between CSL-News and existing datasets, we provide fur-
ther analysis of the CSL-News dataset. The vocabulary distribution of CSL-News is presented in
Figure 8. In addition to the advantage of a longer duration, we further emphasize several other
advantages of CSL-News over existing datasets, as outlined below:

High diversity of content. The CSL-News dataset is sourced from news content, encompassing
diverse topics such as culture, economy, sports, science and daily life. Compared to small scale
datasets (Camgoz et al., 2018; Zhou et al., 2021), it exhibits a more diverse data distribution that is
not restricted to specific domains.

High quality and standardization. Unlike datasets scraped from YouTube (Li et al., 2020a; Shi
et al., 2022; Uthus et al., 2024), CSL-News dataset is derived from news segments featuring sign
language experts, ensuring more standardized signing and thereby enhancing the reliability and
overall quality of the CSL-News dataset.

Benefiting from the comprehensive CSL knowledge in the CSL-News dataset, models pre-trained
on it can acquire robust sign language understanding and generalization capabilities.
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Figure 8: Vocabulary distribution of CSL-News dataset.

B ETHICS STATEMENT

In this paper, Uni-Sign uses keypoints and cropped hand video clips as input. This ensures that our
method not only achieves impressive performance, but also protects the privacy of the Deaf/Hard of
Hearing communities.

C LIMITATIONS

Although Uni-Sign has achieved impressive performance across multiple benchmarks, we still lack a
finely annotated, open-domain, large-scale benchmark to further investigate its capabilities and lim-
itations. Furthermore, we fine-tune all parameters of Uni-Sign in all training stages, which presents
urgent challenges to computational resources.

D COMPLETE RESULTS OF EXPERIMENTS

Due to page limitations, some experimental results have been omitted from the main paper. The
complete experimental results are provided here to facilitate future research in referencing the rele-
vant results.
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Method Modality MSASL100 MSASL200 MSASL1000 WLASL100 WLASL300 WLASL2000

Pose RGB P-I P-C P-I P-C P-I P-C P-I P-C P-I P-C P-I P-C

ST-GCN† (Yan et al., 2018) ✔ 50.78 51.62 44.46 45.29 34.40 32.53 50.78 51.62 44.46 45.29 34.40 32.53
SignBERT (Hu et al., 2021a) ✔ 76.09 76.65 70.64 70.92 49.54 46.39 76.36 77.68 62.72 63.43 39.40 36.74
BEST (Zhao et al., 2023) ✔ 80.98 81.24 76.60 76.75 58.82 54.87 77.91 77.83 67.66 68.31 46.25 43.52
SignBERT+ (Hu et al., 2023a) ✔ 84.94 85.23 78.51 79.35 62.42 60.15 79.84 80.72 73.20 73.77 48.85 46.37
MSLU (Zhou et al., 2024) ✔ 91.54 91.75 87.79 88.58 74.07 71.81 88.76 89.25 82.04 82.71 56.29 53.29
HMA (Hu et al., 2021b) ✔ 73.45 74.59 66.30 67.47 49.16 46.27 - - - - 37.91 35.90
TCK (Li et al., 2020b) ✔ 83.04 83.91 80.31 81.14 - - 77.52 77.55 68.56 68.75 - -
NLA-SLR (Zuo et al., 2023) ✔ ✔ 90.49 91.04 88.74 89.23 72.56 69.86 91.47 92.17 86.23 86.67 61.05 58.05

Uni-Sign (Ours) ✔ 93.26 93.16 90.95 91.38 77.88 76.55 92.24 92.75 88.17 88.69 63.13 60.90
Uni-Sign (Ours) ✔ ✔ 93.79 94.02 91.02 91.56 78.16 76.97 92.25 92.67 88.47 88.92 63.52 61.32

Table 18: ISLR results on various benchmarks. † denotes methods reproduced by (Hu et al., 2021a).
Blue and Green denote the best results of previous methods and ours, respectively.

Method Modality Dev Test

Pose RGB BLEU1 BLEU2 BLEU3 BLEU4 ROUGE BLEU1 BLEU2 BLEU3 BLEU4 ROUGE

Gloss-based

SLRT† (Camgoz et al., 2020) ✔ 37.47 24.67 16.86 11.88 37.96 37.38 24.36 16.55 11.79 36.74
ConSLT (Fu et al., 2023) ✔ - - - 14.80 41.46 - - - 14.53 40.98
SignBT (Zhou et al., 2021) ✔ 51.46 37.23 27.51 20.80 49.49 51.42 37.26 27.76 21.34 49.31
SLTUNET (Zhang et al., 2023a) ✔ - - - 23.99 53.58 54.98 41.44 31.84 25.01 54.08
MMTLB (Chen et al., 2022b) ✔ 53.81 40.84 31.29 24.42 53.38 53.31 40.41 30.87 23.92 53.25
CV-SLT (Zhao et al., 2024a) ✔ - - - 28.24 56.36 58.29 45.15 35.77 28.94 57.06
TS-SLT (Chen et al., 2022c) ✔ ✔ 55.21 42.31 32.71 25.76 55.10 55.44 42.59 32.87 25.79 55.72

Gloss-free

MSLU (Zhou et al., 2024) ✔ 33.28 21.31 - 10.27 33.13 33.97 22.20 - 11.42 33.80
SLRT‡ (Camgoz et al., 2020) ✔ 21.03 9.97 5.96 4.04 20.51 20.00 9.11 4.93 3.03 19.67
GASLT (Yin et al., 2023) ✔ - - - - - 19.90 9.94 5.98 4.07 20.35
NSLT† (Camgoz et al., 2018) ✔ 34.22 19.72 12.24 7.96 34.28 34.16 19.57 11.84 7.56 34.54
GFSLT-VLP (Zhou et al., 2023) ✔ 39.20 25.02 16.35 11.07 36.70 39.37 24.93 16.26 11.00 36.44
FLa-LLM (Chen et al., 2024b) ✔ - - - - - 37.13 25.12 18.38 14.20 37.25
Sign2GPT (Wong et al., 2024) ✔ - - - - - 41.75 28.73 20.60 15.40 42.36
SignLLM (Gong et al., 2024) ✔ 42.45 26.88 17.90 12.23 39.18 39.55 28.13 20.07 15.75 39.91
C2RL (Chen et al., 2024a) ✔ - - - - - 49.32 36.28 27.54 21.61 48.21

Uni-Sign (Ours) ✔ 53.24 40.54 31.65 25.27 54.34 53.86 40.96 32.02 25.61 54.92
Uni-Sign (Ours) ✔ ✔ 55.30 42.21 32.94 26.25 56.03 55.08 42.14 32.98 26.36 56.51

Table 19: SLT results on CSL-Daily dataset. † and ‡ denote methods reproduced by (Zhou et al.,
2021) and (Zhou et al., 2023), respectively. Underline indicates the best gloss-based SLT result.

Method Modality Dev Test

Pose RGB BLEU1 BLEU2 BLEU3 BLEU4 ROUGE BLEURT BLEU1 BLEU2 BLEU3 BLEU4 ROUGE BLEURT

Gloss-free

GloFE-VN (Lin et al., 2023) ✔ 21.06 12.34 8.68 6.68 21.37 36.75 21.56 12.74 9.05 7.06 21.75 36.35
Conv-GRU† (Camgoz et al., 2018) ✔ 16.72 8.95 6.31 4.82 16.25 25.36 16.11 8.85 6.18 4.58 16.10 25.65
I3D-transformer (Shi et al., 2022) ✔ 18.26 10.26 7.17 5.60 18.88 29.17 18.31 10.15 7.19 5.66 18.64 28.82
OpenASL (Shi et al., 2022) ✔ 20.10 11.81 8.43 6.57 20.43 31.22 20.92 12.08 8.59 6.72 21.02 31.09
C2RL (Chen et al., 2024a) ✔ - - - - - - 31.46 21.85 16.58 13.21 31.36 -

Uni-Sign (Ours) ✔ 49.52 36.06 28.06 22.39 42.64 60.47 49.10 35.91 28.12 22.67 42.77 60.08
Uni-Sign (Ours) ✔ ✔ 50.84 37.82 29.83 24.16 44.58 61.28 49.35 36.32 28.55 23.14 43.22 60.40

Table 20: SLT results on OpenASL dataset. † denotes methods reproduced by (Shi et al., 2022).

Method Modality Test

Pose RGB BLEU1 BLEU2 BLEU3 BLEU4 ROUGE BLEURT

Gloss-free

GloFE-VN (Lin et al., 2023) ✔ 14.9 7.3 3.9 2.2 12.6 31.7
YouTube-ASL (Uthus et al., 2024) ✔ 37.8 24.1 16.9 12.4 - 46.6
MSLU (Zhou et al., 2024) ✔ 20.1 7.7 - 2.4 17.2 -
SLT-IV (Tarrés et al., 2023) ✔ 34.0 19.3 12.2 8.0 - -
C2RL (Chen et al., 2024a) ✔ 29.1 18.6 12.9 9.4 27.0 -
FLa-LLM (Chen et al., 2024b) ✔ 29.8 19.0 13.3 9.7 27.8
SignMusketeers (Gueuwou et al., 2024) ✔ 41.5 27.2 19.3 14.3 - -
SSVP-SLT (Rust et al., 2024) ✔ 43.2 28.8 20.8 15.5 38.4 49.6

Uni-Sign (Ours) ✔ 40.4 26.8 19.3 14.5 34.3 48.6
Uni-Sign (Ours) ✔ ✔ 40.2 27.1 19.7 14.9 36.0 49.4

Table 21: SLT results on How2Sign dataset.
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