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Abstract

While several types of post hoc explanation methods have been proposed in
recent literature, there is very little work on systematically benchmarking these
methods. Here, we introduce OpenXAI, a comprehensive and extensible open-
source framework for evaluating and benchmarking post hoc explanation methods.
OpenXAI comprises of the following key components: (i) a flexible synthetic data
generator and a collection of diverse real-world datasets, pre-trained models, and
state-of-the-art feature attribution methods, (ii) open-source implementations of
twenty-two quantitative metrics for evaluating faithfulness, stability (robustness),
and fairness of explanation methods, and (iii) the first ever public XAI leaderboards
to readily compare several explanation methods across a wide variety of metrics,
models, and datasets. OpenXAI is easily extensible, as users can readily evaluate
custom explanation methods and incorporate them into our leaderboards.
Overall, OpenXAI provides an automated end-to-end pipeline that not only
simplifies and standardizes the evaluation of post hoc explanation methods, but
also promotes transparency and reproducibility in benchmarking these methods.
While the first release of OpenXAI supports only tabular datasets, the explanation
methods and metrics that we consider are general enough to be applicable to other
data modalities. OpenXAI datasets and data loaders, implementations of state-
of-the-art explanation methods and evaluation metrics, as well as leaderboards
are publicly available at https://open-xai.github.io/. OpenXAI will be
regularly updated to incorporate text and image datasets, other new metrics and
explanation methods, and welcomes inputs from the community.

1 Introduction

As predictive models are increasingly deployed in critical domains (e.g., healthcare, law, and finance),
there has been a growing emphasis on explaining the predictions of these models to decision makers
(e.g. doctors, judges) so that they can understand the rationale behind model predictions, and
determine if and when to rely on these predictions. To this end, various techniques have been
proposed in recent literature to generate post hoc explanations of individual predictions made by
complex ML models. Several of such local explanation methods output the influence of each of the
features on the model’s prediction, and are therefore referred to as local feature attribution methods.
Due to their generality, feature attribution methods are increasingly being utilized to explain complex
models in medicine, finance, law, and science [23, 34, 78]. Thus, it is critical to ensure that the
explanations generated by these methods are reliable so that relevant stakeholders and decision
makers are provided with credible information about the underlying models [6].
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Prior works have studied several notions of explanation reliability such as faithfulness (or
fidelity) [81, 51, 33], stability (or robustness) [7, 4], and fairness [18, 9], and proposed metrics for
quantifying these notions. Many of these works also demonstrated through small-scale experiments
or qualitative analysis that certain explanation methods are not effective w.r.t. specific notions of
reliability. For instance, Alvarez-Melis and Jaakkola [7] visualized the explanations generated by
some of the popular gradient based explanation methods [67, 66, 70, 72] for MNIST images, and
showed that they are not robust to small input perturbations. However, it is unclear if such findings
generalize beyond the settings studied. More broadly, one of the biggest open questions which has
far-reaching implications for the progress of explainable AI (XAI) research is: which explanation

methods are effective w.r.t. what notions of reliability and under what conditions? [43]. A first step
towards answering this question involves systematically benchmarking explanation methods in a
reproducible and transparent manner. However, the increasing diversity of explanation methods,
and the plethora of evaluation settings and metrics outlined in existing research without standardized
open-source implementations make it rather challenging to carry out such benchmarking efforts.

In this work, we address the aforementioned challenges by introducing OpenXAI, a comprehensive
and extensible open-source framework for systematically and efficiently benchmarking explanation
methods in a transparent and reproducible fashion. More specifically, our work makes the following
key contributions:

1. We introduce the OpenXAI framework, an open-source ecosystem designed to support
systematic, reproducible, and efficient evaluations of post hoc explanation methods.
OpenXAI unifies the existing scattered repositories of datasets, models, and evaluation
metrics, and provides a simple and easy-to-use API that enables researchers and practitioners
to benchmark explanation methods using just a few lines of code (Section 2).

2. Our OpenXAI framework currently provides open-source implementations and ready-to-
use API interfaces for seven state-of-the-art feature attribution methods (LIME, SHAP,
Vanilla Gradients, Gradient x Input, SmoothGrad, and Integrated Gradients), and twenty-two

quantitative metrics to evaluate the faithfulness, stability, and fairness of feature attribution
methods. In addition, it includes a comprehensive collection of seven real-world datasets

spanning diverse real-world domains, and sixteen different pre-trained models. OpenXAI
also introduces a novel and flexible synthetic data generator to synthesize datasets of varying
sizes, complexity, and dimensionality which facilitate the construction of reliable ground
truth explanations (Section 2).

3. As part of our OpenXAI framework, we also develop the first-ever public XAI leaderboards

(shown in Figure 1) to promote transparency, and to allow users to easily compare the
performance of multiple explanation methods across a wide variety of synthetic and real-
world datasets, evaluation metrics, and predictive models.

4. OpenXAI framework is easily extensible i.e., researchers and practitioners can readily
incorporate custom explanation methods, datasets, predictive models, and evaluation metrics
into our framework and leaderboards (Section 2).

5. Lastly, using our proposed OpenXAI framework, we perform rigorous empirical

benchmarking of the aforementioned state-of-the-art feature attribution methods to determine
which methods are effective w.r.t. what notions of reliability across a wide variety of datasets
and predictive models (Section 3).

Overall, our OpenXAI framework provides an end-to-end pipeline that unifies, simplifies, and
standardizes several existing workflows to evaluate explanation methods. By enabling systematic
and efficient evaluation and benchmarking of existing and new explanation methods, our OpenXAI
framework can inform and accelerate new research in the emerging field of XAI. OpenXAI will be
regularly updated and welcomes input from the community.

Related Work. Our work builds on the vast literature in explainable AI. Here, we discuss closely
related works and their connections to our benchmark. A more detailed discussion of the related
work is included in the Appendix.

Evaluation Metrics for Post hoc Explanations: Prior research has studied several notions of
explanation reliability, namely, faithfulness (or fidelity), stability (or robustness), and fairness [51,
81, 7, 18]. While the faithfulness notion captures how faithfully a given explanation captures the
true behavior of the underlying model [81, 51, 33], stability ensures that explanations do not change
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drastically with small perturbations to the input [29, 7]. The fairness notion, on the other hand,
ensures that there are no group-based disparities in the faithfulness or stability of explanations [18].
To this end, prior works [51, 69, 81, 7, 18, 33] proposed various evaluation metrics to quantify the
aforementioned notions. For instance, Petsiuk et al. [59] measured the change in the probability
of the predicted class when important features (as identified by an explanation) are deleted from
or introduced into the data instance. A sharp change in the probability implies a high degree of
explanation faithfulness. Alvarez-Melis and Jaakkola [7] loosely quantified stability as the maximum
change in the resulting explanations when small perturbations are made to a given instance. Dai et al.
[18] quantified unfairness of explanations as the difference between the faithfulness (or stability)
metric values averaged over instances in the majority and the minority subgroups.

XAI Libraries and Benchmarks: Prior works have introduced a few XAI libraries and benchmarks,
the most popular among them being Captum [42], Quantus [32], XAI-Bench [51], and SHAP
Benchmark. Below, we provide a brief description of each of these, and detail how our work differs
from them.

While Captum library [42] is an open-source library which provides implementations and APIs for
various state-of-the-art explanation methods, its focus is not on evaluating and/or benchmarking these
methods which is the main goal of our work. Quantus library [32], on the other hand, provides
implementations of certain evaluation metrics to measure the faithfulness and stability/robustness of
explanation methods. However, it does not focus on benchmarking explanation methods or providing
public dashboards to compare the performance of these methods. Furthermore, the stability/robustness
measures [7] supported by Quantus are somewhat outdated and have been superseded by recently
proposed metrics [4]. In addition, Quantus does not support any fairness metrics to evaluate disparities
in the quality of explanations which is very important in real-world settings such as healthcare,
criminal justice, and policy. In contrast, OpenXAI not only subsumes popular faithfulness and
stability/robustness metrics supported by Quantus but also supports 19 new metrics to measure
the faithfulness, stability/robustness, as well as the fairness of explanation methods [4, 18, 43]. In
addition, OpenXAI focuses on systematically benchmarking state-of-the-art explanation methods and
providing public dashboards to readily compare these methods.

SHAP benchmark [2] only focuses on evaluating and comparing different variants of SHAP [54]
via certain faithfulness metrics which are similar to the Prediction Gap on Important (PGI) and
Unimportant (PGU) feature perturbation metrics outlined in our work. Note that the SHAP benchmark
does not include any stability/robustness or fairness metrics. In contrast, OpenXAI not only includes
20 new metrics to evaluate the stability/robustness and fairness of explanation methods but also
benchmarks various other methods (e.g., LIME, Gradient-based methods).

XAI-Bench [51] constructed synthetic datasets with ground truth explanations to evaluate the
faithfulness of a few explanation methods (e.g., LIME, SHAP, MAPLE). However, recent research
argued that their evaluation is unreliable, and predictive models learned using their synthetic
datasets may not adhere to the ground truth explanations [24]. In addition, the aforementioned
evaluation is rather limited in scope as synthetic datasets may not even be representative of real-world
data [24]. In contrast, our work not only proposes a novel synthetic data generator that addresses the
shortcomings of the synthetic datasets constructed in XAI-Bench but also facilitates the evaluation
and benchmarking of the faithfulness, stability, as well as the fairness of 7 state-of-the-art explanation
methods on 7 real-world datasets with no ground truth explanations.

In summary, our work is significantly different from existing libraries and benchmarks, and makes
the following key contributions:

• We provide implementations and easy-to-use API interfaces for 22 metrics to evaluate
the faithfulness, stability, and fairness of explanation methods. 18 out of the 22 state-of-
the-art metrics included in OpenXAI have not been implemented in any prior libraries or
benchmarks – e.g., faithfulness metrics such as Feature Agreement (FA), Rank Agreement
(RA), Sign Agreement (SA), Signed Rank Agreement (SRA), Pairwise Rank Agreement
(PRA), stability metrics such as Relative Representation Stability (RRS), Relative Output
Stability (ROS), and all fairness metrics.

• We also introduce a novel and flexible synthetic data generator to synthesize datasets
of varying sizes, complexity, and dimensionality to facilitate the construction of reliable
ground truth explanations in order to evaluate state-of-the-art explanation methods. Our
synthetic data generator addresses the shortcomings of the prior synthetic benchmark (XAI-
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Bench) by generating synthetic datasets which encapsulate certain key properties, namely,
unambiguously defined local neighborhoods, a clear description of feature importances in
each local neighborhood, and feature independence. These properties, in turn, allow us to
theoretically guarantee that any accurate model trained on our synthetic datasets will adhere
to the ground truth explanations of the underlying data.

• We perform rigorous empirical benchmarking of 7 state-of-the-art feature attribution methods
using our OpenXAI framework to determine which methods are effective w.r.t. each of the
22 evaluation metrics across 8 real-world and synthetic datasets, and 16 different predictive
models. Note that none of the previously proposed libraries or benchmarks carry out
such exhaustive benchmarking efforts across such a wide variety of metrics, models, and
datasets. We also introduce the first ever public XAI leaderboards with such a wide variety of
explanation methods, metrics, models, and datasets, to promote transparency and showcase
the results of our benchmarking efforts.

2 Overview of OpenXAI Framework

OpenXAI provides a comprehensive programmatic environment with synthetic and real-world
datasets, data processing functions, explainers, and evaluation metrics to rigorously and efficiently
benchmark explanation methods. Below, we discuss each of these components in detail.

1) Datasets and Predictive Models. The current release of our OpenXAI framework includes a
collection of eight different synthetic and real-world datasets. While synthetic datasets allow us
to construct ground truth explanations which can then be used to evaluate explanations output by
state-of-the-art methods, real-world datasets (where it is typically hard to construct ground truth
explanations) help us benchmark these methods in a more realistic manner suitable for practical
applications [51]. We would like to note that OpenXAI includes datasets that are widely employed in
XAI research to evaluate the efficacy of newly proposed methods and study the behavior of existing
methods [9, 18–20, 38, 69, 73].

Synthetic Datasets: While prior research [51, 41] proposed methods to generate synthetic datasets and
corresponding ground truth explanations, they all suffer from a significant drawback as demonstrated
by Faber et al. [24] – there is no guarantee that the models trained on these datasets will adhere to
the ground truth explanations of the underlying data. This, in turn, implies that evaluating post hoc
explanations using the above ground truth explanations would be incorrect since post hoc explanations
are supposed to reliably explain the behavior of the underlying model, and not that of the underlying
data. To illustrate, let us consider the case where we use aforementioned methods to construct a
synthetic dataset with features A,B, C, and D such that the ground truth labels only depend on
features A and B i.e., the ground truth explanation of the underlying data indicates that features A
and B are most important. If we train a model on this data and if features A and B are correlated
with C and D respectively, then the resulting model may base its predictions on C and D (and not A
and B) and still be very accurate. If a post hoc explanation of this model then (correctly) indicates
that the most important features of the model are C and D, this explanation may be deemed incorrect
if we compare it against the ground truth explanation of the underlying data. This problem further
exacerbates as we increase the complexity of the ground truth labeling function [24].

To address the aforementioned challenges, we develop a novel synthetic data generation mechanism,
SynthGauss, which encapsulates three key properties, namely, feature independence, unambiguously-
defined local neighborhoods, and a clear description of feature influence in each local neighborhood.
Intuitively, this approach generates K well-separated clusters where points in each cluster k 2
{1, 2, · · · ,K} are sampled from a Gaussian distribution N (µk,⌃k) where uk 2 Rd is the mean and
⌃k 2 Rd⇥d is the covariance matrix. While this parameterization is general enough to support the
construction of synthetic datasets of K clusters with varying means and covariances, we set the means
of all the clusters such that the intracluster distances are significantly smaller than the intercluster
distances, and we set the covariance matrices of all the clusters to identity. This ensures that all the
features are independent, and local neighborhoods (clusters) are unambiguously defined.

We then generate ground truth labels for instances by first randomly sampling feature mask vectors
mk 2 {0, 1}d (vectors comprising of 0s and 1s) for each cluster k. The vector mk determines
which features influence the ground truth labeling process for instances in cluster k (a value of 1
indicates that the corresponding feature is influential). We then randomly sample feature weight
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vectors wk 2 Rd which capture the relative importance of each of the features in the labeling process
of instances in each cluster k. The ground truth labels of instances in each cluster k are then computed
as a function (e.g., sigmoid) of the feature values of individual instances, and the dot product of the
corresponding cluster’s feature mask vector and weight vector i.e., mk � wk. Complete pseudocode
and other details of this generation process are included in the Appendix. Note that mk corresponds
to the ground truth explanation for all instances in cluster k. Since our generation process is designed
to encapsulate feature independence, unambiguous definitions of local neighborhoods, and clear
descriptions of feature influences, any accurate model trained on the resulting dataset will adhere to
the ground truth explanations of the underlying data (See Theorem 1 in Appendix).

Real-world Datasets: In the current release of OpenXAI, we include seven real-world datasets that
are highly diverse in terms of several key properties. They comprise of data spanning multiple
real-world domains (e.g., finance, lending, healthcare, and criminal justice), varying dataset sizes
(e.g., small vs. large-scale), dimensionalities (e.g., low vs. high dimensional), class imbalance ratios,
and feature types (e.g., continuous vs. discrete). We focus on tabular data in this release as such
data is commonly encountered in real-world applications where explainability is critical [75], and
has also been widely studied in XAI literature [51]. Table 1 provides a summary of the real-world
datasets currently included in OpenXAI. See Section E.1 in the Appendix for detailed descriptions
of individual datasets. While these real-world datasets are primarily drawn from prior research and
existing repositories, OpenXAI provides comprehensive data loading and pre-processing capabilities
to make these datasets XAI-ready (more details below). We also plan to expand our collection of
real-world datasets in the next iteration. Adding a new dataset into our collection is as simple as
uploading a .csv file or a .zip folder. Users can also submit requests to incorporate new datasets into
the OpenXAI framework by filling a simple form and providing links to the datasets (See Appendix).

Table 1: Summary of currently available datasets in OpenXAI. Here, “feature types” denotes whether
features in the dataset are discrete or continuous, “feature information” describes what kind of information is
captured in the dataset, and “balanced” denotes whether the dataset is balanced w.r.t. the predictive label.

Dataset Size # features Feature types Feature information Balanced
Synthetic Data 5,000 20 continuous synthetic 3
German Credit [22] 1,000 20 discrete, continuous demographic, personal,

financial
7

HELOC [25] 9,871 23 continuous demographic, financial 3
COMPAS [36] 18,876 7 discrete, continuous demographic, personal,

criminal
7

Adult Income [79] 48,842 13 discrete, continuous demographic, personal,
education/employment,
financial

7

Give Me Some
Credit [27]

102,209 10 discrete, continuous demographic, personal,
financial

7

Pima-Indians
Diabetes [71]

768 9 discrete, continuous demographic, healthcare 7

Framingham heart
study [1]

4,240 16 continuous demographic, healthcare 7

Data loaders and pre-trained models: OpenXAI provides a Dataloader class that can be used to
load the aforementioned collection of synthetic and real-world datasets as well as any other custom
datasets, and ensures that they are XAI-ready. More specifically, this class takes as input the name of
an existing OpenXAI dataset or a new dataset (name of the .csv file), and outputs a train set which can
then be used to train a predictive model, a test set which can be used to generate local explanations of
the trained model, as well as any ground-truth explanations (if and when available). If the dataset
already comes with pre-determined train and test splits, this class loads train and test sets from those
pre-determined splits. Otherwise, it divides the entire dataset randomly into train (70%) and test
(30%) sets. Users can also customize the percentages of train-test splits. The code snippet below
shows how to import the Dataloader class and load an existing OpenXAI dataset.

from OpenXAI import Dataloader

loader_train, loader_test = Dataloader.return_loaders(data_name=‘german’,

download=True)

inputs, labels = iter(loader_test).next()

5



We also pre-trained two classes of predictive models (e.g., deep neural networks of varying degrees
of complexity, logistic regression models etc.) and incorporated them into the OpenXAI framework
so that they can be readily used for benchmarking explanation methods. The code snippet below
shows how to load OpenXAI’s pre-trained models using our LoadModel class.

from OpenXAI import LoadModel

model = LoadModel(data_name=‘german’, ml_model=‘ann’)

Adding additional pre-trained models into the OpenXAI framework is as simple as uploading a file
with details about model architecture and parameters in a specific template. Users can also submit
requests to incorporate custom pre-trained models into the OpenXAI framework by filling a simple
form and providing details about model architecture and parameters (See Appendix).

2) Explainers. OpenXAI provides ready-to-use implementations of six state-of-the-art feature
attribution methods, namely, LIME, SHAP, Vanilla Gradients, Gradient x Input, SmoothGrad, and
Integrated Gradients. An implementation of a random baseline which randomly assigns importance
values to each of the features, and returns these random assignments as explanations is also included.
Our implementations of these methods build on other open-source libraries (e.g., Captum [42])
as well as their original implementations. While methods such as LIME and SHAP leverage
perturbations of data instances and their corresponding model predictions to learn a local explanation
model, they do not require access to the internals of the models or their gradients. On the other
hand, Vanilla Gradients, Gradient x Input, SmoothGrad, and Integrated Gradients require access
to the gradients of the underlying models but do not need to repeatedly query the models for their
predictions (see Table 6 in Appendix for a brief summary of these methods). These differences
influence the efficiency with which explanations can be generated by these methods. OpenXAI
provides an abstract Explainer class which enables us to load existing explanation methods as well
as integrate new explanation methods.

from OpenXAI import Explainer

exp_method = Explainer(method=‘LIME’)

explanations = exp_method.get_explanations(model, X=inputs, y=labels)

All the explanation methods included in OpenXAI are readily accessible through the Explainer

class, and users just have to specify the method name in order to invoke the appropriate method
and generate explanations as shown in the above code snippet. Users can easily incorporate their
own custom explanation methods into the OpenXAI framework by extending the Explainer class
and including the code for their methods in the get_explanations function (see template below)
of this class. They can then submit a request to incorporate their custom methods into OpenXAI
library by filling a form and providing the GitHub link to their code as well as a summary of their
explanation method (See Appendix).

3) Evaluation Metrics. OpenXAI provides implementations and ready-to-use APIs for a set of
twenty-two quantitative metrics proposed by prior research to evaluate the faithfulness, stability,
and fairness of explanation methods. OpenXAI is the first XAI benchmark to consider all the three
aforementioned aspects of explanation reliability. More specifically, we include eight different metrics
to measure explanation faithfulness (both with and without ground truth explanations) [43, 59],
three different metrics to measure stability [4], and eleven different metrics to measure group-based
disparities (unfairness) [18] in the values of the aforementioned faithfulness and stability metrics.
The metrics that we choose are drawn from the latest works in explainable AI literature. Below,
we briefly describe these metrics. Detailed descriptions of all the metrics along with notation and
equations are included in the Appendix.

a) Ground-truth Faithfulness: Krishna et al. [43] recently proposed six evaluation metrics to capture
the similarity between the top-K or a select set of features of any two feature attribution-based
explanations. We leverage these metrics to capture the similarity between the explanations output
by state-of-the-art methods and the ground-truth explanations constructed using our synthetic data
generation process. These metrics and their definitions are given as follows: i) Feature Agreement
(FA) which computes the fraction of top-K features that are common between a given post hoc
explanation and the corresponding ground truth explanation, ii) Rank Agreement (RA) metric
which measures the fraction of top-K features that are not only common between a given post hoc
explanation and the corresponding ground truth explanation, but also have the same position in
the respective rank orders, iii) Sign Agreement (SA) metric which computes the fraction of top-K
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features that are not only common between a given post hoc explanation and the corresponding ground
truth explanation, but also share the same sign (direction of contribution) in both the explanations,
iv) Signed Rank Agreement (SRA) metric which computes the fraction of top-K features that
are not only common between a given post hoc explanation and the corresponding ground truth
explanation, but also share the same feature attribution sign (direction of contribution) and position
(rank) in both the explanations, v) Rank Correlation (RC) metric which computes Spearman’s rank
correlation coefficient to measure the agreement between feature rankings provided by a given post
hoc explanation and the corresponding ground truth explanation, and vi) Pairwise Rank Agreement
(PRA) metric which captures if the relative ordering of every pair of features is the same for a given
post hoc explanation as well as the corresponding ground-truth explanation.

b) Predictive Faithfulness: We leverage the metrics outlined by [59, 18] to measure the faithfulness
of an explanation when no ground truth is available. This metric, referred to as Prediction Gap on
Important feature perturbation (PGI), computes the difference in prediction probability that results
from perturbing the features deemed as influential by a given post hoc explanation. Higher values
on this metric imply greater explanation faithfulness. We also consider the converse of this metric,
Prediction Gap on Unimportant feature perturbation (PGU), which perturbs the unimportant features
and measures the change in prediction probability.

c) Stability: We consider the metrics introduced by Alvarez-Melis and Jaakkola [7], Agarwal et al.
[4] to measure how robust a given explanation is to small input perturbations. More specifically, we
leverage the metrics Relative Input Stability (RIS), Relative Representation Stability (RRS), and
Relative Output Stability (ROS) which measure the maximum change in explanation relative to
changes in the inputs, model parameters, and output prediction probabilities respectively.

d) Fairness: Following the work by Dai et al. [18], we measure the fairness of post hoc explanations
by averaging all the aforementioned metric values across instances in the majority and minority
subgroups, and comparing the two estimates. If there is a huge difference in the two estimates, then
we consider this to be evidence for unfairness.

Invoking the aforementioned metrics to benchmark an explanation methods is quite simple and the
code snippet below describes how to invoke the RIS metric. Users can easily incorporate their own
custom evaluation metrics into OpenXAI by filling a form and providing the GitHub link to their
code as well as a summary of their metric (See Appendix).

from OpenXAI import Evaluator

metric_evaluator = Evaluator(inputs, labels, model, explanations)

score = metric_evaluator.eval(metric=‘RIS’)

Benchmarking: As can be seen from the code snippets in this section, OpenXAI allows end users to
easily benchmark explanation methods using just a few lines of code. To summarize the benchmarking
process, let us consider a scenario where we would like to benchmark a new explanation method
using OpenXAI’s pre-trained neural network model and the German Credit dataset. First, we use
OpenXAI’s Dataloader class to load the German Credit dataset. Second, we load the neural network
model (’ann’) using our LoadModel class. Third, we extend the Explainer class and incorporate
the code for the new explanation method in the get_explanation function of this class. Finally, we
evaluate the new explanation method using various metrics from the Evaluator class.

4) Leaderboards. OpenXAI introduces the first ever public XAI leaderboards to promote
transparency, and enable users to easily compare the performance of multiple explanation methods
across a variety of evaluation metrics, predictive models, and datasets. In the current release, we
have six different leaderboards each corresponding to a particular dataset. A snapshot of one of our
leaderboard pages is shown in Figure 1. Users can submit requests for their custom explanation
methods to be featured on one of our leaderboards. To this end, they first need to following the
aforementioned benchmarking process to develop and evaluate their explanation method.

3 Benchmarking Analysis

Next, we describe how we benchmark state-of-the-art explanation methods using our OpenXAI
framework, and also discuss key findings of this benchmarking analysis. Code to reproduce all the
results is available at https://github.com/AI4LIFE-GROUP/OpenXAI.

7

https://github.com/AI4LIFE-GROUP/OpenXAI


Figure 1: A snapshot of the leaderboard page from OpenXAI public website. We also provide interactive
ranking functionality (arrow mark in the figure) which allows users to rank explanation methods based on metrics
of their choice. Please visit the website to see leaderboards for other datasets.

Experimental Setup. We benchmark all the six state-of-the-art feature attribution methods
currently available in our OpenXAI framework along with the random baseline, using the
openxai.Evaluator module (See Section 2). We use default hyperparameter settings for all
these methods following the guidelines outlined in the original implementations. Details about the
hyperparameters used in our experiments are discussed in Section E.3 in the Appendix. Our OpenXAI
framework currently has two pre-trained models, a logistic regression model and a deep neural network
model, for each dataset. The neural network models have two fully connected hidden layers with
100 nodes in each layer, and they use ReLU activation functions and an output softmax layer. See
Appendix E.4 for more details on model architectures, model training, and model performance.

Table 2: Ground-truth and predicted faithfulness results on the Heloc dataset for all explanation methods
with LR model. Shown are average and standard error metric values computed across all instances in the test
set. " indicates that higher values are better, and # indicates that lower values are better. Values corresponding to
best performance are bolded.

Method PRA (") RC (") FA (") RA (") SA (") SRA (") PGU (#) PGI (")
Random
VanillaGrad
IntegratedGrad
Gradient x Input
SmoothGrad
SHAP
LIME

0.500±0.00
1.0±0.00
1.0±0.00

0.641±0.00
1.0±0.00

0.645±0.00
0.982±0.00

0.005±0.01
1.0±0.00
1.0±0.00

0.390±0.01
1.0±0.00

0.384±0.01
0.994±0.00

0.498±0.00
0.957±0.00
0.957±0.00
0.582±0.00
0.957±0.00
0.586±0.00
0.932±0.00

0.043±0.00
0.957±0.00
0.957±0.00
0.049±0.00
0.957±0.00
0.054±0.00
0.671±0.00

0.251±0.00
0.469±0.01
0.469±0.01
0.255±0.01
0.274±0.00
0.269±0.01
0.929±0.00

0.022±0.00
0.469±0.01
0.469±0.01
0.022±0.00
0.274±0.00
0.024±0.00
0.670±0.00

0.033±0.00
0.034±0.00
0.034±0.00
0.033±0.00
0.015±0.00
0.033±0.00
0.042±0.00

0.035±0.00
0.036±0.00
0.036±0.00
0.036±0.00
0.047±0.00
0.036±0.00
0.029±0.001

Faithfulness. We evaluate the ground-truth and predictive faithfulness of explanations generated by
state-of-the-art methods using both synthetic and real-world datasets.

Ground-truth faithfulness: We evaluate ground-truth faithfulness by calculating the similarity between
the generated explanations and the ground-truth explanations using the metrics discussed in Section 2.
Results for various ground-truth faithfulness metrics are shown in Tables 2, 3, 16, 17. Vanilla
Gradients, SmoothGrad, and Integrated Gradients produce explanations that achieve perfect scores
on four ground-truth faithfulness metrics, viz. pairwise rank agreement (PRA), feature agreement
(FA), rank agreement (RA), and rank correlation (RC) metrics, for all datasets. However, on average,
across all datasets, LIME outperforms other methods on the signed agreement (SA) [+61.6%] and
signed-rank agreement (SRA) [+65.3%] metrics, whereas gradient-based explainers achieve relatively
lower values. While illustrative in nature, these findings show how OpenXAI can help identify the
limitations of existing explanation methods, which in turn can inform the design of new methods.
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Table 3: Ground-truth and predicted faithfulness results on the Adult Income dataset for all explanation
methods with LR model. Shown are average and standard error metric values computed across all instances
in the test set. " indicates that higher values are better, and # indicates that lower values are better. Values
corresponding to best performance are bolded.

Method PRA (") RC (") FA (") RA (") SA (") SRA (") PGU (#) PGI (")
Random
VanillaGrad
IntegratedGrad
Gradient x Input
SmoothGrad
SHAP
LIME

0.499±0.00
1.±0.00
1.±0.00

0.580±0.00
1.±0.00

0.655±0.00
0.913±0.00

0.0±0.00
1.±0.00
1.±0.00

0.281±0.00
1.±0.00

0.379±0.00
0.921±0.00

0.496±0.00
0.923±0.00
0.923±0.00
0.567±0.00
0.923±0.00
0.601±0.00
0.869±0.00

0.068±0.00
0.921±0.00
0.923±0.00
0.075±0.00
0.923±0.00
0.105±0.00
0.697±0.00

0.250±0.00
0.138±0.00
0.138±0.00
0.070±0.00
0.741±0.00
0.133±0.00
0.858±0.00

0.037±0.00
0.136±0.00
0.138±0.00
0.003±0.00
0.741±0.00
0.009±0.00
0.689±0.00

0.053±0.00
0.07±0.001
0.07±0.001
0.043±0.00
0.008±0.00
0.047±0.00
0.014±0.00

0.06±0.00
0.039±0.001
0.039±0.001
0.073±0.00
0.099±0.001
0.068±0.00
0.094±0.001

Predictive faithfulness: Tables 2, 3, 16, 17 show results for the PGI and PGU metrics implemented
in OpenXAI (see Section 2 and Appendix A). Overall, we find that SmoothGrad explanations are
most faithful to the underlying model and, on average, across multiple datasets outperform other
feature-attribution methods on PGU metric (+43.03%). However, results from the German credit
dataset for the ANN model show that Gradient x Input produces considerably more faithful (+6.74%)
explanations than other methods. Finally, this analysis confirms the finding by Krishna et al. [43]
that explanations output by state-of-the-art methods do not necessarily align with each other. This
finding further highlights the need for rigorous empirical and theoretical benchmarking of explanation
methods.

Stability. Next, we examine the stability of explanation methods when the underlying models are LR
models in Tables 4 and 5, and neural network models in Tables 19 and 20 in the Appendix. Due to
space constraints, we focus on RIS and RRS metrics in the main paper and leave the other results to
the Appendix. Overall, the relative stability varies considerably across different datasets, implying
that no single explanation method is consistently the most stable. First, for the synthetic dataset
in Table 4, we find that Gradient x Input, on average, outperforms feature-attribution methods in
relative input stability (+93.5%, RIS) and relative representation stability (+59.2%, RRS). However,
stability of Gradient x Input significantly degrades on real-world datasets (Table 5, 19, 20). Second,
as shown in Tables 5, 19, and 20, there is no single explanation method that has the highest input and
representation stability across all the real-world datasets. On average, across all real-world datasets,
SmoothGrad achieves 63.2% higher RRS values compared to other methods, whereas no method
performs consistently well when it comes to the RIS metric.
Table 4: Stability of explanation methods on the
Synthetic dataset with LR model. Shown are average
and standard error values across all test set instances.
Values closer to zero are desirable, and the best
performance is bolded.

Method RIS RRS
Random
Vanilla Gradients
Integrated Gradients
Gradient x Input
SmoothGrad
SHAP
LIME

6.868±0.013
6.133±0.011
5.957±0.013
0.405±0.015
5.249±0.008
5.673±0.012
9.355±0.008

6.687±0.015
6.144±0.006
9.022±0.043
3.422±0.037
9.419±0.037
8.751±0.035
13.564±0.036

Table 5: Stability of explanation methods on the
German Credit dataset with LR model. Shown are
average and standard error values across all test set
instances. Values closer to zero are desirable, and the
best performance is bolded.

Method RIS RRS
Random
Vanilla Gradients
Integrated Gradients
Gradient x Input
SmoothGrad
SHAP
LIME

6.274±0.104
-1.384±0.112
-2.004±0.119
-0.906±0.104
-4.780±0.117
-0.230±0.109
-0.698±0.109

16.448±0.124
5.241±0.024
4.560±0.029
9.437±0.124
4.931±0.122

10.056±0.115
9.397±0.119

Fairness. To measure fairness of explanation methods, we compute the average metric values (for
each of the aforementioned faithfulness and stability metrics) for different subgroups (e.g., male
and female) in the dataset and compare them. Larger gaps between the metric values for different
subgroups indicates higher disparities (unfairness). Without loss of generality, we present results
using the PGU (see Section 2 and Appendix A) metric. Results for LR models in Figures 2 and
3 provide two key findings. First, the fairness analysis in Figures 2 and 3 shows that there are
disparities in the faithfulness of explanations (see Section 2) output by several methods (Vanilla
Gradients, Integrated Gradients, and SmoothGrad). Second, Gradient x Input results in the least
amount of disparity across both the datasets. These results also suggest a trade-off between various
evaluation metrics. For instance, Gradient x Input method underperforms on faithfulness and stability
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metrics, but outperforms other methods (+8.9%) when it comes to fairness metrics. Given such
trade-offs, practitioners can leverage the OpenXAI leaderboards (Figure 1) to select an explanation
method that best meets application-specific needs. Results with NN models and other fairness metrics
are included in the Appendix E.7.

Figure 2: Fairness analysis of PGU metric on the
German Credit dataset with LR model. Shown
are average and standard error values for majority
(male) and minority (female) subgroups. Larger
gaps between the values of majority and minority
subgroups (i.e, red and blue bars respectively) indicate
higher disparities which are undesirable.

Figure 3: Fairness analysis of PGU metric on
the Adult Income dataset with LR model. Shown
are average and standard error values for majority
(male) and minority (female) subgroups. Larger
gaps between the values of majority and minority
subgroups (i.e, red and blue bars respectively) indicate
higher disparities which are undesirable.

4 Conclusions

As post hoc explanations are increasingly being employed to aid decision makers and relevant
stakeholders in various high-stakes applications, it becomes important to ensure that these
explanations are reliable. To this end, we introduce OpenXAI, an open-source ecosystem comprising
of XAI-ready datasets, implementations of state-of-the-art explanation methods, evaluation metrics,
leaderboards and documentation to promote transparency and collaboration around evaluations of
post hoc explanations. OpenXAI can readily be used to benchmark new explanation methods as
well as incorporate them into our framework and leaderboards. By enabling systematic and efficient
evaluation and benchmarking of existing and new explanation methods, OpenXAI can inform and
accelerate new research in the emerging field of XAI. OpenXAI will be regularly updated with new
datasets, explanation methods, and evaluation metrics, and welcomes input from the community.

Acknowledgments and Disclosure of Funding

The authors would like to thank the anonymous reviewers for their helpful feedback and all the
funding agencies listed below for supporting this work. This work is supported in part by the NSF
awards #IIS-2008461 and #IIS-2040989, and research awards from Google, JP Morgan, Amazon,
Harvard Data Science Initiative, and D3 Institute at Harvard. HL would like to thank Sujatha and
Mohan Lakkaraju for their continued support and encouragement. The views expressed here are
those of the authors and do not reflect the official policy or position of the funding agencies.

References
[1] Framingham heart study dataset | kaggle. https://www.kaggle.com/datasets/

aasheesh200/framingham-heart-study-dataset. (Accessed on 08/15/2022).

[2] Shap benchmark. URL https://shap.readthedocs.io/en/latest/index.html.

[3] Chirag Agarwal and Anh Nguyen. Explaining image classifiers by removing input features
using generative models. In ACCV, 2020.

[4] Chirag Agarwal, Nari Johnson, Martin Pawelczyk, Satyapriya Krishna, Eshika Saxena, Marinka
Zitnik, and Himabindu Lakkaraju. Rethinking stability for attribution-based explanations. In
ICLR 2022 Workshop on PAIR

2
Struct, 2022.

[5] Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and
Himabindu Lakkaraju. Towards the unification and robustness of perturbation and gradient
based explanations. In ICML, 2021.

[6] Ulrich Aivodji, Hiromi Arai, Olivier Fortineau, Sébastien Gambs, Satoshi Hara, and Alain Tapp.
Fairwashing: the risk of rationalization. In ICML, 2019.

10

https://www.kaggle.com/datasets/aasheesh200/framingham-heart-study-dataset
https://www.kaggle.com/datasets/aasheesh200/framingham-heart-study-dataset
https://shap.readthedocs.io/en/latest/index.html


[7] David Alvarez-Melis and Tommi S Jaakkola. On the robustness of interpretability methods.
arXiv, 2018.

[8] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins,
et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and
challenges toward responsible ai. Information Fusion, 2020.

[9] Aparna Balagopalan, Haoran Zhang, Kimia Hamidieh, Thomas Hartvigsen, Frank Rudzicz, and
Marzyeh Ghassemi. The road to explainability is paved with bias: Measuring the fairness of
explanations. arXiv, 2022.

[10] Naman Bansal, Chirag Agarwal, and Anh Nguyen. Sam: The sensitivity of attribution methods
to hyperparameters. In CVPR, 2020.

[11] Solon Barocas, Andrew Selbst, and Manish Raghavan. The hidden assumptions behind
counterfactual explanations and principal reasons. In FAccT, 2020.

[12] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpretability via model extraction. arXiv,
2017.

[13] Jacob Bien and Robert Tibshirani. Classification by set cover: The prototype vector machine.
arXiv, 2009.

[14] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and
Gjergji Kasneci. Deep neural networks and tabular data: A survey. arXiv, 2021.

[15] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad.
Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.
In KDD, 2015.

[16] Valerie Chen, Nari Johnson, Nicholay Topin, Gregory Plumb, and Ameet Talwalkar. Use-case-
grounded simulations for explanation evaluation. arXiv, 2022.

[17] Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework for
model explanation. JMLR, 2021.

[18] Jessica Dai, Sohini Upadhyay, Ulrich Aivodji, Stephen H Bach, and Himabindu Lakkaraju.
Fairness via explanation quality: Evaluating disparities in the quality of post hoc explanations.
In AAAI Conference on AI, Ethics, and Society (AIES), 2022.

[19] Sanjoy Dasgupta, Nave Frost, and Michal Moshkovitz. Framework for evaluating faithfulness
of local explanations. arXiv, 2022.

[20] Ricardo Dominguez-Olmedo, Amir H Karimi, and Bernhard Schölkopf. On the adversarial
robustness of causal algorithmic recourse. In ICML. PMLR, 2022.

[21] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv, 2017.

[22] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.

ics.uci.edu/ml.

[23] Radwa Elshawi, Mouaz H Al-Mallah, and Sherif Sakr. On the interpretability of machine
learning-based model for predicting hypertension. BMC medical informatics and decision

making, 2019.

[24] Lukas Faber, Amin K. Moghaddam, and Roger Wattenhofer. When comparing to ground truth
is wrong: On evaluating gnn explanation methods. In KDD, 2021.

[25] FICO. Explainable machine learning challenge. https://community.fico.com/s/

explainable-machine-learning-challenge?tabset-158d9=3, 2022. (Accessed on
05/23/2022).

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=3
https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=3


[26] Hidde Fokkema, Rianne de Heide, and Tim van Erven. Attribution-based explanations that
provide recourse cannot be robust. arXiv, 2022.

[27] Bryce Freshcorn. Give me some credit :: 2011 competition data | kaggle. https://www.

kaggle.com/datasets/brycecf/give-me-some-credit-dataset, 2022. (Accessed on
05/23/2022).

[28] Marzyeh Ghassemi, Luke Oakden-Rayner, and Andrew L Beam. The false hope of current
approaches to explainable artificial intelligence in health care. The Lancet Digital Health, 2021.

[29] Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile.
In AAAI Conference on Artificial Intelligence, 2019.

[30] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and
Dino Pedreschi. A survey of methods for explaining black box models. ACM computing surveys

(CSUR), 2018.

[31] Tessa Han, Suraj Srinivas, and Himabindu Lakkaraju. Which explanation should i choose? a
function approximation perspective to characterizing post hoc explanations. arXiv, 2022.

[32] Anna Hedström, Leander Weber, Dilyara Bareeva, Franz Motzkus, Wojciech Samek, Sebastian
Lapuschkin, and Marina M-C Höhne. Quantus: an explainable ai toolkit for responsible
evaluation of neural network explanations. arXiv, 2022.

[33] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. Evaluating feature
importance estimates. arXiv, 2018.

[34] Mark Ibrahim, Melissa Louie, Ceena Modarres, and John Paisley. Global explanations of neural
networks: Mapping the landscape of predictions. CoRR, abs/1902.02384, 2019.

[35] Sérgio Jesus, Catarina Belém, Vladimir Balayan, João Bento, Pedro Saleiro, Pedro Bizarro, and
João Gama. How can i choose an explainer? an application-grounded evaluation of post-hoc
explanations. In FAccT, 2021.

[36] Kareem L Jordan and Tina L Freiburger. The effect of race/ethnicity on sentencing: Examining
sentence type, jail length, and prison length. In Journal of Ethnicity in Criminal Justice. Taylor
& Francis, 2015.

[37] Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-agnostic
counterfactual explanations for consequential decisions. arXiv, 2019.

[38] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from
counterfactual explanations to interventions. CoRR, abs/2002.06278, 2020.

[39] Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic
recourse under imperfect causal knowledge: a probabilistic approach. CoRR, 2020.

[40] Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna Wallach, and Jennifer
Wortman Vaughan. Interpreting interpretability: Understanding data scientists’ use of
interpretability tools for machine learning. In CHI Conference on Human Factors in Computing

Systems, 2020.

[41] Joon Sik Kim, Gregory Plumb, and Ameet Talwalkar. Sanity simulations for saliency methods.
arXiv, 2021.

[42] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, and Orion Reblitz-
Richardson. Captum: A unified and generic model interpretability library for pytorch, 2020.

[43] Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and
Himabindu Lakkaraju. The disagreement problem in explainable machine learning: A
practitioner’s perspective. arXiv, 2022.

[44] Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Sam Gershman, and Finale
Doshi-Velez. An evaluation of the human-interpretability of explanation. arXiv, 2019.

12

https://www.kaggle.com/datasets/brycecf/give-me-some-credit-dataset
https://www.kaggle.com/datasets/brycecf/give-me-some-credit-dataset


[45] Himabindu Lakkaraju and Osbert Bastani. “how do i fool you?” manipulating user trust via
misleading black box explanations. In AAAI Conference on AIES, 2020.

[46] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. Interpretable decision sets: A
joint framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining, pages 1675–1684, 2016.

[47] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Faithful and customizable
explanations of black box models. In Proceedings of the 2019 AAAI/ACM Conference on AI,

Ethics, and Society, pages 131–138, 2019.

[48] Benjamin Letham, Cynthia Rudin, Tyler H McCormick, and David Madigan. Interpretable
classifiers using rules and bayesian analysis: Building a better stroke prediction model. The

Annals of Applied Statistics, 9(3):1350–1371, 2015.

[49] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable ai: A review
of machine learning interpretability methods. Entropy, 23(1):18, 2021.

[50] Zachary C Lipton. The mythos of model interpretability. CoRR, abs/1606.03490, 2016.

[51] Yang Liu, Sujay Khandagale, Colin White, and Willie Neiswanger. Synthetic benchmarks
for scientific research in explainable machine learning. In NeurIPS Datasets and Benchmarks

Track, 2021.

[52] Arnaud Looveren and Janis Klaise. Interpretable counterfactual explanations guided by
prototypes. CoRR, abs/ 1907.02584, 2019.

[53] Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible models for classification and
regression. In KDD, 2012.

[54] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Neural Information Processing Systems (NIPS), pages 4765–4774. Curran Associates,
Inc., 2017.

[55] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems, pages 4765–4774, 2017.

[56] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions,
methods, and applications in interpretable machine learning. Proceedings of the National

Academy of Sciences, 2019.

[57] Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. Learning model-agnostic
counterfactual explanations for tabular data. In WWW, 2020.

[58] Martin Pawelczyk, Sascha Bielawski, Johan Van den Heuvel, Tobias Richter, and Gjergji
Kasneci. Carla: A python library to benchmark algorithmic recourse and counterfactual
explanation algorithms. In NeurIPS Benchmark and Datasets Track, 2021.

[59] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation
of black-box models. arXiv, 2018.

[60] Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake M Hofman, Jennifer Wortman Vaughan,
and Hanna Wallach. Manipulating and measuring model interpretability. CoRR, 2018.

[61] Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. FACE:
Feasible and actionable counterfactual explanations. In AAAI Conference on AIES, 2020.

[62] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining
the predictions of any classifier. In KDD, 2016.

[63] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. In AAAI, 2018.

13



[64] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 2019.

[65] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. In ICCV, 2017.

[66] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In ICML, 2017.

[67] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In ICLR, 2014.

[68] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling
lime and shap: Adversarial attacks on post hoc explanation methods. In AAAI Conference on

AIES, 2020.

[69] Dylan Slack, Anna Hilgard, Sameer Singh, and Himabindu Lakkaraju. Reliable post hoc
explanations: Modeling uncertainty in explainability. NeurIPS, 2021.

[70] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.
Smoothgrad: removing noise by adding noise. arXiv, 2017.

[71] Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and Robert Scott Johannes.
Using the adap learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of

the annual symposium on computer application in medical care, page 261. American Medical
Informatics Association, 1988.

[72] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
ICML, 2017.

[73] Sohini Upadhyay, Shalmali Joshi, and Himabindu Lakkaraju. Towards robust and reliable
algorithmic recourse. NeurIPS, 2021.

[74] Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In
FAccT, 2019.

[75] Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations for machine
learning: A review. arXiv, 2020.

[76] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without
opening the black box: Automated decisions and the GDPR. Harvard Journal of Law &

Technology, 31:841, 2017.

[77] Fulton Wang and Cynthia Rudin. Falling rule lists. In Artificial Intelligence and Statistics,
pages 1013–1022. PMLR, 2015.

[78] Leanne S Whitmore, Anthe George, and Corey M Hudson. Mapping chemical performance on
molecular structures using locally interpretable explanations. CoRR, abs/1611.07443, 2016.

[79] I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. In Expert Systems with Applications,
2009.

[80] Jiaming Zeng, Berk Ustun, and Cynthia Rudin. Interpretable classification models for recidivism
prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2017.

[81] Jianlong Zhou, Amir H Gandomi, Fang Chen, and Andreas Holzinger. Evaluating the quality of
machine learning explanations: A survey on methods and metrics. Electronics, 10(5):593, 2021.

14



Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 2 for a step-by-step justification of
OpenXAI’s contributions and Section 3 for an in-depth benchmarking analysis of
explanation methods using our OpenXAI framework.

(b) Did you describe the limitations of your work? [Yes] In Section 2 we discuss that
OpenXAI includes only six datasets and seven post-hoc explainers in its current release.
However, we provide detailed instructions on how users can leverage our easy-to-use
class templates and add new datasets and explainers to our pipeline. In addition, we
discuss how OpenXAI ameliorates the limitation of previous benchmarks by providing
the first-ever public leaderboard for comparing post-hoc explainers.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes] See
Appendix E.1, E.4, E.3 for a detailed description about the dataset, data splits, model
architectures (number of layers, activation function, etc.), hyperparameter details of
the post-hoc explainers, and metric settings. In addition, we open-source our codes in
the OpenXAI GitHub repository. To improve the accessibility, interoperability, and
reuse of ML tools, we apply FAIR4RS principles and implementation guidelines to
all software and ML tools included in OpenXAI. We strongly believe that software
and ML tools should be open and adhere to FAIR principles to encourage repeatability,
reproducibility, and reuse.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section E for all training details.

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [Yes] See Figures 2-3 where we report the error bars that
denote the error in the metric performance across all instances in the test set.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E.4 for the compute
used in benchmarking OpenXAI’s post-hoc explainers.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] All assets, including

datasets, post-hoc explainers, and evaluation metrics are properly cited.
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(b) Did you mention the license of the assets? [Yes] MIT License.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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