
Emergence, pretraining loss and associative recall: a toy model

Sultan Daniels 1 Dylan Davis 1 Dhruv Gautam 1 Wentinn Liao 2 Gireeja Ranade 1 Anant Sahai 1

Abstract
To study emergence in LLM-style neural networks, we introduce a new family of toy problems that combine fea-
tures of linear-regression style continuous in-context learning (ICL) with discrete associative recall — specifically
symbolically labeled interleaved observations from randomly drawn deterministic linear dynamical systems. We
pretrain transformer models on sample traces from this toy, and explore the idea that the emergence of an ability is
largely a function of the pretraining loss. During training, this toy model exhibits the emergence of at least three
different abilities, and we use simple out-of-distribution experiments to show how some of these abilities seem to
completely ignore what feels to a human as being very salient context.

1. Introduction
Since the release of GPT-3 (Brown et al., 2020a), there has been significant progress in understanding ICL for language
models (Olsson et al., 2022; Akyürek et al., 2024; Xie et al., 2021; Lin & Lee, 2024; Wei et al., 2023b; Yin & Steinhardt,
2025; Wies et al., 2023; Pan et al., 2023; Min et al., 2022). There has also been work that focuses on understanding ICL for
simpler toy problems (Garg et al., 2022; Rajaraman et al., 2024; Edelman et al., 2024; Singh et al., 2025; Raventós et al.,
2024; Du et al., 2023; Nichani et al., 2024). Such toys let us study the ICL behavior in settings where optimal strategies are
known, allowing complex prediction mechanisms to be disentangled.

In this paper, we build on previous work to create a new toy problem involving interleaved vector-valued time-series
of random deterministic linear systems (similar to the noise-free least-squares problems in (Garg et al., 2022)). Each
consecutive time-series observation is defined by an underlying deterministic linear system (defined by an unknown matrix —
just as in linear regression). This continuous-state problem has a naturally continuous error metric: mean-squared-error. We
restrict attention to noiseless time-series defined by orthogonal matrices. Thus once we have seen enough information in the
observation sequence segments for a specific time-series, in principle, perfect prediction accuracy (i.e. 0 MSE) is possible.

Segments from different time-series are interleaved with “symbolic punctuation labels” (SPLs), i.e. tokens (Wei et al., 2023a)
that unambiguously demarcate different segments as belonging to different time-series. These discrete symbolic labels and
the fact that they can occur repeatedly introduces a dimension of MQAR-style associative recall (Arora et al., 2023).

To be successful, a trained model must be able to (1) identify when the prediction sequence changes (using the punctuation
labels), (2) initiate prediction of a resumed sequence following a punctuation label that indicates which previously seen
sequence will be resumed, (3) continue prediction of such a sequence following such a resumption.

We find clear evidence during training of emergence for all three of these “sub-tasks” (1) identifying change, (2) initiating
resumed prediction and (3) continuing resumed prediction. As demonstrated in Section 2, Section D, and the attached
Jupyter notebook, we find that the emergence for each of these essentially depends on the pretraining loss of the model —
replicating in our toy the findings of (Du et al., 2025) using language models involving billions of parameters.

Furthermore, we explore two natural hypotheses for the initiating and continuing of predictions in a resumed sequence:

H1: Label-based recall. The model uses in-context learning of the association of symbolic labels to time-series, and then
performs inference based on recalling the referenced time-series and continuing its evolution.

1University of California, Berkeley 2University of Pennsylvania. Correspondence to: Sultan Daniels <sultan_daniels@berkeley.edu>,
Anant Sahai <sahai@eecs.berkeley.edu>.

Accepted at Methods and Opportunities at Small Scale (MOSS), ICML 2025, Vancouver, Canada.

1

A toy model for emergence

H2: Observation-based Bayesian recall. The model ignores the symbolic labels. The noise-free nature of our toy means
that once an observation is seen, the model can figure out which prior time-series it came from. Then, it can do Bayesian
prediction (Xie et al., 2021; MacKay, 1992; Müller et al., 2024) based on previous observations for future predictions.

However, we find that H1 and H2 are both false as complete explanations. Instead, both are true simultaneously! H1
is used for initiating predicting the first token after a particular time-series is being resumed. But for continuing with the
second token and beyond in a resumed sequence, the information in the observation allows a variant of H2 to work. This is
confirmed using out-of-distribution experiments, as shown in the Jupyter notebook.

We observe further that there is a difference between the emergence of the ability to learn to predict the first versus second
token after a symbolic label, even though information-theoretically, they both require recalling the in-context-learned nature
of that specific time-series. And somewhat surprisingly, the successful use of the symbolic label (which feels conceptually
easier for a human) occurs after the model has clearly learned to do some approximate version of the more Bayesian H2 for
those tokens on which it is a viable strategy.

By modifying a classic LLM emergence experiment (Wei et al., 2023b;a) and using OLMo checkpoints (OLMo et al.,
2024), we confirm that similar behavior can hold for an NLP task — i.e. even before the emergence of successful initiation
of an ICL-specified task, models can successfully continue that task.

2. Setup and Key Results

[<start> ...]{ ... } (...{ })

Random

...
Trace Library

...

...

...

Start
Index

0
Open

0
Close

24
Open

24
Close

Payload
Flag Payload

Start Symbol

... [...]

Start
Index

0
Open

0
Close

24
Open

24
Close

Payload
Flag Payload

Open SPL

Start
Index

0
Open

0
Close

24
Open

24
Close

Payload
Flag Payload

-0.37 -0.05 0.56 0.12 -0.69

Observation

Start
Index

0
Open

0
Close

24
Open

24
Close

Payload
Flag Payload

Close SPL

Figure 1. Generating a training example — Notice in this example the continuation from the first segment to the last (system U30), and
from the 2nd segment to the 3rd (system U2). The “parentheses" (symbolic punctuating labels) are encoded as special tokens as shown.

For a detailed explanation of the setup, see Appendix A. Consider predicting the continuous-state of an unknown linear
dynamical system from the orthogonally evolved family (Sander et al., 2024), where the system U ∈ R5×5 is a uniformly
drawn-at-random (Mezzadri, 2006) orthogonal matrix. The initial state is x0 ∼ N

(
0, 1

5I
)
, with state updates: xi+1 =

Uxi = U i+1x0. The system state is eventually perfectly predictable, but only after six positions in the sequence are
observed by solving for U =

[
x1 x2 x3 x4 x5

] [
x0 x1 x2 x3 x4

]−1
. As described in further detail in the

Appendix A.2 and illustrated in Fig. 1, sequences drawn from different such systems are cut and their segments braided
together into one long context — with each segment clearly delimited on both sides by symbolic label tokens identifying
unique systems. Traditional loss curves during training are in Appendix D.

Before testing recall, we first confirmed that our trained model is able to learn to predict long sequences from unseen systems
in-context. Details on this are available in Appendix E. From a training dynamics point of view, this ability seems to develop
steadily during training — no evidence of "emergence."

To study associative-recall, we use structured test traces as depicted in Fig. 2a: the initial part of the context has N
individually punctuated (with distinct open and close symbols) ten-entry-long segments from N distinct systems. We
follow with a query for predictions from exactly one of the N systems, by using the corresponding open token followed by

2

A toy model for emergence

(<start> ...){ } (
Needle

Haystack

... ...

1-after
inital

1-after
final

2-after
final

3-after
final

)

2-after
inital

Test Segment

Query

(a)

(<start> ...){ } (
Needle

Haystack

... ...

Misdirect to
Wrong Sequence!

)
Test Segment

(b)

Figure 2. (a) Test format with a two-system haystack and a query to resume the first system, and (b) misdirecting the model towards the
incorrect sequence in the haystack.

the continuation of that particular system observation sequence as the test segment where prediction performance can be
evaluated using squared error. The full details of the generation of these structured test traces are in Appendix B.2.

The key results can be seen with N = 2 in Fig. 3. (Results for some other N are in Fig. 15.) Notice the black curve
for performance at initiating the recalled segment. With a correct query (Plot (a) to the left), good performance emerges
suddenly shortly before 2× 107 training examples. Before that, it appears that no recall is happening. With a misdirected
query (i.e. giving the open symbol associated with the other system in the context – as depicted in Plot (b) to the right),
errors jump upward at the same point in training — which makes sense since the model is resuming the wrong sequence as
it was told to do.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) Normal recall.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) Misdirected recall.

Figure 3. For two systems in the haystack, we show the training dynamics in terms of performance on recall tasks. The above curves are
the quartiles of the median-squared error of the transformer model’s predictions versus the number of training examples it has seen for
indices 1, 2, 3, 7, and 8 steps after the initial and final open symbols. To the left, we see what happens with normal prompting. To the
right, with misdirected prompting that asks to recall the wrong sequence.

However, notice also the striking similarity in all other curves in Fig. 3 with or without the misdirection — the performance
on continuing the queried sequence is essentially unaffected by the misdirection! The mechanism here is clearly ignoring
the content of the symbolic query. Notice also the interesting learning dynamics — while the black curve shows a classic
"emergence-type" behavior, the blue curve for the performance on the second token is very different: pointing to different
learning dynamics. It is clearly showing recall much earlier with a sharp improvement starting before 1 × 107 training
examples — well before the black curve does.

Finally, we trained different model sizes specified in Table 1 in Appendix C and can use the pretraining loss (on a held-out
dataset in the same style as the pretraining data) to see when abilities emerge in Fig. 4. Figs. 4e and 4f focus on the ability to
restart ICL on a new system in the haystack. More results for this ability are given in Appendix F.

3

A toy model for emergence

9e-1 8e-1 7e-1 6e-1 5e-1 4e-1 3e-1 2e-1 1e-19e-2 8e-2 7e-2 6e-2 5e-2

Pretraining Error

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Tiny-212K: 1 after final
Small-701K: 1 after final

Medium-2.42M: 1 after final
Big-10.7M: 1 after final

(a) Recall 1 step after final — 1 system haystack.

9e-1 8e-1 7e-1 6e-1 5e-1 4e-1 3e-1 2e-1 1e-19e-2 8e-2 7e-2 6e-2 5e-2

Pretraining Error

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Tiny-212K: 1 after final
Small-701K: 1 after final

Medium-2.42M: 1 after final
Big-10.7M: 1 after final

(b) Recall 1 step after final — 7 system haystack.

9e-1 8e-1 7e-1 6e-1 5e-1 4e-1 3e-1 2e-1 1e-19e-2 8e-2 7e-2 6e-2 5e-2

Pretraining Error

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Tiny-212K: 2 after final
Small-701K: 2 after final

Medium-2.42M: 2 after final
Big-10.7M: 2 after final

(c) Recall 2 steps after final — 1 system haystack.

9e-1 8e-1 7e-1 6e-1 5e-1 4e-1 3e-1 2e-1 1e-19e-2 8e-2 7e-2 6e-2 5e-2

Pretraining Error

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Tiny-212K: 2 after final
Small-701K: 2 after final

Medium-2.42M: 2 after final
Big-10.7M: 2 after final

(d) Recall 2 steps after final — 7 system haystack.

9e-1 8e-1 7e-1 6e-1 5e-1 4e-1 3e-1 2e-1 1e-19e-2 8e-2 7e-2 6e-2 5e-2

Pretraining Error

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Tiny-212K: 4 steps into seg. 2
Small-701K: 4 steps into seg. 2

Medium-2.42M: 4 steps into seg. 2
Big-10.7M: 4 steps into seg. 2

(e) Restart 4 steps into segment 2.

9e-1 8e-1 7e-1 6e-1 5e-1 4e-1 3e-1 2e-1 1e-19e-2 8e-2 7e-2 6e-2 5e-2

Pretraining Error

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Tiny-212K: 4 steps into seg. 8
Small-701K: 4 steps into seg. 8

Medium-2.42M: 4 steps into seg. 8
Big-10.7M: 4 steps into seg. 8

(f) Restart 4 steps into segment 8.

Figure 4. Recall and restart performance vs pretraining loss on held-out data. The red vertical line is the fundamental lower bound
pretraining loss achieved by the pseudoinverse predictor. The blue horizontal line in Figs. 4e and 4f is the median error of the pseudoinverse
predictor at the specific index plotted in each figure.

4

A toy model for emergence

3. Do Actual Pretrained LLMs Also Display Multi-Mechanism Tendencies? Yes!
To see whether similar behavior holds for natural language problems solvable by prompting LLMs, we leverage OLMo-2
7B checkpoints (OLMo et al., 2024) and a basic English to Spanish translation task that is inspired1 by the IPA translation
task used in previous works benchmarking and studying emergent behaviors (Wei et al., 2022; bench authors, 2023). In
Fig. 5 (right), we see a similar phase transition in the first token prediction task, a parallel of the 1-after recall dynamics
in our toy model. Meanwhile, the second-token performance is both better and more gradual in its improvement across
training. This again matches what we saw in our toy problem.2

Alas, we don’t yet know how to get this experiment to run in free-tier Colab effectively. But we’ll try later.

Figure 5. Comparative example of in-weights associative recall (left) and in-context associative recall (right) in a 2-shot prompting setting.
Each point is a separate OLMo-2 7B model at different training steps. We report 95% confidence intervals using a Jeffrey’s prior.

4. Discussion and Related Work
Benchmark performance of large language models (LLMs) has been observed to improve abruptly at certain scales in
a seemingly unpredictable manner (Wei et al., 2022; Ganguli et al., 2022), leading to the conclusion that LLMs exhibit
emergent abilities, where different abilities may emerge at different scales or points during training. At this point, the reality
of phase-transitions in abilities during training is well established, with arguably the strongest evidence of this coming from
the “grokking” literature (Power et al., 2022; Nanda et al., 2023; Gromov, 2023; Zhong et al., 2024; Mallinar et al., 2024;
Humayun et al., 2024; Mohamadi et al., 2023; Soudry et al., 2018; Liu et al., 2022; Prieto et al., 2025; Pezeshki et al., 2022;
Davies et al., 2023). What exactly drives emergence is an ongoing topic of investigation. While earlier work talked about
model sizes and total compute, the story now is more nuanced. Powerful evidence connects the emergence of abilities to the
pretraining losses attained (Du et al., 2025), other information-oriented metrics (Chen et al., 2024b), and the idea that more
complex or specialized abilities can only emerge after a model acquires a prerequisite abilities during training (Chen et al.,
2024a; Lubana et al., 2024). At this point, the community also understands that ICL is rich and nuanced (Lin & Lee, 2024;
Wang et al., 2024; Min et al., 2022; Park et al., 2025; Lampinen et al., 2024). We contribute a new dimension of nuance by
empirically pointing out that a single ICL-driven task can be performed, on different tokens, using multiple mechanisms that
emerge separately.

1We use Spanish instead of the International Phonetic Language (IPA) as IPA has tokens that are not compatible with the OLMo 2
tokenizer. We also change the in-context labels to have no semantic meaning in light of (Wei et al., 2023a).

2One natural question is whether what we are seeing is the emergence of true ICL recall or just the underlying ability to start a
translation itself. This can be probed by replacing the purely symbolic task labels "X:" and "Y:" in the few-shot examples with semantically
informative "Spanish:" and "English:" labels. This replacement switches the problem from pure ICL for task recognition (in-context
associative recall) to leveraging a learnt label (in-weights associative recall). The resulting performance is seen in Fig. 5 (left). Notice the
marked improvement in the first-token performance that erases the entire gap to the second-token performance. This establishes that the
model knows how to start a translation, it just can’t in-context-learn well enough to know that is what it is supposed to do before the phase
transition during training that occurs around step 50k.

5

A toy model for emergence

References
Akyürek, E., Wang, B., Kim, Y., and Andreas, J. In-context language learning: Architectures and algorithms. arXiv preprint

arXiv:2401.12973, 2024.

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli, M., Zou, J., Rudra, A., and Ré, C. Zoology: Measuring and
improving recall in efficient language models. arXiv preprint arXiv:2312.04927, 2023.

Bak, P. How nature works : the science of self-organized criticality. Copernicus, New York, NY, USA, 1996. ISBN
9780387987385.

bench authors, B. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. Trans-
actions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=
uyTL5Bvosj.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A.,
et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020a.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A.,
Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse,
C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I.,
and Amodei, D. Language models are few-shot learners, 2020b. URL https://arxiv.org/abs/2005.14165.

Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M. L., and Saphra, N. Sudden drops in the loss: Syntax acquisition, phase
transitions, and simplicity bias in MLMs. In The Twelfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=MO5PiKHELW.

Chen, H., Yang, X., Zhu, J., and Wang, W. Quantifying semantic emergence in language models, 2024b. URL https:
//arxiv.org/abs/2405.12617.

Daniels, S., Davis, D., Gautam, D., Liao, W., Ranade, G., and Sahai, A. Decomposing prediction mechanisms for in-context
recall, 2025. URL https://arxiv.org/abs/2507.01414.

Davies, X., Langosco, L., and Krueger, D. Unifying grokking and double descent. arXiv preprint arXiv:2303.06173, 2023.

Du, Z., Balim, H., Oymak, S., and Ozay, N. Can transformers learn optimal filtering for unknown systems? IEEE Control
Systems Letters, 7:3525–3530, 2023. doi: 10.1109/LCSYS.2023.3335318.

Du, Z., Zeng, A., Dong, Y., and Tang, J. Understanding emergent abilities of language models from the loss perspective,
2025. URL https://arxiv.org/abs/2403.15796.

Edelman, B. L., Edelman, E., Goel, S., Malach, E., and Tsilivis, N. The evolution of statistical induction heads: In-context
learning markov chains. arXiv preprint arXiv:2402.11004, 2024.

Ganguli, D., Hernandez, D., Lovitt, L., Askell, A., Bai, Y., Chen, A., Conerly, T., Dassarma, N., Drain, D., Elhage, N.,
et al. Predictability and surprise in large generative models. In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency, pp. 1747–1764, 2022.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What can transformers learn in-context? a case study of simple function
classes. Advances in Neural Information Processing Systems, 35:30583–30598, 2022.

Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kinney, R., Tafjord, O., Jha, A. H., Ivison, H., Magnusson, I., Wang, Y.,
et al. Olmo: Accelerating the science of language models. arXiv preprint arXiv:2402.00838, 2024.

Gromov, A. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Humayun, A. I., Balestriero, R., and Baraniuk, R. Deep networks always grok and here is why. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=zMue490KMr.

Lampinen, A. K., Chan, S. C. Y., Singh, A. K., and Shanahan, M. The broader spectrum of in-context learning, 2024. URL
https://arxiv.org/abs/2412.03782.

6

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=MO5PiKHELW
https://arxiv.org/abs/2405.12617
https://arxiv.org/abs/2405.12617
https://arxiv.org/abs/2507.01414
https://arxiv.org/abs/2403.15796
https://openreview.net/forum?id=zMue490KMr
https://arxiv.org/abs/2412.03782

A toy model for emergence

Li, S., Zhao, P., Zhang, H., Sun, X., Wu, H., Jiao, D., Wang, W., Liu, C., Fang, Z., Xue, J., et al. Surge phenomenon in
optimal learning rate and batch size scaling. arXiv preprint arXiv:2405.14578, 2024.

Lin, Z. and Lee, K. Dual operating modes of in-context learning, 2024. URL https://arxiv.org/abs/2402.
18819.

Liu, J. W., Grogan, J., Dugan, O. M., Arora, S., Rudra, A., and Re, C. Can transformers solve least squares to high precision?
In ICML 2024 Workshop on In-Context Learning, 2024.

Liu, Z., Michaud, E. J., and Tegmark, M. Omnigrok: Grokking beyond algorithmic data. In The Eleventh International
Conference on Learning Representations, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization, 2019. URL https://arxiv.org/abs/1711.
05101.

Lubana, E. S., Kawaguchi, K., Dick, R. P., and Tanaka, H. A percolation model of emergence: Analyzing transformers
trained on a formal language, 2024. URL https://arxiv.org/abs/2408.12578.

MacKay, D. J. A practical bayesian framework for backpropagation networks. Neural computation, 4(3):448–472, 1992.

Mallinar, N. R., Beaglehole, D., Zhu, L., Radhakrishnan, A., Pandit, P., and Belkin, M. Emergence in non-neural models:
grokking modular arithmetic via average gradient outer product. In NeurIPS 2024 Workshop on Mathematics of Modern
Machine Learning, 2024.

Mezzadri, F. How to generate random matrices from the classical compact groups. arXiv preprint math-ph/0609050, 2006.

Michaud, E., Liu, Z., Girit, U., and Tegmark, M. The quantization model of neural scaling. Advances in Neural Information
Processing Systems, 36, 2023.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?, 2022. URL https://arxiv.org/abs/2202.12837.

Mohamadi, M. A., Li, Z., Wu, L., and Sutherland, D. Grokking modular arithmetic can be explained by margin maximization.
In NeurIPS 2023 Workshop on Mathematics of Modern Machine Learning, 2023. URL https://openreview.net/
forum?id=QPMfCLnIqf.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. Transformers can do bayesian inference, 2024. URL
https://arxiv.org/abs/2112.10510.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Steinhardt, J. Progress measures for grokking via mechanis-
tic interpretability. In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=9XFSbDPmdW.

Nichani, E., Lee, J. D., and Bietti, A. Understanding factual recall in transformers via associative memories, 2024. URL
https://arxiv.org/abs/2412.06538.

OLMo, T., Walsh, P., Soldaini, L., Groeneveld, D., Lo, K., Arora, S., Bhagia, A., Gu, Y., Huang, S., Jordan, M., Lambert, N.,
Schwenk, D., Tafjord, O., Anderson, T., Atkinson, D., Brahman, F., Clark, C., Dasigi, P., Dziri, N., Guerquin, M., Ivison,
H., Koh, P. W., Liu, J., Malik, S., Merrill, W., Miranda, L. J. V., Morrison, J., Murray, T., Nam, C., Pyatkin, V., Rangapur,
A., Schmitz, M., Skjonsberg, S., Wadden, D., Wilhelm, C., Wilson, M., Zettlemoyer, L., Farhadi, A., Smith, N. A., and
Hajishirzi, H. 2 olmo 2 furious, 2024. URL https://arxiv.org/abs/2501.00656.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen, A., et al.
In-context learning and induction heads. arXiv preprint arXiv:2209.11895, 2022.

Pan, J., Gao, T., Chen, H., and Chen, D. What in-context learning "learns" in-context: Disentangling task recognition and
task learning, 2023. URL https://arxiv.org/abs/2305.09731.

Park, C. F., Lubana, E. S., Pres, I., and Tanaka, H. Competition dynamics shape algorithmic phases of in-context learning,
2025. URL https://arxiv.org/abs/2412.01003.

7

https://arxiv.org/abs/2402.18819
https://arxiv.org/abs/2402.18819
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2408.12578
https://arxiv.org/abs/2202.12837
https://openreview.net/forum?id=QPMfCLnIqf
https://openreview.net/forum?id=QPMfCLnIqf
https://arxiv.org/abs/2112.10510
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://arxiv.org/abs/2412.06538
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2412.01003

A toy model for emergence

Pezeshki, M., Mitra, A., Bengio, Y., and Lajoie, G. Multi-scale feature learning dynamics: Insights for double descent. In
Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 17669–17690. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/pezeshki22a.html.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and Misra, V. Grokking: Generalization beyond overfitting on small
algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.

Prieto, L., Barsbey, M., Mediano, P. A., and Birdal, T. Grokking at the edge of numerical stability. arXiv preprint
arXiv:2501.04697, 2025.

Rajaraman, N., Bondaschi, M., Makkuva, A. V., Ramchandran, K., and Gastpar, M. Transformers on markov data:
Constant depth suffices. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=5uG9tp3v2q.

Raventós, A., Paul, M., Chen, F., and Ganguli, S. Pretraining task diversity and the emergence of non-Bayesian in-context
learning for regression. Advances in Neural Information Processing Systems, 36, 2024.

Sander, M. E., Giryes, R., Suzuki, T., Blondel, M., and Peyré, G. How do transformers perform in-context autoregressive
learning ? In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 43235–43254. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
sander24a.html.

Schutze, H. and Manning, C. I preliminaries. In Foundations of Statistical Natural Language Processing. MIT Press, United
States, 1999. ISBN 9780262133609.

Singh, A. K., Moskovitz, T., Dragutinovic, S., Hill, F., Chan, S. C. Y., and Saxe, A. M. Strategy coopetition explains the
emergence and transience of in-context learning, 2025. URL https://arxiv.org/abs/2503.05631.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. The implicit bias of gradient descent on separable data.
Journal of Machine Learning Research, 19:1–57, 2018.

Wang, X., Tang, X., Zhao, W. X., and Wen, J.-R. Investigating the pre-training dynamics of in-context learning: Task
recognition vs. task learning, 2024. URL https://arxiv.org/abs/2406.14022.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D., et al.
Emergent abilities of large language models. Transactions on Machine Learning Research, 2022.

Wei, J., Hou, L., Lampinen, A., Chen, X., Huang, D., Tay, Y., Chen, X., Lu, Y., Zhou, D., Ma, T., et al. Symbol tuning
improves in-context learning in language models. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 968–979, 2023a.

Wei, J., Wei, J., Tay, Y., Tran, D., Webson, A., Lu, Y., Chen, X., Liu, H., Huang, D., Zhou, D., and Ma, T. Larger language
models do in-context learning differently, 2023b. URL https://arxiv.org/abs/2303.03846.

Wies, N., Levine, Y., and Shashua, A. The learnability of in-context learning, 2023. URL https://arxiv.org/abs/
2303.07895.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An explanation of in-context learning as implicit bayesian inference.
arXiv preprint arXiv:2111.02080, 2021.

Yin, K. and Steinhardt, J. Which attention heads matter for in-context learning?, 2025. URL https://arxiv.org/
abs/2502.14010.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock and the pizza: Two stories in mechanistic explanation of neural
networks. Advances in Neural Information Processing Systems, 36, 2024.

8

https://proceedings.mlr.press/v162/pezeshki22a.html
https://openreview.net/forum?id=5uG9tp3v2q
https://proceedings.mlr.press/v235/sander24a.html
https://proceedings.mlr.press/v235/sander24a.html
https://arxiv.org/abs/2503.05631
https://arxiv.org/abs/2406.14022
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2303.07895
https://arxiv.org/abs/2303.07895
https://arxiv.org/abs/2502.14010
https://arxiv.org/abs/2502.14010

A toy model for emergence

A. Details of training setup
Consider predicting the continuous-state of an unknown linear dynamical system. We focus3 on the orthogonally evolved
system family (Sander et al., 2024), where the system is defined by U ∈ R5×5, a random orthogonal matrix. Each U is
generated by the algorithm presented in (Mezzadri, 2006), which ensures a uniform sampling over all R5×5 orthogonal
matrices. The initial state is x0 ∼ N

(
0, 1

5I
)
, with state updates:

xi+1 = Uxi = U i+1x0. (2)

The system state is in-principle perfectly predictable, but only after six positions in the sequence are observed by solving for

U =
[
x1 x2 x3 x4 x5

] [
x0 x1 x2 x3 x4

]−1
. (3)

A.1. Optimal Pseudoinverse Predictor

Following from (3), given the state observations {x0, . . . ,xi}, an optimal predictor for this problem computes x̂i+1 = Ûxi,
where

Û =
[
x1 . . . xi

] [
x0 . . . xi−1

]†
, (4)

and X† denotes the Moore-Penrose pseudoinverse of X . Essentially, this baseline only makes non-zero errors on the first,
second, third, fourth, fifth, and sixth entry in any sequence — it gets everything else perfectly correct.

A.2. Data generation and training

...
Trace Library

...

...

...
State Evolution

Figure 6. The generation of a train or test library of traces.

Generating a library of training sequences: Depicted visually in Fig. 6, we first compile a training library by the
following method:

1. Generate 40000 orthogonal matrices iid uniformly over all orthogonal matrices U1, . . . , U40000
iid∼ µ (O(5)), where

µ (O(5)) is the Haar measure over orthogonal matrices in R5×5. (Mezzadri, 2006)

2. Generate 40000 iid initial states that will correspond to each training system x
(1)
0 , . . . ,x

(40000)
0

iid∼ N
(
0, 1

5I
)
.

3. Roll out the states to get observation sequences that are each 251 entries long, and compile the sequences as our training
library.

3In the Appendix, we provide results for the identity system family which has dynamics that are even simpler than the orthogonal
system family. For the identity systems, the initial state is x0 ∼ N

(
0, 1

5
I
)
∈ R5. Now, the state updates as

xi+1 = xi. (1)

This trivial process of copying a constant is perfectly predictable after one realization is observed.

9

A toy model for emergence

Cutting and interleaving training sequences To form a training trace, we interleave segments of observation sequences
from the library into a context window of length 251, by this process:

1. Insert the start symbol at index 0.

2. Sample the maximum number of systems in the trace N from a Zipf(1.5, 25) distribution depicted graphically4 in
Fig. 8a. This means that no more than 25 systems will ever appear in a training trace.

3. Choose N of the 40,000 systems in the training library uniformly at random without replacement.

4. Randomly assign to each of the N systems a pair of symbolic open and close labels for this training example.

5. Sample the number of cuts C ∼ Poisson(2N) to be made in the trace. This means that there will be C + 1 trace
segments in the trace.5

6. Place the C cuts uniformly at random with replacement within the context window.

7. For each segment created by the cuts, in order, uniformly at random choose one of the N systems with replacement.

8. At the cut at the beginning of the segment, the open label for this segment’s system is inserted.6

9. For the system chosen, check if it has appeared in a previous segment of the trace. If not, insert the system’s segment
from the training trace library starting at index 0. If this system has appeared in a previous segment, insert the system’s
segment from the training trace library starting at the index that corresponds to the continuation of the previous segment
for this system.

10. At one index before the next cut, insert the close label for this segment’s system.

[<start> ...]{ ... } (...{ })... [...]

Figure 7. Example of a 251-element-long interleaved training example.

Note that within a single training example, segments of a particular system always start with the same open token and always
end with its corresponding close token. These random assignments are redrawn at the beginning of the interleaving process
for each training example; therefore, the same system can have different symbolic open and close labels when it appears in
different training examples. See Fig. 7 for a diagram of an interleaved training example.

Given this randomized procedure for generating interleaved training examples, we can analyze the training distribution to
better understand how frequently a model must recall a system, or sees many systems in a trace.

In Fig. 8, we show relevant distributions that are derived from the randomized interleaving procedure in this section. Figs. 8a
and 8c show the Zipf(1.5, 25) distribution for the maximum number of systems per trace in black and the number of
unique systems per trace in silver. The frequency of number of unique systems per trace follows closely the Zipf(1.5, 25)
distribution for the smaller quantities of systems, but diminishes quicker for larger numbers of systems, due to the coupon-
collecting phenomenon of picking the same system multiple times in a trace. The PMF for the number of cuts made in an
interleaved trace is shown in Fig. 8b, while the CCDF for this quantity is given in Fig. 8d. Fig. 8e shows the frequency

4The Zipf distribution was chosen for its ubiquity in nature (Bak, 1996) and natural language (Schutze & Manning, 1999), along with
recent work pointing to its importance in modern neural networks (Michaud et al., 2023).

5On average, each training trace has 2N + 1 segments to ensure that the trained model has seen ample interruptions and continuations
of systems.

6Since the open and close labels occupy two indices in the context window, there are three special cases that can occur: (1) If two
cuts are sampled to be on top of each other, then the first of the two cuts that were sampled is ignored; (2) If the two cuts are sampled to
occupy adjacent indices, then only the close label for the system corresponding to first of the two cuts is inserted, effectively making that
index meaningless as close labels are masked; (3) If the two cuts are sampled so that there is only one index between them, then the open
label for the system corresponding to the first of the two cuts is inserted and is immediately followed by the close label for that system,
effectively making both indices meaningless due to the masking of the labels. Note that the distributions shown in Fig. 8 do not account
for these rare special cases.

10

A toy model for emergence

0 5 10 15 20 25
of Systems

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
ob

ab
ili

ty
/F

re
qu

en
cy

Prob. of Max # of Systems in Trace
Freq. of # of Unique Systems in Trace

(a)

0 10 20 30 40 50 60 70 80
of Cuts in an Interleaved Trace

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
ob

ab
ili

ty

(b)

0 5 10 15 20 25
x (# of Systems)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
ob

./F
re

q.
 o

f a
t l

ea
st

 x
 S

ys
te

m
s

Prob. of Max # of Systems in Trace
Freq. of # of Unique Systems in Trace

(c)

0 10 20 30 40 50 60 70 80
x (# of Cuts in an Interleaved Trace)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
ob

. o
f a

t l
ea

st
 x

(d)

2 4 6 8 10 12 14
of Times a System Appears in a Trace

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Fr
eq

ue
nc

y
pe

r S
ys

te
m

 A
pp

ea
ra

nc
e

(e)

0 5 10 15 20 25
of System to Choose Between for Recall

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Fr
eq

ue
nc

y
pe

r #
 o

f S
ys

te
m

s C
ho

se
n

(f)

Figure 8. Distributions and complementary cumulative distribution functions (CCDFs) used in data generation — Fig. 8a is the
Zipf(1.5, 25) distribution for the maximum number of systems per trace in black and the number of unique systems per trace for
1× 107 traces in silver. Fig. 8c shows the CCDFs for these distributions. Fig. 8b shows the PMF and Fig. 8d shows the CCDF of the
number of cuts per trace. Fig. 8e shows the frequency of the number of times a system will appear in the same trace per system appearance.
Lastly, Fig. 8f shows the frequency of the number of previously seen systems a predictor must choose between to recall in a trace per
system appearance. For example, if system 0 is chosen then system 1, then system 0, then the model must choose between two systems to
recall.

11

A toy model for emergence

of how many times a system appears in a training trace. If the same system appears more than once, than the model must
perform recall. Therefore, Fig. 8e gives an idea of how often the model must recall a system during training. Finally, Fig. 8f
provides the frequency of the number of previously seen systems in the training trace that are candidates to be continued
when a predictor is tasked to recall a system. The value zero on the x-axis of this figure means that the model is seeing
a system for the first time in a training example and has no need to recall. Later, in Section B.2, we construct tests for
the associative recall ability of the trained model for different numbers of candidate systems to be continued in the trace.
Fig. 8f shows that for 19 candidate systems, the largest number of candidate systems that we tested on, the model has been
presented with this situation less than 1% of the time during training.

Input structure and embedding The input dimension of our models is 57. There are 50 dimensions for encoding paired
symbolic open and close labels, a dimension for the start symbol, a dimension for the payload flag and 5 dimensions to hold
the 5-dimensional observation vectors. The special symbols are one-hot encoded vectors; see Fig. 9 for an example of the
open symbol. For the observation sequence between the SPLs, the 5-dimensional state vectors are inserted into the payload
portion of the input vector, the payload flag is set to 1, and the rest of the input vector dimensions are zeroed out.

Start
Index

0
Open

0
Close

24
Open

24
Close

Payload
Flag Payload

Figure 9. The one-hot encoding of an open symbolic label. In this example, the system corresponding to this label is assigned to be
“system 0.”

The entire randomized procedure of generating interleaved training traces is depicted in Fig. 1 along with the structure of the
inputs into the model.

Model and embedding Building off of the codebase in (Du et al., 2023), which was influenced by (Garg et al., 2022), we
train a 2.42M parameter GPT-2 style transformer to perform this task. Our model7 has hidden dimension 128, 12 layers, and
8 heads. Our model’s input embedding is 128 × 57 dimensional. The model’s output layer is 5 × 128 to ensure that the
model makes 5-dimensional predictions. The input and output layers are untied (Du et al., 2023).

Training and Hyperparameters New interleaved training examples are generated for each training iteration and our
GPT-2-style model was trained for next token prediction on these training traces.8 The loss for all SPLs on the output were
zeroed out. A model that successfully recalls the state of a system seen previously in its context should make predictions
after the open token that perform as it would have if the relevant sequence had continued on without interruption.

Following the choice made in (Du et al., 2023), we trained our model with a weight decay of 1× 10−2. We used a batch size
of 512, a learning rate of ≈ 1.58× 10−5, and trained on a single NVIDIA L40S GPU with 45GB of RAM. A single training
run takes around 5 days. We used the AdamW Optimizer (Loshchilov & Hutter, 2019) and trained using mean-squared error
loss.

B. Test setup
B.1. Uninterleaved sequence test

To test the model’s ICL ability for the first system that is seen (Section E), we generate 100 held-out systems and 1000
different held-out initial states9 by the same method described in Section A.2 to form our testing library. We then evaluate
the model on the uninterleaved traces from this testing library.

7These parameter counts and model dimensions are for our “medium” model. Three other models of different sizes were also trained,
and their model dimensions are given table 1 in Appendix C.

8The model sees newly interleaved training examples at each iteration, but the training traces that are interleaved into the training
example are drawn from the fixed training library of 40,000 sequences. Therefore, the model undergoes single-epoch training where the
information within a training example might have appeared in many other training examples.

9We generate 1000 initial states for each system to narrow down the quartiles in the squared-error curves.

12

A toy model for emergence

B.2. Needle-in-a-haystack test

To evaluate the model’s ability to restart ICL on a new system (Section F) and recall a previously seen system (Section G),
we generate a series of structured “needle-in-a-haystack” test traces through interleaving the traces in the testing library
generated in Section B.1. A single “needle-in-a-haystack” trace is generated by the following procedure:

1. Choose N ∈ [1, 19] to be the number of distinct systems in a test trace.

2. For each of the N systems, insert a segment of 10 state observations starting from index 0 from the testing library into
the “needle-in-a-haystack” test trace. Each of these segments are individually punctuated with a unique open and close
symbol pair. We call this portion of the trace the “haystack”.

3. Append a query open symbol to the test trace that signifies which system in the haystack will be be continued. The
segment that will be continued is called the “needle”.

4. Append 10 state observations from the continuation of the system in the haystack corresponding to the query open
symbol. This portion is called the “test segment”.

See Fig. 2a for a diagram of a test trace for N = 2 systems in the haystack and system U1 as the needle.

For the full “needle-in-a-haystack” test dataset, we would like to ensure that we test on the same systems for the different
values of N , while having diverse systems in our dataset so that our results are statistically meaningful. To achieve this,
we test on 50 “needle-in-a-haystack” trace configurations. A trace configuration is a specific ordering of systems from
the testing library in the positions of the haystack. For the first needle-in-a-haystack trace configuration that we generate,
we place a segment from “system 0” from the testing library into the first position in the haystack, and fill the rest of the
haystack positions consecutively until the N -th position is filled with a segment from “system N − 1”. For the next trace
configuration, the first position in the haystack is filled with a segment from “system 1” and the rest of the haystack positions
are filled consecutively until the N -th position is filled with a segment from “system N”. This pattern continues until the last
trace configuration. In our case, we tested on 50 trace configurations, meaning the haystack of the last trace configuration
started with “system 49” and ended with “system 48 +N”. Each trace configuration is populated with 1000 different initial
states for each system. For the results in the main paper, the test segment is a continuation of the segment in the first position
of the haystack. For results where segments in other haystack positions are continued in the test segment see (Daniels et al.,
2025).

<latexit sha1_base64="uECvv6aG59uxmNAJX2CBsU0k6FY=">AAACYXicbVFNSwMxEM2uX221uuqxl2BRBLHsSqn1JnrxJAr2A7qlZNNpDc1mlyQrLUv/pDcvXvwjptsVanUg5OXNm5nkJYg5U9p1Pyx7Y3Nre6dQLO3ulfcPnMOjtooSSaFFIx7JbkAUcCagpZnm0I0lkDDg0Akm94t85w2kYpF40bMY+iEZCzZilGhDDZypH8CYiTQkWrLpvOSnLj7D/jDSyuyPl54/933DeqvsknvLj2sgk9dvVvT1Jr5YFJV8EMOfSQOn6tbcLPBf4OWgivJ4Gjjvph9NQhCacqJUz3Nj3U+J1IxyMM0TBTGhEzKGnoGChKD6aebQHJ8aZohHkTRLaJyxqxUpCZWahYFRmvu9qvXcgvwv10v0qNlPmYgTDYIuB40SjnWEF3bjIZNANZ8ZQKhk5q6YvhJJqDafUjImeOtP/gvaVzWvUWs816u3d7kdBVRBJ+gceega3aIH9IRaiKJPa9MqW/vWl120HftoKbWtvOYY/Qq78g2AerDo</latexit> {0 . . . N � 1}
{1 . . . N}
...

...
...

{49 . . . 48 + N}
Figure 10. When testing on 50 needle-in-a-haystack trace configurations, the order of system indices from the testing library in a haystack
of size N for each needle-in-a-haystack test trace is given above. For each system, 1000 sequences are interleaved to build a testing
dataset of shape 50× 1000× (12N + 1)× 5. The shape of the second to last axis is due to the start token and haystack segments being
10 context indices long plus two indices for the symbolic open and close labels. The last axis is 5-dimensional since every system has
5-dimensional observations.

C. The effects of model size
In order to test the effect of model size on our emergence results, we trained models across 4 different model sizes as shown
in Table 1. We originally tuned the learning rate for the medium model with a batch size of 512 on a single GPU. Following
the model scaling that was done10 in (Brown et al., 2020b), when decreasing the size of our model from “medium" to “small"
we halved the number of layers, multiplied the model dimension by 0.75, maintained the same head dimension, and doubled

10Alternatively, one could follow the model scaling done in (Groeneveld et al., 2024). There, they also halve the number of layers when
decreasing the model size, but decide to halve the model dimension and number of attention heads as well.

13

A toy model for emergence

Model Name nparams nlayers dmodel nheads dhead Learning Rate Batch Size

Orthogonal Tiny 212K 3 72 6 12 1.7× 10−4 2048
Orthogonal Small 701K 6 96 6 16 4.5× 10−5 1024
Orthogonal Medium 2.42M 12 128 8 16 1.6× 10−5 512
Orthogonal Big 10.7M 24 192 12 16 1.5× 10−5 640
Identity Tiny 212K 3 72 6 12 6.3× 10−5 8192
Identity Small 701K 6 96 6 16 3.2× 10−5 4096
Identity Medium 2.42M 12 128 8 16 1.6× 10−5 1024
Identity Big 10.7M 24 192 12 16 1.3× 10−5 512

Table 1. Model size and training hyperparameters.

the learning rate. To go from “small” to “tiny”, we used the same process except we chose the head dimension to be 12 to
maintain an integer value for the number of heads. If we would have maintained the head dimension of 16, the tiny model
would have had 4.5 heads. For this reason, 12 was chosen as the head dimension since it is the largest integer less than 16
that leads to an integer when dividing 72. To go from “medium" to “big", we doubled the number of layers, multiplied the
model dimension by 1.5, maintained the same head dimension, and multiplied the learning rate by 5

6 . This scaling was used
for the identity models and batch size was not taken into account. It was later brought to our attention that the learning rate
should also scale with the batch size. For our later orthogonal runs, we additionally adopted the square-root learning-rate
scaling as indicated in (Li et al., 2024). Specifically, we took the learning rate we had scaled by model size and multiplied

it by
√

batch size
512 . However, we have not verified if this scaling is the best way to proceed with our training and further

testing is still required. Furthermore, we trained the identity models on Nvidia GH200 with 80GB of RAM whereas the
orthogonal models were trained on one or two L40S GPUs with 48GB of RAM each. This is the reason for the differing
batch sizes across different model types.

D. Pretraining loss dynamics
In (Du et al., 2025), it was shown that many emergent abilities emerge for models of different sizes once a model’s pretraining
loss performance on a broad corpus of held-out data in the style of their pretraining data reaches a certain threshold. We
want to see if this holds true in our toy setting of interleaved time-series prediction.

We evaluate four different model sizes (see Table 1 in Appendix C for model parameter details) and show how their
pretraining loss dynamics differ throughout training. In Fig. 11, we see the performance of model training checkpoints on
data that is in the style of what the model saw during training as specified in Section A.2. The dotted curves are the models’
performance on freshly drawn interleavings of traces from a held-out test library, while the crossed curves are on freshly
drawn interleavings of traces from the training library.

In Fig. 11, it is clear that larger models decrease their pretraining loss earlier in training than smaller models. Furthermore,
classic overfitting behavior is evident, especially in the larger models. We see that the pretraining error on the held-out
dataset deteriorates late in training, while the error on the training data continues to decrease. For the “big” model, its error
on the training data even goes lower than the fundamental lower bound imposed by the error of the perfect pseudoinverse
predictor.

14

A toy model for emergence

106 107 108

of Training Examples

0.0

0.2

0.4

0.6

0.8

Er
ro

r

Tiny-212K: Test
Tiny-212K: Train
Small-701K: Test
Small-701K: Train
Medium-2.42M: Test
Medium-2.42M: Train
Big-10.7M: Test
Big-10.7M: Train
Pseudoinv Predictor

Figure 11. Pretraining loss — The squared-error of each transformer model’s predictions on traces interleaved in the style of the training
data averaged over each time step of the trace. For both the train and test data, averaging was done over 40,000 different interleaved
traces, each of length 251. The horizontal black dotted line is the averaged squared-error of a predictor that computes an estimate of the
underlying system dynamics by using the Moore-Penrose pseudoinverse of the observed data.

E. Can a model learn the first system in-context? Yes
We first confirm that our trained model is able to in-context learn the first system seen in its context. We evaluate the model
on the uninterleaved traces from the testing library specified in Section B.1. In Fig. 12a, we plot the median squared-error
over these test traces vs the context index, and the color of each curve represents how far along the model is in training.
The dotted line in this figure is the median squared-error of the pseudoinverse predictor in (4) over the same test traces. In
Fig. 12b we plot the median squared-error over these test traces as training proceeds (measured by the number of training
examples seen so far), the color of each solid curve represents the context index, the blue and green dotted horizontal lines
are the optimal pseudoinverse predictor’s median squared error for the specific early context indices.

Notice in Fig. 12a that the early model checkpoints saturate out and cannot continue to make better predictions with more
context. Nevertheless, after seeing 6.25× 107 training examples, the model’s prediction error on indices 2 through 7 closely
match those of the pseudoinverse baseline from (4). This is also seen in Fig. 12b where, as training proceeds, the dark curves
representing the model’s prediction errors on early indices converge to the prediction error of the pseudoinverse predictor for
the corresponding index given by the blue and green curves. The best performance of the model is at the end of the context
window with a median squared-error of ≈ 2 × 10−4. According to (Liu et al., 2024), this is near the practical precision
threshold for transformer models.

Notice in Fig. 12b the model is gradually learning to make better predictions as training continues. This ICL ability for the
first system seen is the same ability that is studied by (Du et al., 2023; Sander et al., 2024) and using this evaluation metric,
we see that sudden emergence is not present. Nonetheless, using the same evaluation metric, the ability to restart ICL for a
new system (Section F) and to recall a previously seen system (Section G) both exhibit emergence.

Additionally, we notice in Fig. 12b that the squared-error bottoms out after 6.25× 107 training examples, showing that the
model suffers from overfitting late in training. Having seen this, we set our early stopping checkpoint at 6.25× 107 training
examples, as denoted by the red vertical line in Fig. 12b which corresponds to the blue curve in Fig. 12a.

In summary, the model is able to use context to make better predictions of state observations from held-out test systems. The

15

A toy model for emergence

101 102

Context

10 3

10 2

10 1

100

Er
ro

r

Pseudoinv pred.

5e+05
2e+06
3e+06
4e+06
6e+06
9e+06
1e+07
1e+07
2e+07
2e+07
3e+07
3e+07
4e+07
5e+07
6e+07
7e+07
8e+07
9e+07

of Training Exam
ples

6.25e7 ex

(a)

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

Pseudoinv pred. index 2
Pseudoinv pred. index 3
Pseudoinv pred. index 4
Pseudoinv pred. index 5
Pseudoinv pred. index 6
Pseudoinv pred. index 7
Early stop checkpoint

50

100

150

200

250
C

ontext

(b)

Figure 12. Performance on a long uninterleaved trace — 12a and 12b depict the in-context learning performance of the model on long
uninterleaved test examples. The median squared-error is plotted against the context index in Fig. 12a, and against the number of training
examples seen in Fig. 12b. The red line in Fig. 12b at 6.25× 107 training examples, and the blue curve in Fig. 12a denote the checkpoint
that we use for early stopping. in Fig. 12a the optimal pseudoinverse predictor is the brown dashed curve, while in Fig. 12b it is denoted
by the blue and green horizontal lines for each of the early context indices. in Fig. 12b, notice that the model gradually learns to make
optimal predictions as opposed to the sudden emergence of associative recall ability seen in Section G, since the prediction errors for early
indices slowly converge towards the pseudoinverse predictor’s performance.

model’s ability gradually develops during training, as opposed to how associative recall develops suddenly later in training
as seen in Section G.

F. Emergence of the ability to restart predictions on new systems
We now show the training dynamics for the ability to restart in-context learning for a new system that was not the first
system seen in-context. We find that learning this restart ability is not gradual, as it was for learning the first system seen
(Section E). Instead, we see that the model begins to transition from poor restart performance to good restart performance
early in training as compared to when associative recall emerges in training which we will see in Section G. We study the
model’s performance on the haystack segments of “needle-in-a-haystack” test examples (see the diagram in Fig. 2a).

In Fig. 13, the median squared-error vs the number of training examples seen is plotted for steps 1 through 8 into the
first system segment in the haystack and the third system segment in the haystack. Specifically, in Fig. 13a we see that at
the beginning of training the model has not learned to restart its predictions for the third system segment, as its median
squared-error in segment 3 is well above its counterpart predictions in segment 1 for all steps into each segment except for
step 1. This shows that early on in training, there is clearly substantial interference from earlier segments when the model
tries to learn to predict the behavior for a new sequence (explicitly labeled as such) that it is seeing in the third position in
the haystack. As training proceeds, we see that the median squared-error for each step in segment 3 converges to the value
of its segment 1 counterpart. Fig. 13b shows that the model transitions towards restarting ICL correctly when training has
processed ≈ 2× 106 training examples.

In Fig. 14, we show the median squared-error of the model’s predictions for up to 8 steps into each new segment at the
early-stopping checkpoint of 6.25× 107 training examples. This log-scale plot shows that even at the end of training, the
model’s ability to restart ICL for new systems slowly degrades when predicting indices 6, 7 and 8 as more new systems are
presented in the context window. This is seen as the upward trend in the green and yellow curves in Fig. 14.

16

A toy model for emergence

106 107

of Training Examples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Er
ro

r

TF: 1 into seg. 3
TF: 1 into seg. 1
TF: 2 into seg. 3
TF: 2 into seg. 1
TF: 3 into seg. 3
TF: 3 into seg. 1
TF: 4 into seg. 3
TF: 4 into seg. 1

TF: 5 into seg. 3
TF: 5 into seg. 1
TF: 6 into seg. 3
TF: 6 into seg. 1
TF: 7 into seg. 3
TF: 7 into seg. 1
TF: 8 into seg. 3
TF: 8 into seg. 1

Pseudoinv: 1 into seg. 3
Pseudoinv: 2 into seg. 3
Pseudoinv: 3 into seg. 3
Pseudoinv: 4 into seg. 3
Pseudoinv: 5 into seg. 3
Pseudoinv: 6 into seg. 3
Pseudoinv: 7 into seg. 3
Pseudoinv: 8 into seg. 3

(a)

106 107

of Training Examples

10 2

10 1

100

Er
ro

r

TF: 1 into seg. 3
TF: 2 into seg. 3
TF: 3 into seg. 3
TF: 4 into seg. 3
TF: 5 into seg. 3
TF: 6 into seg. 3
TF: 7 into seg. 3
TF: 8 into seg. 3
Pseudoinv: 1 into seg. 3
Pseudoinv: 2 into seg. 3
Pseudoinv: 3 into seg. 3
Pseudoinv: 4 into seg. 3
Pseudoinv: 5 into seg. 3
Pseudoinv: 6 into seg. 3
Pseudoinv: 7 into seg. 3
Pseudoinv: 8 into seg. 3

(b)

Figure 13. Performance on new subsequent segments. 13a is the squared-error of predictions on steps 1 through 8 into the first and third
system segments, where each segment is seen for the first time in context. 13b is the squared-error for steps 1 through 8 into the third
system segments on log scale. The error bars show the 25th and 75th percentiles across trace configurations of the model’s prediction error
across the medians over the 1000 initial states in each trace configuration. The horizontal dotted lines are the median squared-error of the
optimal pseudoinverse predictor.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Segment Position

10 2

10 1

100

Er
ro

r a
t 6

.2
5e

+0
7

Ex
am

pl
es

1 into seg. 2 into seg. 3 into seg. 4 into seg. 5 into seg. 6 into seg. 7 into seg. 8 into seg.

Figure 14. Restarting for a new system at the early-stopping checkpoint after seeing 6.25× 107 training examples.

17

A toy model for emergence

G. Further plots showing the emergence of associative recall
Because of space limitations, we only included the plots for a "haystack length" of 2 in the main paper. However, interesting
behavior is visible if one considers N = 1 and N = 5 as well, illustrated together with N = 2 for easy comparison in
Fig. 15. Notice that:

• N = 1 shows interesting trivial-recall behavior emerging earlier for the black curve: soon after 1 × 107 training
samples.

• N = 1 also shows two interesting transitions during training in the blue curve for predicting the second position in a
resumed sequence: first around 2× 106 training samples where improvements stop and second around 6× 106 training
samples where improvements begin to happen much faster. By contrast, the behavior of the red curve for predicting the
third position is much smoother.

• N = 5 puts the behavior of N = 2 into a clearer light by illustrating that whatever is happening before 1× 107 training
samples for the red and blue curves clearly gets progressively worse when there are more systems in the haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) 1 system haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) 2 system haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(c) 5 system haystack.

Figure 15. Training dynamics for recall — The 25th, 50th, and 75th quartiles of the squared-error of the model’s predictions vs the number
of training examples seen during training so far are plotted on log-log plots for N = 1 in Fig. 15a, N = 2 in Fig. 15b, and N = 5 in
Fig. 15c. All haystack segments are of length 10 (excluding delimiting tokens). The test set consisted of 1,000 “needle-in-a-haystack”
traces from each of 50 systems. The dashed curves marked with crosses show the performance for indices 1, 2, 3, 7, and 8 steps after
the initial open symbol, while the solid curves marked with dots show the performance for the same indices after the final open symbol.
Notice in all the above figures that the solid black curve, showing the model’s ability to recall the correct system from just seeing its
corresponding open symbol, very sharply improves after 107 training examples.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
of Systems in the Haystack

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Er
ro

r a
t 6

.2
5e

7
Ex

am
pl

es

TF: 1 after final
TF: 2 after final
TF: 3 after final
TF: 7 after final
TF: 8 after final

Figure 16. The 25th, 50th, and 75th quartiles of the squared-error after 6.25 × 107 training examples as the number of systems in the
haystack N increases. Notice that predicting 1-after the open symbol is largely unaffected by the value of N , as the black markers stay
steady around 0.015. Although the information encoded in the open symbolic label keeps the difficulty of the task constant as N increases,
nevertheless, the performance for 2,3,7, and 8-after the open symbol predictions steadily degrades as N increases.

In Fig. 16, we plot the quartiles of the squared-error of the model’s predictions as a function of the number of systems in the
haystack. Observe that the 1-after final open label performance remains steady with more systems, while the predictions for

18

A toy model for emergence

the later indices get progressively worse. Information theoretically, making a prediction for 2-after the final open label is
just as easy as making a prediction for 1-after the final open label, if not easier, since the open label provides the information
required to make an optimal prediction. In light of this, Fig. 16 suggests that the model has not learned to use symbolic
labels well enough to maintain steady performance on the indices two or more after the final open symbol as the number of
systems in the haystack increases.

H. Multiple Mechanisms for Prediction
In this paper, we explore whether the trained model performs the associative recall task through a label-based recall (H1)
mechanism or a observation-based Bayesian recall (H2) mechanism. If the mechanism for recall was label-based, the
model would in-context learn the association of symbolic labels to their corresponding systems, and then perform inference
based on recalling the queried system and continuing its evolution. If the mechanism for recall was observation-based and
Bayesian, the model would ignore the symbolic labels and instead would use the state observation to figure out which system
the observation could have come from. The model then performs Bayesian prediction based on previous observations to
make future predictions.

H.1. Out-of-Distribution Inference-Time Experiments

To decide if H1 or H2 is a valid hypothesis for the associative recall mechanism, we conducted three out-of-distribution
experiments at inference-time: misdirecting the model towards the incorrect sequence in the haystack (Section H.1.1),
synchronizing sequences in the haystack from different systems so that they would all have the same state after the final
open symbol (Section H.1.2), and misdirecting the model towards an unseen sequence not present in the haystack (Section
H.1.3). Through these three out-of-distribution experiments, we found that neither H1 nor H2 fully describe the model’s
mechanism for associative recall. In fact, the evidence indicates that model uses H1 for predicting 1-after the final open
symbol, and a suboptimal version of H2 for predicting two or more steps after the final open symbol.

To further explore the mechanism for restarting ICL on a new system, we conduct a fourth out-of-distribution experiment:
misdirecting the model towards a seen sequence in the haystack (Section H.1.4). This experiment’s results provide evidence
that the model ignores the open symbol when restarting ICL on a new system.

H.1.1. EXPERIMENT 1: MISDIRECTION TOWARDS THE INCORRECT SEQUENCE IN THE HAYSTACK

For this out-of-distribution experiment, we test the model on “needle-in-a-haystack” test traces generated as specified in
Section B.2, except we swap the final open symbol with another open symbol that corresponds to a segment in the haystack
that is not the “needle” as seen in Fig. 17. If H1 were true, the model would be using label-based recall and we would expect
it to make predictions on the test segment for the wrong system. If H2 were true, the swapping of the label would not affect
the prediction performance of the model, since the model would be using the seen states to make its predictions rather than
the symbolic labels.

(<start> ...){ } (
Needle

Haystack

... ...

Misdirect to
Wrong Sequence!

)
Test Segment

Figure 17. Misdirecting the model towards the incorrect sequence in the haystack.

19

A toy model for emergence

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) 2 systems in the haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) 5 systems in the haystack.

Figure 18. Misdirection towards incorrect sequence — The median squared-error of the model’s predictions on the test segment after
observing the incorrect final open label vs the number of training examples seen so far. The solid black curve sharply increases in these
figures where it would have sharply decreased for a normal test trace as seen in Fig. 15, suggesting H1 is true for predicting the first index
of the test segment. In contrast, we find that the model ignores the misdirection when predicting two or more indices into the test segment,
since the solid blue, red, yellow, and green curves are almost identical to the corresponding curve in Fig. 15. This suggests that the model
is using a Bayesian approach when predicting these indices.

Misdirecting the model towards the incorrect sequence in the haystack falsifies pure label-based recall and provides
strong evidence that an observation-based Bayesian recall mechanism is present. The results of this experiment are
shown in Fig. 18 for N = 2 and N = 5, where the median squared-error of the model’s predictions are plotted against the
number of training examples seen, mirroring the format of the Fig. 15. The first thing to notice in Fig. 18 is that the solid
black curve now sharply rises late in training, as opposed to its sharp fall for a normal “needle-in-a-haystack” test trace as
shown in Fig. 15. Presumably, the model is using the label-based recall to predict the first index into the test segment.

In contrast, the solid curves in Fig. 18 for 2, 3, 7, and 8 after the final open symbol look almost identical to the corresponding
solid curves in Fig. 15. See the blue curve in Fig. 18a and 3a at 2× 107 training examples. Their median squared-error both
sit at around 2× 10−2. The same correspondence can be seen for the red, yellow, and green curves as well. This shows that
the model’s predictions for 2, 3, 7, and 8 after the final open symbol are not very affected by the open symbol. Instead, they
must be using the state observations after the final open symbol to decide which system to use for making predictions. This
strengthens the case that the model uses an observation-based Bayesian recall mechanism for predicting the indices after the
first index into the test segment.

H.1.2. EXPERIMENT 2: SYNCHRONIZING “ROTATIONS” IN THE HAYSTACK

In Section H.1.1, the misdirection towards the incorrect sequence experiment showed that the model can make accurate
predictions for indices 2 and further into the test segment without using the final open symbol. However, in that experiment
the observation that is 1 index after the final open symbol can determine which system should be applied for predicting the
subsequent indices, since if a predictor has observed x

(1)
9 from system 1 and x

(2)
9 from system 2, when it observes x10 from

either system 1 or system 2, it can check whether x10 = U1x
(1)
9 or x10 = U2x

(2)
9 . Now, there is still the question of whether

the model can use the final open symbol to predict the later indices in a situation where the 1 after final observation does not
provide the necessary information. To answer this question, we conduct a synchronizing rotations experiment, where all of
the sequences in the haystack from different systems all have the same state at the 10th index, which corresponds to 1 index
after the final open symbol. To do this, we first generate a single vector x10 ∼ N

(
0, 1

5I
)

for all systems and generate the
haystack by "rewinding" our systems back to their initial state x0 by xi−1 = UTxi as is shown in Fig. 19. The ambiguity of
which system the first observation in the test segment comes from, means that the model must use the symbolic label to
make an accurate prediction on the second index into the test segment.

20

A toy model for emergence

(<start> ...){ ... }(...

Needle

Haystack

Synchronization
Point!

)
Test Segment

Figure 19. Synchronizing previous systems in the haystack, so the first observation in the test segment no longer reveals the system that is
being continued.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) 2 systems in the haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) 5 systems in the haystack.

Figure 20. Synchronizing rotations — The median squared-error of the model’s predictions on the test segment when the first index into
the test segment is a valid continuation for all haystack segments vs how many training examples have been processed during training.
Synchronizing the rotations of the haystack segments means that after the first observation in the test segment, a predictor cannot determine
which system is being continued. The solid black curve still shows emergence at the same point in training as it did in Fig. 15, supporting
the validity of H1 for predicting the first index into the test segment. Otherwise, the model performance is significantly degraded for the
rest of the indices into the test segment. For example, the solid blue curve in these plots for prediction errors on the second index into the
test segment is near 1.0 in Fig. 20a where it is near 1.0× 10−2 in Fig. 3a. This indicates that the model is unable to use the symbolic
label well enough to make accurate predictions.

21

A toy model for emergence

Synchronizing the sequences in the haystack so the observation at the first index in the test segment is not informative
of the continuing system shows that the model has not learned to use the symbolic label to make accurate predictions
for two or more indices into the test segment. In Fig. 20, which plots the median squared-error of the predictions on the
synchronizing test traces vs. the number of training examples seen, we see that the solid black curve still sharply decreases
late in training11, as it does in Fig. 15, showing that the model is able to use the final open symbol to predict x10. On the
other hand, the solid blue curves are almost horizontal throughout all of training, and the solid red, yellow, and green curves
are have a significantly higher squared-error than their counterpart curves in Fig. 15. This means that the model is unable to
make accurate predictions on the subsequent indices in the test segment after x10, although the final open symbol provides
all of the necessary information to do so. This strengthens the case for H2 being the right hypothesis for predicting the
indices after x10, although the model is clearly not a Bayes optimal predictor since seeing x10 and the next observation
Ux10 would disambiguate which system U is being continued. Despite the system being disambiguated after seeing Ux10,
the red solid curves in Fig. 20 are still much worse than their counterparts in Fig. 15.

H.1.3. EXPERIMENT 3: MISDIRECTION TOWARDS AN UNSEEN SEQUENCE

To further study whether the model uses the symbolic labels at all to continue its predictions on a recalled sequence, we
misdirect the model to restart ICL for a sequence that has not appeared in the haystack so far. Fig. 21 illustrates how we
swap out the final open symbol of a normal “needle-in-a-haystack” test trace with an open symbol that does not correspond
to any of the systems in the haystack. Given the results from the previous two sections, we expect the model to predict zero
for the first index as that is optimal for restarting a new sequence, but we expect the model to make accurate predictions on
the subsequent indices that are continuing a segment that is in the haystack. This is almost what happens, but late in training,
the model suddenly transitions to (at least partially) restarting ICL on a new sequence.

(<start> ...){ } [
Continuation

Haystack

... ...

Misdirect to
New Sequence!

]
Test Segment

Figure 21. Misdirecting the model with an unseen symbolic label indicating a new sequence.

11Due to the synchronization, the first observation in the test segment is a valid continuation for all systems in the haystack and therefore
is always predictable.

22

A toy model for emergence

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) 2 systems in the haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) 5 systems in the haystack.

Figure 22. Misdirection towards an unseen system — The median squared-error of the model’s predictions on the test segment when the
final open symbol does not correspond to any haystack systems vs the number of training examples seen so far. The solid blue and red
curves match their counterparts in Fig. 15 until ≈ 3× 107 training examples, at which point they sharply increase. This means the model
continues predicting the existing system in early training then suddenly starts treating it more like an unseen system late in training. We
note that this transition happens shortly after the emergence of associative recall, suggesting the model has learned that unseen labels also
require ICL to be restarted.

Misdirecting with an unseen symbolic label highlights a new abrupt phase transition in model behavior late in
training from disregarding the symbolic label and continuing to predict the observed test segment to restarting ICL
for a new system. Fig. 22 shows the median squared-error of the model predictions after being presented with a final
open symbol that does not correspond to any system in the haystack while the test segment is actually a continuation of a
haystack segment vs how far along the model is in training. In the same figure, the first after final predictions match the
expected behavior of restarting predictions as seen by the solid black curve being a horizontal line near 1. For the rest of the
indices, the model ignores the symbolic label through the initial stages of training and continues to correctly predict the test
segment, since the solid curves in Fig. 22 match their counterparts in Fig. 15 up to around 3× 107 training examples. Once
associative recall fully emerges later in training, and the model learns how to use the symbolic labels, the model transitions
to treating a continuation of the old sequence as a brand new sequence corresponding to the new label, since the blue and
red solid curves abruptly increase after 3× 107 training examples in Fig. 22. This shows that the model predictions for two
or more indices into the test segment are affected by the final open symbol, although Section H.1.2 showed that the model is
unable to use it to make accurate predictions for recall on those indices.

H.1.4. EXPERIMENT 4: MISDIRECTION TOWARDS A SEEN SEQUENCE IN THE HAYSTACK

The first three out-of-distribution experiments studied the model’s mechanisms for performing associative recall, but this
section will study the mechanism for restarting its prediction on a new system. Again, we devise a misdirection experiment.
This time we provide a final open symbol that points toward the “needle” in the haystack, but the test segment is a sequence
from a system that is not in the haystack (Fig. 23).

(<start> ...){ } (
Needle

Haystack

Test Segment

... ...

Misdirect to
Old Sequence!

)

Figure 23. Misdirecting the model with a previously seen symbolic label.

23

A toy model for emergence

106 107

of Training Examples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 4 after final
TF: 4 after initial

TF: 5 after final
TF: 5 after initial
TF: 6 after final
TF: 6 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

Pseudoinv: 1 after final
Pseudoinv: 2 after final
Pseudoinv: 3 after final
Pseudoinv: 4 after final
Pseudoinv: 5 after final
Pseudoinv: 6 after final
Pseudoinv: 7 after final
Pseudoinv: 8 after final

(a) Linear scale.

106 107

of Training Examples

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 2 after final
TF: 3 after final
TF: 4 after final
TF: 5 after final
TF: 6 after final
TF: 7 after final
TF: 8 after final
Pseudoinv: 1 after final
Pseudoinv: 2 after final
Pseudoinv: 3 after final
Pseudoinv: 4 after final
Pseudoinv: 5 after final
Pseudoinv: 6 after final
Pseudoinv: 7 after final
Pseudoinv: 8 after final

(b) Log scale.

Figure 24. Misdirection towards a seen system — The median squared-error of the model’s predictions on the third segment that is an
unseen sequence while the final open symbol corresponds to the first segment vs the number of training examples seen so far. The solid
curves other than the 1-after final curve match the solid curves in Fig. 13. This supports the hypothesis that the model uses the state
observations to continue its prediction on a newly seen segment, rather than the open symbolic label.

Misdirecting with a previously seen symbolic label does not stop the model from restarting its predictions on the
new sequence for two or more indices into the test segment. In Fig. 24, the median squared-error on this misdirection
experiment is plotted against the number of training examples seen so far during training. We find that when given the
correct unseen symbolic label (Fig. 13a), and when shown a symbolic label misdirecting to a sequence that has already
been observed in context (Fig. 24), the model performs equivalently on predicting two or more indices into the newly seen
segment, as the solid curves match except for the 1-after final curve that is using the symbolic open label. The model
recognizes that the sequence it is seeing does not correspond to a sequence it has already seen. This supports a hypothesis
that that model does not use the symbolic labels to restart ICL on a new system. Interestingly, misdirecting the model with a
previously unseen symbolic label indicating a new system (Section H.1.3) shows that these unseen symbolic labels do affect
the model’s predictions in the test segment. This evidence shows that the mechanism for restarting ICL may not be purely
label-based nor purely observation-based.

H.1.5. SUMMARY OF OUT-OF-DISTRIBUTION EXPERIMENT RESULTS

After conducting the four out-of-distribution experiments, we find that neither H1 nor H2 can fully explain the model’s
mechanism for predicting interleaved time-series. The misdirection to the incorrect sequence experiment (Section H.1.1)
supports H1 for predicting the first index into the test segment, but it also shows that the model can make accurately
continue its predictions in the test segment without using the final open symbolic label. Therefore, H1 is insufficient. The
synchronizing rotations in the haystack experiment (Section H.1.2) further showed that the model is unable to use the final
open symbolic label well enough to accurately continue its predictions in the test segment, providing strong evidence that
the model performs a suboptimal version of H2 for this subtask. This evidence is further strengthened by the misdirection
towards a seen sequence in Section H.1.4. Finally, the misdirection to an unseen sequence experiment (Section H.1.3)
showed that even for the later indices, the final open symbolic label can signal the model to restart its predictions for a new
segment, invalidating H2 as the sole mechanism for continuing predictions. It is clear from these results that the conjecture
C3, where the transformer model uses multiple mechanisms for the single task of interleaved time-series prediction holds
true.

24

