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ABSTRACT

With the commercialization of large language models (LLMs), weight-activation
quantization has emerged to compress and accelerate LLMs, achieving high
throughput while reducing inference costs. However, existing post-training quan-
tization (PTQ) techniques for quantizing both weights and activations of LLMs
still suffer from non-negligible performance drops, especially on massive multitask
language understanding. To address this issue, we propose Low-Rank Quantization
(LRQ) - a simple yet effective post-training weight quantization method for LLMs
that reconstructs the outputs of an intermediate Transformer block by leveraging
low-rank weight-scaling matrices, replacing the conventional full weight-scaling
matrices that entail as many learnable scales as their associated weights. Thanks
to parameter sharing via low-rank structure, LRQ only need to learn significantly
fewer parameters while enabling the individual scaling of weights, thus boosting
the generalization capability of quantized LLMs. Through extensive experiments,
we demonstrate the superiority of LRQ to prior LLM INT8 PTQ works. Remark-
ably, we for the first time conduct experiments on 4-bit weight and 8-bit activation
quantization for LLMs with minimal accuracy loss among LLM PTQ studies.

1 INTRODUCTION

As ChatGPT and GPT-4 (OpenAI, 2023) have showcased unprecedented capabilities across various
domains such as common sense reasoning, mathematical problem-solving, and coding proficiency,
there has been an exponential surge in interest surrounding the development of Large Language
Models (LLMs). This surge in interest has culminated in the recent release of cutting-edge LLMs
like Llama (Touvron et al., 2023a), PaLM 2 (Google et al., 2023), and Llama 2 (Touvron et al.,
2023b). Accordingly, serving LLMs has rapidly emerged as a significant concern in both academia
and industry. This stems from the substantial memory footprint and considerable computational cost
incurred when operating these language models with tens or hundreds of millions of parameters in
FP16 format. Therefore, extensive efforts (Frantar et al., 2023; Liu et al., 2023b) such as quantization
or pruning are underway to compress LLMs and provide efficient deployment. In particular, quantiza-
tion has garnered considerable interest among LLM engineers and researchers because quantization
aids in not just model compression but also inference acceleration.

LLM quantization techniques fall into two primary categories: weight-only quantization and weight-
activation quantization. Weight-only quantization concentrates on enhancing memory-bound opera-
tions like matrix-vector multiplication by quantizing weights of LLMs into low-bit integers (e.g., 2-4
bits). With activations kept in FP16, weight-only quantization exhibits marginal accuracy degradation
but is only effective in accelerating text generation inference for small batch sizes (e.g., a single batch).
In contrast, weight-activation quantization aims to expedite computationally intensive operations,
such as matrix-matrix multiplication, typically by quantizing both weights and activations of LLMs
into 8-bit integers and employing INT8 GEMM kernels. This comprehensive quantization approach
enables LLM serving for large batch sizes, thus enhancing LLM throughput and expediting LLM
inference through integer matrix multiplication. Yet, it comes with the trade-off of potential non-
negligible accuracy drop. While each methodology boasts its own set of strengths and weaknesses,
we focus on weight-activation quantization on the grounds that achieving high-throughput LLM
inference is indispensable for handling a substantial volume of user requests in real time.
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(a) Common Sense Reasoning tasks (b) Massive Multitask Language Understanding

Figure 1: (a) Zero-shot performance and (b) five-shot performance of Llama with 8-bit per-channel
asymmetric weight quantization and 8-bit per-tensor asymmetric static activation quantization.

Recent studies (Dettmers et al., 2022; Yao et al., 2022; Xiao et al., 2022; Lee et al., 2023; Liu et al.,
2023a) have attempted to quantize both weights and activations of LLMs. Among these works, only
SmoothQuant (Xiao et al., 2022) and FlexRound (Lee et al., 2023) demonstrated the potential for
a hardware-efficient per-tensor static activation quantization scheme that can reduce the inference
latency and memory usage by up to two-thirds and half respectively compared to FP16 baselines as
thoroughly elucidated in Xiao et al. (2022). Given the compelling advantages of this scheme, we
also stick mainly to per-tensor static activation quantization, with a primary focus on preventing
non-negligible performance degradation, one of its key drawbacks, from occurring.

Despite promising results that SmoothQuant and FlexRound yielded, they still possess inherent limi-
tations on enhancing model accuracy when using per-tensor static activation quantization. Although
SmoothQuant is a potent technique for alleviating the difficulty of quantizing activation outliers, it
uniformly divides activations in each channel and multiplies the weights in the corresponding input
channel by some constant. Since such an uniform per-channel smoothing transformation can only
scale the weights collectively per channel, not individually, SmoothQuant may lead to non-negligible
accuracy loss after quantization for certain models as seen in Figure 1. On the other hand, as
FlexRound learns a separate scale for each weight and thus enables flexible weight quantization based
on individual characteristics of each weight, FlexRound can show marginal zero-shot accuracy drop
on common sense reasoning tasks in Figure 1(a). However, as depicted in Figure 1(b), FlexRound falls
short in performing well on massive multitask language understanding (MMLU), which necessitates
problem-solving skills, specialized knowledge, as well as basic knowledge across diverse subjects.
We empirically confirm that this phenomenon is because FlexRound has to learn too many scales
relative to limited calibration samples due to the assignment of an independent scale to every weight.

To improve generalization performance on such a challenging benchmark as well, we propose a new
post-training weight quantization approach, “Low-Rank Quantization (LRQ)”. LRQ is designed to
minimize the mean squared error between the outputs of an intermediate FP16 Transformer block
and those of its quantized counterpart with respect to low-rank weight-scaling matrices instead of
full weight-scaling matrices that involve as many scales as their associated weights. Through the
use of such low-rank matrices, we can reduce the number of learnable parameters effectively while
maintaining the concept of scaling weights individually by sharing learnable parameters via low-rank
structure. As a result, LRQ can attain comparable accuracy to FP16 baselines on both common sense
reasoning tasks and MMLU for all the Llama models as indicated in Figure 1.

Our main contribution is threefold:

• We propose a new post-training weight quantization method coined LRQ that leverages
low-rank weight-scaling matrices for intermediate Transformer block output reconstruction,
which improves the generalization performance of quantized LLMs as shown in Figure 1.

• We provide empirical insights into the significance of reducing the number of learnable
parameters and how the utilization of low-rank matrices to effectively decrease learnable
parameters impacts the generalization ability of quantized LLMs.

• We validate the effectiveness of LRQ for Llama and Llama 2 using per-tensor static activation
quantization and for the first time perform experiments on 4-bit weight and 8-bit per-token
activation quantization for LLMs with minimal accuracy loss among LLM PTQ approaches.
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2 METHOD

In this section, we outline the post-training quantization (PTQ) background that our method, LRQ is
founded on, figure out the problem arising when quantizing LLMs, and formulate LRQ. Finally, we
deepen an empirical understanding of how LRQ can improve generalization in quantized LLMs.

2.1 BACKGROUND

Block-wise Reconstruction First of all, our method is based on block-wise reconstruction, which
originates from BRECQ (Li et al., 2021) for the purpose of taking into account the intra-block
dependency and has been widely used in QDrop (Wei et al., 2022), FlexRound (Lee et al., 2023),
and AQuant (Li et al., 2023) due to its efficacy to yield less generalization error than layer-wise
reconstruction. As we concentrate on weight-activation quantization of LLMs that are generally
Transformer-based models, the block-wise reconstruction process is applied to every Transformer
block in the order of arrangement. To be more concrete, with a small set of calibration data, the
objective of block-wise reconstruction is to find quantized weights Ŵ by minimizing the block recon-
struction error ∥WX − Ŵ X̃∥22 where W and X are the weights and inputs of a FP16 Transformer
block while X̃ is the inputs of its quantized counterpart (i.e., the outputs of its immediately preceding
Transformer block with all its previous Transformer blocks quantized).

FlexRound Among PTQ studies that take advantage of block-wise reconstruction, FlexRound
shows the state-of-the-art performance for a wide variety of models ranging from computer vision
models to large language models including Llama. In FlexRound, the formulation of Ŵ is written as

Ŵ = s1

⌊ W

s1 ⊙ exp(S2)

⌉
, (1)

where s1 is a quantization step size, S2 is a weight-scaling matrix whose shape is exactly the same
as that of W , ⌊·⌉ and exp(·) indicate the rounding and exponential function, and ⊙ and / represent
element-wise multiplication and division. Depending on the type of W , some supplementary vectors
are added to S2, but we exclude these additional vectors to keep the expression uncluttered. At the
beginning of learning, S2 is set to a zero matrix and s1 is initialized to argmins1

∥W − Ŵ ∥22 to
start learning from rounding-to-nearest (RTN). Then, both s1 and S2 are learned to minimize the
block reconstruction error ∥WX − Ŵ X̃∥22 with a small amount of calibration data as explained
above. As seen in Figure 1, even though the accuracy of FlexRound on common sense reasoning
benchmarks nearly matches that of FP16 baselines, quantized LLMs via FlexRound might exhibit
reduced scores on challenging tasks including massive multitask language understanding (MMLU).

2.2 MOTIVATION

Figure 2: Zero-shot and five-shot accuracies
of Llama 7B for FlexRound (FR) on common
sense reasoning (CSR) tasks and MMLU ac-
cording to the calibration sample size, with
8-bit per-channel asymmetric weight quanti-
zation and 8-bit per-tensor asymmetric static
activation quantization.

We hypothesize that the failure to generalize well on
challenging benchmarks like MMLU arises from the
necessity of learning an individual scale for every
weight with limited calibration samples. Now that
S2 has as many learnable parameters as the size of
W in Eq. 1, FlexRound’s objective to achieve flex-
ible weight quantization through the assignment of
an independent scale to each weight may be deemed
excessive when applied to LLM quantization. For
instance, for Llama 7B, the smallest model in Llama,
FlexRound has to learn more than 200 million scales
with only just a few hundred or thousand calibra-
tion samples. FlexRound may be therefore prone to
overfitting when quantizing LLMs. To resolve this
issue, there might be two solutions: (i) increasing
calibration samples, and (ii) decreasing learnable pa-
rameters. In the former case, as shown in Figure 2,
the accuracy of FlexRound on MMLU does increase
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(a) Calibration sample (b) Unseen sample

Figure 3: Accumulated root mean square error (RMSE) between WX and Ŵ X̃ for RTN,
FlexRound, and LRQ on (a) a calibration sample from the C4 dataset and (b) an unseen sam-
ple from common sense reasoning and MMLU benchmarks, ranging from the first Transformer block
to the last Transformer block of Llama 7B. Here, weights and activations are quantized to 8-bit with
per-channel asymmetric quantization and per-tensor asymmetric static quantization, respectively.
Note that RMSE tends to rise in line with the block index due to the presence of X̃ that accumulates
quantization error resulting from previous quantized Transformer blocks.

as the calibration sample size grows larger. Unfortunately, however, FlexRound still falls behind
the FP16 baseline on MMLU by more than 3.5 percent even utilizing 2048 calibration samples,
the maximum number we can use on a single NVIDIA A100-80GB GPU during the block-wise
reconstruction process. Hence, we turn our focus toward reducing the number of learnable parameters.

2.3 LOW-RANK QUANTIZATION

To reduce the number of learnable parameters, we decompose a weight-scaling matrix, S2, into
a low-rank matrix before performing the reconstruction process. To be more specific, for W ∈
RCout×Cin , S2 ∈ RCout×Cin is factorized into L2U2 where L2 ∈ RCout×r and U2 ∈ Rr×Cin for
r < min(Cout, Cin). Additionally, we supplement L2U2 with a row vector, r2 ∈ RCout×1 and a
column vector, c2 ∈ R1×Cin , which is inspired by the addition of a row or column vector (or both)
to a low-rank matrix in recommendation systems, one of the most popular applications of low-rank
structure, for better prediction of ratings by considering a bias for each user or each item (Jahrer &
Töscher, 2012; Goodfellow et al., 2016; Koren et al., 2021). As a result, we formulate Ŵ as

Ŵ = s1

⌊ W

s1 ⊙ exp(L2U2 + r2 + c2)

⌉
, (2)

which we refer to as ‘Low-Rank Quantization (LRQ)’. At first, L2 and U2 are initialized to zeros and
random values from a normal distribution respectively, and r2 and c2 are set to zero vectors so that
L2U2 + r2 + c2 starts from a zero matrix like S2 in Eq. 1. Then, s1, L2, U2, r2, and c2 are learned
to minimize ∥WX − Ŵ X̃∥22 in a block-by-block manner.

2.4 EFFECT OF LOW-RANK MATRICES ON GENERALIZATION ABILITY OF QUANTIZED LLMS

Considering that a full weight-scaling matrix is substituted with a low-rank matrix as seen in Eq. 2
derived from Eq. 1, one might wonder (i) whether the minimization of block reconstruction error
on calibration samples is feasible despite the use of low-rank matrices, and (ii) how the utilization
of low-rank matrices can result in improved generalization performance on unseen benchmarks as
Figure 1 demonstrates. To address these concerns, we conduct a comparative analysis of accumulated
root mean square error (RMSE) between WX and Ŵ X̃ for RTN, FlexRound, and LRQ.

For a calibration sample that is selected from the C4 dataset, even if both FlexRound and LRQ
initially start their learning process from the same RTN baseline, LRQ achieves an almost identical
accumulated RMSE to FlexRound, as illustrated in Figure 3(a). This observation underscores that the
use of low-rank weight-scaling matrices does not pose any noticeable obstacle to the minimization of
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Figure 4: Illustration of a quantized Transformer block with per-channel asymmetric weight quanti-
zation, per-tensor asymmetric static activation quantization, and per-token asymmetric KV cache
quantization. We remain the inputs of softmax and normalization layers in FP16.

(a) Rank Study (b) Calibration Sample Size Study

Figure 5: Zero-shot and five-shot performances of Llama 7B on common sense reasoning (CSR)
tasks and MMLU respectively, where weights and activations are quantized to 8-bit as described in
Figure 4 while the KV cache is kept in FP16.

block reconstruction error on calibration data. For common sense reasoning and MMLU benchmarks
that are unseen during the reconstruction stage, however, accumulated RMSE for LRQ is much smaller
than that for FlexRound as well as RTN as described in Figure 3(b). This compelling result implies
that harnessing the parameter-efficiency of low-rank matrices can facilitate superior generalization on
unseen benchmarks. In light of these findings, the incorporation of low-rank matrices into block-wise
reconstruction is indeed a pivotal step in enhancing the generalization capability of quantized LLMs.

3 EXPERIMENTS

In this section, we first explore the influence of the rank r in Eq. 2 and the quantity of calibration
samples on the performance of LRQ. Next, to verify the effectiveness of LRQ, we compare LRQ with
existing state-of-the-art post-training quantization (PTQ) methods for open-source large language
models (LLMs) such as Llama and Llama 2 by adopting per-channel asymmetric weight quantization,
per-tensor asymmetric static activation quantization, and per-token asymmetric KV cache quantization,
as illustrated in Figure 4. For the Llama 2 models in Table 2, however, the accuracy gap on the
massive multitask language understanding (MMLU) benchmark between quantized LLMs and their
FP16 baselines is observed. In this sense, we also perform experiments on Llama 2 by switching from
per-tensor asymmetric static activation quantization to per-token asymmetric activation quantization.

We use just a single NVIDIA A100-80GB GPU to quantize all the Llama and Llama 2 models via
LRQ. We randomly choose 512 calibration samples with a token length of 1024 from the training set
of C4 (Raffel et al., 2020), one of the pre-training datasets for Llama. Unless otherwise mentioned,
LRQ is applied to all linear layers in both attention and feed-forward modules, and the rank r in Eq.
2 is set to 2048 for large language models beyond 30B parameters or to 1024 for smaller models in
order to reduce the number of learnable parameters by approximately half compared to FlexRound.
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Table 1: Zero-shot performance of Llama and Llama 2 on common sense reasoning tasks (BoolQ,
PIQA, HellaSwag, WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel
asymmetric weight quantization, per-tensor asymmetric static activation quantization, and per-token
asymmetric KV cache quantization. The accuracy (%) is reported for all tasks. The number of bits
used for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 7B 16/16/16 73.15 77.31 72.96 67.09 52.48 41.38 42.40 60.97

RTN 8/8/8 69.76 73.72 65.95 62.75 48.91 37.12 37.60 56.54
SmoothQuant 8/8/8 69.42 72.63 69.07 64.72 48.61 37.12 39.20 57.25
FlexRound 8/8/8 72.54 76.50 71.88 66.77 53.03 39.76 42.00 60.35
LRQ (Ours) 8/8/8 72.84 77.37 72.04 67.01 53.03 40.53 41.60 60.63

Llama 13B 16/16/16 68.53 79.11 76.23 70.01 59.89 44.54 42.20 62.93

RTN 8/8/8 65.87 72.25 62.52 62.19 51.81 35.41 38.40 55.49
SmoothQuant 8/8/8 67.34 75.19 71.78 69.06 54.92 40.44 38.80 59.65
FlexRound 8/8/8 68.78 78.51 75.23 70.56 58.46 44.03 41.00 62.37
LRQ (Ours) 8/8/8 68.84 78.78 75.56 70.80 59.13 44.62 41.60 62.76

Llama 33B 16/16/16 68.38 80.09 79.21 72.93 58.92 45.48 42.00 63.86

RTN 8/8/8 68.81 76.55 68.76 66.06 56.48 42.49 42.40 60.22
SmoothQuant 8/8/8 71.31 75.30 71.29 68.98 53.66 43.26 41.00 60.69
FlexRound 8/8/8 69.05 79.49 77.49 70.88 56.86 43.60 42.00 62.77
LRQ (Ours) 8/8/8 68.84 79.98 78.52 73.72 58.21 45.73 43.00 64.00

Llama 65B 16/16/16 82.32 80.85 80.71 77.19 58.71 46.33 44.60 67.24

RTN 8/8/8 79.51 75.79 74.13 71.35 51.85 44.03 43.60 62.89
SmoothQuant 8/8/8 78.78 79.54 79.11 73.32 56.23 45.90 43.80 65.24
FlexRound 8/8/8 80.46 79.38 79.23 74.98 57.20 46.42 45.00 66.10
LRQ (Ours) 8/8/8 82.35 81.12 79.96 75.61 58.96 46.59 45.40 67.14

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

RTN 8/8/8 60.58 67.08 57.66 60.54 45.83 31.57 34.40 51.09
SmoothQuant 8/8/8 67.09 73.29 67.26 64.25 51.18 36.26 38.40 56.82
FlexRound 8/8/8 72.05 77.26 71.30 65.98 54.88 39.16 39.20 59.98
LRQ (Ours) 8/8/8 67.86 76.99 71.97 67.01 54.71 40.19 40.00 59.82

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

RTN 8/8/8 62.97 73.72 62.60 57.77 52.86 36.77 37.00 54.81
SmoothQuant 8/8/8 63.94 74.97 70.50 65.43 54.88 40.78 38.60 58.44
FlexRound 8/8/8 66.94 79.00 75.32 69.38 58.54 42.92 40.40 61.79
LRQ (Ours) 8/8/8 68.59 78.67 75.83 70.64 58.16 43.34 39.80 62.15

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

RTN 8/8/8 72.39 78.51 76.49 69.61 57.74 44.62 40.40 62.82
SmoothQuant 8/8/8 76.73 77.15 79.37 73.01 55.56 46.59 43.20 64.52
FlexRound 8/8/8 76.18 80.36 79.09 75.06 60.10 46.42 43.80 65.86
LRQ (Ours) 8/8/8 77.95 81.23 79.78 74.82 57.83 46.33 43.60 65.93

All quantized models are evaluated on MMLU (Hendrycks et al., 2021) in the five-shot setting as well
as six common sense reasoning benchmarks: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC easy and challenge
(Clark et al., 2018), and OpenBookQA (Mihaylov et al., 2018) in the zero-shot setting.

3.1 ABLATION STUDY

Rank Study To examine the impact of the rank r in Eq. 2 on the generalization on unseen
benchmarks, we compare LRQ with different r to FlexRound for Llama 7B as shown in Figure
5(a). For common sense reasoning tasks, both FlexRound and LRQ show negligible accuracy
degradation compared to the FP16 baseline. When it comes to MMLU, however, LRQ significantly
outperforms FlexRound regardless of r despite the fact that LRQ utilizes 512 calibration samples
whereas FlexRound exploits 2048 samples. Such a comparison is particularly noteworthy because
FlexRound has a tendency to exhibit improved performance with an increase in the calibration sample
size as discussed in Section 2.2.

Calibration Sample Size Study To identify whether the performance of LRQ does improve with
an increase in the number of calibration samples, we also conduct experiments on LRQ for Llama
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Table 2: Five-shot accuracy of Llama and Llama 2 on Massive Multitask Language Understanding
with per-channel asymmetric weight quantization, per-tensor asymmetric static activation quantization,
and per-token asymmetric KV cache quantization. The accuracy (%) is reported for four disciplines.
The number of bits used for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 7B 16/16/16 30.58 33.88 38.19 38.25 35.12

RTN 8/8/8 27.04 27.23 29.28 30.38 28.36
SmoothQuant 8/8/8 28.40 28.69 32.79 30.48 29.94
FlexRound 8/8/8 27.60 28.71 29.61 31.99 29.43
LRQ (Ours) 8/8/8 29.72 32.79 37.44 38.16 34.39

Llama 13B 16/16/16 36.35 44.97 54.14 53.15 47.02

RTN 8/8/8 26.38 25.33 27.95 24.83 26.01
SmoothQuant 8/8/8 27.24 30.12 30.58 31.31 29.87
FlexRound 8/8/8 33.63 42.81 48.65 49.26 43.60
LRQ (Ours) 8/8/8 35.16 44.55 51.74 52.04 45.83

Llama 33B 16/16/16 46.69 56.39 67.40 63.60 58.38

RTN 8/8/8 32.47 32.37 38.35 40.59 35.60
SmoothQuant 8/8/8 37.94 41.64 50.57 51.48 45.07
FlexRound 8/8/8 43.47 52.20 61.94 59.90 54.24
LRQ (Ours) 8/8/8 45.26 52.58 63.99 61.26 55.51

Llama 65B 16/16/16 51.95 61.87 73.32 67.58 63.57

RTN 8/8/8 41.22 47.23 61.39 54.69 50.76
SmoothQuant 8/8/8 44.83 50.82 63.34 57.09 53.72
FlexRound 8/8/8 46.32 54.60 65.06 62.49 56.94
LRQ (Ours) 8/8/8 50.96 61.28 71.99 66.66 62.65

Llama 2 7B 16/16/16 37.04 43.38 51.84 52.44 45.96

RTN 8/8/8 29.66 24.06 30.45 24.49 26.76
SmoothQuant 8/8/8 21.67 25.06 22.26 24.03 23.48
FlexRound 8/8/8 33.40 36.96 43.13 46.30 39.70
LRQ (Ours) 8/8/8 34.82 39.91 46.47 47.62 42.04

Llama 2 13B 16/16/16 44.27 54.43 63.41 60.76 55.68

RTN 8/8/8 29.06 24.23 29.93 29.03 27.62
SmoothQuant 8/8/8 21.31 24.08 21.71 23.72 22.88
FlexRound 8/8/8 41.09 51.58 61.39 59.41 53.28
LRQ (Ours) 8/8/8 42.88 51.97 62.14 59.93 54.08

Llama 2 70B 16/16/16 57.79 65.16 80.44 74.61 69.11

RTN 8/8/8 46.82 53.37 66.23 58.51 55.97
SmoothQuant 8/8/8 47.28 54.60 69.32 63.33 58.27
FlexRound 8/8/8 54.27 61.11 77.45 71.31 65.57
LRQ (Ours) 8/8/8 54.44 62.61 76.99 71.78 66.12

7B with various calibration sample size while fixing r to 1024. The accuracy of LRQ does rise with
a larger calibration sample size, but it reaches a saturation point when exceeding 1024 calibration
samples as depicted in Figure 5(b). Nevertheless, LRQ can surpass FlexRound irrespective of the
calibration sample size not only on common sense reasoning benchmarks but also on the MMLU
benchmark, which sheds light on the effect of low-rank matrices on enhancing generalization in
quantized LLMs as we elaborate on in Section 2.4.

3.2 PER-TENSOR ASYMMETRIC STATIC ACTIVATION QUANTIZATION

As meticulously studied in Xiao et al. (2022), per-tensor static activation quantization is hardware-
efficient and can be implemented on off-the-shelf GPUs with FasterTransformer, the state-of-the-art
Transformer inference framework provided from NVIDIA, to achieve up to 1.5× inference speed-up
and almost halving the memory footprint compared to FP16 baselines. Accordingly, we employ
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Table 3: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA,
HellaSwag, WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric
weight quantization, per-token asymmetric activation quantization, and per-token asymmetric KV
cache quantization. The accuracy (%) is reported for all tasks. The number of bits used for weights,
activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

RTN 8/8/8 69.60 77.20 72.26 67.09 53.62 39.85 41.00 60.09
SmoothQuant 8/8/8 70.73 76.77 72.80 67.25 53.70 41.04 40.60 60.41
FlexRound 8/8/8 72.02 77.09 72.50 67.40 54.17 40.19 40.80 60.60
LRQ (Ours) 8/8/8 72.45 77.04 72.70 67.09 53.66 40.61 41.60 60.74
RTN 4/8/8 68.13 75.14 65.89 62.67 46.42 36.52 36.20 55.85
SmoothQuant 4/8/8 53.27 69.64 51.28 56.35 40.95 31.83 35.00 48.33
FlexRound 4/8/8 71.71 76.77 72.24 66.14 53.49 40.02 40.40 60.11
LRQ (Ours) 4/8/8 73.00 76.99 71.90 65.98 54.38 39.68 41.20 60.45

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

RTN 8/8/8 67.46 78.73 75.57 68.51 58.12 44.28 41.40 62.01
SmoothQuant 8/8/8 69.33 79.05 76.52 69.38 58.04 44.37 42.00 62.67
FlexRound 8/8/8 69.36 79.16 76.67 69.53 57.83 44.37 42.80 62.82
LRQ (Ours) 8/8/8 69.02 78.78 76.48 69.93 57.83 43.86 42.00 62.56
RTN 4/8/8 65.23 74.05 60.04 58.64 49.07 35.92 35.20 54.02
SmoothQuant 4/8/8 62.17 61.37 44.59 53.67 36.99 28.24 32.40 45.63
FlexRound 4/8/8 69.05 78.51 75.51 69.53 58.75 43.60 41.20 62.31
LRQ (Ours) 4/8/8 71.13 78.29 75.79 68.90 57.83 43.34 41.20 62.35

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

RTN 8/8/8 76.02 81.07 80.45 75.61 60.31 47.87 43.80 66.45
SmoothQuant 8/8/8 76.15 80.96 80.63 77.11 59.09 47.87 44.60 66.63
FlexRound 8/8/8 75.93 81.45 80.48 75.85 60.06 48.55 44.80 66.73
LRQ (Ours) 8/8/8 75.99 81.50 80.61 75.77 59.97 49.49 45.20 66.93
RTN 4/8/8 75.90 79.22 71.39 70.56 53.11 43.60 40.40 62.03
SmoothQuant 4/8/8 66.24 75.84 56.19 60.46 50.25 36.01 40.40 55.06
FlexRound 4/8/8 77.31 80.96 79.89 75.30 60.19 48.21 43.40 66.47
LRQ (Ours) 4/8/8 77.92 81.28 80.42 75.06 60.94 48.04 42.60 66.61

per-tensor asymmetric static activation quantization as well as per-channel asymmetric weight
quantization. Moreover, we also quantize the KV cache to 8-bit with a per-token asymmetric
quantization scheme. It is worth noting that for large batch sizes, the KV cache can consume a
much larger amount of memory than the model size, thus causing a bottleneck in high-throughput
LLM inference. Fortunately, the performance discrepancy before and after per-token asymmetric
KV cache quantization is almost insignificant no matter which quantization method is selected, as
presented in Appendix B. For these reasons, we utilize per-channel asymmetric weight quantization,
per-tensor asymmetric static activation quantization, and per-token asymmetric KV cache quantization
as exemplified in Figure 4. Further experimental details are provided in Appendix C.

Table 1 and 2 reveal the effectiveness of LRQ compared with the state-of-the-art LLM PTQ techniques
on common sense reasoning tasks and MMLU, respectively. For common sense reasoning bechmarks,
the zero-shot performance of LRQ is almost close to that of FP16 baselines, being superior to that of
both SmoothQuant and FlexRound for most of the Llama and Llama 2 models. Not only that, LRQ
also considerably outperforms SmoothQuant and FlexRound on MMLU.

3.3 PER-TOKEN ASYMMETRIC ACTIVATION QUANTIZATION

Although LRQ shows better performance than SmoothQuant and FlexRound on both common sense
reasoning tasks and MMLU when employing per-channel asymmetric weight quantization, per-tensor
asymmetric static activation quantization and per-token asymmetric KV cache quantization, there is
still the five-shot performance gap on MMLU between LRQ and FP16 baselines for Llama 2 as shown
in Table 2. Because of this, we also conduct experiments on Llama 2 with a per-token asymmetric
activation quantization scheme instead of a per-tensor asymmetric static activation quantization
scheme. More details about experimental settings are given in Appendix C.

In Table 3 and 4, activations and KV cache are quantized to 8-bit with a per-token asymmetric
quantization scheme. In the case of 8-bit per-channel asymmetric weight quantization, although

8



Under review as a conference paper at ICLR 2024

Table 4: Five-shot accuracy of Llama 2 on Massive Multitask Language Understanding with per-
channel asymmetric weight quantization, per-token asymmetric activation quantization, and per-token
asymmetric KV cache quantization. The accuracy (%) is reported for four disciplines. The number of
bits used for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 2 7B 16/16/16 37.04 43.38 51.84 52.44 45.96

RTN 8/8/8 36.15 42.85 50.34 52.31 45.24
SmoothQuant 8/8/8 36.98 42.93 51.87 52.56 45.83
FlexRound 8/8/8 36.98 42.91 51.87 52.28 45.76
LRQ (Ours) 8/8/8 36.88 43.12 51.67 52.53 45.83
RTN 4/8/8 28.00 25.80 27.53 28.01 27.16
SmoothQuant 4/8/8 25.75 24.91 22.49 26.59 24.95
FlexRound 4/8/8 37.81 42.55 50.47 50.65 45.14
LRQ (Ours) 4/8/8 36.88 42.53 50.80 52.22 45.36

Llama 2 13B 16/16/16 44.27 54.43 63.41 60.76 55.68

RTN 8/8/8 43.87 52.88 62.33 60.67 54.81
SmoothQuant 8/8/8 43.74 53.20 63.18 60.83 55.11
FlexRound 8/8/8 44.17 52.88 63.76 61.29 55.33
LRQ (Ours) 8/8/8 44.50 53.07 63.24 61.26 55.35
RTN 4/8/8 30.95 26.31 32.92 34.58 30.67
SmoothQuant 4/8/8 27.87 24.95 26.58 27.91 26.62
FlexRound 4/8/8 42.88 50.71 61.94 59.93 53.77
LRQ (Ours) 4/8/8 43.90 52.56 62.07 59.96 54.49

Llama 2 70B 16/16/16 57.79 65.16 80.44 74.61 69.11

RTN 8/8/8 56.23 63.55 78.39 73.01 67.41
SmoothQuant 8/8/8 57.59 64.21 80.70 74.58 68.79
FlexRound 8/8/8 57.22 63.97 79.62 73.81 68.22
LRQ (Ours) 8/8/8 57.95 63.85 80.34 73.94 68.52
RTN 4/8/8 41.19 45.74 57.52 53.61 49.16
SmoothQuant 4/8/8 29.69 31.31 36.89 37.42 33.59
FlexRound 4/8/8 56.26 62.89 78.78 72.92 67.26
LRQ (Ours) 4/8/8 55.57 64.65 78.97 72.52 67.65

the accuracy of LRQ is slightly higher than that of SmoothQuant and FlexRound for most Llama 2
models, it can be concluded that SmoothQuant, FlexRound, and LRQ are almost evenly matched.
More interestingly, rounding-to-nearest (RTN) also performs nearly to the levels of FP16 baselines.
As a consequence, we reduce the weight bits to 4-bit for a further reduction in the model size.
Surprisingly, even when quantizing weights to 4-bit and both activations and KV cache to 8-bit, LRQ
can attain similar zero-shot performance to FP16 baselines on common sense reasoning benchmarks
and narrow the five-shot performance difference between FP16 baselines and quantized models to
less than 1.5 percent on the MMLU benchmark. We for the first time carry out experiments on
4-bit weight, 8-bit activation, and 8-bit KV cache quantization, demonstrating that LRQ exhibits the
minimal performance degradation among LLM PTQ methods.

4 CONCLUSION

We propose a simple yet effective post-training weight quantization method for LLMs, LRQ that learns
low-rank weight-scaling matrices for block-by-block reconstructing the outputs of an intermediate
Transformer block. Thanks to the use of such low-rank matrices, we can decrease the number of
learnable parameters effectively while allowing for scaling weights individually due to the sharing of
learnable parameters through a low-rank structure, thereby enhancing the generalization performance
of quantized LLMs. Through comprehensive experiments, we demonstrate the superiority of LRQ
over existing LLM post-training weight-activation quantization approaches. Notably, we are the first
to run experiments on 4-bit weight and 8-bit activation quantization with minimal accuracy drop
among LLM post-training quantization (PTQ) techniques. We hope that this noticeable result would
pave the way for the possibility of 4-bit weight and 4-bit activation quantization for LLMs via PTQ.
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REPRODUCIBILITY STATEMENT

To make it possible to reproduce our experimental results in this paper, we delineate experimental
setups in Appendix C in as much detail as possible. However, we are planning to release our code as
soon as possible in the near future in order to encourage many LLM engineers and researchers to
benefit from our method, LRQ.
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A RELATED WORK

Quantization works can be generally categorized into quantization-aware training (QAT) and post-
training quantization (PTQ). As QAT can maintain the performance of FP32/FP16 baselines, QAT
has been applied to computer vision models (Jung et al., 2019; Esser et al., 2020; Lee et al., 2021;
Kim et al., 2021). Notwithstanding, there exist many challenges associated with applying QAT to
large language models (LLMs) due to the sheer scale of pre-training data and a huge amount of
computing resources required for training on the whole pre-training dataset. Although Liu et al.
(2023a) presented the possibility of applying QAT to LLMs, unforunately, they did not perform
experiments on Llama 65B, the largest and best performing model among the Llama models, in
spite of using a single 8-GPU node. On the other hand, as Frantar et al. (2023) demonstrated the
application of PTQ to LLMs only with a single GPU, many researchers have recently paid attention
to PTQ for LLMs.

LLM PTQ can be classified into two categories: LLM weight-only quantization (Frantar et al., 2023;
Lin et al., 2023) and LLM weight-activation quantization (Dettmers et al., 2022; Yao et al., 2022;
Xiao et al., 2022; Lee et al., 2023). For the former quantization, Frantar et al. (2023) quantized the
weights of LLMs into low-bit integers based on layer-wise reconstruction, whereas Lin et al. (2023)
did by not counting on reconstruction but per-channel scaling in consideration of both weight and
activation magnitudes. Despite the fact that both studies exhibited decent quantization performance,
the main benefit of weight-only quantization does not align with serving LLMs with high throughput
as delineated in Section 1. In this light, we concentrates on weight-activation quantization.

When it comes to weight-activation quantization, Yao et al. (2022) presented ZeroQuant with a
group-wise weight quantization scheme and a per-token activation quantization scheme based on
layer-wise knowledge distillation, and Dettmers et al. (2022) proposed LLM.int8() with a per-channel
weight quantization scheme and a per-token activation quantization scheme while keeping activation
outliers in FP16. As discussed in Xiao et al. (2022), however, ZeroQuant incurs severe accuracy
degradation for an open-source LLM, and the inference latency of LLM.int8() can be higher than
that of the FP16 baseline. To deal with both issues, Xiao et al. (2022) devised SmoothQuant that can
preserve the accuracy of OPT (Zhang et al., 2022) by easing the difficulty of activation quantization
and accelerate LLM inference by up to 1.5 times. Yet, SmoothQuant suffers from non-negligible
performance degradation for other open-source models such as Llama and Llama 2 with a per-tensor
static activation quantization scheme as illustrated in Figure 1. FlexRound that Lee et al. (2023)
created showed the experimental results of Llama up to 33B with a per-channel weight quantization
scheme and a per-tensor static activation quantization scheme, but FlexRound incurs considerable
performance degradation on the massive multitask language understanding (MMLU) benchmark as
described in Figure 1(b).

13



Under review as a conference paper at ICLR 2024

B COMPARISON OF EXPERIMENTAL RESULTS BEFORE AND AFTER
PER-TOKEN ASYMMETRIC KV CACHE QUANTIZATION

Table 5, 6, 7, 8, 9, and 10 show the comparison of experimental results before and after per-token
asymmetric KV cache quantization. It can be easily seen that the performance difference before
and after per-token asymmetric KV cache quantization is nearly inconsiderable no matter which
quantization technique is chosen, as mentioned in Section 3.2. Furthermore, even without per-token
asymmetric KV cache quantization, LRQ still outperforms prior state-of-the-art LLM post-training
weight-activation quantization methods in most cases.

Table 5: Zero-shot performance of Llama on common sense reasoning tasks (BoolQ, PIQA, Hel-
laSwag, WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric
weight quantization, per-tensor asymmetric static activation quantization, and per-token asymmetric
KV cache quantization (if applied). Please refer to Figure 4. The accuracy (%) is reported for
common sense reasoning tasks. The number of bits used for weights, activations, and KV cache is
expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 7B 16/16/16 73.15 77.31 72.96 67.09 52.48 41.38 42.40 60.97

RTN 8/8/16 71.56 73.72 65.86 63.93 49.49 36.43 38.80 57.11
SmoothQuant 8/8/16 69.63 73.12 68.88 65.43 48.70 38.57 38.00 57.48
FlexRound 8/8/16 73.76 76.66 71.75 67.01 52.31 40.02 42.20 60.53
LRQ (Ours) 8/8/16 73.03 77.64 72.10 66.77 52.95 40.87 41.60 60.71
RTN 8/8/8 69.76 73.72 65.95 62.75 48.91 37.12 37.60 56.54
SmoothQuant 8/8/8 69.42 72.63 69.07 64.72 48.61 37.12 39.20 57.25
FlexRound 8/8/8 72.54 76.50 71.88 66.77 53.03 39.76 42.00 60.35
LRQ (Ours) 8/8/8 72.84 77.37 72.04 67.01 53.03 40.53 41.60 60.63

Llama 13B 16/16/16 68.53 79.11 76.23 70.01 59.89 44.54 42.20 62.93

RTN 8/8/16 66.06 71.82 65.70 62.98 50.97 35.58 36.60 55.67
SmoothQuant 8/8/16 68.29 75.30 71.82 68.03 55.18 40.19 41.20 60.00
FlexRound 8/8/16 68.59 78.67 75.21 70.64 58.88 43.60 41.20 62.40
LRQ (Ours) 8/8/16 68.99 79.22 75.61 71.19 58.92 43.52 43.00 62.92
RTN 8/8/8 65.87 72.25 62.52 62.19 51.81 35.41 38.40 55.49
SmoothQuant 8/8/8 67.34 75.19 71.78 69.06 54.92 40.44 38.80 59.65
FlexRound 8/8/8 68.78 78.51 75.23 70.56 58.46 44.03 41.00 62.37
LRQ (Ours) 8/8/8 68.84 78.78 75.56 70.80 59.13 44.62 41.60 62.76

Llama 33B 16/16/16 68.38 80.09 79.21 72.93 58.92 45.48 42.00 63.86

RTN 8/8/16 69.02 76.01 69.11 66.54 57.07 41.64 41.40 60.11
SmoothQuant 8/8/16 71.04 75.24 71.01 69.38 54.38 43.34 40.60 60.71
FlexRound 8/8/16 69.08 79.16 77.43 72.53 56.61 44.97 44.00 63.40
LRQ (Ours) 8/8/16 68.44 80.03 78.37 74.19 58.16 46.33 42.20 63.96
RTN 8/8/8 68.81 76.55 68.76 66.06 56.48 42.49 42.40 60.22
SmoothQuant 8/8/8 71.31 75.30 71.29 68.98 53.66 43.26 41.00 60.69
FlexRound 8/8/8 69.05 79.49 77.49 70.88 56.86 43.60 42.00 62.77
LRQ (Ours) 8/8/8 68.84 79.98 78.52 73.72 58.21 45.73 43.00 64.00

Llama 65B 16/16/16 82.32 80.85 80.71 77.19 58.71 46.33 44.60 67.24

RTN 8/8/16 79.48 77.04 74.15 71.19 52.48 43.52 43.80 63.09
SmoothQuant 8/8/16 78.72 78.84 79.12 74.03 56.23 45.22 43.20 65.05
FlexRound 8/8/16 81.31 79.33 79.16 73.56 57.83 46.08 44.60 65.98
LRQ (Ours) 8/8/16 82.45 80.69 79.92 76.64 58.92 46.67 45.60 67.27
RTN 8/8/8 79.51 75.79 74.13 71.35 51.85 44.03 43.60 62.89
SmoothQuant 8/8/8 78.78 79.54 79.11 73.32 56.23 45.90 43.80 65.24
FlexRound 8/8/8 80.46 79.38 79.23 74.98 57.20 46.42 45.00 66.10
LRQ (Ours) 8/8/8 82.35 81.12 79.96 75.61 58.96 46.59 45.40 67.14
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Table 6: Five-shot performance of Llama on Massive Multitask Language Understanding with per-
channel asymmetric weight quantization, per-tensor asymmetric static activation quantization, and
per-token asymmetric KV cache quantization (if applied). Please refer to Figure 4. The accuracy
(%) is reported for four groups of disciplines (STEM, Humanities, Social Science, and Other). The
number of bits used for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 7B 16/16/16 30.58 33.88 38.19 38.25 35.12

RTN 8/8/16 27.40 27.16 29.18 30.38 28.40
SmoothQuant 8/8/16 28.36 27.89 32.63 30.41 29.61
FlexRound 8/8/16 28.30 29.20 30.13 33.47 30.20
LRQ (Ours) 8/8/16 29.69 32.48 37.63 38.80 34.47
RTN 8/8/8 27.04 27.23 29.28 30.38 28.36
SmoothQuant 8/8/8 28.40 28.69 32.79 30.48 29.94
FlexRound 8/8/8 27.60 28.71 29.61 31.99 29.43
LRQ (Ours) 8/8/8 29.72 32.79 37.44 38.16 34.39

Llama 13B 16/16/16 36.35 44.97 54.14 53.15 47.02

RTN 8/8/16 26.61 25.53 27.40 24.52 25.94
SmoothQuant 8/8/16 27.80 29.31 31.04 30.88 29.73
FlexRound 8/8/16 35.06 41.68 49.37 49.81 43.82
LRQ (Ours) 8/8/16 34.72 44.65 51.71 52.28 45.83
RTN 8/8/8 26.38 25.33 27.95 24.83 26.01
SmoothQuant 8/8/8 27.24 30.12 30.58 31.31 29.87
FlexRound 8/8/8 33.63 42.81 48.65 49.26 43.60
LRQ (Ours) 8/8/8 35.16 44.55 51.74 52.04 45.83

Llama 33B 16/16/16 46.69 56.39 67.40 63.60 58.38

RTN 8/8/16 32.14 32.22 37.11 38.25 34.67
SmoothQuant 8/8/16 38.17 41.45 50.37 51.08 44.92
FlexRound 8/8/16 43.94 52.31 62.14 60.21 54.49
LRQ (Ours) 8/8/16 45.13 52.99 64.12 61.88 55.79
RTN 8/8/8 32.47 32.37 38.35 40.59 35.60
SmoothQuant 8/8/8 37.94 41.64 50.57 51.48 45.07
FlexRound 8/8/8 43.47 52.20 61.94 59.90 54.24
LRQ (Ours) 8/8/8 45.26 52.58 63.99 61.26 55.51

Llama 65B 16/16/16 51.95 61.87 73.32 67.58 63.57

RTN 8/8/16 42.25 46.74 61.13 54.57 50.73
SmoothQuant 8/8/16 44.70 50.54 63.99 57.28 53.79
FlexRound 8/8/16 46.52 54.30 66.36 60.83 56.78
LRQ (Ours) 8/8/16 50.89 61.15 72.64 66.04 62.59
RTN 8/8/8 41.22 47.23 61.39 54.69 50.76
SmoothQuant 8/8/8 44.83 50.82 63.34 57.09 53.72
FlexRound 8/8/8 46.32 54.60 65.06 62.49 56.94
LRQ (Ours) 8/8/8 50.96 61.28 71.99 66.66 62.65
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Table 7: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA,
HellaSwag, WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric
weight quantization, per-tensor asymmetric static activation quantization, and per-token asymmetric
KV cache quantization (if applied). Please refer to Figure 4. The accuracy (%) is reported for
common sense reasoning tasks. The number of bits used for weights, activations, and KV cache is
expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

RTN 8/8/16 60.86 67.19 57.53 59.43 45.50 32.00 34.20 50.96
SmoothQuant 8/8/16 67.06 72.91 67.24 64.72 50.72 35.84 38.20 56.67
FlexRound 8/8/16 71.99 77.04 71.23 65.11 54.42 40.44 38.80 59.86
LRQ (Ours) 8/8/16 67.49 77.58 72.19 67.96 54.76 39.59 40.40 60.00
RTN 8/8/8 60.58 67.08 57.66 60.54 45.83 31.57 34.40 51.09
SmoothQuant 8/8/8 67.09 73.29 67.26 64.25 51.18 36.26 38.40 56.82
FlexRound 8/8/8 72.05 77.26 71.30 65.98 54.88 39.16 39.20 59.98
LRQ (Ours) 8/8/8 67.86 76.99 71.97 67.01 54.71 40.19 40.00 59.82

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

RTN 8/8/16 63.12 73.99 62.60 58.80 52.15 36.26 36.40 54.76
SmoothQuant 8/8/16 63.61 75.35 70.67 63.54 54.42 40.53 39.20 58.19
FlexRound 8/8/16 66.70 78.56 75.63 69.06 58.33 43.26 40.00 61.65
LRQ (Ours) 8/8/16 68.65 78.45 75.79 71.74 59.34 43.94 41.40 62.76
RTN 8/8/8 62.97 73.72 62.60 57.77 52.86 36.77 37.00 54.81
SmoothQuant 8/8/8 63.94 74.97 70.50 65.43 54.88 40.78 38.60 58.44
FlexRound 8/8/8 66.94 79.00 75.32 69.38 58.54 42.92 40.40 61.79
LRQ (Ours) 8/8/8 68.59 78.67 75.83 70.64 58.16 43.34 39.80 62.15

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

RTN 8/8/16 73.27 78.18 76.89 69.69 57.91 45.90 41.60 63.35
SmoothQuant 8/8/16 77.13 76.99 79.46 71.90 55.39 45.14 43.60 64.23
FlexRound 8/8/16 75.81 80.25 79.03 74.59 59.43 46.42 43.40 65.56
LRQ (Ours) 8/8/16 77.71 80.69 79.83 74.11 57.91 45.99 43.60 65.69
RTN 8/8/8 72.39 78.51 76.49 69.61 57.74 44.62 40.40 62.82
SmoothQuant 8/8/8 76.73 77.15 79.37 73.01 55.56 46.59 43.20 64.52
FlexRound 8/8/8 76.18 80.36 79.09 75.06 60.10 46.42 43.80 65.86
LRQ (Ours) 8/8/8 77.95 81.23 79.78 74.82 57.83 46.33 43.60 65.93
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Table 8: Five-shot performance of Llama 2 on Massive Multitask Language Understanding with
per-channel asymmetric weight quantization, per-tensor asymmetric static activation quantization,
and per-token asymmetric KV cache quantization (if applied). Please refer to Figure 4. The accuracy
(%) is reported for four groups of disciplines (STEM, Humanities, Social Science, and Other). The
number of bits used for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 2 7B 16/16/16 37.04 43.38 51.84 52.44 45.96

RTN 8/8/16 28.26 24.65 31.39 24.68 26.91
SmoothQuant 8/8/16 21.97 24.51 22.00 24.28 23.36
FlexRound 8/8/16 32.70 38.38 43.58 45.77 40.01
LRQ (Ours) 8/8/16 34.36 40.02 46.64 47.32 41.94
RTN 8/8/8 29.66 24.06 30.45 24.49 26.76
SmoothQuant 8/8/8 21.67 25.06 22.26 24.03 23.48
FlexRound 8/8/8 33.40 36.96 43.13 46.30 39.70
LRQ (Ours) 8/8/8 34.82 39.91 46.47 47.62 42.04

Llama 2 13B 16/16/16 44.27 54.43 63.41 60.76 55.68

RTN 8/8/16 29.16 24.38 30.52 29.49 27.93
SmoothQuant 8/8/16 21.24 24.29 21.71 23.84 22.97
FlexRound 8/8/16 41.95 51.20 60.90 59.65 53.29
LRQ (Ours) 8/8/16 41.09 51.58 61.39 59.41 53.28
RTN 8/8/8 29.06 24.23 29.93 29.03 27.62
SmoothQuant 8/8/8 21.31 24.08 21.71 23.72 22.88
FlexRound 8/8/8 41.09 51.58 61.39 59.41 53.28
LRQ (Ours) 8/8/8 42.88 51.97 62.14 59.93 54.08

Llama 2 70B 16/16/16 57.79 65.16 80.44 74.61 69.11

RTN 8/8/16 45.99 52.69 65.52 59.16 55.58
SmoothQuant 8/8/16 48.31 54.35 69.94 63.05 58.47
FlexRound 8/8/16 53.64 61.36 77.35 71.90 65.64
LRQ (Ours) 8/8/16 54.41 62.78 77.48 71.56 66.23
RTN 8/8/8 46.82 53.37 66.23 58.51 55.97
SmoothQuant 8/8/8 47.28 54.60 69.32 63.33 58.27
FlexRound 8/8/8 54.27 61.11 77.45 71.31 65.57
LRQ (Ours) 8/8/8 54.44 62.61 76.99 71.78 66.12
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Table 9: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA,
HellaSwag, WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric
weight quantization, per-token asymmetric activation quantization, and per-token asymmetric KV
cache quantization (if applied). Please refer to Figure 6. The accuracy (%) is reported for common
sense reasoning tasks. The number of bits used for weights, activations, and KV cache is expressed
as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

RTN 8/8/16 69.54 76.93 72.21 67.17 53.24 41.04 40.60 60.10
SmoothQuant 8/8/16 70.15 77.04 72.91 67.01 53.62 40.70 41.00 60.35
FlexRound 8/8/16 72.26 76.88 72.57 66.93 53.70 40.36 40.40 60.44
LRQ (Ours) 8/8/16 72.54 77.15 72.58 67.09 53.70 41.04 40.40 60.64
RTN 8/8/8 69.60 77.20 72.26 67.09 53.62 39.85 41.00 60.09
SmoothQuant 8/8/8 70.73 76.77 72.80 67.25 53.70 41.04 40.60 60.41
FlexRound 8/8/8 72.02 77.09 72.50 67.40 54.17 40.19 40.80 60.60
LRQ (Ours) 8/8/8 72.45 77.04 72.70 67.09 53.66 40.61 41.60 60.74
RTN 4/8/16 67.95 74.32 65.84 62.12 46.68 37.20 35.80 55.70
SmoothQuant 4/8/16 53.85 69.26 51.34 55.96 40.70 31.66 35.20 48.28
FlexRound 4/8/16 71.96 77.04 72.17 65.59 53.58 39.85 40.20 60.06
LRQ (Ours) 4/8/16 72.94 76.88 71.85 65.27 53.96 39.85 40.80 60.22
RTN 4/8/8 68.13 75.14 65.89 62.67 46.42 36.52 36.20 55.85
SmoothQuant 4/8/8 53.27 69.64 51.28 56.35 40.95 31.83 35.00 48.33
FlexRound 4/8/8 71.71 76.77 72.24 66.14 53.49 40.02 40.40 60.11
LRQ (Ours) 4/8/8 73.00 76.99 71.90 65.98 54.38 39.68 41.20 60.45

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

RTN 8/8/16 67.80 78.89 75.61 68.90 58.08 43.69 41.60 62.08
SmoothQuant 8/8/16 69.36 79.33 76.47 69.69 58.04 44.54 42.40 62.83
FlexRound 8/8/16 69.27 78.73 76.62 69.69 57.62 44.71 42.20 62.69
LRQ (Ours) 8/8/16 69.24 78.67 76.48 69.30 57.79 44.03 42.40 62.56
RTN 8/8/8 67.46 78.73 75.57 68.51 58.12 44.28 41.40 62.01
SmoothQuant 8/8/8 69.33 79.05 76.52 69.38 58.04 44.37 42.00 62.67
FlexRound 8/8/8 69.36 79.16 76.67 69.53 57.83 44.37 42.80 62.82
LRQ (Ours) 8/8/8 69.02 78.78 76.48 69.93 57.83 43.86 42.00 62.56
RTN 4/8/16 65.20 73.61 60.00 58.80 49.12 36.18 34.80 53.96
SmoothQuant 4/8/16 62.26 61.21 44.59 53.67 36.95 27.99 32.80 45.64
FlexRound 4/8/16 69.14 78.67 75.67 68.98 58.92 44.20 41.00 62.37
LRQ (Ours) 4/8/16 71.10 78.29 75.75 69.30 57.74 43.69 41.00 62.41
RTN 4/8/8 65.23 74.05 60.04 58.64 49.07 35.92 35.20 54.02
SmoothQuant 4/8/8 62.17 61.37 44.59 53.67 36.99 28.24 32.40 45.63
FlexRound 4/8/8 69.05 78.51 75.51 69.53 58.75 43.60 41.20 62.31
LRQ (Ours) 4/8/8 71.13 78.29 75.79 68.90 57.83 43.34 41.20 62.35

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

RTN 8/8/16 76.02 81.07 80.37 76.01 60.14 48.04 44.40 66.58
SmoothQuant 8/8/16 76.21 81.12 80.72 76.40 59.39 47.53 44.80 66.60
FlexRound 8/8/16 75.72 81.56 80.60 75.77 60.19 48.89 44.80 66.79
LRQ (Ours) 8/8/16 75.84 81.66 80.64 75.93 60.40 48.38 44.00 66.69
RTN 8/8/8 76.02 81.07 80.45 75.61 60.31 47.87 43.80 66.45
SmoothQuant 8/8/8 76.15 80.96 80.63 77.11 59.09 47.87 44.60 66.63
FlexRound 8/8/8 75.93 81.45 80.48 75.85 60.06 48.55 44.80 66.73
LRQ (Ours) 8/8/8 75.99 81.50 80.61 75.77 59.97 49.49 45.20 66.93
RTN 4/8/16 75.63 78.73 71.28 69.61 53.24 43.34 40.20 61.72
SmoothQuant 4/8/16 66.12 75.79 56.06 60.54 50.38 35.67 39.60 54.88
FlexRound 4/8/16 77.80 80.90 80.06 74.66 60.31 47.61 43.60 66.42
LRQ (Ours) 4/8/16 77.92 80.74 80.38 75.14 60.35 47.95 42.80 66.47
RTN 4/8/8 75.90 79.22 71.39 70.56 53.11 43.60 40.40 62.03
SmoothQuant 4/8/8 66.24 75.84 56.19 60.46 50.25 36.01 40.40 55.06
FlexRound 4/8/8 77.31 80.96 79.89 75.30 60.19 48.21 43.40 66.47
LRQ (Ours) 4/8/8 77.92 81.28 80.42 75.06 60.94 48.04 42.60 66.61
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Table 10: Five-shot performance of Llama 2 on Massive Multitask Language Understanding with
per-channel asymmetric weight quantization, per-token asymmetric activation quantization, and
per-token asymmetric KV cache quantization (if applied). Please refer to Figure 6. The accuracy
(%) is reported for four groups of disciplines (STEM, Humanities, Social Science, and Other). The
number of bits used for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 2 7B 16/16/16 37.04 43.38 51.84 52.44 45.96

RTN 8/8/16 36.41 42.49 50.31 52.47 45.20
SmoothQuant 8/8/16 37.28 43.00 52.13 52.65 46.00
FlexRound 8/8/16 36.38 42.91 51.80 52.87 45.76
LRQ (Ours) 8/8/16 36.91 43.27 52.19 52.78 46.05
RTN 8/8/8 36.15 42.85 50.34 52.31 45.24
SmoothQuant 8/8/8 36.98 42.93 51.87 52.56 45.83
FlexRound 8/8/8 36.98 42.91 51.87 52.28 45.76
LRQ (Ours) 8/8/8 36.88 43.12 51.67 52.53 45.83
RTN 4/8/16 27.63 25.87 27.82 28.32 27.24
SmoothQuant 4/8/16 26.01 24.80 22.16 26.71 24.93
FlexRound 4/8/16 37.01 42.40 50.80 50.34 44.92
LRQ (Ours) 4/8/16 36.78 42.66 51.19 51.73 45.36
RTN 4/8/8 28.00 25.80 27.53 28.01 27.16
SmoothQuant 4/8/8 25.75 24.91 22.49 26.59 24.95
FlexRound 4/8/8 37.81 42.55 50.47 50.65 45.14
LRQ (Ours) 4/8/8 36.88 42.53 50.80 52.22 45.36

Llama 2 13B 16/16/16 44.27 54.43 63.41 60.76 55.68

RTN 8/8/16 43.57 52.88 61.88 61.17 54.76
SmoothQuant 8/8/16 43.67 53.39 63.60 60.76 55.24
FlexRound 8/8/16 43.84 53.65 63.37 61.10 55.39
LRQ (Ours) 8/8/16 44.80 53.75 63.47 60.73 55.57
RTN 8/8/8 43.87 52.88 62.33 60.67 54.81
SmoothQuant 8/8/8 43.74 53.20 63.18 60.83 55.11
FlexRound 8/8/8 44.17 52.88 63.76 61.29 55.33
LRQ (Ours) 8/8/8 44.50 53.07 63.24 61.26 55.35
RTN 4/8/16 30.55 26.08 33.51 35.07 30.74
SmoothQuant 4/8/16 28.20 25.08 27.07 27.64 26.78
FlexRound 4/8/16 42.91 50.80 62.11 60.27 53.77
LRQ (Ours) 4/8/16 43.24 52.41 61.78 60.24 54.30
RTN 4/8/8 30.95 26.31 32.92 34.58 30.67
SmoothQuant 4/8/8 27.87 24.95 26.58 27.91 26.62
FlexRound 4/8/8 42.88 50.71 61.94 59.93 53.77
LRQ (Ours) 4/8/8 43.90 52.56 62.07 59.96 54.49

Llama 2 70B 16/16/16 57.79 65.16 80.44 74.61 69.11

RTN 8/8/16 56.06 63.00 78.32 73.10 67.20
SmoothQuant 8/8/16 57.59 64.40 80.40 74.15 68.69
FlexRound 8/8/16 57.69 63.80 79.98 73.63 68.30
LRQ (Ours) 8/8/16 57.95 64.48 80.21 73.90 68.70
RTN 8/8/8 56.23 63.55 78.39 73.01 67.41
SmoothQuant 8/8/8 57.59 64.21 80.70 74.58 68.79
FlexRound 8/8/8 57.22 63.97 79.62 73.81 68.22
LRQ (Ours) 8/8/8 57.95 63.85 80.34 73.94 68.52
RTN 4/8/16 41.12 45.72 56.78 53.49 48.95
SmoothQuant 4/8/16 29.69 30.61 36.50 37.60 33.31
FlexRound 4/8/16 59.96 62.98 79.04 73.23 67.56
LRQ (Ours) 4/8/16 56.46 64.59 79.07 72.83 67.92
RTN 4/8/8 41.19 45.74 57.52 53.61 49.16
SmoothQuant 4/8/8 29.69 31.31 36.89 37.42 33.59
FlexRound 4/8/8 56.26 62.89 78.78 72.92 67.26
LRQ (Ours) 4/8/8 55.57 64.65 78.97 72.52 67.65
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C IMPLEMENTATION DETAILS

Table 11: Learning rate and batch size for FlexRound and LRQ when employing a per-tensor
asymmetric static activation quantization scheme (see Figure 4) in Table 1, 2, 5, 6, 7, and 8.

Method Configuration Llama 7B Llama 13B Llama 33B Llama 65B Llama 2 7B Llama 2 13B Llama 2 70B

FlexRound Learning rate 3e-3 3e-3 1e-3 2e-3 3e-3 3e-3 1e-3
Batch size 4 4 2 2 2 2 2

LRQ Learning rate 3e-3 2e-3 1.5e-3 1e-3 1e-3 1.5e-3 1e-3
Batch size 2 2 2 2 2 2 2

Figure 6: Illustration of a quantized Transformer block with per-channel asymmetric weight quantiza-
tion, per-token asymmetric activation quantization, and per-token asymmetric KV cache quantization.
We remain the inputs of softmax and normalization layers in FP16.

Table 12: Learning rate for FlexRound and LRQ when adopting a per-token asymmetric activation
quantization scheme (see Figure 6) in Table 3, 4, 9, and 10.

Method Weight Llama 2 7B Llama 2 13B Llama 2 70B

FlexRound 8-bit 1e-4 4e-4 3e-4
4-bit 5e-4 4e-4 5e-4

LRQ 8-bit 1e-4 2e-4 4e-4
4-bit 5e-4 5e-4 4e-4

For the quantization scheme depicted in Figure 4, both FlexRound and LRQ are implemented in
the experimental setting of QDrop (Wei et al., 2022) with the exception of the number of iterations
for block-wise reconstruction, the batch size, and the learning rate. For all the Llama and Llama 2
models, the number of iterations for block-wise reconstruction is set to 5000 for both FlexRound
and LRQ. The learning rate and the batch size for FlexRound and LRQ are described in 11. Notice
that when applying LRQ to Llama 2 70B, the key and value projection weights are quantized via not
LRQ but FlexRound due to the presence of GQA (Ainslie et al., 2023) in Llama 2 70B. To obtain the
experimental results in Table 1 and 2, per-token asymmetric KV cache quantization is applied after
completing block-wise reconstruction for all the Transformer blocks.

In the case of quantization scheme indicated in Figure 6, both FlexRound and LRQ are first imple-
mented in the experimental setting of BRECQ (Li et al., 2021) with the exception of the number of
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iterations for block-wise reconstruction, the batch size, and the learning rate. The number of iterations
for block-wise reconstruction and the batch size are set to 5000 and 2 respectively, for every Llama
2 model regardless of the number of bits used for weights. Table 12 exhibits the learning rate for
FlexRound and LRQ in the case of 8-bit and 4-bit weight quantization, respectively. As explained in
the above paragraph, when LRQ is applied to Llama 2 70B, weights in key and value projections
are quantized via FlexRound. Here, when quantizing Llama 2 7B into 4-bit via LRQ, the attention
module is quantized via LRQ, but the feed-forward module is quantized via FlexRound. In addition,
when quantizing Llama 2 70B into 4-bit via LRQ, the feed-forward module is quantized via LRQ,
but the attention module is quantized via FlexRound. To gain the experimental results in Table 3 and
4, per-token asymmetric activation quantization and per-token asymmetric KV cache quantization are
sequentially applied after finishing block-wise reconstruction for all the Transformer blocks.

All experiments about SmoothQuant are conducted based on the code provided in the SmoothQuant
github repository1. Following Xiao et al. (2022), we select α, the hyperparameter to determine how
much difficulty of activation quantization to shift to weight quantization, to be 0.8 for both Llama
and Llama 2 models.

For evaluation code, we utilize Eleuther AI’s lm-evaluation-harness (Gao et al., 2021) for common
sense reasoning tasks and follow the evaluation method in the MMLU github repository2 for the
MMLU benchmark.

1https://github.com/mit-han-lab/smoothquant
2https://github.com/hendrycks/test
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D COMBINATION OF SMOOTHQUANT WITH FLEXROUND AND LRQ

Table 13: Zero-shot performance of Llama 7B on common sense reasoning tasks (BoolQ, PIQA,
HellaSwag, WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric
weight quantization and per-tensor asymmetric static activation quantization, while keeping the KV
cache in FP16. Here, ‘SQ + FlexRound’ and ‘SQ + LRQ’ denote FlexRound and LRQ that initially
begin their own learning process from the SmoothQuant baseline in lieu of the rounding-to-nearest
baseline, respectively. The accuracy (%) is reported for common sense reasoning tasks. The number
of bits used for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 7B 16/16/16 73.15 77.31 72.96 67.09 52.48 41.38 42.40 60.97

FlexRound 8/8/16 73.76 76.66 71.75 67.01 52.31 40.02 42.20 60.53
SQ+FlexRound 8/8/16 73.85 76.77 71.54 66.38 51.43 40.44 41.60 60.29
LRQ 8/8/16 73.03 77.64 72.10 66.77 52.95 40.87 41.60 60.71
SQ+LRQ 8/8/16 73.15 76.88 72.24 66.38 52.86 40.61 40.60 60.39

Table 14: Five-shot performance of Llama 7B on Massive Multitask Language Understanding with
per-channel asymmetric weight quantization and per-tensor asymmetric static activation quantization,
while keeping the KV cache in FP16. Here, ‘SQ + FlexRound’ and ‘SQ + LRQ’ denote FlexRound
and LRQ that initially begin their own learning process from the SmoothQuant baseline in lieu of the
rounding-to-nearest baseline, respectively. The accuracy (%) is reported for four groups of disciplines
(STEM, Humanities, Social Science, and Other). The number of bits used for weights, activations,
and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 7B 16/16/16 30.58 33.88 38.19 38.25 35.12

FlexRound 8/8/16 28.30 29.20 30.13 33.47 30.20
SQ+FlexRound 8/8/16 30.98 29.71 33.80 35.26 32.16
LRQ 8/8/16 29.69 32.48 37.63 38.80 34.47
SQ+LRQ 8/8/16 30.35 31.84 37.44 37.32 34.01

As SmoothQuant is orthogonal to block-wise reconstruction, one might wonder how the performance
of FlexRound and LRQ would change when FlexRound and LRQ start their own learning process
from the SmoothQuant baseline in place of the RTN baseline. Table 13 and 14 reveal the performance
of ‘SmoothQuant (SQ) + FlexRound’ and ‘SmoothQuant (SQ) + LRQ’ on common sense reasoning
benchmarks and the MMLU benchmark, respectively. Unfortunately, in most cases, SmoothQuant
does not display its efficacy when combined with FlexRound and LRQ. Although SmoothQuant
enhances five-shot performance of FlexRound on MMLU by almost two percent, ‘SQ + FlexRound’
still underperforms LRQ as well as ‘SQ + LRQ’ on MMLU, which implies that employing low-
rank weight-scaling matrices would be a better choice than using full weight-scaling matrices with
additional pre-processing like an uniform per-channel scaling transformation in SmoothQuant.
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E FIGURES OF ACCUMULATED RMSE ON ASSORTED SAMPLES

(a) Calibration sample (b) Unseen sample

(c) Calibration sample (d) Unseen sample

(e) Calibration sample (f) Unseen sample

Figure 7: Accumulated root mean square error (RMSE) between WX and Ŵ X̃ for RTN,
FlexRound, and LRQ on (a), (c), (e) three different calibration samples from the C4 dataset and
(b), (d), (f) three different unseen samples from common sense reasoning and MMLU benchmarks,
ranging from the first Transformer block to the last Transformer block of Llama 7B. Here, weights
and activations are quantized to 8-bit with per-channel asymmetric quantization and per-tensor
asymmetric static quantization, respectively. Note that RMSE tends to rise in line with the block
index due to the presence of X̃ that accumulates quantization error resulting from previous quantized
Transformer blocks.
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F SENSITIVITY OF ACCUMULATED RMSE TO THE NUMBER OF CALIBRATION
SAMPLES

(a) Calibration sample (b) Unseen sample

Figure 8: Accumulated root mean square error (RMSE) between WX and Ŵ X̃ for FlexRound
and LRQ on (a) a calibration sample from the C4 dataset and (b) an unseen sample from common
sense reasoning and MMLU benchmarks at the last Transformer block of Llama 7B. Here, weights
and activations are quantized to 8-bit with per-channel asymmetric quantization and per-tensor
asymmetric static quantization, respectively.

To figure out the sensitivity of accumulated root mean square error (RMSE) to the number of
calibration samples used for the block-wise reconstruction, we compare accumulated RMSE between
WX and Ŵ X̃ for FlexRound and LRQ at the last Transformer block of Llama 7B with the number
of calibration samples varying from 64 to 512. As depicted in Figure 8(a), the accumulated RMSE
of the last Transformer block on a calibration sample diminishes with a reduction in the number of
calibration samples. This phenomenon is because FlexRound and LRQ are more likely to be fitted
to calibration samples as the number of calibration samples becomes smaller. Conversely, Figure
8(b) reveals that the accumulated RMSE of the last Transformer block on each unseen sample from
common sense reasoning and MMLU decreases with a larger number of calibration samples.

Notably, the pattern elucidated in Section 2.4 persists consistently across varying calibration sample
sizes from 64 to 512. In other words, for every calibration sample size spanning from 64 to 512, LRQ
consistently attains nearly identical accumulated RMSE to FlexRound for a calibration sample from
the C4 dataset. Concurrently, the accumulated RMSE of LRQ remains markedly smaller than that
of FlexRound for an unseen sample from common sense reasoning and MMLU. This observation
provides additional support for the insight presented in Figure 3, as discussed in Section 2.4.
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G EFFECT OF THE RANK r ON THE ACCURACY OF LRQ

(a) Common Sense Reasoning tasks (b) Massive Multitask Language Understanding

Figure 9: (a) Zero-shot performance and (b) five-shot performance of Llama 7B according to the
rank r in Eq. 2, spanning from 64 to 8192, where weights and activations are quantized to 8-bit as
described in Figure 4 while the KV cache is kept in FP16.

As outlined in Figure 9, the accuracy of LRQ either remains relatively stable (Figure 9(a)) or increases
gradually (Figure 9(b)) with the rise in the rank r from 64 to 1024. However, as the rank r continuously
increases from 2048 to 8192, the accuracy of LRQ eventually declines to match that of FlexRound
on both common sense reasoning and MMLU. In light of these findings, it can be concluded that
the employment of lower rank contributes considerably to improving the accuracy/generalization of
quantized LLMs.
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