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Summary
Agent modeling is a critical component in developing effective policies within multi-agent

systems, as it enables agents to form beliefs about the behaviors, intentions, and competencies
of others. Many existing approaches assume access to other agents’ episodic trajectories, a
condition often unrealistic in real-world applications. Consequently, a practical agent modeling
approach must learn a robust representation of the policies of the other agents based only on
the local trajectory of the controlled agent. In this paper, we propose TransAM, a novel
transformer-based agent modeling approach to encode local trajectories into an embedding
space that effectively captures the policies of other agents. We evaluate the performance of the
proposed method in cooperative, competitive, and mixed multi-agent environments. Extensive
experimental results demonstrate that our approach generates strong policy representations,
improves agent modeling, and leads to higher episodic returns.

Contribution(s)
1. We eliminate the need for agent information at inference by learning a latent representation

that approximates the agent policy based only on local information.
Context: It is common for methods to assume access to other agent information at execu-
tion time (He & Boyd-Graber, 2016; Grover et al., 2018; Jing et al., 2024).

2. By representing the controlled agent’s local trajectory as a sequence, we extract more mean-
ingful features over a time horizon. The self-attention mechanism allows the model to pin-
point which parts of the local trajectory are most relevant to the agent’s policy.
Context: Other methods typically construct either an MLP-based agent model (He &
Boyd-Graber, 2016), or a recurrent agent model (Papoudakis et al., 2021) which do not take
into account the full context of the agent’s trajectory throughout the episode.

3. To address the data demands of transformers, we train the agent model and the controlled
agent’s policy jointly in an online setting, ensuring access to a diverse dataset for enhanced
performance.
Context: Other promising transformer-based agent modeling approaches such as Jing et al.
(2024) are based in an offline reinforcement learning setting wherin a pretraining phase is
used to learn an initial prior for the task. In contrast, we aim to train the agent model and
the policy jointly from scratch.
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Abstract
Agent modeling is a critical component in developing effective policies within multi-1
agent systems, as it enables agents to form beliefs about the behaviors, intentions, and2
competencies of others. Many existing approaches assume access to other agents’3
episodic trajectories, a condition often unrealistic in real-world applications. Conse-4
quently, a practical agent modeling approach must learn a robust representation of the5
policies of the other agents based only on the local trajectory of the controlled agent.6
In this paper, we propose TransAM, a novel transformer-based agent modeling ap-7
proach to encode local trajectories into an embedding space that effectively captures8
the policies of other agents. We evaluate the performance of the proposed method in9
cooperative, competitive, and mixed multi-agent environments. Extensive experimental10
results demonstrate that our approach generates strong policy representations, improves11
agent modeling, and leads to higher episodic returns.12

1 Introduction13

Recent advances in multi-agent systems have led to significant progress in applications such as14
games (Nowé et al., 2012), traffic control (Wiering et al., 2000), and autonomous driving (Cao15
et al., 2012). A key challenge in these systems is that the collective actions of all agents influence16
the overall system’s transitions. Therefore, effectively reasoning about the optimal actions requires17
modeling the behavior of other agents. This process, known as agent modeling, focuses on inferring18
concealed information about other agents to inform the policy of a controlled agent. In this work, we19
explore the importance of agent modeling in multi-agent systems and its impact on decision-making20
strategies.21

A primary challenge in agent modeling arises from the need to design agents that can adapt to var-22
ious agent policies using only the information available during execution. This challenge becomes23
particularly difficult in scenarios where no direct information about the other agents is accessible,24
requiring the agent to infer others’ behaviors based solely on its own local information. Moreover,25
since agent policies may appear indistinguishable on the basis of a single transition, it is essential to26
consider the temporal context for disambiguation. Therefore, an effective agent modeling approach27
must learn robust representations of agent policies while accounting for their temporal dynamics28
and long-term effects.29

Although recent advances in deep learning have led to various approaches for agent modeling (He &30
Boyd-Graber, 2016; Grover et al., 2018; Papoudakis et al., 2021; Jing et al., 2024), existing methods31
often face two key limitations: (1) reliance on access to agent trajectories and (2) inadequate use of32
the sequence of actions of the controlled agent as a valuable source of information. Inspired by the33
success of decision transformers (Chen et al., 2021) and their multi-agent variants (Wen et al., 2022),34
we propose reframing agent modeling as a sequence modeling task using a transformer architecture.35

Transformers have recently been applied in reinforcement learning (RL) and demonstrated remark-36
able success, from feature extraction to end-to-end policy learning (Agarwal et al., 2023). Building37
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on this progress, we propose a transformer-based agent modeling approach that encodes the con-38
trolled agent’s local trajectory into an embedding space that captures the influence of other agent39
policies. The model is trained to reconstruct the other agents’ trajectories using only the local tra-40
jectory embedding, enabling the controlled agent to model others without requiring access to their41
trajectories at execution. This allows the RL policy to condition its decisions solely on the local42
trajectory embeddings.43

Our contributions are as follows.44

1. Agent Modeling from Local Information: We eliminate the need for agent information at45
inference by learning a latent representation that approximates the agent policy based only on46
local information.47

2. Local Trajectory as a Sequence Modeling Task: By representing the local trajectory of the48
controlled agent as a sequence, we extract more meaningful features over a time horizon. The49
self-attention mechanism allows the model to pinpoint which parts of the local trajectory are most50
relevant to the agent’s policy.51

3. Online Joint Training of Agent Model and Policy: To address the data demands of trans-52
formers, we train the agent model and the controlled agent’s policy jointly in an online setting,53
ensuring access to a diverse dataset for enhanced performance.54

We evaluate the proposed approach on cooperative, competitive, and mixed cooperative-competitive55
multi-agent RL tasks. Our results demonstrate that the proposed method outperforms baseline ap-56
proaches in agent modeling accuracy, provides robust agent policy representation, and achieves57
superior episodic returns.58

2 Related Work59

2.1 Agent Modeling60

When operating in a decentralized multi-agent system, it is important to incorporate information61
about other agents to determine the best response to a given state. In conventional centralized train-62
ing with decentralized execution (CTDE) approaches, such as MADDPG (Lowe et al., 2017) and63
MAPPO (Yu et al., 2022), a centralized critic is trained using the joint observations of all agents,64
and this information is implicitly distilled into the actor policy. Agent modeling is an alternative65
approach that explicitly learns to model concealed agent information. There is a large body of work66
on agent modeling in multi-agent settings (Albrecht & Stone, 2018). He & Boyd-Graber (2016) fo-67
cused on competitive settings and learned to predict opponent Q values and opponent actions given68
opponent observations. Raileanu et al. (2018) introduced a model that learns to infer the opponent’s69
goal using itself. Grover et al. (2018) implemented a general purpose encoder-decoder architecture70
using imitation learning and a contrastive triplet loss to both learn to accurately reconstruct agent71
policies and correctly identify the agent policy within the embedding space. Building on the work72
of Grover et al. (2018), Papoudakis et al. (2021) also used an encoder-decoder architecture to re-73
construct agent policies. However, they model this reconstruction using the controlled agent’s local74
trajectory only. Zhang et al. (2023) introduced an approach that adapts to changing policies, similar75
to our problem setting. However, agents in this work can change policies within an episode, so the76
model must learn to quickly adapt. Xing et al. (2023) studied ad hoc teamwork in which an agent77
must learn to cooperate with other agents who may switch to different goal-oriented policies. In78
this work, the agent learns both to identify the type of policy of its teammates and to generalize79
the types of policies to unseen sets of teammates. Finally, Ma et al. (2024) learned an agent policy80
representation directly from the controlled agent’s local observations using contrastive learning.81

2.2 Transformers in RL82

Transformers were originally intended as replacements for RNNs in machine translation language83
modeling tasks (Vaswani et al., 2017). However, they have been applied to seemingly every sub-84
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field of machine learning, including computer vision Dosovitskiy et al. (2021) and more recently85
for reinforcement learning (Agarwal et al., 2023). The original transformer model consists of an en-86
coder that maps an input sequence to a latent space and a decoder that generates an output sequence87
conditioned on the input sequence and the latent embeddings of the input sequence. Reinforce-88
ment learning problems have incorporated both parts of the transformer model to pose the problem89
in different terms. Parisotto et al. (2020) used a modified encoder architecture as a replacement for90
RNNs in RL policies. Alternatively, Chen et al. (2021) proposed offline RL as a generative sequence91
modeling task using a GPT-style decoder architecture (Radford et al., 2018). More recently, multi-92
agent reinforcement learning has been reimagined as a sequence-to-sequence task (Wen et al., 2022)93
where the model maps input sequences of observations to output sequences of actions. Similarly to94
our problem setting, Jing et al. (2024) introduced a transformer architecture to learn opponent policy95
representations from offline datasets. In this paper, we are interested in learning latent representa-96
tions of the other agents’ policies as a function of the controlled agent’s local trajectory.97

3 Background98

3.1 Partially Observable Stochastic Games99

Partially observable stochastic games (POSGs) (Hansen et al., 2004) are a common formulation for100
multi-agent settings. They are described by a set of agents i ∈ {0, . . . , N} and a finite set of states101
s ∈ S. For each agent i, there is a finite action space Ai where A = A0 × . . .×AN represents the102
joint action space of all agents. Similarly, for each agent i, there is a finite observation space Oi,103
where O = O0× . . .×ON is the joint observation space of all agents. In addition to the observation104
space, an agent has an observation function Oi: A× S ×Oi → [0, 1] given by 1105

∀a ∈ A,∀s ∈ S :
∑

oi∈Oi

O(a, s, oi) = 1. (1)

In addition to the action and observation spaces, each agent has a reward function Ri : S×A×S →106
R. Finally, similar to the observation function, the game has a state transition probability function107
P : S ×A× S → [0, 1] given by 2108

∀a ∈ A,∀s ∈ S :
∑
s′∈S

P (s, a, s′) = 1, (2)

where s′ is the next state as a result of taking the joint action a in the previous state s.109

Agent i selects an action ai ∈ Ai given an observation oi ∈ Oi according to a policy πi(ai|oi),110
which is a probability distribution over the set of actions Ai. The goal of an agent is to learn a policy111
π such that the expected cumulative reward, or the agent’s return, is maximized:112

max
π

E

[
L∑

t=1

γtrt+1 | π
]

(3)

where L is the length of the episode and γ ∈ [0, 1) is the discount factor. The action value function113
Qπi

(s, ai) for agent i defines the expectation of the return given the state s when taking action ai114
following policy πi. Similarly, the value function V πi

(s) describes the value of being in state s for115
agent i following policy πi. In actor-critic methods, such as A2C (Mnih et al., 2016), the actor πi116
and the critic V πi

(s) are used to calculate the advantage function Aπi

(s, ai) = Qπi

(s, ai)−V πi

(s).117

3.2 Transformers118

Transformers consist of an encoder and a decoder and can use either the encoder, the decoder, or119
both depending on the applications. Generalizing, encoder-decoder models are used for machine120
translation tasks (Raffel et al., 2020). Decoder-only models are useful for generative sequence tasks121
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Figure 1: TransAM architecture. We embed the controlled agent’s previous reward, previous
action, and current observation into embedding tokens, T (r,a,o)

t , and transform them into an output
sequence of embedding vectors, E(r,a,o)

t . The embedding vectors are used to both condition the
controlled agent’s policy and reconstruct the other agents’ trajectories as a function of the local
trajectory only.

(Radford et al., 2018). Encoder-only models are good for sequence understanding tasks (Devlin122
et al., 2019). We make use of an encoder-only model for our problem, and hence will focus on this123
portion of the model. The encoder takes as input a sequence of embedding tokens {Tt, . . . , Tt+K}124
with context length K and transforms them into representation embedding vectors {Et, . . . , Et+K}.125
The model is composed of several layers of transformer blocks. Each block contains a multi-head126
self-attention layer and a feed-forward layer, connected by a residual connection with layer normal-127
ization at the output of the block. The self-attention function below uses three linear layers to map128
the input sequence of the ith block into query Qi, key Ki, and value Vi matrices which are used to129
create the output as follows130

Zi = softmax
(QiKT

i√
dk

)
Vi, (4)

where dk is the dimension of the input token vectors. By combining the input tokens into sequence131
matrices Q, K, and V the self-attention function attends to the whole sequence, allowing the model132
to extract relevant information throughout the sequence.133

3.3 Problem Formulation134

We consider a modified POSG with one learning agent under our control and a set of agents to135
interact with, which can utilize one of several fixed policies. To be specific, we assume that each136
individual agent i adopts a policy πi, whose collection forms the joint agent policy π−1. In this work,137
we consider the set of M joint policies Π = {π−1,m|m = 1, . . . ,M} that can be a combination138
of heuristic or pretrained RL policies. For simplicity, from now on we refer to the controlled agent139
without superscript and all other agents with superscript −1. Thus, the agent has an action space140
A and an observation space O. Similarly, the other agents have a joint action space A−1 and a141
joint observation space O−1. Our objective is to learn a policy πθ parameterized by θ such that the142
average return is maximized across the set of agent policies Π. The objective in Equation (3) is thus143
modified as144

argmax
θ

Eπθ,π−1,m∼U(Π)

[
L∑

t=1

γtrt+1

]
, (5)

where π−1,m is uniformly sampled from Π at the beginning of each episode. The agent policy type145
m is concealed from the controlled agent throughout the episode. This occluded information can146
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either be incorporated into the policy implicitly by simply attempting to maximize the average return147
for all agent policies, or it can be modeled explicitly and used to condition the policy on which policy148
m is currently being modeled. In this work, we focus on the latter and introduce a transformer-based149
approach to modeling such agent policies.150

4 Method151

4.1 TransAM152

We format agent modeling as a sequence modeling task through the lens of episodic trajecto-153
ries. Consider the tuple (rt−1, at−1, ot) where rt−1 ∼ R is the previous reward, at−1 ∼154
A is the previous action, and ot ∼ O is the current observation of the controlled agent.155
The local episodic trajectory of the agent can be viewed as a sequence of these tuples T =156
(r0, a0, o1, . . . , rL−1, aL−1, oL). Similarly, the other agent trajectories are represented as T i,m =157
(ri,m0 , ai,m0 , oi,m1 , . . . , ri,mL−1, a

i,m
L−1, o

i,m
L ). Our goal in agent modeling is to learn a representation of158

the joint agent policy π−1,m such that this representation can be used as an inductive bias for the159
controlled agent policy. Inspired by the recent success of transformers in such problems, we built a160
transformer encoder model, which we refer to as Transformer-based Agent Modeling (TransAM),161
to encode these sequences into a compact representation. Our proposed architecture can be seen in162
Figure 1.163

We learn a linear mapping from rt, at, ot+1 to token embeddings T r
t , T a

t , and T o
t+1, respec-164

tively. Considering the three modalities, we use a context window of 3K tokens as a subset165
of the agent’s local trajectory Tt+K = (T r

t−1, T
a
t−1, T

o
t , . . . , T

r
t+K−1, T

a
t+K−1, T

o
t+K). Using166

the encoder, we encode this token sequence into a representation embedding sequence Et+K =167
(Er

t−1, E
a
t−1, E

o
t , . . . , E

r
t+K−1, E

a
t+K−1,168

Eo
t+K). Empirically, we find that the reward and action output embeddings do not provide169

much benefit. Therefore, we only use observation embeddings Eo
t+K for downstream tasks.170

This embedding vector Eo
t+K , in addition to observation ot+K , is used to condition the policy171

πθ(at+K |ot+K , Eo
t+K). We posit that this incorporation of information is necessary for the agent172

policy to accurately determine the best response to the current joint agent policy.173

Generative Loss To learn an informative representation of the joint agent policy, we introduce an174
agent trajectory reconstruction head. It decodes the embedding vector Eo

t into the joint observations175
o−1,m
t = (o0,mt , . . . , oN−1,m

t ) and actions (a0,mt , . . . , aN−1,m
t ) of the other agents. We use the mean176

squared error loss, LMSE , to learn the observations of the agent and the mean cross-entropy loss177
LCE for all actions of the agents N − 1. In total, the agent modeling loss is given by 6178

LAM = LMSE(ô
−1,m
t , o−1,m

t ) +
1

N − 1

N−1∑
i=0

LCE(â
i,m
t , ai,mt ), (6)

where ô−1,m
t is the predicted joint agent observation and âi,mt is the predicted agent action for agent179

i. The reconstruction head is only used during training to learn the representation Eo
t . During180

execution, we only use the encoder, which does not need access to the occluded information of other181
agents.182

4.2 Policy Training183

The goal of the controlled agent is to learn a policy that adapts to different joint agent policies184
π−1,m. We train TransAM such that the embedding vector Eo

t is a good proxy for the true other185
agent information. By incorporating this vector into the controlled agent policy, it allows the policy186
to better adapt to varying joint agent policies. From here, any RL algorithm can be used to learn an187
optimal policy π conditioned on ot and Eo

t . In this paper, we use the advantage actor-critic (A2C)188
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Figure 2: Experimental environments. We use four environments (a) Predator-Prey, a competitive
pursuit environment (b) Cooperative Navigation, a cooperative navigation environment (c) Over-
cooked, a cooperative cooking environment (d) Level-Based Foraging a mixed resource allocation
environment.

algorithm (Mnih et al., 2016). Thus, the RL objective is given by 7189

LA2C =E(ot,at,ot+1,rt+1)∼B [
1

2

(
rt+1 + Vϕ(ot+1, E

o
t+1)− Vϕ(ot, E

o
t )
)2

−Aπ(ot, at) log πθ(at|ot, Eo
t )− βH(πθ(at|ot, Eo

t ))],
(7)

where B is a batch of transitions, πθ is the policy parameterized by θ, Vϕ is the value function190
parameterized by ϕ, Aπ is the advantage function under policy π, and H is the entropy function191
weighted by the entropy coefficient β. We optimize (6) and (7) jointly, sampling the set of other192
agent policies per episode.193

5 Experiments194

5.1 Experimental Setup195

To validate the effectiveness of our proposed approach, we performed experiments in a variety of196
settings, including competitive, cooperative, and mixed environments. Specifically, we used Multi-197
Agent Particle Environments (MPEs) from (Mordatch & Abbeel, 2017) that contain competitive198
and cooperative scenarios, the cooperative Overcooked environment (Carroll et al., 2019), and the199
mixed level-based foraging environment (Christianos et al., 2020). Each experiment presents a200
unique scenario where cooperativeness, competitiveness, or a mixture of both plays a vital role and201
must be modeled appropriately. Through rigorous analysis, we assessed the performance of our202
approach in terms of modeling agent behavior and solving the final task. In all of our experiments,203
we relied on the Advantage Actor-Critic (A2C) algorithm (Mnih et al., 2016) and used one LSTM204
layer (Hochreiter & Schmidhuber, 1997) and one linear layer, both with a hidden dimension of205
128. Furthermore, we used a transformer encoder that is made up of four transformer blocks with206
four attention heads and a hidden dimension of 128. We trained the controlled agent policy for 10207
million time steps and performed evaluations every 100 episodes. To ensure the reproducibility of208
the results, we performed five different training runs with different random seeds and plotted the209
average of the results to provide reliable evidence of our approach’s performance.210

We compare our proposed method with several key baselines that represent a range of solutions211
in this space. Some baselines employ an explicit agent model, while others are implicit. These212
baselines can be categorized based on the amount of information available to the controlled agent213
about the other agents:214

• No Agent Modeling (NAM): This baseline only has access to the controlled agent’s current215
observation and last action.216

• Contrastive Agent Representation Learning (CARL): This baseline employs a recurrent en-217
coder to embed the local information of the controlled agent into a vector space representing the218
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Figure 3: Average task returns. (Top) Average episodic returns during training with 95% con-
fidence intervals across four experimental scenarios, evaluated over five random seeds. (Bottom)
Average episodic returns over 100 evaluation episodes, also averaged across five random seeds.

joint policy. The encoder is trained using contrastive loss, specifically InfoNCE (Chen et al.,219
2020).220

• Conditional Agent Imitation Learning (CAIL): This baseline uses a recurrent backbone to221
embed local information into a vector space, which is then used to condition a policy imitation222
decoder.223

• Local Information Agent Modeling (LIAM): This baseline from Papoudakis et al. (2021) em-224
ploys a recurrent encoder-decoder architecture to encode the controlled agent’s local information225
into an embedding space. The decoder reconstructs other agents’ observations and actions, but226
only the encoder is used during inference, restricting access to the controlled agent’s information.227

• Policy Embedding Learning (PEL): Originally proposed in Jing et al. (2024), this approach228
uses a transformer-based architecture to encode an opponent’s trajectory into a policy embedding229
space. It employs a generative loss for action reconstruction via conditional imitation learning and230
a contrastive InfoNCE loss to differentiate policies. We adapt this by encoding only the controlled231
agent’s trajectory.232

• Oracle: This baseline assumes full access to other agents’ trajectories, including observations233
and actions. The controlled agent conditions on a joint vector comprising its local observation,234
last action, and other agents’ observations and actions. With no ambiguity in the intentions or235
strategies of the agents, this represents an upper performance baseline.236

5.2 Experimental Environments237

5.2.1 Predator-Prey (Tag)238

We use a modified predator-prey environment from Boehmer et al. (2020), featuring two large land-239
marks, three adversarial predator agents, and one controlled prey agent. The prey is faster, providing240
a strategic advantage. In this setup, the prey receives a reward of +1 if caught by a single adversary,241
while all adversaries receive −1. If multiple adversaries capture the prey, the prey receives −1 and242
the adversaries receive +1. In addition, the agent incurs a penalty −10 for reaching the boundary of243
the environment.244
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Figure 4: Agent action reconstruction accuracy. We compute the agent action reconstruction
accuracy for the relevant methods for all four environments averaged across five random seeds.

5.2.2 Cooperative Navigation (Spread)245

We use the original cooperative navigation scenario from Mordatch & Abbeel (2017), where three246
agents and three landmarks start from random positions. Agents must coordinate to cover all land-247
marks while avoiding collisions. The team’s reward is based on the sum of the minimum distances248
between agents and landmarks, with penalties for collisions.249

5.2.3 Overcooked250

We utilize the cramped room layout from the simplified Overcooked environment (Carroll et al.,251
2019), where two chefs collaborate in a confined kitchen to prepare and serve onion soup. The task252
requires executing a sequence of high-level actions, including placing onions in a pot (cooking for253
20 timesteps), transferring soup to bowls, and serving. Each served soup grants both agents a reward254
of 20, with the objective of maximizing the number of soups served within 400 timesteps. Efficient255
coordination and multitasking are essential for optimal performance.256

5.2.4 Level-Based Foraging257

This scenario features a 20×20 gridworld with two agents and four food locations, each assigned258
a skill level. An agent can capture food if its skill level exceeds that of the food, and agents can259
also combine skill levels to capture higher-level food. This creates a mixed cooperative-competitive260
dynamic, where agents may collaborate for higher rewards or act independently for easier gains.261
Rewards are distributed based on each agent’s contribution to the total captured food. For instance,262
if one agent captures food of level 1 while the other captures levels 2, 3, and 4, their rewards are263
proportionally 1/(1 + 2 + 3 + 4) and (2 + 3 + 4)/(1 + 2 + 3 + 4), respectively.264

5.3 Analysis265

5.3.1 Task Returns266

The average evaluation returns are presented in 3. As expected, Oracle consistently establishes an267
upper performance baseline. Notably, TransAM matches or surpasses Oracle across all environ-268
ments, while LIAM performs comparably but slightly worse. Both TransAM and LIAM achieve269
higher returns than other baselines, likely due to their ability to encode agent actions and observa-270
tions, resulting in a more informative policy embedding space. NAM consistently achieves moderate271
to low returns as it lacks an auxiliary learning objective to enhance performance. CAIL struggles to272
outperform NAM in predator-prey and level-based foraging but performs well in cooperative nav-273
igation and Overcooked, suggesting that reconstructing agent policies is particularly beneficial in274
cooperative settings. CARL demonstrates moderate performance across all environments, excelling275
in those with competitive dynamics. PEL yields the lowest returns in three of four environments,276

8



Transformer-Based Agent Modeling for Multi-Agent Systems

0 20 40
0

20

R
ew

ar
d

0 20 40
0.25

0.50

0.75
A

ct
.

A
cc

.

0 20 40
Episode Timestep

0.1

0.2

0.3

O
b

s.
A

cc
.

(a) Tag returns.

0 20 40
−50

−25

0 20 40
0.25

0.50

0.75

0 20 40
Episode Timestep

0.1

0.2

(b) Spread returns.

0 200 400
0

250

0 200 400
0.25

0.50

0.75

0 200 400
Episode Timestep

0.00

0.25

(c) Overcooked returns.

0 20 40
0.0

0.5

0 20 40
0.25

0.50

0 20 40
Episode Timestep

1.5

1.6

1.7

(d) LBF returns.

Figure 5: Evolution of TransAM performance across an episode. We analyze the relationship
between cumulative reward (top), agent action reconstruction accuracy (middle), and agent obser-
vation reconstruction accuracy (bottom) throughout an episode, averaged over 100 episodes.

indicating that the combination of generative and contrastive losses negatively impacts the final task277
performance.278

5.3.2 Agent Modeling279

The agent modeling results for methods with action reconstruction capabilities are shown in 4.280
TransAM consistently excels in reconstructing agent actions, outperforming all baselines in the281
two cooperative tasks, achieving competitive accuracy in the competitive task, but underperform-282
ing in the mixed setting. PEL matches or surpasses TransAM in three of four tasks, while CAIL283
performs comparably but struggles in cooperative environments. Both PEL and CAIL incorporate284
an imitation learning objective, with PEL additionally using a contrastive loss to better distinguish285
agent policies. However, this improved agent modeling performance comes at the cost of final task286
returns, suggesting a trade-off between policy reconstruction and maximizing the controlled agent’s287
reward. This trade-off is evident in LIAM, which lags behind other baselines in agent modeling288
but achieves significantly higher returns than PEL and CAIL. TransAM effectively balances both289
objectives, demonstrating competitive agent modeling while achieving the highest returns. Notably,290
TransAM is particularly well suited for strictly cooperative settings, where superior agent modeling291
performance strongly correlates with high average returns, even surpassing the Oracle agent in some292
cases.293

5.3.3 Model Evaluation294

To understand the mechanisms behind the success of TransAM, we analyze its behavior throughout295
an episode in each test environment. Figure 5 illustrates the relationship between the accuracy of the296
agent modeling and the cumulative reward. At the beginning of an episode, the model lacks context297
about the joint policy with which it is interacting, resulting in a policy embedding Eo

t that provides298
little additional information on the observation of the agent. However, as the episode progresses, the299
embeddings become more informative, improving agent modeling accuracy and leading to higher300
cumulative rewards.301

This relationship is further evident when comparing how quickly the model converges on other302
agents’ trajectories to its performance relative to other baselines. For example, in the overcooked303
environment (Figure 5 (c)), TransAM converges the fastest, aligning with its highest reward margin304
over the baselines (Figure 3(c)). In contrast, in the level-based foraging environment (Figure 5(d)),305
TransAM struggles to model agent behavior, which is correlated with its difficulty in outperforming306
other baselines (Figure 3(d)). These findings highlight the importance of designing adaptive agents307
that effectively model policies in environments with complex reward structures.308
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Table 1: Model architecture ablation study results. We test three variations of the model archi-
tecture on the cooperative navigation task and report the cumulative episodic return and the agent
action reconstruction accuracy. The best results are shown in bold.

Method Return Action Accuracy
TransAM −48.76 85.72
TransAM-pool −49.37 61.67
TransAM-fuse −48.94 78.68
TransAM-im −49.93 72.08

5.4 Model Architecture Ablation Study309

We analyze three ablated variants of TransAM in the cooperative navigation environment to evalu-310
ate the impact of its key architectural components: multimodal embeddings, embedding aggregation,311
and auxiliary training task. We assess their effects on cumulative episodic reward and agent action312
reconstruction accuracy.313

• TransAM-fuse: Concatenates the rewards, actions, and observations of the controlled agent into314
a single fused token embedding, rather than embedding the tokens separately for each modality.315

• TransAM-pool: Uses average pooling to merge all trajectory embeddings instead of relying on316
the most recent embedding.317

• TransAM-im: Employs conditional imitation learning as the decoder, predicting only agent ac-318
tions rather than both observations and actions.319

The results of this analysis are presented in Table 1.320

First, we determine whether our local trajectory representation is beneficial by comparing it against321
TransAM-fuse. This design achieves comparable returns; however, it suffers in agent modeling322
tasks. This suggests that learning token mappings for each modality is beneficial for agent mod-323
eling. Next, we consider the approach of pooling trajectory embeddings using TransAM-pool as324
opposed to using the most recent embedding vectors to condition the controlled agent’s policy. We325
observe that while this method incorporates information from the entire trajectory, it leads to poor326
performance for both episodic returns and action reconstruction accuracy. This is because only re-327
cent transitions contribute to the identification of specific policies of the joint agent. Finally, we test328
whether the conditional imitation learning decoder in TransAM-im provides a benefit over decod-329
ing both the observations and actions of the agent. This results in the worst average returns and the330
second worst agent modeling accuracy. This implies that learning to reconstruct both the other agent331
observations and actions is beneficial to agent modeling and adapting to various joint agent policies.332
This is confirmed by the fact that LIAM and TransAM consistently achieve top-average episodic333
returns.334

6 Conclusion and Future Work335

In this paper, we introduced TransAM, a transformer-based agent modeling architecture that op-336
erates without access to other agents’ information at execution time, ensuring full decentralization337
of the controlled agent. Using a transformer, TransAM effectively extracts and utilizes features338
from the controlled agent’s episodic trajectory. We demonstrated its effectiveness across multiple339
environments, including Predator-Prey and Cooperative Navigation from the multi-agent particle340
environments, as well as Overcooked and Level-Based Foraging.341

For future work, we aim to investigate the scalability of agent modeling techniques in larger multi-342
agent systems. Additionally, we seek to explore recursive reasoning domains, where agents must343
model others while accounting for the fact that their opponents are also performing agent modeling.344
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