
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

M2M: LEARNING CONTROLLABLE MULTI OF EXPERTS
AND MULTI-SCALE OPERATORS ARE THE PARTIAL
DIFFERENTIAL EQUATIONS NEED

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning the evolutionary dynamics of Partial Differential Equations (PDEs) is
critical in understanding dynamic systems, yet current methods insufficiently learn
their representations. This is largely due to the multi-scale nature of the solution,
where certain regions exhibit rapid oscillations while others evolve more slowly.
This paper introduces a framework of multi-scale and multi-expert (M2M) neural
operators designed to simulate and learn PDEs efficiently. We employ a divide-
and-conquer strategy to train a multi-expert gated network for the dynamic router
policy. Our method incorporates a controllable prior gating mechanism that de-
termines the selection rights of experts, enhancing the model’s efficiency. To op-
timize the learning process, we have implemented a PI (Proportional, Integral)
control strategy to adjust the allocation rules precisely. This universal controllable
approach allows the model to achieve greater accuracy. We test our approach on
benchmark 2D Navier-Stokes equations and provide a custom multi-scale dataset.
M2M can achieve higher simulation accuracy and offer improved interpretability
compared to baseline methods.

1 INTRODUCTION

Many challenges require modeling the physical world, which operates under established physical
laws (Karniadakis et al., 2021; Brunton and Kutz, 2024). For example, the Navier-Stokes equations
form the theoretical foundation of fluid mechanics and have widespread applications in aviation,
shipbuilding, and oceanography (Vinuesa and Brunton, 2022). Various numerical approaches ex-
ist to tackle these equations. These include discretization methods such as finite difference (Go-
dunov and Bohachevsky, 1959), finite volume (Eymard et al., 2000), finite element (Rao, 2010),
and spectral methods (Shen et al., 2011). Although classical physical solvers based on first prin-
ciples can achieve high accuracy, they must recalculate when faced with new problems, failing to
generalize and resulting in inefficient solutions. Artificial intelligence-based surrogate models ef-
fectively address these issues by providing more adaptable and efficient solutions. Understanding
and learning the data that embodies these physical laws is crucial for controlling and optimizing
real-world applications (Lv et al., 2022; Kim and Boukouvala, 2020; Wang et al., 2024a). Mastery
of such data-driven insights enables more precise predictions, enhanced system performance, and
significant advancements in how we interact with and manipulate the application in the fields of
engineering and science (Noé et al., 2020). The growing interest in efficient PDE solvers and the
success of deep learning models in various fields has sparked significant attention, such as neural
operator methods (Li et al., 2020; Kovachki et al., 2021; Bonev et al., 2023; Liu et al., 2024a). Um
et al. (2020) proposed a spatial resolution solver to reduce the computation and accelerate physical
simulations. Wu et al. (2022); Sanchez-Gonzalez et al. (2020) proposed reducing the dimensions of
latent space to map the solution in the surrogate models.

Exploring how to integrate and fully leverage performance across different scales while controlling
complex learning dynamics is a promising area of research. Based on the frequency principle (Xu
et al., 2019), our primary motivation is to enable smaller or more general models to learn low-
frequency dynamic data, while delegating high-frequency data to more capable models. The router
(distribution policy) regulates this allocation, which sets our approach apart from other methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑠𝑡𝑎𝑡𝑒2
FNO

FNO

FNO

FNO

𝑠𝑡𝑎𝑡𝑒1

𝑓!"#$
%&'()*

𝑠𝑡𝑎𝑡𝑒3
FNO

FNO

FNO

FNO

𝑠𝑡𝑎𝑡𝑒2

𝑓!"#$
%&'()*Allocate to

models

Rollout

Allocate to
models

Experts Experts

Figure 1: Framework of the proposed Multi-scale and Multi-experts (M2M). The Experts net has
different models, fpolicy

gate decides which spatial domain is needed to allocate the different models in
the roll-out predications. For more details, please refer to sec. 3.

In this work, we introduce the multi-scale and multi-expert (M2M) neural operators as an effective
surrogate model to learn the dynamics of PDEs and optimize the appropriate allocation law for the
different scales with different expert models. Our critical insight lies in leveraging the divide-and-
conquer approach among models to learn the capabilities across different scales quickly. Divide and
conquer is a fundamental algorithmic technique for solving complex problems by breaking them
down into simpler, more manageable sub-problems (Smith, 1987; Huang et al., 2017; Ganaie et al.,
2022; Emirov et al., 2024). This approach works on the principle that a large problem can often
be divided into two or more smaller problems of the same or similar type. Each of these smaller
problems is then solved independently. Once solutions are obtained for all the sub-problems, they
are combined to form a solution to the original, more extensive problem. In addition, the model
is designed to master the distribution of the most effective data while minimizing computational
resources. To fairly evaluate the effectiveness of our framework, we standardized the internal models
to Fourier Neural Operator (FNO) models with varying numbers of modalities. This strategy enables
the model to adaptively determine the best local spatial resolution to evolve the system. The M2M
is trained in an alternating manner, iterating between training the evolution model with supervised
loss and allocation policy net. Together, the controllable routing mechanism effectively integrates
prior knowledge with model capabilities. The implementation of PID control significantly aids in
optimizing the training of Multi-of-Experts (MoE).

Our main contributions are as follows:

1. We propose a controllable multi-expert and multi-scale operator model to embed multiple models
based on specific priors. The multi-expert system embodies the divide-and-conquer philosophy,
while the multi-scale approach enables efficient learning.

2. By bridging the control theory-PID, this unified theory demonstrates its strong generalizability.
It is a versatile and scalable method for the machine learning and science simulation community.

3. We validate the aforementioned method using the standard Navier-Stokes equations and a custom
multi-scale dataset, ensuring a balance between speed and accuracy.

2 PROBLEM SETTING AND RELATED WORK

We consider temporal Partial Differential Equations (PDEs) w.r.t. time t ∈ [0, T] and multiple
spatial dimensions x = [x1, x2, . . . xD] ∈ X ⊆ RD. We follow a similar notation as in (Brandstetter
et al., 2022).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

∂tu = F (a(t),x,u,ux,uxx, . . .) , (t,x) ∈ [0, T]× X
u(0,x) = u0(x), x ∈ X
B[u](t,x) = 0, (t,x) ∈ [0, T]× ∂X

(1)

where u : [0, T] × X → Rn is the solution, which is an infinite-dimensional function. a(t) is a
time-independent parameter of the system, which can be defined at each location x, e.g. diffusion
coefficient that varies in space but is static in time, or a global parameter. F is a linear or nonlinear
function. u0(x) is the initial condition, and B[u](t,x) = 0 is the boundary condition when x is on
the boundary of the domain ∂X across all time t ∈ [0, T]. Here ux,uxx are first- and second-order
partial derivatives, which are a matrix and a 3-order tensor, respectively (since x is a vector). Solving
such temporal PDEs means computing the state u(t,x) for any time t ∈ [0, T] and location x ∈ X
given the above initial and boundary conditions.

The fundamental problem can be succinctly represented for tasks involving partial differential equa-
tions by the following formula.

(∂Ω,u0)
fθ7−→ (∂Ω,u1)

fθ7−→ · · · fθ7−→ (∂Ω,uT), (2)

where fθ represents the model and ∂Ω denotes the boundary conditions.

Deep Learning-based Surrogate Methods. There are two fundamental approaches:

• Autoregressive Model Approach: The model learns the mapping function fθ from a given ut to
the next ut+1, acquiring discrete representations. This method involves learning the model to
predict subsequent time steps based on previous inputs. Such frameworks include CNN-based
models (Wang et al., 2020b; Kemeth et al., 2022), GNN-based models (Pfaff et al., 2020; Li
et al., 2024), and transformer-based models (Cao, 2021; Geneva and Zabaras, 2022; Takamoto
et al., 2023).

• Neural Operator Approach: Unlike autoregressive models, the neural operator method (Lu
et al., 2021) allows the model to map through multiple time steps, learning infinite-dimensional
representations. This approach enables the model to handle more complex temporal dynam-
ics by learning continuous representations. Apart from vanilla FNO, there are other operator
learning methods such as U-FNO (U-Net Fourier Neural Operator, (Wen et al., 2022)), UNO
(U-shaped neural operators, (Azizzadenesheli et al., 2024)), WNO (Wavelet Neural Operator,
(Navaneeth et al., 2024)), and KNO (Koopman Neural Operator, (Xiong et al., 2024)).

In addition to these two conventional methods, researchers have developed several hybrid ap-
proaches that combine elements of both (Watters et al., 2017; Zhou et al., 2020; Keith et al., 2021;
Hao et al., 2023; Kovachki et al., 2024; Wang et al., 2024b). For multi-scale PDEs problems, Liu
et al. (2020) developed multi-scale deep neural networks, using the idea of radial scaling in the
frequency domain and activation functions with compact support. Hu et al. (2023) propose the
augmented physics-informed neural network (APINN), which adopts soft and trainable domain de-
composition and flexible parameter sharing to further improve the extended PINN further. Xu et al.
(2019) firstly find the deep neural network that fits the target functions from low to high frequen-
cies. Liu et al. (2024b) demonstrate that for multi-scale PDEs form, the spectral bias towards low-
frequency components presents a significant challenge for existing neural operators. Rahman et al.
(2024) study the cross-domain attention learning method for multi-physic PDEs by the attention
mechanism. However, the aforementioned methods do not efficiently leverage frequency character-
istics, and they lack a controllable mechanism for adjusting the learning process of partial differential
equations. Compared with (Du et al., 2023; Chalapathi et al., 2024), M2M directly optimizes for
the PDEs objective, first using a universal controlled method and multi-scale to learn the policy of
allocating experts to achieve a better accuracy vs. computation trade-off. In addition to simplify-
ing the computation of attention, the MoE mechanism (Jacobs et al., 1991) has been incorporated
into transformer architectures (Fedus et al., 2022; Chowdhery et al., 2023) to lower computational
expenses while maintaining a large model capacity. The key distinction of our objective lies in its
emphasis on controllability and multi-scale considerations, both of which are crucial factors for all
fundamental partial differential equation data.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 THE PROPOSED METHOD

In this section, we detail our M2M method. We first introduce its architecture in sec. 3.1. Then we
introduce its learning method (sec. 3.2), including learning objective training, and a technique to let
it learn to adapt to the varying importance of error and computation. The high-level schematic is
shown in figure 1.

3.1 MODEL ARCHITECTURE

The model architecture of M2M consists of three components: multi-scale segmentation and inter-
polation, Experts Net, and Gate router. We will detail them one by one.

Multi-scale Segmentation and Interpolation. Multi-scale segmentation involves strategically de-
composing the input into multiple scales or resolutions to facilitate detailed analysis and processing.
This technique benefits applications that require fine-grained analysis on various scales, such as
traditional image processing (Emerson, 1998; Sunkavalli et al., 2010) and deep learning methods
(Zhong et al., 2023; Yuvaraj et al., 2024). Consider a discrete form input represented as uh×w

t ,
where h and w denote the spatial domain resolution at time step t. In multi-scale segmentation,
the uh×w

t first needs to be segmented into smaller, non-overlapping scale patches. For example,
segmenting a tensor uh×w

t into 2× 2 patches results in four distinct segments. Each segment corre-
sponds to a quarter of the original tensor, assuming that h and w are evenly divisible by 2. Secondly,
suppose that we wish to perform an interpolation on these segmented patches to restore them to the
original h× w dimensions. Mathematically, this operation can be expressed as:

uh×w
t

Segmentation−−−−−−−→
{
u

h
2 ×

w
2

i,j

∣∣∣i, j ∈ {1, 2}} Interpolation−−−−−−→
{
Ph×w

i,j

∣∣∣i, j ∈ {1, 2}} , (3)

where Ph×w represents the tensor after interpolation, which combines the four patches back into the
original size of h × w. This segmentation approach effectively reduces the dimensionality of each
patch and allows for localized processing, which is essential for tasks involving hierarchical feature
extraction.

Experts Net. In theory, an expert net is composed of multiple distinct models. However, our
sub-expert networks are structured in a parallel configuration for rigorous comparison in this study.
Importantly, we have opted for a non-hierarchical architecture. All constituent models are based on
the Fourier Neural Operator (FNO), with potential variations in the number of modalities. Formally,
let E = {E1, E2, . . . , En} represent the set of expert models, where each Ei is an FNO. The input
to each expert is a different patch Pi ∈ Rh×w. The output of each expert maintains the same
dimensionality as the input. The primary function of the expert system is to model the temporal
evolution of the system state as shown in Eq. 2. We employ a divide-and-conquer strategy, where
each expert Ei operates on a subset of the input space:

Ei : P
h×w
i → P′h×w

i , (4)

where Ph×w
i is a patch of the input and P′h×w

i is the corresponding output patch. The predication
solution ûh×w

t+1 involves the aggregation of these individual patch predictions to reconstruct the full
system state:

ûh×w
t+1 = A(P′

1,P
′
2, . . . ,P

′
n), (5)

where A is an aggregation function that combines the individual patch predictions into a coherent
global state, this approach allows for parallelization and potentially more efficient processing of
complex spatio-temporal dynamics while maintaining consistency across all or sparse expert models.

Gate Router Mechanism in MoE. The Gate Router Mechanism is a crucial component in the MoE
architecture and is responsible for distributing input patches across expert models. The primary
objectives of this mechanism are:

1. To efficiently allocate different patches to different models and to route complex problems to
more sophisticated networks. (Divide and Conquer)

2. To avoid overloading a single model, which could lead to high computational complexity. (Sim-
plicity is the ultimate sophistication)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3. Optionally, the router could be set as the top-k and strong prior, which we encourage the sparse
experts to apply the different regions.

Let X =
{
uh×w
1,1 ,uh×w

1,2 ,uh×w
2,1 ,uh×w

2,2

}
be a set of 4 input scale domain. The router function R is

defined as:
R : X → [0, 1]N×M , (6)

where R(xi)j represents the probability of routing input xi to expert Ej . The ideal routing strategy
aims to optimize the following objectives:

min
R

Ex∼D

 N∑
j=1

R(x)j · Error(Ej , x)

 , (7)

where D is the data distribution and Error(Ej , x) is the error measure of each expert Ej performs
on input patch compared with the ground truth. This paper introduces an optional prior distribution
P (Ej) over the experts to initialize the routing mechanism and gradually train it. This prior can be
incorporated into the routing decision:

R(x)j =
exp(rj(x) + logP (Ej))∑N

k=1 exp(rk(x) + logP (Ek))
, (8)

where rj(x) is a learned function that scores the suitability of expert Ej for input x. By combining
these components, the router mechanism can efficiently distribute inputs across experts, adapt to the
complexity of different inputs, and maintain a balanced computational load across the system.

3.2 LEARNING OBJECTIVE AND CONTROL STRATEGY

The training objective is defined as follows:
L(t) = λ(t)Lrouter + Lexperts, (9)

where the Lrouter and Lexperts represent the training loss for the router and experts net, respectively.
The λ(t) is a hyperparameter related to the training epoch t. Our assumption is as follows: in the
initial stage of the model, the router should allocate data evenly to the experts, allowing each expert
to receive sufficient training. Once the expert networks have been adequately trained, if the router
is not performing well, feedback should be used to train the router. This will enable the router to
select the well-performing experts for further training, thereby fully leveraging the potential of the
experts.

Router Loss. The training objective for the router can be formulated as:
Lrouter = KL(R(x)||P (E)) + Lload, (10)

where KL is the Kullback-Leibler divergence, and this formulation allows the router to start from
the prior distribution and gradually adapt to the optimal routing strategy as training progresses. The
KL divergence term encourages the router to maintain some similarity to the prior, which can help
prevent all inputs from being routed to a single expert. To promote the sparsity of the router and the
computational tradeoff, we introduce a load-balancing entropy loss as Lload:

Lload = −
M∑
i=1

pij log pij , (11)

where pij represents the probability R(xi)j of assigning the i-th data point to the j-th expert.

Expert Learning Loss. Each expert model should be trained using supervised learning to approx-
imate the solution of the PDE at a given time step. To achieve this, we define the loss function for
each expert model using the Mean Squared Error (MSE) between the predicted solution and the true
solution of the PDE at each time step.

For a given expert model Ej , the goal is to minimize the MSE between its prediction ûj(x, t) and
the true solution u(x, t) of the PDE over a set of input patches. The MSE loss for the j-th expert can
be defined as:

MSEj =
1

N

N∑
i=1

(u(xi, ti)− ûj(xi, ti))
2
, (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 2: Figure (a) shows the router policy in the training. Figure (b) shows the framework of the
PI controller in the M2M. By designing the target and feedback in the loop, λ can be adjusted.

where N is the selected number of patches, u(xi, ti) is the true solution at the i-th patch, and
ûj(xi, ti) is the predicted solution by the expert Ej .

The total loss for all experts can be written as the sum of the MSE losses for each expert:

Lexperts =
M∑
j=1

MSEj =

M∑
j=1

1

N

N∑
i=1

(u(xi, ti)− ûj(xi, ti))
2
. (13)

By minimizing this total loss, each expert model learns to approximate the solution of the PDE over
time, ensuring that their predictions become more accurate as the training stage.

PID-Gate Control Connects the Expert and Router. The dispatch mechanism of the router
presents a challenging issue. On the one hand, if the router initially has a strong prior, different
experts may not receive sufficient training, and their specialized capabilities cannot be fully lever-
aged. On the other hand, if the router erroneously assigns tasks to less capable experts, the overall
loss of the model may not decrease as expected. Inspired by automatic control theory (Åström et al.,
2006; Wang et al., 2020a), we design a non-linear PI controller in the loop as shown in figure 2, a
variant of the PID control, to automatically tune the hyperparameter λ(t) and use the desired loss or
desired prior KL distribution as feedback during model training. we also demonstrate that PID-gate
control improves the performance in the ablation study. To address this challenge, we propose two
control strategies in Algorithm 1, and the proof is in the Appendix 6.5.

Algorithm 1 Two Dispatch Strategies with Desired Loss L̂

1: Init: λ0, λmax, λmin, Kp, Ki, Topk, Epochs N , L̂
2: Input: Initial PDE solution ▷ [Batch, Tin, H,W]
3: Multiscale segmentation and interpolation ▷ [B,S2, Tin, H,W]; S: scale
4: for t = 1 to N do
5: Router outputs probability distribution over classes
6: Strategy 1: Select top k models, allocate different regions to models, and aggregate outputs

with sparse models.
7: Strategy 2: Dispatch to all models, linearly combined with the weight.
8: Compute Loss L(t)
9: Controller: e(t)← L(t)− L̂; P (t)← Kp

1+exp(e(t))

10: if λmin < λ(t− 1) < λmax then
11: I(t)← I(t− 1)−Kie(t)
12: else
13: I(t) = I(t− 1) ▷ Anti-wind up
14: end if
15: λ(t)← P (t) + I(t) + λmin

16: end for
17: Output: PDE solution ▷ [Batch, Tout, H,W]

4 EXPERIMENTS

In the following experiments, we set out to answer the following questions on our proposed M2M:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• Multi-scale effect and allocate mechanism: Can the M2M model dynamically allocate the
spatial domain to concentrate computational resources on regions with higher dynamics, thus
enhancing prediction accuracy?

• Pareto frontier improvement: Does M2M enhance the Pareto frontier of Error versus Com-
putation compared to deep learning surrogate models (SOTA)?

• Controllable training: Is M2M capable of adapting its learning results based on the dynamics
of the problem, as indicated by the parameter λ?

We evaluate our M2M on two challenging datasets: (1) a custom 2D benchmark nonlinear PDEs,
which tests the generalization of PDEs with the different spatial frequencies; (2) a benchmark-
based Naiver-Stokes simulation generated in (Li et al., 2020). Both datasets possess multi-scale
characteristics where some domains of the system are highly dynamic while others are changing
more slowly. We use the relative L2 norm (normalized by ground-truth’s L2 norm) as a metric, the
same as in (Li et al., 2020). Since our research primarily focuses on control methods combined
with multi-expert models, we aim to utilize the foundation modes of Fourier operators. In the
following sections, we will consistently employ FNO32, FNO128, FNO64, and FNO16, with the
goal of achieving a higher-order operator FNO256.

4.1 THE COMPARISON OF CUSTOM MULTI-SCALE DATASET V.S. PID-CONTROL EFFECT

Data and Experiments. In this section, we test M2M’s ability to balance error vs. computation
tested on unseen equations with different parameters in a given family. For a fair comparison, we
made the model size of the different methods as similar as possible. We use the custom dataset for
testing the Multi-scale effect and Controllable training. The multi-scale dataset is given by

∇2u(x, y) = f(x, y), (14)

where u(x, y) is the unknown solution to be solved, and f(x, y) represents the source term, which
varies for different regions. More details about the multi-scale dataset are available in the Appendix
6.1.

Main Results. The compared baseline methods are FNO (Li et al., 2020), UNO (Azizzadenesheli
et al., 2024), CNO (Raonic et al., 2024), and KNO (Xiong et al., 2024). Please refer to the appendix
for baseline visualization results in the appendix 6.4.3. The M2M approach achieves Pareto opti-
mality, as demonstrated in the Pareto frontier detailed in figure 10. As a heuristic choice, we set the
target to 0 and defined the loss L(t) as the RMSE in the training stage.

Figure 3: Results of one-step prediction on the
multi-scale custom dataset at different epoch: 1,
10, and 100. The scale is set to 4, and the ablation
on the multi-scale study is shown in appendix 6.1.

From figure 4, M2M can allocate models
sparsely and only sends the region with a slower
change (Patch number is 1-4) to lowest mode
FNO16 for the computation efficiency and high-
est modes of FNO128 for accuracy both from
zero-prior. The above results show that M2M
can focus computation on dynamic learning
in the table 4.1. M2M achieved notable im-
provements compared to baseline models, with
Strategy 1 requiring less computation time than
Strategy 2 while delivering the input to all ex-
perts. For PID-M2M, we test our model on dif-
ferent initial λ values and different TOPk by
empirical selection of Kp = 0.001, λmin = 0,
λmax = 1 and Ki = 0.001, where λ focuses
on router training in the initial training stage.
The comparison study of the PI effect is shown
in figure 3. The PI controller can speed up the
error convergence in training and the value of
λ has been controlled. We see that with λ (e.g.,
λ(0) = 0 in the initial value) dynamic change, proving that the PI controller can control the router in
the allocating process with different experts. To investigate whether M2M can allocate the best ex-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison study in the custom dataset. This shows that M2M can improve prediction error
by selecting where to focus computation trade-offs, especially with more stringent computational
constraints. All tests are conducted on an NVIDIA A800 GPU. The scale of M2M is set to 4.

Models Parameters (M) Computation (ms) L2 error

FNO
(Li et al., 2020)

FNO16 0.047 1.9 0.54
FNO32 0.16 2.2 0.13
FNO64 0.61 2.3 0.050
FNO128 2.4 2.5 0.038
FNO256 9.5 2.6 0.036

UNO
(Azizzadenesheli

et al., 2024)

UNO16 5.2 6.2 0.080
UNO32 19.2 8.9 0.075
UNO64 74.2 18.2 0.042
UNO128 292.6 33.7 0.026

KNO
(Xiong et al., 2024)

KNO16 4.2 10.6 0.99
KNO64 67.1 130.5 0.92

CNO
(Raonic et al., 2024)

CNO4 2.0 18.3 0.12
CNO64 14.2 148.6 0.010

PID-M2M (Ours)

Strategy 1,Topk=1 4.8 4.5 0.024
Strategy 1,Topk=2 4.8 8.0 0.008∗

Strategy 1,Topk=3 4.8 11.2 0.012
Strategy 2 4.8 14 0.008∗

(a)

(b)

Figure 4: Dynamic weight distribution of router, the figure (a) and (b) are the distribution of the
output on the 1st and 100th epoch. Prior [0000] indicates that no prior is set on the router. The
TOPk is set 2.

pert on the most dynamic region according to different priors, we visualize which allocating experts
on outputs of the router as shown in appendix 6.4.1.

4.2 THE NAIVER-STOKES (NS) DATASET AND COMPARISON OF SOTA

Here we evaluate our M2M performance in a more challenging dataset in the Naiver-Stokes dataset,
the description is shown in Appendix 6.2. In this experiment, to ensure a fair comparison and
leverage the M2M method’s ability to enhance FNO’s inherent capabilities, we selected the baseline
model of FNO-3D instead of the auto-regressive style in FNO-2D. Since FNO-3D operates at least

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Results of NS datasets in PID-M2M. The number of scale is 1.

three times faster than FNO-2D, this choice significantly shortened the experimental cycle. As
shown in table 4.2, our M2M can allocate high FNO modes to the high-frequency region and achieve
better accuracy than the baselines. Specifically, M2M outperforms the strong baseline of FNO128 in
the performance a little. This shows that the router could learn a proper allocation policy, allowing
the evolution model to evolve the system more faithfully. However, the multi-scale effect did not
perform well on this complex dataset, especially in the boundary. The reason is that there are strong
temporal scale dependencies between patches, and as the spatial partitioning increases, the divide-
and-conquer approach becomes less effective in the appendix 6.2. We applied our method to a
cylinder wake flow in the appendix 6.4.4, close to real-world data which has the prior on the fluid
mechanic. By incorporating prior distributions in regions where vortex shedding forms around the
cylinder, the prediction is quite accurate.

Table 2: Comparison study in the NS dataset. This shows that M2M can improve prediction error
by selecting where to focus computation trade-offs, especially with more stringent computational
constraints. All tests are conducted on an NVIDIA A800 GPU. The scale of M2M is set to 1.

Models Parameters (M) Computation (ms) L2 error

FNO

FNO16 0.050 2.1 0.29
FNO32 0.16 4.7 0.26
FNO64 0.61 4.9 0.25
FNO128 2.4 6.2 0.24
FNO256 9.5 6.9 0.22

PID-M2M (Ours)

Strategy 1, Topk=1 4.0 5.0 0.26
Strategy 1, Topk=2 4.0 7.8 0.23∗

Strategy 1, Topk=3 4.0 13.0 0.25
Strategy 2 4.0 14.9 0.23∗

5 CONCLUSION AND LIMITATION

The proposed M2M model jointly learns the evolution of the physical system and optimizes compu-
tational assignment to most dynamic regions. In multi-scale and Naiver-Stokes datasets, we show
that our PID method can controllably train the expert’s net and router, which clearly enhances long-
term prediction error than strong baselines of deep learning-based surrogate models. The fitting
error has been demonstrated to converge based on control theory in the Appendix 6.5. Furthermore,
the PID-based M2M could improve the convergence speed, showing that this intuitive baseline is
suboptimal. Finally, M2M outperforms its ablation without multi-scale segmentation, showing the
divide-and-conquer strategy which can significantly reduce the prediction error. We hope M2M can
provide valuable insight and methods for machine learning and physical simulation fields, especially
for applications requiring scalability and multi-physics models. The limitation of M2M is shown in
appendix 6.6.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Karl Johan Åström, Tore Hägglund, and Karl J Astrom. Advanced pid control, vol. 461. ISA-The
Instrumentation, Systems, and Automation Society Research Triangle, 2006.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. Nature
Reviews Physics, pages 1–9, 2024.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynam-
ics on the sphere. In International conference on machine learning, pages 2806–2823. PMLR,
2023.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

Steven L Brunton and J Nathan Kutz. Promising directions of machine learning for partial differen-
tial equations. Nature Computational Science, pages 1–12, 2024.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

Nithin Chalapathi, Yiheng Du, and Aditi Krishnapriyan. Scaling physics-informed hard constraints
with mixture-of-experts. arXiv preprint arXiv:2402.13412, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Yiheng Du, Nithin Chalapathi, and Aditi Krishnapriyan. Neural spectral methods: Self-supervised
learning in the spectral domain. arXiv preprint arXiv:2312.05225, 2023.

Charles W Emerson. Multi-scale fractal analysis of image texture and pattern. 1998.

Nazar Emirov, Guohui Song, and Qiyu Sun. A divide-and-conquer algorithm for distributed opti-
mization on networks. Applied and Computational Harmonic Analysis, 70:101623, 2024.

Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume methods. Handbook of
numerical analysis, 7:713–1018, 2000.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthu-
rai N Suganthan. Ensemble deep learning: A review. Engineering Applications of Artificial
Intelligence, 115:105151, 2022.

Nicholas Geneva and Nicholas Zabaras. Transformers for modeling physical systems. Neural
Networks, 146:272–289, 2022.

Sergei K Godunov and I Bohachevsky. Finite difference method for numerical computation of
discontinuous solutions of the equations of fluid dynamics. Matematičeskij sbornik, 47(3):271–
306, 1959.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pages 12556–12569. PMLR, 2023.

Zheyuan Hu, Ameya D Jagtap, George Em Karniadakis, and Kenji Kawaguchi. Augmented physics-
informed neural networks (apinns): A gating network-based soft domain decomposition method-
ology. Engineering Applications of Artificial Intelligence, 126:107183, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

John A Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger,
Klaus-Robert Muller, and Alexandre Tkatchenko. Combining machine learning and computa-
tional chemistry for predictive insights into chemical systems. Chemical reviews, 121(16):9816–
9872, 2021.

Felix P Kemeth, Tom Bertalan, Thomas Thiem, Felix Dietrich, Sung Joon Moon, Carlo R Laing,
and Ioannis G Kevrekidis. Learning emergent partial differential equations in a learned emergent
space. Nature communications, 13(1):3318, 2022.

Sun Hye Kim and Fani Boukouvala. Machine learning-based surrogate modeling for data-driven
optimization: a comparison of subset selection for regression techniques. Optimization Letters,
14(4):989–1010, 2020.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22(290):1–76, 2021.

Nikola B Kovachki, Samuel Lanthaler, and Andrew M Stuart. Operator learning: Algorithms and
analysis. arXiv preprint arXiv:2402.15715, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-
informed neural operator for large-scale 3d pdes. Advances in Neural Information Processing
Systems, 36, 2024.

Ning Liu, Siavash Jafarzadeh, and Yue Yu. Domain agnostic fourier neural operators. Advances in
Neural Information Processing Systems, 36, 2024a.

Xinliang Liu, Bo Xu, Shuhao Cao, and Lei Zhang. Mitigating spectral bias for the multiscale
operator learning. Journal of Computational Physics, 506:112944, 2024b.

Ziqi Liu, Wei Cai, and Zhi-Qin John Xu. Multi-scale deep neural network (mscalednn) for solving
poisson-boltzmann equation in complex domains. arXiv preprint arXiv:2007.11207, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Zhihan Lv, Liang Qiao, Yuxi Li, Yong Yuan, and Fei-Yue Wang. Blocknet: Beyond reliable spatial
digital twins to parallel metaverse. Patterns, 3(5), 2022.

N Navaneeth, Tapas Tripura, and Souvik Chakraborty. Physics informed wno. Computer Methods
in Applied Mechanics and Engineering, 418:116546, 2024.

Frank Noé, Alexandre Tkatchenko, Klaus-Robert Müller, and Cecilia Clementi. Machine learning
for molecular simulation. Annual review of physical chemistry, 71(1):361–390, 2020.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Md Ashiqur Rahman, Robert Joseph George, Mogab Elleithy, Daniel Leibovici, Zongyi Li, Boris
Bonev, Colin White, Julius Berner, Raymond A Yeh, Jean Kossaifi, et al. Pretraining codomain
attention neural operators for solving multiphysics pdes. arXiv preprint arXiv:2403.12553, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Singiresu S Rao. The finite element method in engineering. Elsevier, 2010.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima Alai-
fari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of pdes. Advances in Neural Information Processing Systems, 36, 2024.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pages 8459–8468. PMLR, 2020.

Jie Shen, Tao Tang, and Li-Lian Wang. Spectral methods: algorithms, analysis and applications,
volume 41. Springer Science & Business Media, 2011.

Douglas R Smith. Applications of a strategy for designing divide-and-conquer algorithms. Science
of Computer Programming, 8(3):213–229, 1987.

Kalyan Sunkavalli, Micah K Johnson, Wojciech Matusik, and Hanspeter Pfister. Multi-scale image
harmonization. ACM Transactions on Graphics (TOG), 29(4):1–10, 2010.

Makoto Takamoto, Francesco Alesiani, and Mathias Niepert. Learning neural pde solvers with
parameter-guided channel attention. In International Conference on Machine Learning, pages
33448–33467. PMLR, 2023.

John Tencer and Kevin Potter. A tailored convolutional neural network for nonlinear manifold
learning of computational physics data using unstructured spatial discretizations. SIAM Journal
on Scientific Computing, 43(4):A2581–A2613, 2021.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Ricardo Vinuesa and Steven L Brunton. Enhancing computational fluid dynamics with machine
learning. Nature Computational Science, 2(6):358–366, 2022.

Cong Wang, Aoming Liang, Fei Han, Xinyu Zeng, Zhibin Li, Dixia Fan, and Jens Kober. Learn-
ing adaptive hydrodynamic models using neural odes in complex conditions. arXiv preprint
arXiv:2410.00490, 2024a.

Haixin Wang, Jiaxin Li, Anubhav Dwivedi, Kentaro Hara, and Tailin Wu. Beno: Boundary-
embedded neural operators for elliptic pdes. arXiv preprint arXiv:2401.09323, 2024b.

Haoqian Wang, Yi Luo, Wangpeng An, Qingyun Sun, Jun Xu, and Lei Zhang. Pid controller-
based stochastic optimization acceleration for deep neural networks. IEEE transactions on neural
networks and learning systems, 31(12):5079–5091, 2020a.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 1457–1466, 2020b.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
Tacchetti. Visual interaction networks: Learning a physics simulator from video. Advances in
neural information processing systems, 30, 2017.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson.
U-fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow.
Advances in Water Resources, 163:104180, 2022.

Tailin Wu, Takashi Maruyama, and Jure Leskovec. Learning to accelerate partial differential equa-
tions via latent global evolution. Advances in Neural Information Processing Systems, 35:2240–
2253, 2022.

Wei Xiong, Xiaomeng Huang, Ziyang Zhang, Ruixuan Deng, Pei Sun, and Yang Tian. Koop-
man neural operator as a mesh-free solver of non-linear partial differential equations. Journal of
Computational Physics, page 113194, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

N Yuvaraj, Kapil Rajput, K Suganyadevi, Manisha Aeri, Rishi Prakash Shukla, and Hariom Gurjar.
Multi-scale object detection and classification using machine learning and image processing. In
2024 Second International Conference on Data Science and Information System (ICDSIS), pages
1–6. IEEE, 2024.

Guojin Zhong, Weiping Ding, Long Chen, Yingxu Wang, and Yu-Feng Yu. Multi-scale attention
generative adversarial network for medical image enhancement. IEEE Transactions on Emerging
Topics in Computational Intelligence, 7(4):1113–1125, 2023.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

6 APPENDIX

6.1 CUSTOM MULTI-SCALE POISSON EQUATION DATASET

The custom multi-scale dataset is designed to simulate a complex scenario, where data in some
regions change slowly while changing more rapidly in others. We define the task as follows: the
input is the solution ulow to a relatively low-frequency equation, while the output is the solution
uhigh to a corresponding high-frequency equation. To idealize this dataset, we adopted the form
of the classical Poisson equation and used the finite difference method to solve the problem. The
concise discrete form is [1, 128, 128] 7→ [1, 128, 128]. The time step is set to 1 and the spatial
domain is set to [128, 128].

6.1.1 FREQUENCY DISTRIBUTION ON DIFFERENT REGIONS

The source term for each region is a sinusoidal function with a systematically varying frequency.
Specifically, the source term fij(x, y) is defined as follows for i, j = 1, 2, 3, 4:

f11(x, y) = sin(π · (1 · µx)) sin(π · (1 · µy)),
f12(x, y) = sin(π · (2 · µx)) sin(π · (2 · µy)),
f21(x, y) = sin(π · (3 · µx)) sin(π · (3 · µy)),
f22(x, y) = sin(π · (4 · µx)) sin(π · (4 · µy)).

(15)

The initial solution of PDEs will be decided by the dimensionless frequency µ and the other solution
for the high frequency is 7 · µ. In this dataset, we sampled 1000 cases with different values of µ,
which were drawn from a normal distribution N (1, 0.1) using Monte Carlo sampling. Out of the
1000 samples, 700 are allocated for the training dataset, while the remaining 300 are reserved for
the test dataset. To increase the complexity in the varying time PDEs, we assume that the solutions
include a two-step solution and that the ground truth (the second time-solution) is the high spatial
frequency to be predicted, 7 · µ of each low-frequency domain corresponding to the input domain.

6.1.2 SOLVER IMPLEMENTATION AND SETTING OF GRIDS

The Poisson equation is solved numerically using a finite-difference method on each block. The
boundary conditions and the source term f(x, y) determine the solution u(x, y) within each block.
The computational grid is set into a 128 × 128 grid and divided into 2 × 2 blocks, each of size
64× 64. After calculation, the boundary condition g(x, y) = 0 is assigned in each block boundary.

6.2 2D NAIVER STOKES

6.2.1 2D NAIVER STOKES DATASETS

The Navier-Stokes equation has broad applications in science and engineering, such as weather
forecasting and jet engine design. However, simulating it becomes increasingly challenging in the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

turbulent phase, where multiscale dynamics and chaotic behavior emerge. In our work, we specif-
ically test the model on a viscous, incompressible fluid in vorticity form within a unit torus. The
concise discrete form is [10, 64, 64] 7→ [10, 64, 64]. The input time step is set to 10 and the spatial
domain is set to [64, 64].

∂tw(t, x) + u(t, x) · ∇w(t, x) = ν∆w(t, x) + f(x), x ∈ (0, 1)2, t ∈ (0, T]

∇ · u(t, x) = 0, x ∈ (0, 1)2, t ∈ [0, T]

w(0, x) = w0(x), x ∈ (0, 1)2
(16)

where w(t, x) = ∇× u(t, x) is the vorticity, ν ∈ R+is the viscosity coefficient. The spatial domain
is discretized into 64× 64 grid. The fluid is turbulent for ν = 10−5

(
Re = 105

)
.

6.2.2 RESULTS OF M2M AT DIFFERENT SCALES

Figure 6 and 7 below show the prediction results at two different scales. As can be seen, there are
some sharp edges at the boundaries.

Figure 6: Model Performance at a scale factor of 2

Figure 7: Model Performance at a scale factor of 4

6.3 DETAILED CONFIGURATION OF THE M2M AND BASELINE MODELS

This section provides a detailed configuration of M2M, baseline methods, and the hyperparameters
used for training in Table 3 and Table 4.

6.3.1 HYPER-PARAMETERS FOR TRAINING OF M2M

The policy network is implemented as a classifier, with the output corresponding to the weights
distribution of the expert network.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameters for M2M architecture and training.
Hyperparameter name Custom dataset 2D NS dataset
Model architecture: Experts and Router
Experts architecture: FNO32, FNO128, FNO64, FNO16

Router architecture: Transformer based classifier
Autoregressive roll-out steps 1 1
Hidden channels of FNO 6 6
f policy
gate : Transformer embedding dim 128 64
f policy
gate : Numbers of head 4 4
f policy
gate : Numbers of layers 2 2
f policy
gate : Encoder layers 2 2
kp of PID 0.001 0.001
ki of PID 0.02 0.02
Hyperparameters for training:
Learning rate 1e−3 1e−3

Optimizer Adam Adam
Batch size 8 4
Number of Epochs 100 200

6.3.2 HYPER-PARAMETERS FOR THE TRAINING OF BASELINE MODELS

The setting of our baseline methods is shown as follows. The hyperparameters used for training are
the same as those used in the M2M model above.

Table 4: Setting for baseline models
Hyperparameter name Custom dataset 2D NS dataset
Baseline Operators: FNO, UNO, KNO, and CNO
In channels 1 10
Modes of FNO: 16, 32, 64, 128
Hidden channels of FNO 6 6
Modes of UNO: 16, 32, 64, 128
Hidden channels of UNO 6 6
Scaling of UNO [1,0.5,1,2,1] [1,0.5,1,2,1]
Layers of UNO 5 5
Modes of KNO: 16, 128
Operator size 6 6
Decompose Number 15 15
Modes of CNO: 4, 8
Number of block 4 4
Channels 16 16

6.4 EXTRA VISUALIZATION

6.4.1 MOE AND PID TRAJECTORY DETAILS

In this section, we present results concerning the two types of priors in the router during the initial
phase, along with different PID parameters and scaling factors. One type of strong prior, such as
[0100] to add the output of the router, indicates that the router assigns each patch to four experts
by incorporating the prior directly into the router’s output through hard constraints, followed by a
softmax function. The other type of weak prior represented as [0000], relies entirely on the router’s
output without any prior constraints. As for the second prior, the results has shown in the figure 3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 8: Variation results of input, ground truth, prediction, and absolute difference along the
training epochs. The columns from left to right represent training times of 1, 50, and 100th epoch
units respectively. The prior distribution for FNO is set to [0100]

6.4.2 ABLATION STUDY ON THE MULTI-SCALE EFFECT

We compared the performance of multi-scale models on the custom dataset, where the model is
directly routed to different experts by a router, with the prior set to [0000]. It is worth noting that
these comparisons were made without the inclusion of the PID algorithm, to ensure fairness in the
table 5. Both interpolation and extrapolation methods in the multi-scale stage were chosen to be
linear for the sake of computational efficiency.

Table 5: Ablation study on the multi-scale effect in M2M. The prefix number represents the scale
factor S, and Topk is set to 4. All tests were conducted without a controller.

Models RMSE MAE
1-Scale M2M 0.015 0.004
2-Scale M2M 0.010 0.004
4-Scale M2M 0.008 0.005
8-Scale M2M 0.008 0.007

6.4.3 BASELINE RESULTS

Here, we show the Pareto Frontier with different models in the figure 10. It can be observed that
our M2M model, represented by the blue stars, lies on the Pareto frontier, demonstrating that our

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(c)

(b)

(a)

(d)

(d)

Figure 9: Variation of MoE Expert Weights with Prior and PID Parameters with scaling factor 4.
Figure (a) Output of the router during the first epoch of the training stage. Figure (b) Output of the
router at the 50th epoch of training. Figure (c) Output of the router at the 100th epoch. Figure (d)
Adjust PID model parameters with the target set to 0. The error is defined as the difference between
the model’s loss function and the target. The green line represents the controllable value for λ(t).
The prior distribution for FNO is set to [0100]

Figure 10: Pareto Frontier in the multi-scale dataset. The larger shape in the legend means larger
mode numbers and larger parameters.

computational speed and accuracy are quite competitive. Performances of baseline models CNO,
FNO, UNO, and KNO on the custom dataset are presented in figure 11, figure 12, figure 13, and
figure 14.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 11: CNO performance on multi-scale datasets. left: CNO4, right:CNO16

Figure 12: FNO performance on multi-scale datasets. Five Columns from left to right: FNO16,
FNO32, FNO64, FNO128, and FNO256

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 13: UNO performance on multi-scale datasets. Four Columns from left to right: UNO16,
UNO32, UNO64, UNO128

Figure 14: KNO performance on multi-scale datasets. From left to right: KNO16, KNO128

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

6.4.4 PERFORMANCE ON THE DATASET OF FLOWING AROUND A CYLINDER

We also consider the general application of our method on natural datasets, the dataset is shown in
the following figure 15, such as the flowing around a cylinder (Tencer and Potter, 2021). The input
shape [1, 192, 112] needs to be mapped to the next time step with the shape [1, 192, 112]. The model
simulation is conducted at a Reynolds number of 160, which leads to the formation of a vortex.

The allocation strong prior between different experts’ models is relatively reasonable, as the vortex
is generated behind the cylinder in the patch 5 − 12. During training, it is necessary to assign
the high-frequency components to the higher modes of the FNO. It is shown that M2M can learn
based on the strong prior like the figure 16, which will promote artificial intelligence in scientific
discoveries and simulations.

In Out

Figure 15: Dataset of flow past a cylinder, left tensor shape:[1, 192, 112], right tensor
shape:[1, 192, 112]

6.5 CONTROL THEORY ON PID

A PID controller regulates the control input u(t) by combining three terms: proportional (P), inte-
gral (I), and derivative (D). The controller aims to minimize the tracking error e(t), defined as the
difference between the desired reference signal r(t) and the system output y(t):

e(t) = r(t)− y(t)

The PID control law is given by:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, respectively.

PROOF OF CONVERGENCE

The behavior of the error e(t) as t → ∞. It will diminish over time due to the combined effect of
the PID control effect.

1. PROPORTIONAL TERM

The proportional term Kpe(t) provides an immediate response to the current error. The larger the
error, the stronger the control input. This term ensures that the error decreases proportionally to its
magnitude, reducing the error in time:

de(t)

dt
= −Kpe(t)

This equation indicates that the error decreases exponentially for values of Kp.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1

5

2 3 4

6 7 8

9 10 11 12

13 14 15 16

Figure 16: MOE weight on the strong prior distribution and predication result on the flow past a
cylinder

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

2. INTEGRAL TERM

The integral term Ki

∫ t

0
e(τ)dτ corrects accumulated error over time. It helps eliminate steady-state

error by ensuring that small but persistent errors are corrected:

d

dt

(∫ t

0

e(τ)dτ

)
= e(t)

As long as e(t) remains nonzero, the integral term grows, increasing the control input u(t) until the
error converges to zero.

3. DERIVATIVE TERM

The derivative term Kd
de(t)
dt anticipates future error based on the rate of change of the error. It

provides a damping effect that helps reduce overshoot and oscillations in the system’s response. The
term is proportional to the velocity of the error, thus slowing down the system’s response as the error
decreases.

4. COMBINED DYNAMICS AND STABILITY

The overall system dynamics, taking all three terms into account, can be modeled as:

de(t)

dt
= −Kpe(t)−Ki

∫ t

0

e(τ)dτ −Kd
de(t)

dt

For a properly tuned system, the combination of the proportional, integral, and derivative terms
ensures that the error will decrease over time. Specifically, the integral term guarantees that any
steady-state error will be driven to zero, while the proportional and derivative terms ensure fast
response and stability. Thus, as t→∞, e(t)→ 0.

6.6 LIMITATION

Our approach may have certain limitations in the following areas:

1. It may require some prior knowledge of physics, such as frequency decomposition and domain-
specific knowledge embedding;

2. There may be competitive interactions between expert models, where the quality of initializa-
tion plays a decisive role in model performance;

3. The PID approach may not be suitable for more complex models and datasets, and methods like
Model Predication Control or reinforcement learning might need to be explored in the future;

4. To reduce patch boundary effects, especially in scenarios where performance degrades with a
high time and spatial dynamic (e.g. Turbulence) dataset;

6.7 MATHEMATICAL NOTATIONS

This section lists the mathematical notations used in the paper for reference.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 6: List of Mathematical Notations
Symbol Description

u State variable (solution of the PDE), u : [0, T]× X→ Rn

t Time variable in [0, T]
x Spatial coordinate in domain X ⊆ RD

a Time-independent parameter of the system, possibly varying with x
F Linear or nonlinear function representing PDE dynamics

w(t,x) Vorticity in the Navier-Stokes equations
u(t,x) Velocity field in the Navier-Stokes equations
f(x) Source term in PDEs
X Spatial domain
∂X Boundary of the spatial domain X
Ω Domain of the PDE problem
∂Ω Boundary of the domain Ω

u0(x) Initial condition of the PDE at t = 0
B[u] Boundary operator for boundary conditions
∂tu Partial derivative of u with respect to time t
ux First-order partial derivative(s) of u with respect to x
uxx Second-order partial derivative(s) of u with respect to x
∇2u Laplacian operator (second-order differential operator of u)
fθ Mapping function of the model, parameterized by θ
E Set of expert models, E = {E1, E2, . . . , En}
Ei Expert model i in the multi-expert network
Pi Segmented and interpolated patch i
λ(t) Hyperparameter controlling training focus between router and experts
R(x)j Probability of routing input x to expert Ej

pij Probability of assigning data point i to expert Ej

Topk Number of top experts selected by the router
D Data distribution

Error(Ej ,x) Error measure of expert Ej on input x
L(t) Total loss function at time t
Lexperts Loss function for the experts net
Lrouter Loss function for the router mechanism
Lload Load balancing loss for the router

KL(R(x)||P (E)) Kullback-Leibler divergence between routing distribution R(x) and prior P (E)
Kp, Ki, Kd Proportional, Integral, and Derivative gains in the PID controller

L̂ Desired loss or target value in PID control
e(t) Error signal at time t in PID control, e(t) = L̂− L(t)
P (t) Proportional term in PID controller at time t, P (t) = Kpe(t)
I(t) Integral term in PID controller at time t, I(t) = I(t− 1) +Kie(t)

λmin, λmax Minimum and maximum values for λ(t)
ν Viscosity coefficient in Navier-Stokes equations
Re Reynolds number
N Number of training epochs
S Scale factor in multi-scale segmentation
B Batch size

Tin, Tout Number of input and output time steps
H , W Height and width of spatial domain grid

23

	Introduction
	Problem Setting and Related Work
	The Proposed Method
	Model architecture
	Learning objective and control strategy

	Experiments
	The comparison of custom multi-scale dataset v.s. PID-control effect
	The Naiver-Stokes (NS) dataset and comparison of SOTA

	Conclusion and Limitation
	Appendix
	Custom Multi-scale Poisson equation dataset
	Frequency Distribution on different regions
	Solver Implementation and setting of grids

	2D Naiver Stokes
	2D Naiver Stokes Datasets
	Results of M2M at different scales

	Detailed configuration of the M2M and baseline models
	Hyper-parameters for training of M2M
	Hyper-parameters for the training of Baseline models

	Extra Visualization
	MoE and PID trajectory details
	Ablation study on the multi-scale effect
	Baseline results
	Performance on the Dataset of flowing around a cylinder

	Control theory on PID
	Limitation
	Mathematical Notations

