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ABSTRACT

Learning the evolutionary dynamics of Partial Differential Equations (PDEs) is
critical in understanding dynamic systems, yet current methods insufficiently learn
their representations. This is largely due to the multi-scale nature of the solution,
where certain regions exhibit rapid oscillations while others evolve more slowly.
This paper introduces a framework of multi-scale and multi-expert (M2M) neural
operators designed to simulate and learn PDEs efficiently. We employ a divide-
and-conquer strategy to train a multi-expert gated network for the dynamic router
policy. Our method incorporates a controllable prior gating mechanism that de-
termines the selection rights of experts, enhancing the model’s efficiency. To op-
timize the learning process, we have implemented a PI (Proportional, Integral)
control strategy to adjust the allocation rules precisely. This universal controllable
approach allows the model to achieve greater accuracy. We test our approach on
benchmark 2D Navier-Stokes equations and provide a custom multi-scale dataset.
M2M can achieve higher simulation accuracy and offer improved interpretability
compared to baseline methods.

1 INTRODUCTION

Many challenges require modeling the physical world, which operates under established physical
laws (Karniadakis et al., 2021; Brunton and Kutz, 2024). For example, the Navier-Stokes equations
form the theoretical foundation of fluid mechanics and have widespread applications in aviation,
shipbuilding, and oceanography (Vinuesa and Brunton, 2022). Various numerical approaches ex-
ist to tackle these equations. These include discretization methods such as finite difference (Go-
dunov and Bohachevsky, 1959), finite volume (Eymard et al., 2000), finite element (Rao, 2010),
and spectral methods (Shen et al., 2011). Although classical physical solvers based on first prin-
ciples can achieve high accuracy, they must recalculate when faced with new problems, failing to
generalize and resulting in inefficient solutions. Artificial intelligence-based surrogate models ef-
fectively address these issues by providing more adaptable and efficient solutions. Understanding
and learning the data that embodies these physical laws is crucial for controlling and optimizing
real-world applications (Lv et al., 2022; Kim and Boukouvala, 2020; Wang et al., 2024a). Mastery
of such data-driven insights enables more precise predictions, enhanced system performance, and
significant advancements in how we interact with and manipulate the application in the fields of
engineering and science (Noé et al., 2020). The growing interest in efficient PDE solvers and the
success of deep learning models in various fields has sparked significant attention, such as neural
operator methods (Li et al., 2020; Kovachki et al., 2021; Bonev et al., 2023; Liu et al., 2024a). Um
et al. (2020) proposed a spatial resolution solver to reduce the computation and accelerate physical
simulations. Wu et al. (2022); Sanchez-Gonzalez et al. (2020) proposed reducing the dimensions of
latent space to map the solution in the surrogate models.

Exploring how to integrate and fully leverage performance across different scales while controlling
complex learning dynamics is a promising area of research. Based on the frequency principle (Xu
et al., 2019), our primary motivation is to enable smaller or more general models to learn low-
frequency dynamic data, while delegating high-frequency data to more capable models. The router
(distribution policy) regulates this allocation, which sets our approach apart from other methods.
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Figure 1: Framework of the proposed Multi-scale and Multi-experts (M2M). The Experts net has
different models, fpolicy

gate decides which spatial domain is needed to allocate the different models in
the roll-out predications. For more details, please refer to sec. 3.

In this work, we introduce the multi-scale and multi-expert (M2M) neural operators as an effective
surrogate model to learn the dynamics of PDEs and optimize the appropriate allocation law for the
different scales with different expert models. Our critical insight lies in leveraging the divide-and-
conquer approach among models to learn the capabilities across different scales quickly. Divide and
conquer is a fundamental algorithmic technique for solving complex problems by breaking them
down into simpler, more manageable sub-problems (Smith, 1987; Huang et al., 2017; Ganaie et al.,
2022; Emirov et al., 2024). This approach works on the principle that a large problem can often
be divided into two or more smaller problems of the same or similar type. Each of these smaller
problems is then solved independently. Once solutions are obtained for all the sub-problems, they
are combined to form a solution to the original, more extensive problem. In addition, the model
is designed to master the distribution of the most effective data while minimizing computational
resources. To fairly evaluate the effectiveness of our framework, we standardized the internal models
to Fourier Neural Operator (FNO) models with varying numbers of modalities. This strategy enables
the model to adaptively determine the best local spatial resolution to evolve the system. The M2M
is trained in an alternating manner, iterating between training the evolution model with supervised
loss and allocation policy net. Together, the controllable routing mechanism effectively integrates
prior knowledge with model capabilities. The implementation of PID control significantly aids in
optimizing the training of Multi-of-Experts (MoE).

Our main contributions are as follows:

1. We propose a controllable multi-expert and multi-scale operator model to embed multiple models
based on specific priors. The multi-expert system embodies the divide-and-conquer philosophy,
while the multi-scale approach enables efficient learning.

2. By bridging the control theory-PID, this unified theory demonstrates its strong generalizability.
It is a versatile and scalable method for the machine learning and science simulation community.

3. We validate the aforementioned method using the standard Navier-Stokes equations and a custom
multi-scale dataset, ensuring a balance between speed and accuracy.

2 PROBLEM SETTING AND RELATED WORK

We consider temporal Partial Differential Equations (PDEs) w.r.t. time t ∈ [0, T ] and multiple
spatial dimensions x = [x1, x2, . . . xD] ∈ X ⊆ RD. We follow a similar notation as in (Brandstetter
et al., 2022).
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∂tu = F (a(t),x,u,ux,uxx, . . .) , (t,x) ∈ [0, T ]× X
u(0,x) = u0(x), x ∈ X
B[u](t,x) = 0, (t,x) ∈ [0, T ]× ∂X

(1)

where u : [0, T ] × X → Rn is the solution, which is an infinite-dimensional function. a(t) is a
time-independent parameter of the system, which can be defined at each location x, e.g. diffusion
coefficient that varies in space but is static in time, or a global parameter. F is a linear or nonlinear
function. u0(x) is the initial condition, and B[u](t,x) = 0 is the boundary condition when x is on
the boundary of the domain ∂X across all time t ∈ [0, T ]. Here ux,uxx are first- and second-order
partial derivatives, which are a matrix and a 3-order tensor, respectively (since x is a vector). Solving
such temporal PDEs means computing the state u(t,x) for any time t ∈ [0, T ] and location x ∈ X
given the above initial and boundary conditions.

The fundamental problem can be succinctly represented for tasks involving partial differential equa-
tions by the following formula.

(∂Ω,u0)
fθ7−→ (∂Ω,u1)

fθ7−→ · · · fθ7−→ (∂Ω,uT ), (2)

where fθ represents the model and ∂Ω denotes the boundary conditions.

Deep Learning-based Surrogate Methods. There are two fundamental approaches:

• Autoregressive Model Approach: The model learns the mapping function fθ from a given ut to
the next ut+1, acquiring discrete representations. This method involves learning the model to
predict subsequent time steps based on previous inputs. Such frameworks include CNN-based
models (Wang et al., 2020b; Kemeth et al., 2022), GNN-based models (Pfaff et al., 2020; Li
et al., 2024), and transformer-based models (Cao, 2021; Geneva and Zabaras, 2022; Takamoto
et al., 2023).

• Neural Operator Approach: Unlike autoregressive models, the neural operator method (Lu
et al., 2021) allows the model to map through multiple time steps, learning infinite-dimensional
representations. This approach enables the model to handle more complex temporal dynam-
ics by learning continuous representations. Apart from vanilla FNO, there are other operator
learning methods such as U-FNO (U-Net Fourier Neural Operator, (Wen et al., 2022)), UNO
(U-shaped neural operators, (Azizzadenesheli et al., 2024)), WNO (Wavelet Neural Operator,
(Navaneeth et al., 2024)), and KNO (Koopman Neural Operator, (Xiong et al., 2024)).

In addition to these two conventional methods, researchers have developed several hybrid ap-
proaches that combine elements of both (Watters et al., 2017; Zhou et al., 2020; Keith et al., 2021;
Hao et al., 2023; Kovachki et al., 2024; Wang et al., 2024b). For multi-scale PDEs problems, Liu
et al. (2020) developed multi-scale deep neural networks, using the idea of radial scaling in the
frequency domain and activation functions with compact support. Hu et al. (2023) propose the
augmented physics-informed neural network (APINN), which adopts soft and trainable domain de-
composition and flexible parameter sharing to further improve the extended PINN further. Xu et al.
(2019) firstly find the deep neural network that fits the target functions from low to high frequen-
cies. Liu et al. (2024b) demonstrate that for multi-scale PDEs form, the spectral bias towards low-
frequency components presents a significant challenge for existing neural operators. Rahman et al.
(2024) study the cross-domain attention learning method for multi-physic PDEs by the attention
mechanism. However, the aforementioned methods do not efficiently leverage frequency character-
istics, and they lack a controllable mechanism for adjusting the learning process of partial differential
equations. Compared with (Du et al., 2023; Chalapathi et al., 2024), M2M directly optimizes for
the PDEs objective, first using a universal controlled method and multi-scale to learn the policy of
allocating experts to achieve a better accuracy vs. computation trade-off. In addition to simplify-
ing the computation of attention, the MoE mechanism (Jacobs et al., 1991) has been incorporated
into transformer architectures (Fedus et al., 2022; Chowdhery et al., 2023) to lower computational
expenses while maintaining a large model capacity. The key distinction of our objective lies in its
emphasis on controllability and multi-scale considerations, both of which are crucial factors for all
fundamental partial differential equation data.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 THE PROPOSED METHOD

In this section, we detail our M2M method. We first introduce its architecture in sec. 3.1. Then we
introduce its learning method (sec. 3.2), including learning objective training, and a technique to let
it learn to adapt to the varying importance of error and computation. The high-level schematic is
shown in figure 1.

3.1 MODEL ARCHITECTURE

The model architecture of M2M consists of three components: multi-scale segmentation and inter-
polation, Experts Net, and Gate router. We will detail them one by one.

Multi-scale Segmentation and Interpolation. Multi-scale segmentation involves strategically de-
composing the input into multiple scales or resolutions to facilitate detailed analysis and processing.
This technique benefits applications that require fine-grained analysis on various scales, such as
traditional image processing (Emerson, 1998; Sunkavalli et al., 2010) and deep learning methods
(Zhong et al., 2023; Yuvaraj et al., 2024). Consider a discrete form input represented as uh×w

t ,
where h and w denote the spatial domain resolution at time step t. In multi-scale segmentation,
the uh×w

t first needs to be segmented into smaller, non-overlapping scale patches. For example,
segmenting a tensor uh×w

t into 2× 2 patches results in four distinct segments. Each segment corre-
sponds to a quarter of the original tensor, assuming that h and w are evenly divisible by 2. Secondly,
suppose that we wish to perform an interpolation on these segmented patches to restore them to the
original h× w dimensions. Mathematically, this operation can be expressed as:

uh×w
t

Segmentation−−−−−−−→
{
u

h
2 ×

w
2

i,j

∣∣∣i, j ∈ {1, 2}} Interpolation−−−−−−→
{
Ph×w

i,j

∣∣∣i, j ∈ {1, 2}} , (3)

where Ph×w represents the tensor after interpolation, which combines the four patches back into the
original size of h × w. This segmentation approach effectively reduces the dimensionality of each
patch and allows for localized processing, which is essential for tasks involving hierarchical feature
extraction.

Experts Net. In theory, an expert net is composed of multiple distinct models. However, our
sub-expert networks are structured in a parallel configuration for rigorous comparison in this study.
Importantly, we have opted for a non-hierarchical architecture. All constituent models are based on
the Fourier Neural Operator (FNO), with potential variations in the number of modalities. Formally,
let E = {E1, E2, . . . , En} represent the set of expert models, where each Ei is an FNO. The input
to each expert is a different patch Pi ∈ Rh×w. The output of each expert maintains the same
dimensionality as the input. The primary function of the expert system is to model the temporal
evolution of the system state as shown in Eq. 2. We employ a divide-and-conquer strategy, where
each expert Ei operates on a subset of the input space:

Ei : P
h×w
i → P′h×w

i , (4)

where Ph×w
i is a patch of the input and P′h×w

i is the corresponding output patch. The predication
solution ûh×w

t+1 involves the aggregation of these individual patch predictions to reconstruct the full
system state:

ûh×w
t+1 = A(P′

1,P
′
2, . . . ,P

′
n), (5)

where A is an aggregation function that combines the individual patch predictions into a coherent
global state, this approach allows for parallelization and potentially more efficient processing of
complex spatio-temporal dynamics while maintaining consistency across all or sparse expert models.

Gate Router Mechanism in MoE. The Gate Router Mechanism is a crucial component in the MoE
architecture and is responsible for distributing input patches across expert models. The primary
objectives of this mechanism are:

1. To efficiently allocate different patches to different models and to route complex problems to
more sophisticated networks. (Divide and Conquer)

2. To avoid overloading a single model, which could lead to high computational complexity. (Sim-
plicity is the ultimate sophistication)
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3. Optionally, the router could be set as the top-k and strong prior, which we encourage the sparse
experts to apply the different regions.

Let X =
{
uh×w
1,1 ,uh×w

1,2 ,uh×w
2,1 ,uh×w

2,2

}
be a set of 4 input scale domain. The router function R is

defined as:
R : X → [0, 1]N×M , (6)

where R(xi)j represents the probability of routing input xi to expert Ej . The ideal routing strategy
aims to optimize the following objectives:

min
R

Ex∼D

 N∑
j=1

R(x)j · Error(Ej , x)

 , (7)

where D is the data distribution and Error(Ej , x) is the error measure of each expert Ej performs
on input patch compared with the ground truth. This paper introduces an optional prior distribution
P (Ej) over the experts to initialize the routing mechanism and gradually train it. This prior can be
incorporated into the routing decision:

R(x)j =
exp(rj(x) + logP (Ej))∑N

k=1 exp(rk(x) + logP (Ek))
, (8)

where rj(x) is a learned function that scores the suitability of expert Ej for input x. By combining
these components, the router mechanism can efficiently distribute inputs across experts, adapt to the
complexity of different inputs, and maintain a balanced computational load across the system.

3.2 LEARNING OBJECTIVE AND CONTROL STRATEGY

The training objective is defined as follows:
L(t) = λ(t)Lrouter + Lexperts, (9)

where the Lrouter and Lexperts represent the training loss for the router and experts net, respectively.
The λ(t) is a hyperparameter related to the training epoch t. Our assumption is as follows: in the
initial stage of the model, the router should allocate data evenly to the experts, allowing each expert
to receive sufficient training. Once the expert networks have been adequately trained, if the router
is not performing well, feedback should be used to train the router. This will enable the router to
select the well-performing experts for further training, thereby fully leveraging the potential of the
experts.

Router Loss. The training objective for the router can be formulated as:
Lrouter = KL(R(x)||P (E)) + Lload, (10)

where KL is the Kullback-Leibler divergence, and this formulation allows the router to start from
the prior distribution and gradually adapt to the optimal routing strategy as training progresses. The
KL divergence term encourages the router to maintain some similarity to the prior, which can help
prevent all inputs from being routed to a single expert. To promote the sparsity of the router and the
computational tradeoff, we introduce a load-balancing entropy loss as Lload:

Lload = −
M∑
i=1

pij log pij , (11)

where pij represents the probability R(xi)j of assigning the i-th data point to the j-th expert.

Expert Learning Loss. Each expert model should be trained using supervised learning to approx-
imate the solution of the PDE at a given time step. To achieve this, we define the loss function for
each expert model using the Mean Squared Error (MSE) between the predicted solution and the true
solution of the PDE at each time step.

For a given expert model Ej , the goal is to minimize the MSE between its prediction ûj(x, t) and
the true solution u(x, t) of the PDE over a set of input patches. The MSE loss for the j-th expert can
be defined as:

MSEj =
1

N

N∑
i=1

(u(xi, ti)− ûj(xi, ti))
2
, (12)

5
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(a) (b)

Figure 2: Figure (a) shows the router policy in the training. Figure (b) shows the framework of the
PI controller in the M2M. By designing the target and feedback in the loop, λ can be adjusted.

where N is the selected number of patches, u(xi, ti) is the true solution at the i-th patch, and
ûj(xi, ti) is the predicted solution by the expert Ej .

The total loss for all experts can be written as the sum of the MSE losses for each expert:

Lexperts =
M∑
j=1

MSEj =

M∑
j=1

1

N

N∑
i=1

(u(xi, ti)− ûj(xi, ti))
2
. (13)

By minimizing this total loss, each expert model learns to approximate the solution of the PDE over
time, ensuring that their predictions become more accurate as the training stage.

PID-Gate Control Connects the Expert and Router. The dispatch mechanism of the router
presents a challenging issue. On the one hand, if the router initially has a strong prior, different
experts may not receive sufficient training, and their specialized capabilities cannot be fully lever-
aged. On the other hand, if the router erroneously assigns tasks to less capable experts, the overall
loss of the model may not decrease as expected. Inspired by automatic control theory (Åström et al.,
2006; Wang et al., 2020a), we design a non-linear PI controller in the loop as shown in figure 2, a
variant of the PID control, to automatically tune the hyperparameter λ(t) and use the desired loss or
desired prior KL distribution as feedback during model training. we also demonstrate that PID-gate
control improves the performance in the ablation study. To address this challenge, we propose two
control strategies in Algorithm 1, and the proof is in the Appendix 6.5.

Algorithm 1 Two Dispatch Strategies with Desired Loss L̂

1: Init: λ0, λmax, λmin, Kp, Ki, Topk, Epochs N , L̂
2: Input: Initial PDE solution ▷ [Batch, Tin, H,W ]
3: Multiscale segmentation and interpolation ▷ [B,S2, Tin, H,W ]; S: scale
4: for t = 1 to N do
5: Router outputs probability distribution over classes
6: Strategy 1: Select top k models, allocate different regions to models, and aggregate outputs

with sparse models.
7: Strategy 2: Dispatch to all models, linearly combined with the weight.
8: Compute Loss L(t)
9: Controller: e(t)← L(t)− L̂; P (t)← Kp

1+exp(e(t))

10: if λmin < λ(t− 1) < λmax then
11: I(t)← I(t− 1)−Kie(t)
12: else
13: I(t) = I(t− 1) ▷ Anti-wind up
14: end if
15: λ(t)← P (t) + I(t) + λmin

16: end for
17: Output: PDE solution ▷ [Batch, Tout, H,W ]

4 EXPERIMENTS

In the following experiments, we set out to answer the following questions on our proposed M2M:

6
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• Multi-scale effect and allocate mechanism: Can the M2M model dynamically allocate the
spatial domain to concentrate computational resources on regions with higher dynamics, thus
enhancing prediction accuracy?

• Pareto frontier improvement: Does M2M enhance the Pareto frontier of Error versus Com-
putation compared to deep learning surrogate models (SOTA)?

• Controllable training: Is M2M capable of adapting its learning results based on the dynamics
of the problem, as indicated by the parameter λ?

We evaluate our M2M on two challenging datasets: (1) a custom 2D benchmark nonlinear PDEs,
which tests the generalization of PDEs with the different spatial frequencies; (2) a benchmark-
based Naiver-Stokes simulation generated in (Li et al., 2020). Both datasets possess multi-scale
characteristics where some domains of the system are highly dynamic while others are changing
more slowly. We use the relative L2 norm (normalized by ground-truth’s L2 norm) as a metric, the
same as in (Li et al., 2020). Since our research primarily focuses on control methods combined
with multi-expert models, we aim to utilize the foundation modes of Fourier operators. In the
following sections, we will consistently employ FNO32, FNO128, FNO64, and FNO16, with the
goal of achieving a higher-order operator FNO256.

4.1 THE COMPARISON OF CUSTOM MULTI-SCALE DATASET V.S. PID-CONTROL EFFECT

Data and Experiments. In this section, we test M2M’s ability to balance error vs. computation
tested on unseen equations with different parameters in a given family. For a fair comparison, we
made the model size of the different methods as similar as possible. We use the custom dataset for
testing the Multi-scale effect and Controllable training. The multi-scale dataset is given by

∇2u(x, y) = f(x, y), (14)

where u(x, y) is the unknown solution to be solved, and f(x, y) represents the source term, which
varies for different regions. More details about the multi-scale dataset are available in the Appendix
6.1.

Main Results. The compared baseline methods are FNO (Li et al., 2020), UNO (Azizzadenesheli
et al., 2024), CNO (Raonic et al., 2024), and KNO (Xiong et al., 2024). Please refer to the appendix
for baseline visualization results in the appendix 6.4.3. The M2M approach achieves Pareto opti-
mality, as demonstrated in the Pareto frontier detailed in figure 10. As a heuristic choice, we set the
target to 0 and defined the loss L(t) as the RMSE in the training stage.

Figure 3: Results of one-step prediction on the
multi-scale custom dataset at different epoch: 1,
10, and 100. The scale is set to 4, and the ablation
on the multi-scale study is shown in appendix 6.1.

From figure 4, M2M can allocate models
sparsely and only sends the region with a slower
change (Patch number is 1-4) to lowest mode
FNO16 for the computation efficiency and high-
est modes of FNO128 for accuracy both from
zero-prior. The above results show that M2M
can focus computation on dynamic learning
in the table 4.1. M2M achieved notable im-
provements compared to baseline models, with
Strategy 1 requiring less computation time than
Strategy 2 while delivering the input to all ex-
perts. For PID-M2M, we test our model on dif-
ferent initial λ values and different TOPk by
empirical selection of Kp = 0.001, λmin = 0,
λmax = 1 and Ki = 0.001, where λ focuses
on router training in the initial training stage.
The comparison study of the PI effect is shown
in figure 3. The PI controller can speed up the
error convergence in training and the value of
λ has been controlled. We see that with λ (e.g.,
λ(0) = 0 in the initial value) dynamic change, proving that the PI controller can control the router in
the allocating process with different experts. To investigate whether M2M can allocate the best ex-
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Table 1: Comparison study in the custom dataset. This shows that M2M can improve prediction error
by selecting where to focus computation trade-offs, especially with more stringent computational
constraints. All tests are conducted on an NVIDIA A800 GPU. The scale of M2M is set to 4.

Models Parameters (M) Computation (ms) L2 error

FNO
(Li et al., 2020)

FNO16 0.047 1.9 0.54
FNO32 0.16 2.2 0.13
FNO64 0.61 2.3 0.050
FNO128 2.4 2.5 0.038
FNO256 9.5 2.6 0.036

UNO
(Azizzadenesheli

et al., 2024)

UNO16 5.2 6.2 0.080
UNO32 19.2 8.9 0.075
UNO64 74.2 18.2 0.042
UNO128 292.6 33.7 0.026

KNO
(Xiong et al., 2024)

KNO16 4.2 10.6 0.99
KNO64 67.1 130.5 0.92

CNO
(Raonic et al., 2024)

CNO4 2.0 18.3 0.12
CNO64 14.2 148.6 0.010

PID-M2M (Ours)

Strategy 1,Topk=1 4.8 4.5 0.024
Strategy 1,Topk=2 4.8 8.0 0.008∗

Strategy 1,Topk=3 4.8 11.2 0.012
Strategy 2 4.8 14 0.008∗

(a)

(b)

Figure 4: Dynamic weight distribution of router, the figure (a) and (b) are the distribution of the
output on the 1st and 100th epoch. Prior [0000] indicates that no prior is set on the router. The
TOPk is set 2.

pert on the most dynamic region according to different priors, we visualize which allocating experts
on outputs of the router as shown in appendix 6.4.1.

4.2 THE NAIVER-STOKES (NS) DATASET AND COMPARISON OF SOTA

Here we evaluate our M2M performance in a more challenging dataset in the Naiver-Stokes dataset,
the description is shown in Appendix 6.2. In this experiment, to ensure a fair comparison and
leverage the M2M method’s ability to enhance FNO’s inherent capabilities, we selected the baseline
model of FNO-3D instead of the auto-regressive style in FNO-2D. Since FNO-3D operates at least
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Figure 5: Results of NS datasets in PID-M2M. The number of scale is 1.

three times faster than FNO-2D, this choice significantly shortened the experimental cycle. As
shown in table 4.2, our M2M can allocate high FNO modes to the high-frequency region and achieve
better accuracy than the baselines. Specifically, M2M outperforms the strong baseline of FNO128 in
the performance a little. This shows that the router could learn a proper allocation policy, allowing
the evolution model to evolve the system more faithfully. However, the multi-scale effect did not
perform well on this complex dataset, especially in the boundary. The reason is that there are strong
temporal scale dependencies between patches, and as the spatial partitioning increases, the divide-
and-conquer approach becomes less effective in the appendix 6.2. We applied our method to a
cylinder wake flow in the appendix 6.4.4, close to real-world data which has the prior on the fluid
mechanic. By incorporating prior distributions in regions where vortex shedding forms around the
cylinder, the prediction is quite accurate.

Table 2: Comparison study in the NS dataset. This shows that M2M can improve prediction error
by selecting where to focus computation trade-offs, especially with more stringent computational
constraints. All tests are conducted on an NVIDIA A800 GPU. The scale of M2M is set to 1.

Models Parameters (M) Computation (ms) L2 error

FNO

FNO16 0.050 2.1 0.29
FNO32 0.16 4.7 0.26
FNO64 0.61 4.9 0.25
FNO128 2.4 6.2 0.24
FNO256 9.5 6.9 0.22

PID-M2M (Ours)

Strategy 1, Topk=1 4.0 5.0 0.26
Strategy 1, Topk=2 4.0 7.8 0.23∗

Strategy 1, Topk=3 4.0 13.0 0.25
Strategy 2 4.0 14.9 0.23∗

5 CONCLUSION AND LIMITATION

The proposed M2M model jointly learns the evolution of the physical system and optimizes compu-
tational assignment to most dynamic regions. In multi-scale and Naiver-Stokes datasets, we show
that our PID method can controllably train the expert’s net and router, which clearly enhances long-
term prediction error than strong baselines of deep learning-based surrogate models. The fitting
error has been demonstrated to converge based on control theory in the Appendix 6.5. Furthermore,
the PID-based M2M could improve the convergence speed, showing that this intuitive baseline is
suboptimal. Finally, M2M outperforms its ablation without multi-scale segmentation, showing the
divide-and-conquer strategy which can significantly reduce the prediction error. We hope M2M can
provide valuable insight and methods for machine learning and physical simulation fields, especially
for applications requiring scalability and multi-physics models. The limitation of M2M is shown in
appendix 6.6.
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6 APPENDIX

6.1 CUSTOM MULTI-SCALE POISSON EQUATION DATASET

The custom multi-scale dataset is designed to simulate a complex scenario, where data in some
regions change slowly while changing more rapidly in others. We define the task as follows: the
input is the solution ulow to a relatively low-frequency equation, while the output is the solution
uhigh to a corresponding high-frequency equation. To idealize this dataset, we adopted the form
of the classical Poisson equation and used the finite difference method to solve the problem. The
concise discrete form is [1, 128, 128] 7→ [1, 128, 128]. The time step is set to 1 and the spatial
domain is set to [128, 128].

6.1.1 FREQUENCY DISTRIBUTION ON DIFFERENT REGIONS

The source term for each region is a sinusoidal function with a systematically varying frequency.
Specifically, the source term fij(x, y) is defined as follows for i, j = 1, 2, 3, 4:

f11(x, y) = sin(π · (1 · µx)) sin(π · (1 · µy)),
f12(x, y) = sin(π · (2 · µx)) sin(π · (2 · µy)),
f21(x, y) = sin(π · (3 · µx)) sin(π · (3 · µy)),
f22(x, y) = sin(π · (4 · µx)) sin(π · (4 · µy)).

(15)

The initial solution of PDEs will be decided by the dimensionless frequency µ and the other solution
for the high frequency is 7 · µ. In this dataset, we sampled 1000 cases with different values of µ,
which were drawn from a normal distribution N (1, 0.1) using Monte Carlo sampling. Out of the
1000 samples, 700 are allocated for the training dataset, while the remaining 300 are reserved for
the test dataset. To increase the complexity in the varying time PDEs, we assume that the solutions
include a two-step solution and that the ground truth (the second time-solution) is the high spatial
frequency to be predicted, 7 · µ of each low-frequency domain corresponding to the input domain.

6.1.2 SOLVER IMPLEMENTATION AND SETTING OF GRIDS

The Poisson equation is solved numerically using a finite-difference method on each block. The
boundary conditions and the source term f(x, y) determine the solution u(x, y) within each block.
The computational grid is set into a 128 × 128 grid and divided into 2 × 2 blocks, each of size
64× 64. After calculation, the boundary condition g(x, y) = 0 is assigned in each block boundary.

6.2 2D NAIVER STOKES

6.2.1 2D NAIVER STOKES DATASETS

The Navier-Stokes equation has broad applications in science and engineering, such as weather
forecasting and jet engine design. However, simulating it becomes increasingly challenging in the
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turbulent phase, where multiscale dynamics and chaotic behavior emerge. In our work, we specif-
ically test the model on a viscous, incompressible fluid in vorticity form within a unit torus. The
concise discrete form is [10, 64, 64] 7→ [10, 64, 64]. The input time step is set to 10 and the spatial
domain is set to [64, 64].

∂tw(t, x) + u(t, x) · ∇w(t, x) = ν∆w(t, x) + f(x), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(t, x) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(0, x) = w0(x), x ∈ (0, 1)2
(16)

where w(t, x) = ∇× u(t, x) is the vorticity, ν ∈ R+is the viscosity coefficient. The spatial domain
is discretized into 64× 64 grid. The fluid is turbulent for ν = 10−5

(
Re = 105

)
.

6.2.2 RESULTS OF M2M AT DIFFERENT SCALES

Figure 6 and 7 below show the prediction results at two different scales. As can be seen, there are
some sharp edges at the boundaries.

Figure 6: Model Performance at a scale factor of 2

Figure 7: Model Performance at a scale factor of 4

6.3 DETAILED CONFIGURATION OF THE M2M AND BASELINE MODELS

This section provides a detailed configuration of M2M, baseline methods, and the hyperparameters
used for training in Table 3 and Table 4.

6.3.1 HYPER-PARAMETERS FOR TRAINING OF M2M

The policy network is implemented as a classifier, with the output corresponding to the weights
distribution of the expert network.
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Table 3: Hyperparameters for M2M architecture and training.
Hyperparameter name Custom dataset 2D NS dataset
Model architecture: Experts and Router
Experts architecture: FNO32, FNO128, FNO64, FNO16

Router architecture: Transformer based classifier
Autoregressive roll-out steps 1 1
Hidden channels of FNO 6 6
f policy
gate : Transformer embedding dim 128 64
f policy
gate : Numbers of head 4 4
f policy
gate : Numbers of layers 2 2
f policy
gate : Encoder layers 2 2
kp of PID 0.001 0.001
ki of PID 0.02 0.02
Hyperparameters for training:
Learning rate 1e−3 1e−3

Optimizer Adam Adam
Batch size 8 4
Number of Epochs 100 200

6.3.2 HYPER-PARAMETERS FOR THE TRAINING OF BASELINE MODELS

The setting of our baseline methods is shown as follows. The hyperparameters used for training are
the same as those used in the M2M model above.

Table 4: Setting for baseline models
Hyperparameter name Custom dataset 2D NS dataset
Baseline Operators: FNO, UNO, KNO, and CNO
In channels 1 10
Modes of FNO: 16, 32, 64, 128
Hidden channels of FNO 6 6
Modes of UNO: 16, 32, 64, 128
Hidden channels of UNO 6 6
Scaling of UNO [1,0.5,1,2,1] [1,0.5,1,2,1]
Layers of UNO 5 5
Modes of KNO: 16, 128
Operator size 6 6
Decompose Number 15 15
Modes of CNO: 4, 8
Number of block 4 4
Channels 16 16

6.4 EXTRA VISUALIZATION

6.4.1 MOE AND PID TRAJECTORY DETAILS

In this section, we present results concerning the two types of priors in the router during the initial
phase, along with different PID parameters and scaling factors. One type of strong prior, such as
[0100] to add the output of the router, indicates that the router assigns each patch to four experts
by incorporating the prior directly into the router’s output through hard constraints, followed by a
softmax function. The other type of weak prior represented as [0000], relies entirely on the router’s
output without any prior constraints. As for the second prior, the results has shown in the figure 3.
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Figure 8: Variation results of input, ground truth, prediction, and absolute difference along the
training epochs. The columns from left to right represent training times of 1, 50, and 100th epoch
units respectively. The prior distribution for FNO is set to [0100]

6.4.2 ABLATION STUDY ON THE MULTI-SCALE EFFECT

We compared the performance of multi-scale models on the custom dataset, where the model is
directly routed to different experts by a router, with the prior set to [0000]. It is worth noting that
these comparisons were made without the inclusion of the PID algorithm, to ensure fairness in the
table 5. Both interpolation and extrapolation methods in the multi-scale stage were chosen to be
linear for the sake of computational efficiency.

Table 5: Ablation study on the multi-scale effect in M2M. The prefix number represents the scale
factor S, and Topk is set to 4. All tests were conducted without a controller.

Models RMSE MAE
1-Scale M2M 0.015 0.004
2-Scale M2M 0.010 0.004
4-Scale M2M 0.008 0.005
8-Scale M2M 0.008 0.007

6.4.3 BASELINE RESULTS

Here, we show the Pareto Frontier with different models in the figure 10. It can be observed that
our M2M model, represented by the blue stars, lies on the Pareto frontier, demonstrating that our
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(c)

(b)

(a)

(d)

(d)

Figure 9: Variation of MoE Expert Weights with Prior and PID Parameters with scaling factor 4.
Figure (a) Output of the router during the first epoch of the training stage. Figure (b) Output of the
router at the 50th epoch of training. Figure (c) Output of the router at the 100th epoch. Figure (d)
Adjust PID model parameters with the target set to 0. The error is defined as the difference between
the model’s loss function and the target. The green line represents the controllable value for λ(t).
The prior distribution for FNO is set to [0100]

Figure 10: Pareto Frontier in the multi-scale dataset. The larger shape in the legend means larger
mode numbers and larger parameters.

computational speed and accuracy are quite competitive. Performances of baseline models CNO,
FNO, UNO, and KNO on the custom dataset are presented in figure 11, figure 12, figure 13, and
figure 14.
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Figure 11: CNO performance on multi-scale datasets. left: CNO4, right:CNO16

Figure 12: FNO performance on multi-scale datasets. Five Columns from left to right: FNO16,
FNO32, FNO64, FNO128, and FNO256
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Figure 13: UNO performance on multi-scale datasets. Four Columns from left to right: UNO16,
UNO32, UNO64, UNO128

Figure 14: KNO performance on multi-scale datasets. From left to right: KNO16, KNO128
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6.4.4 PERFORMANCE ON THE DATASET OF FLOWING AROUND A CYLINDER

We also consider the general application of our method on natural datasets, the dataset is shown in
the following figure 15, such as the flowing around a cylinder (Tencer and Potter, 2021). The input
shape [1, 192, 112] needs to be mapped to the next time step with the shape [1, 192, 112]. The model
simulation is conducted at a Reynolds number of 160, which leads to the formation of a vortex.

The allocation strong prior between different experts’ models is relatively reasonable, as the vortex
is generated behind the cylinder in the patch 5 − 12. During training, it is necessary to assign
the high-frequency components to the higher modes of the FNO. It is shown that M2M can learn
based on the strong prior like the figure 16, which will promote artificial intelligence in scientific
discoveries and simulations.

In Out

Figure 15: Dataset of flow past a cylinder, left tensor shape:[1, 192, 112], right tensor
shape:[1, 192, 112]

6.5 CONTROL THEORY ON PID

A PID controller regulates the control input u(t) by combining three terms: proportional (P ), inte-
gral (I), and derivative (D). The controller aims to minimize the tracking error e(t), defined as the
difference between the desired reference signal r(t) and the system output y(t):

e(t) = r(t)− y(t)

The PID control law is given by:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, respectively.

PROOF OF CONVERGENCE

The behavior of the error e(t) as t → ∞. It will diminish over time due to the combined effect of
the PID control effect.

1. PROPORTIONAL TERM

The proportional term Kpe(t) provides an immediate response to the current error. The larger the
error, the stronger the control input. This term ensures that the error decreases proportionally to its
magnitude, reducing the error in time:

de(t)

dt
= −Kpe(t)

This equation indicates that the error decreases exponentially for values of Kp.
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Figure 16: MOE weight on the strong prior distribution and predication result on the flow past a
cylinder
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2. INTEGRAL TERM

The integral term Ki

∫ t

0
e(τ)dτ corrects accumulated error over time. It helps eliminate steady-state

error by ensuring that small but persistent errors are corrected:

d

dt

(∫ t

0

e(τ)dτ

)
= e(t)

As long as e(t) remains nonzero, the integral term grows, increasing the control input u(t) until the
error converges to zero.

3. DERIVATIVE TERM

The derivative term Kd
de(t)
dt anticipates future error based on the rate of change of the error. It

provides a damping effect that helps reduce overshoot and oscillations in the system’s response. The
term is proportional to the velocity of the error, thus slowing down the system’s response as the error
decreases.

4. COMBINED DYNAMICS AND STABILITY

The overall system dynamics, taking all three terms into account, can be modeled as:

de(t)

dt
= −Kpe(t)−Ki

∫ t

0

e(τ)dτ −Kd
de(t)

dt

For a properly tuned system, the combination of the proportional, integral, and derivative terms
ensures that the error will decrease over time. Specifically, the integral term guarantees that any
steady-state error will be driven to zero, while the proportional and derivative terms ensure fast
response and stability. Thus, as t→∞, e(t)→ 0.

6.6 LIMITATION

Our approach may have certain limitations in the following areas:

1. It may require some prior knowledge of physics, such as frequency decomposition and domain-
specific knowledge embedding;

2. There may be competitive interactions between expert models, where the quality of initializa-
tion plays a decisive role in model performance;

3. The PID approach may not be suitable for more complex models and datasets, and methods like
Model Predication Control or reinforcement learning might need to be explored in the future;

4. To reduce patch boundary effects, especially in scenarios where performance degrades with a
high time and spatial dynamic (e.g. Turbulence) dataset;

6.7 MATHEMATICAL NOTATIONS

This section lists the mathematical notations used in the paper for reference.
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Table 6: List of Mathematical Notations
Symbol Description

u State variable (solution of the PDE), u : [0, T ]× X→ Rn

t Time variable in [0, T ]
x Spatial coordinate in domain X ⊆ RD

a Time-independent parameter of the system, possibly varying with x
F Linear or nonlinear function representing PDE dynamics

w(t,x) Vorticity in the Navier-Stokes equations
u(t,x) Velocity field in the Navier-Stokes equations
f(x) Source term in PDEs
X Spatial domain
∂X Boundary of the spatial domain X
Ω Domain of the PDE problem
∂Ω Boundary of the domain Ω

u0(x) Initial condition of the PDE at t = 0
B[u] Boundary operator for boundary conditions
∂tu Partial derivative of u with respect to time t
ux First-order partial derivative(s) of u with respect to x
uxx Second-order partial derivative(s) of u with respect to x
∇2u Laplacian operator (second-order differential operator of u)
fθ Mapping function of the model, parameterized by θ
E Set of expert models, E = {E1, E2, . . . , En}
Ei Expert model i in the multi-expert network
Pi Segmented and interpolated patch i
λ(t) Hyperparameter controlling training focus between router and experts
R(x)j Probability of routing input x to expert Ej

pij Probability of assigning data point i to expert Ej

Topk Number of top experts selected by the router
D Data distribution

Error(Ej ,x) Error measure of expert Ej on input x
L(t) Total loss function at time t
Lexperts Loss function for the experts net
Lrouter Loss function for the router mechanism
Lload Load balancing loss for the router

KL(R(x)||P (E)) Kullback-Leibler divergence between routing distribution R(x) and prior P (E)
Kp, Ki, Kd Proportional, Integral, and Derivative gains in the PID controller

L̂ Desired loss or target value in PID control
e(t) Error signal at time t in PID control, e(t) = L̂− L(t)
P (t) Proportional term in PID controller at time t, P (t) = Kpe(t)
I(t) Integral term in PID controller at time t, I(t) = I(t− 1) +Kie(t)

λmin, λmax Minimum and maximum values for λ(t)
ν Viscosity coefficient in Navier-Stokes equations
Re Reynolds number
N Number of training epochs
S Scale factor in multi-scale segmentation
B Batch size

Tin, Tout Number of input and output time steps
H , W Height and width of spatial domain grid
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