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ABSTRACT

Since its inception, Generative Adversarial Networks (GAN) have marked a tri-
umph in generative modeling. Its impeccable capacity to mimic observations from
unknown probability distributions has positioned it as a widely used simulation
tool. In typical applications, GANs find themselves simulating data rich in se-
mantic information such as images or text out of random noise. As such, it is
reasonable to expect that large parametric models such as GANs must be able to
estimate standard theoretical probability densities with ease. In this paper, based
on a series of disillusioning experimental findings, we show that GANs often fail
to induce the simplest of statistical transformations between distributions. For ex-
ample, starting with a standard Gaussian noise, GANs with 2-deep generators are
unable to perform a positional translation. Supporting theoretical tests on gener-
ated data further corroborates our rather unsettling conclusions.

1 INTRODUCTION

Statistical simulations often deal with the problem of generating samples from a probability dis-
tribution given random noise. Perhaps the most rudimentary method in this regard is the inverse
transform sampling. It is based on the principle that given u ∼ U(0, 1), we have F−1

X (u)=dX ,
where F−1

X denotes the generalized inverse of the cumulative distribution function of the random
variable X . Modern-day generative models deploying deep neural networks (NN), characterized
by large sets of parameters (Θ ⊂ Rm), essentially run on the same philosophy. Their goal lies
in producing pseudo-random replicates from a target distribution FX(·), often assumed to possess
corresponding density fX : X → R. Typically, based on the complexity of underlying usages (e.g.
generating image samples), such distributions remain unknown to practitioners. Thus, the problem
boils down to finding the best estimate of fX amongst the class of generated laws gθ(·), θ ∈ Θ.
In a GAN (Goodfellow et al., 2014) architecture, the generator plays the role of gθ(·) and ideally
transforms input u to near-replicates of X .

Data samples such as images or text are complex mathematical structures (e.g. high-dimensional
vectors, tensors, or graphs), comprised of numerous features that encapsulate semantic informa-
tion about their parent distribution. As such, estimating at least some of them efficiently (based on
learned representations) results in perceptually acceptable simulations. As a result, the complex-
ity of Θ in deep generative models such as GANs is made purposefully high. It enables the class
of functions gΘ(·) to be rich enough to produce a good estimate. Predictably, GANs have been
shown to excel at estimating Besov densities (Liang, 2021). In other words, GANs tend to per-
form well when the target distribution is regular or has intrinsic ‘patterns’. Thus, it is natural to ask
whether there exists a lower limit to the amount of semantic information a target law needs to pos-
sess to be estimated accurately by GANs. From a simulation perspective, this translates to checking
whether GANs can generate samples from standard probability distributions that are exactly char-
acterized by a sufficiently small set of parameters. When seen from a model selection viewpoint,
the answer seems straightforward. An over-parameterized model, upon adequate training, should
ideally perform well given a problem of lower complexity. However, GANs and their immediate
variants exhibit poor approximation in case the target distribution is not information-rich. We elu-
cidate the idea based on the following experiments. Codes and supporting material can be found in
https://github.com/DDuttaGit/ICLRTP2024.
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Figure 1: The histograms corresponding to generated distributions using (a) vanilla GAN, (b)
WGAN, and (c) LSGAN on input U(0, 1); all deploying leaky-ReLU-activated 2-deep generators.

2 EXPERIMENTS

We device three experiments inspired by classical statistical transforms. Firstly, we aim to simulate
gθ(u) ∼ N(0, 1) out of u ∈ U(0, 1). Box-Muller transform (Box & Muller, 1958) readily provides
a deterministic pathway based on radial maps. We check whether GANs can induce such functions
as well. The architectures deployed in the process are namely vanilla GAN, WGAN (Arjovsky
et al., 2017), and LSGAN (Mao et al., 2016). All of such models are constructed using 2-deep gen-
erator (G) and discriminator (D) neural networks. We test the effect of multiple activation functions
(ReLU, leaky-ReLU, and tanh) under this regime. The choice of the number of hidden layers in G
is inspired by the fact that such networks are optimal at approximating radial functions (Eldan &
Shamir, 2016). Also, G, in its final layer uses tanh(·) activation exclusively to span the support.

Table 1: Tests of Normality on gθ∗(u).

Architecture AD test KS test

vanilla GAN ✗ ✗

WGAN ✗ ✗

LSGAN ✗ ✗

The generated distributions under all three models using
leaky-ReLU activation exhibit significant departure from
Normality [see, Fig 1]. While plotting the histograms, we
follow the common practice of standardizing the data and
compartmentalizing the range into a substantial number
of bins. Standardization seems plausible since our work
highlights rather the departure of the generated distribu-
tions from Normality. To further examine, we carry out
Anderson-Darling (AD) and Kolmogorov-Smirnov (KS)
tests of Normality. At 5% level of significance, we observe that both test results reject the hypothe-
sis that gθ∗(u) is Gaussian [see, Table 1], where θ∗ is the resultant parametric value at convergence.
The model being overly parameterized, one might suspect that the failure is rooted in overfitting.
However, using Dropout regularization (Srivastava et al., 2014), we arrive at the same conclusion
[see, Appendix B]. As such, the effect of overfitting, if at all present, is benign. Also, WGAN attests
to the finding as it innately clips gradients to enforce convergence.

2.1 TRANSLATING AND SCALING GAUSSIANS

In this section, we put GANs to the test at one of the simplest tasks in statistical simulation. First,
starting with an input N(0, 1) variate, we aim to generate an observation from N(µ, 1), given µ ̸= 0.
Ideally, the underlying task involves dynamically finding a near-estimate of µ during training, fol-
lowed by its addition to the input samples. Observe that, the large parameter set Θ is responsible
for sculpting µ. Intuitively, this should be straightforward since obtaining a lower-dimensional es-
timate can be done solely by introducing sparsity. To distinctly observe the performance of GANs,
we specify µ = −200. The last experiment extends this setup by introducing a variance σ2 ̸= 1.
In other words, we aim to generate samples from N(µ, σ2) using standard Gaussian inputs. Both
transformations are easy to realize as feed-forward NNs are essentially affine transforms followed
by activations. However, all three of our models (GAN, WGAN, and LSGAN) fail at both. While
histograms and QQ plots corresponding to generated samples serve as qualitative evidence, we test
H0 : (µ = −200, σ2 = 25) against H1 : ‘Not H0’ to testify our findings [see, Appendix B].

3 CONCLUSION

Our experiments empirically show that despite theoretical assurances, GAN and its variants fail to
simulate even the simplest of probability distributions. As a plausible explanation, we point toward
the absence of semantic features in standard densities which turn out to be the cornerstone of GANs’
capability to recognize. Future work may search for a quantitative measure corresponding to a target
distribution that indicates whether GANs can successfully simulate observations from it.
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A APPENDIX: PRELIMINARIES

In this section, we provide some rudimentary concepts that are extensively used in our discussion.

Definition A.1 (Feed-forward Neural Networks) Given L ∈ N+, a L-deep Neural Network (NN)
is defined as the collection of maps ϕ : RN0 −→ RNL+1 , {Ni}L+1

i=0 ∈ N+ given by

ϕ(x) := AL ◦ σ ◦AL−1 ◦ ... ◦ σ ◦A0(x),

where Ai(y) = Miy + bi; Mi ∈ RNi+1×Ni and bi ∈ RNi+1 , i = 0, ..., L. Here, σ signifies the
activation function. Under this setup, we call W = max{Ni}Li=1 the width of the network and L its
depth.

A.1 GAN LOSS FUNCTIONS

Let us go through the three loss functions corresponding to the architectures we use to carry out our
experiments. Given a generator transform G and discriminator D, the vanilla GAN loss in our setup
is given as

LGAN = Ex[log (D(x))] + Eu[log (1−D(G(u)))].

The WGAN loss generalizes the standard Wasserstein distance by taking the supremum over all
critic functions induced by the discriminator. As such, the specific form turns out to be

LWGAN = sup
D

Ex[D(x)]− Eu[D(G(u))].

The loss function of LSGAN is an exact extension of its vanilla counterpart, replacing only the log
by L2 norm. The real-valued data used in our experiments motivates us to use LSGAN in particular.

B APPENDIX: ADDITIONAL EXPERIMENTS

Here, we place all experiments from Section 2.1. For the generation process N(0, 1)
G→

N(−200, 1), we observe that the quantiles of the generated distribution do not align with the target
distribution [see, Fig 4] (after 1000 epochs in vanilla GAN and 200 - 500 for the rest) even when
the losses converge [e.g. see, Fig 7(b)]. Training of all models involves data samples of size ranging
from 1000− 5000. The increasing sample size does not improve the generated quality significantly.
Moreover, reducing the complexity of the discriminator function does not improve the generation
capacity either. To demonstrate the same, we rerun the experiment with a 1-deep D based on ReLU
activations. Here also, the generated distributions show significant departure from N(−200, 1) [see,
Fig 3]. To statistically validate our findings, we test the equality of means of the two distributions
(real and fake) at 5% level of significance. Table 2 shows all of them getting rejected.

(a) (b) (c)

Figure 2: QQ plots corresponding to generated distributions using (a) vanilla GAN, (b) WGAN, and
(c) LSGAN on input U(0, 1) to achieve N(0, 1); all deploying tanh-activated 2-deep generators with
Dropout.

4



Published as a Tiny Paper at ICLR 2024

Table 2: Tests of equality of parameters between generated and target distributions.

Architecture N(0, 1)
G→ N(−200, 1) N(0, 1)

G→ N(−200, 25)

Test of equality of mean Tests of equality of mean and variance

vanilla GAN ✗ ✗

WGAN ✗ ✗

LSGAN ✗ ✗

∗The decisions ‘Accept’ and ‘Reject’ against the null hypotheses are denoted by
the symbols (✓) and (✗) respectively.

We carry out the tests under varying sample sizes (500 - 4000). ‘Rejection’ is reported based on
the majority of a fixed number of test results coming out as so. We mention that the critical values
corresponding to the underlying tests (AD and KS) were originally tabulated based on the asymptotic
distributions of the statistic due to their consistency. As such, they perform well even if the number
of samples is large enough. For example, the critical values presented in Stephens (1979) only
require the sample size to be ≥ 5 for a one-sample AD test.

(a) (b) (c)

Figure 3: The histograms corresponding to generated distributions using (a) vanilla GAN, (b)
WGAN, and (c) LSGAN on input N(0, 1) to achieve N(−200, 1); all deploying leaky-ReLU-
activated 2-deep generators and 1-deep ReLU-activated discriminators.

(a) (b) (c)

Figure 4: QQ plots corresponding to generated distributions using (a) vanilla GAN, (b) WGAN, and
(c) LSGAN on input N(0, 1) to achieve N(−200, 1); all deploying leaky-ReLU-activated 2-deep
generators with Dropout.

Carrying out the same experiments for the process N(0, 1)
G→ N(−200, 25) bear similar outcomes.

The histogram and QQ plots of the generated distribution do not hint at Normality [see, Fig 5, 6],
let alone accurate central tendency or dispersion, under satisfactory convergence [e.g see, Fig 7(a)
and 8(c)]. To statistically validate, we use tests of equality of (µ, σ), which based on the observed
data rejects the null hypothesis at 5% level of significance [see, Table 2]. Such evidence enables us
to conclude that GANs, (also WGAN and LSGAN) having the architecture under consideration, fail
to generate some of the most simple distributions despite convergence.
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(a) (b) (c)

Figure 5: QQ plots corresponding to generated distributions using (a) vanilla GAN, (b) WGAN, and
(c) LSGAN on input N(0, 1) to achieve N(−200, 25); all deploying leaky-ReLU-activated 2-deep
generators.

(a) (b) (c)

Figure 6: QQ plots corresponding to generated distributions using (a) vanilla GAN (b) WGAN,
and (c) LSGAN all deploying Tanh-activated dropped-out 2-deep generators; on input N(0, 1) to
achieve N(−200, 25).

(a) Vanilla GAN on input N(0, 1) to achieve

N(−200, 25)

(b) WGAN on input N(0, 1) to achieve

N(−200, 1).

(c) LSGAN on input U(0, 1) to achieve

N(0, 1).

Figure 7: Loss plots of generator and discriminator for different GAN models under different learn-
ing rates. Subfigure (a) is using (generator, discriminator) learning rates (0.0001, 0.005) while sub-
figure (b) and (c) are using (0.001, 0.001).

We have further studied the performance of different GANs on input U(0, 1) to achieve N(−200, 1).

(a) Vanilla GAN on input U(0, 1) to achieve

N(−200, 1).

(b) WGAN on input U(0, 1) to achieve

N(−200, 1).

(c) WGAN on input N(0, 1) to achieve

N(−200, 25).

Figure 8: Further set of loss plots of generator and discriminator for GAN variants under different
learning rates. Subfigure (a) is using (generator, discriminator) learning rates (0.0001, 0.001), sub-
figure (b) and (c) are using (0.001, 0.001).
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