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Abstract
Due to their effectiveness in solving high-dimensional problems and their ability to decompose

complex optimization problems, coordinate Descent (CD) methods have garnered significant in-
terest in machine learning in the last decade. However, classical CD methods were not designed
nor analyzed with any data privacy considerations in mind, while these are increasingly critical in
managing sensitive information. This gap recently led to the development of differentially private
CD methods, such as DP-CD proposed by [9]. Despite this progress, there remains a disparity be-
tween non-private CD and DP-CD methods. Our work proposes differentially private random block
coordinate descent that allows for the selection of multiple coordinates with varying probabilities
in each iteration using sketch matrices.

1. Introduction

Recently, there has been increased interest in Coordinate Descent (CD) methods because of their
various applications in machine learning, where these methods are generally applicable to a variety
of problems involving large or high-dimensional datasets. They naturally break down complicated
optimization problems into simpler subproblems, which are easily parallelized or distributed [17,
20]. For many problems, these methods are state-of-the-art [5, 8, 11–13, 15, 16].

These coordinate descent methods are studied without considering the privacy part of the data.
However, in machine learning, managing data that often contains sensitive or confidential infor-
mation is a pressing challenge, as highlighted by [18]. The concept of differential privacy (DP)
has become a fundamental strategy in addressing this issue. A standard and widely accepted ap-
proach for training models while controlling information leakage involves solving an empirical risk
minimization (ERM) problem under DP constraints, as described by Chaudhuri et al. [2].

Recently, [9] proposed a DP version of coordinate descent called DP-CD. But there is still a gap
between the non-private coordinate descent methods and their DP-CD method. In this work, we are
doing the first steps in closing the gap where methods are allowed to select multiple coordinates
with different probabilities in each iteration, as opposed to the method by [9], which selects a single
coordinate in each iteration.
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Our work is dedicated to designing a differentially private algorithm that approximates the so-
lution to a ERM problem, as represented by the following equation:

x⋆ ∈ argmin
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where fi(x) := f(x; ζi) : Rd ×X → R is a loss function on ζi where D = (ζ1, . . . , ζn) is a dataset
of n samples drawn from a universe X .

In Mangold et al. [9], the authors consider the problem of minimizing the composite ERM
objective function, i.e., a finite sum plus a nonsmooth convex regularizer term ψ. The drawback is
that they assume ψ to be separable (i.e., ψ(x) =

∑d
i=1 ψi(xi)), which we argue is not necessary.

However, we leave it as a future work since it requires more advanced techniques. We discuss this
in more detail in Section 4.

2. Preliminaries

In this section, we introduce key technical concepts that will be utilized throughout the paper.
Throughout the paper, we will frequently use the notation [d] := {1, . . . , d}.

Norms. We begin by defining two conjugate norms, which play a vital role in our analysis, as
they help in tracking coordinate-wise quantities. Let ⟨u, v⟩ =

∑d
j=1 uivi denote the Euclidean

inner product, and consider M = Diag (M1, . . . ,Md) where M1, . . . ,Md > 0. We then define the
norms:

∥w∥M =
√
⟨Mw,w⟩ , ∥w∥M−1 =

√
⟨M−1w,w⟩ .

When M is the identity matrix I, the I-norm ∥·∥I becomes the standard ℓ2-norm ∥·∥2.

2.1. Assumptions

We recall classical regularity assumptions along with ones specific to the coordinate-wise setting.
We denote by ∇f the gradient of a differentiable function f , and by ∇jf its j-th coordinate. We
denote by ej the j-th vector of Rd’s canonical basis.

Assumption 1 (Convexity) A differentiable function f : Rd → R is convex if for all v, w ∈ Rd,
f(w) ≥ f(v) + ⟨∇f(v), w − v⟩.

Assumption 2 (Strong convexity) A differentiable function f : Rd → R is µM-strongly-convex
w.r.t. the norm ∥·∥M if for all v, w ∈ Rd, f(w) ≥ f(v) + ⟨∇f(v), w − v⟩ + µM

2 ∥w − v∥2M. The
case M1 = · · · =Md = 1 recovers standard µI -strong convexity w.r.t. the ℓ2-norm.

Assumption 3 (Component Lipschitzness) A function f : Rd → R is L-component-Lipschitz for
L = (L1, . . . , Ld) withL1, . . . , Ld > 0 if for allw ∈ Rd, t ∈ R and j ∈ [d], |f(w + tej)− f(w)| ≤
Lj |t|. It is Λ-Lipschitz if for all v, w ∈ Rd, |f(v)− f(w)| ≤ Λ ∥v − w∥2.

Assumption 4 (Component smoothness) A differentiable function f : Rd → R is M-component-
smooth for M1, . . . ,Md > 0 if for all v, w ∈ Rd, f(w) ≤ f(v) + ⟨∇f(v), w − v⟩+ 1

2 ∥w − v∥2M.
When M1 = · · · =Md = β, f is said to be β-smooth.
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The above component-wise regularity hypotheses are not restrictive: Λ-Lipschitzness implies
(Λ, . . . ,Λ)-component-Lipschitzness and β-smoothness implies (β, . . . , β)-component-smoothness.
Yet, the actual component-wise constants of a function can be much lower than what can be deduced
from their global counterparts. This will be crucial for our analysis and in the performance of DP-
CD.

2.2. Differential privacy (DP)

Let D be a set of datasets and F a set of possible outcomes. Two datasets D,D′ ∈ D are said
neighboring (denoted by D ∼ D′) if they differ on at most one element.

Definition 5 (Differential Privacy, [3]) A randomized algorithm A : D → V is (ϵ, δ)-differentially
private if, for all neighboring datasets D,D′ ∈ D and all U ⊆ V in the range of A:

P (A(D) ∈ U) ≤ exp(ϵ)P
(
A(D′) ∈ U

)
+ δ.

The value of a function h : D → Rp can be privately released using the Gaussian mechanism, which
adds centered Gaussian noise to h(D) before releasing it [4]. The scale of the noise is calibrated to
the sensitivity ∆(h) = supD∼D′ ∥h(D)− h(D′)∥2 of h.

In our context, we are interested in the sensitivity arising from specific coordinates. Let U ⊆ [d]
represent a set of coordinates. We define the sensitivity as follows:

∆U (h) := sup
D∼D′

∥∥IU (h(D)− h(D′)
)∥∥

2
,

where IU = Diag (δ1, δ2, . . . , δd) is a diagonal matrix with

δi =

{
1, if i ∈ U,

0, if i /∈ U.

When U is a singleton, i.e., U = {i}, applying the L-component Lipschitz condition (The-
orem 3) gives the following bound on sensitivity ∆{i}(h) ≤ 2Li for all i ∈ [d]. Similarly, for
U = {d}, ∆{[d]}(h) = ∆(h) ≤ 2Λ.

In this paper, we consider the classic central model of DP, where a trusted curator has access to
the raw dataset and releases a model trained on this dataset1.

2.3. Sketch and Sparsification

We study unbiased diagonal sketches, defined as follows:

Definition 6 (Unbiased diagonal sketch) Let S be a probability distribution over the 2n subsets
of coordinates/features of the model x ∈ Rd that we wish to train. Let S be nonvacuous, i.e.
P (S = ∅) = 0 and be proper, meaning that for any random set S ∼ S, pj := Prob(j ∈ S) > 0 for
all coordinates j ∈ [d]. For a given random set S ∼ S we define a random diagonal matrix (sketch)
C = C(S) ∈ Rd×d via

C = Diag (c1, . . . , cd) , cj =

{
1
pj
, if j ∈ S,

0, otherwise.
(2)

1. In fact, our privacy guarantees hold even if all intermediate iterates are released (not just the final model).
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Note that given a vector x = (x1, . . . , xd) ∈ Rd, we have

(Cx)j =

{
xj

pj
, if j ∈ S,

0, if j /∈ S.

So, we can control the sparsity level of the product Cx by engineering the properties of the
random set S. Also note that E [Cx] = x for all x.

3. Differentially Private Sketched Gradient Descent

We propose the DP-SkGD algorithm, as shown in Algorithm 1. This approach uses sketches C, as
defined in (2). Initially, depending on the random sample S, we select random coordinates and
update the model using only these chosen coordinates through a noisy gradient. The variance of the
noise depends on the sampled set S. We set different step sizes for each coordinate. This leads to
directionally-unbiased updates, as is common among SGD-type methods.

Algorithm 1 DP-SkGD

1: Input: Initial point w0 ∈ Rd, step sizes Γ = Diag (γ1, . . . , γd), number of iterations T ,
number of inner loops K, probability distribution S over the subsets of [d], noise scales σU for
all U ∈ Range (S).

2: for t = 0, . . . , T − 1 do
3: Set θ0 = wt

4: for k = 0, . . . ,K − 1 do
5: Sample a subset S ∼ S and let C = C(S) (see definition 6)
6: Draw η ∼ N (0, σSI)
7: θk+1 = θk − ΓC

(
∇f(θk) + η

)
8: end for
9: wt+1 = 1

K

∑K
k=1 θ

k

10: end for

In the case where S is a uniform distribution over single elements in [d], we recover the DP-CD
algorithm proposed by Mangold et al. [9]. Likewise, if S = [d] with probability one, we recover
DP-SGD algorithm [1].

3.1. Privacy Guarantees

For Algorithm 1 to satisfy (ϵ, δ)-DP, the noise scales σS should be calibrated as given by the theorem
bellow.

Theorem 7 (Proof in Appendix A.1) Let 0 < ϵ ≤ 1, δ < 1/3. If

σ2U = ∆2
U (∇l)

3KT log(1/δ)

n2ϵ2
,

for all U ∈ Range (S), then Algorithm 1 satisfies (ϵ, δ)-DP.
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3.2. Utility Guarantees

Here we state the utility results of DP-SkGD. First, we state the result for the strongly convex regime.

Theorem 8 (Proof in Appendix B) Let fi be convex L-component-Lipschitz loss function for all
i ∈ [d], and f be M-component-smooth. We assume a privacy budget with ϵ ≤ 1 and δ < 1/3.
Let w⋆ denote a minimizer of f , with f⋆ = f(w⋆) representing the minimum value. Define P =
Diag (p1, . . . , pd), where each pi = P (i ∈ S) indicates the probability of the i-th component
being included in the subset S. Consider wpriv ∈ Rp as the output of Algorithm 1 with step sizes
Γ = PM−1, and noise scales σS set as in Theorem 7 (with T and K chosen below) to ensure
(ϵ, δ)-DP also let V 2 = E

[
∥C∆S(∇l)∥2PM−1

]
. Then, the following holds. For f µM-strongly

convex and for K = 2
(
1 + 1

pminµM

)
and

T = log2

(
(f(w0)− f(w⋆))n2ϵ2

(1 + 1
pminµM

)V 2 log(1/δ)

)
,

then:

E
[
f(wT )− f(w⋆)

]
= O

(
V 2 log(1/δ)

pminµMn2ϵ2
log2

(
(f(w0)− f(w⋆))nϵpminµM

V log(1/δ)

))
.

Next, this is the result for convex regime.

Theorem 9 (Proof in Appendix B) Let fi be convex L-component-Lipschitz loss function for all
i ∈ [d], and f be M-component-smooth. We assume a privacy budget with ϵ ≤ 1 and δ < 1/3.
Let w⋆ denote a minimizer of f , with f⋆ = f(w⋆) representing the minimum value. Define P =
Diag (p1, . . . , pd), where each pi = P (i ∈ S) indicates the probability of the i-th component
being included in the subset S. Consider wpriv ∈ Rp as the output of Algorithm 1 with step sizes
Γ = PM−1, and noise scales σS set as in Theorem 7 (with T and K chosen below) to ensure
(ϵ, δ)-DP also let V 2 = E

[
∥C∆S(∇l)∥2PM−1

]
. Then, the following holds. Under assumption f is

convex and for T = 1 and K =
RP−1Mnε

V
√

log(1/δ)
, the utility of Algorithm 1 is defined as follows

E
[
f(wpriv)− f(w⋆)

]
= O

(
V RP−1M

nε
log

1/2 1

δ

)
,

where R2
P−1M = ∥w0 − w⋆∥2P−1M.

Commentary:

• We have the flexibility to choose the probabilities pi. In the strongly convex case, we can
select them to minimize the complexity. By setting pi = Mi∑d

i=1 Mi
, we obtain the following

convergence rate in the strongly convex regime.

E
[
f(wpriv)− f(w⋆)

]
= O

(
V ∥w0 − w⋆∥2

nε
∑d

i=1Mi

log
1/2 1

δ

)
.
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• Let S = [d] with probability one, which implies pi = 1 for all i ∈ [d]. In this case, we have
V 2 =

∥∥∆[d] (∇l)
∥∥2
M−1 and R2

P−1M = ∥w0 − w⋆∥2M. Therefore, we obtain the following
complexity.

E
[
f(wpriv)− f(w⋆)

]
= O

(∥∥∆[d] (∇l)
∥∥2 ∥w0 − w⋆∥2

nε
log

1/2 1

δ

)

= O

(
Λ
∥∥w0 − w⋆

∥∥2
nε

log
1/2 1

δ

)
.

Thus, we recover DP-SGD result by Bassily et al. [1].

• Let S be a uniform distribution over single coordinates, i.e. S = {i} with probability 1
n . In

this case we get V =
∥∥∆{i} (∇l)

∥∥2
M−1 . If we further assume Lipschitzness across coordi-

nates (Assumption 3) then we get V = ∥L∥2M−1 , resulting the same result as in Mangold
et al. [9].

There are various other possible strategies for selecting S. One option is to choose a subset
of [d] of size τ at each iteration. Our analysis generalizes both DP-CD by Mangold et al. [9] and
DP-SGD by Bassily et al. [1].

4. Conclusion and Future Work

Our work aims to bridge the gap between non-private and private coordinate descent methods. We
develop a random block coordinate descent method that allows for the selection of multiple coordi-
nates with varying probabilities in each iteration using sketch matrices. This approach generalizes
the existing method of updating a single coordinate drawn uniformly at random.

In our study, we do not address the composite Empirical Risk Minimization (ERM) problem. To
tackle the composite ERM problem, a promising direction is to incorporate data-dependent sketches,
as demonstrated by Safaryan et al. [14], along with other variance reduction techniques such as those
outlined by Hanzely et al. [6]. We leave this exploration for future work. Another potential gen-
eralization involves considering not only diagonal matrix smoothness M but also general matrix
smoothness. This would provide more detailed information about the function and lead to exploring
more general descent directions beyond the coordinate direction, which would require new defini-
tions of sensitivity and privacy analysis.
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Appendix A. Privacy Analysis

The main steps of analysis are based on the concept of Rényi Differential Privacy (RDP) and the
composition theorem for RDP.

Definition 10 (Rényi divergence [10]) For two probability distributions R and T with value in the
same domain V , the Rényi divergence of order α > 1 is

Dα (R∥T ) =
1

α− 1
log

∫
V

R(x)αT (x)1−αdx, (3)

where R(x) and T (x) are the density functions of R and T respectively at x.

Definition 11 ([10]) A randomized algorithm A : D → V is (α, ε)-Rényi DP (RDP) if the following
inequality holds

Dα

(
A(D)∥A(D′)

)
≤ ε, (4)

for any two neighboring datasets D and D′.

The following statement is a closed-form expression of the Rényi divergence between a Gaus-
sian and its offset (for a more general version see [7]), [19].

Lemma 12 (Proposition 7 [10]) Dα(N(0, σ2)∥N(µ, σ2I)) = α
2σ2

∑d
j=1 µ

2
j .

Proof The density function of multivariate Gaussian distribution is

ϕ(x) =
d∏

j=1

1√
2πσ2j

exp

{
− 1

2σ2j
(xj − µj)

2

}

=
1(

2πσ2j

) d
2

exp

−
d∑

j=1

1

2σ2j
(xj − µj)

2

 .

By direct computation we verify that

Dα(N(0,Σ)∥N(µ,Σ)) =
1

α− 1
log

∫
Rd

1(
2πσ2j

) d
2

exp

−α
d∑

j=1

1

2σ2j
x2j


· exp

− (1− α)

d∑
j=1

1

2σ2j
(xj − µj)

2


=

1

α− 1
log

∫
Rd

1(
2πσ2j

) d
2

exp

−
d∑

j=1

1

2σ2j

(
x2j − 2(1− α)µjxj + (1− α)µ2j

)
=

1

α− 1
log

exp

−
d∑

j=1

1

2σ2j
α (1− α)µ2j




=

d∑
j=1

αµ2j
2σ2j

.
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Using this we get the following corollary.

Corollary 13 For any nonempty U ∈ [d], the Gaussian mechanism applied to only coordinates in
U

GU (D) = f(D) + IUN
(
0, σ2I

)
,

is
(
α,

α∆2
U (f)

2σ2

)
-RDP, where

∆U (f) = sup
D∼D′

∥∥IU (f(D)− f(D′)
)∥∥

2

and IU = Diag (δ1, δ2, . . . , δn) with

δi =

{
1, if i ∈ U,

0, if i /∈ U.

Now we state the composition theorem for the sequence of RDP algorithms.

Proposition 14 (Proposition 1, [10]) Let A1, . . .AK : D → F be K > 0 randomized algo-
rithms, such that for each k algorithm Ak is (α, εk(α))-RDP, where these algorithms can be
chosen in an adaptive way. Let A : D → FK be a randomized algorithm such that A(D) =

(A1(D), . . . ,AK(D)). Then A is
(
α,

K∑
k=1

εk(α)

)
-RDP.

The following Lemma gives the relationship between RDP and (ε, δ)-DP.

Lemma 15 (Proposition 3, [10]) If A is (α, ε)-RDP, then it is also
(
ε+

log 1
δ

α−1 , δ
)

-DP for any 0 <

δ < 1.

Since this result holds for any α is it possible to find the minimum with respect to it. We will
use the following result.

Lemma 16 (Corollary B.8, [9]) Let 0 < ε < 1, 0 < δ < 1
3 . If a randomized algorithm A : D →

F is
(
α, γα

2σ2

)
-RDP with γ > 0 and σ =

√
3γ log 1

δ

ε , it is also (ε, δ)-DP.

A.1. Proof of Theorem 7

We are now ready to prove Theorem 7. Let us first recall our Algorithm 1

10
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Algorithm 1 DP-SkGD

1: Input: Initial point w0 ∈ Rd, step sizes Γ = Diag (γ1, . . . , γd), number of iterations T ,
number of inner loops K, probability distribution S over the subsets of [d], noise scales σU for
all U ∈ Range (S).

2: for t = 0, . . . , T − 1 do
3: Set θ0 = wt

4: for k = 0, . . . ,K − 1 do
5: Sample a subset S ∼ S and let C = C(S) (see definition 6)
6: Draw η ∼ N (0, σSI)
7: θk+1 = θk − ΓC

(
∇f(θk) + η

)
8: end for
9: wt+1 = 1

K

∑K
k=1 θ

k

10: end for

Theorem 7 Let 0 < ϵ ≤ 1, δ < 1/3. If

σ2U = ∆2
U (∇l)

3KT log(1/δ)

n2ϵ2
,

for all U ∈ Range (S), then Algorithm 1 satisfies (ϵ, δ)-DP.

Proof From the privacy perspective, Algorithm 1 adaptively releases and post-processes a series
of gradient coordinates protected by the Gaussian mechanism. First, we focus on the inner loop
of the algorithm, which can be viewed as a composition of K Gaussian mechanisms. Let σ > 0.
Theorem 13 guarantees that the k-th Gaussian mechanism with noise scale σU = ∆U (∇f)σ >
0 is (α, α

2σ2 )-RDP. Then, the composition of these K mechanisms is, according to Theorem 14,

(α, Kα
2σ2 )-RDP. This can be converted to (ϵ, δ)-DP via Theorem 16 with σ =

√
3γ log 1

δ

ε and γ = K,

which gives σU =
∆U (f)

√
3K log(1/δ)

ϵ for k ∈ [K]. Since we repeat this inner loop T times we get

σ2U = ∆2
U (∇f)

3KT log(1/δ)

ϵ2
,

for all U ∈ Range (S). It remains to note that ∆2
U (∇f) =

∆2
U (∇l)
n .

11
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Appendix B. Proof of Utility Guarantees

Algorithm 1 DP-SkGD

1: Input: Initial point w0 ∈ Rd, step sizes Γ = Diag (γ1, . . . , γd), number of iterations T ,
number of inner loops K, probability distribution S over the subsets of [d], noise scales σU for
all U ∈ Range (S).

2: for t = 0, . . . , T − 1 do
3: Set θ0 = wt

4: for k = 0, . . . ,K − 1 do
5: Sample a subset S ∼ S and let C = C(S) (see definition 6)
6: Draw η ∼ N (0, σSI)
7: θk+1 = θk − ΓC

(
∇f(θk) + η

)
8: end for
9: wt+1 = 1

K

∑K
k=1 θ

k

10: end for

To proof the theorem we need the following lemma.

Lemma 17 (Proof in Appendix B.3) Under assumptions f is convex and M-smooth and the se-
lection of stepsize Γ = PM−1, the iterates of Algorithm 1 satisfy

E
[
f(wt+1)− f(w⋆)

]
≤

E
[
∥wt − w⋆∥2Γ−1

]
+ 2E

[
f(wt)− f(w⋆)

]
2K

+ E
[
∥CσS∥2PM−1

]
.

Remark 18 M-smoothness of f gives

f(wt) ≤ f(w⋆) +
〈
∇f(w⋆), wt − w⋆

〉
+

1

2

∥∥wt − w⋆
∥∥2
M

≤ f(w⋆) +
1

2

∥∥wt − w⋆
∥∥2
P−1M

, (5)

and the result of Lemma 17 further simplifies as:

E
[
f(wt+1)− f(w⋆)

]
≤ 1

K

∥∥wt − w⋆
∥∥2
P−1M

+ E
[
∥CσS∥2PM−1

]
. (6)

B.1. Convex Case

Theorem 9 (Convex case) Under assumptions f is convex and M-smooth and the selection of
stepsize Γ = PM−1, for T = 1 and K =

RP−1Mnε

V
√

log(1/δ)
where V 2 = E

[
∥C∆S(∇l)∥2PM−1

]
, the

utility of Algorithm 1 is defined as follows

E
[
f(wpriv)− f(w⋆)

]
= O

(
E
[
∥C∆S(∇l)∥2PM−1

] RP−1M

nε
log

1/2 1

δ

)
. (7)

Proof Put T = 1 and letR2
M = ∥w0−w⋆∥2M. From Theorem 7 we have σ2U = ∆2

U (∇l)
3KT log(1/δ)

n2ϵ2
.

Putting this in Lemma 17 we get

12
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E
[
f(wpriv)− f(w⋆)

]
≤
R2

P−1M

K
+ E

[
∥CσS∥2PM−1

]
=
R2

P−1M

K
+

3KT log(1/δ)

n2ϵ2
E
[
∥C∆S(∇l)∥2PM−1

]
.

To minimize the right-hand side we put K =
RP−1Mnε

V
√

log(1/δ)
, and we get

E
[
f(wpriv)− f(w⋆)

]
≤
RP−1MV

√
log(1/δ)

nε
+

12RP−1MV
√

log(1/δ)

nϵ

= O

(
E
[
∥C∆S(∇l)∥2PM−1

] RP−1M

nε
log

1/2 1

δ

)
.

B.2. Strongly Convex Case

Theorem 9 (Strongly Convex case) Let f be µM-strongly convex w.r.t. ∥·∥M and w⋆ be the min-
imizer of F . The output wpriv of Algorithm 1, starting from w0 ∈ Rd with

K = 2

(
1 +

1

pminµM

)
,

T = log2

(
(f(w0)− f(w⋆))n2ϵ2

(1 + 1
pminµM

)V 2 log(1/δ)

)
,

where V 2 = E
[
∥C∆S(∇l)∥2PM−1

]
, and the σS’s as in Theorem 7, satisfies:

E
[
f(wT )− f(w⋆)

]
≤

(
1 + log2

(
(f(w0)− f(w⋆))n2ϵ2

24(1 + 1
pminµM

)V 2 log(1/δ)

))
24(1 + 1

pminµM
)V 2 log(1/δ)

n2ϵ2

= O

(
E
[
∥C∆S(∇l)∥2PM−1

] log(1/δ)

pminµMn2ϵ2
log2

(
(f(w0)− f(w⋆))nϵpminµM

V log(1/δ)

))
.

Proof As f is µM-strongly-convex with respect to norm ∥·∥M, we obtain for any w ∈ Rd, that
f(w) ≥ f(w⋆) + µM

2 ∥w − w⋆∥2M. Therefore,
∥∥wt − w⋆

∥∥2
M

≤ 2
µM

(
f(wt)− f(w⋆)

)
and Theo-

rem 17 gives, for 1 ≤ t ≤ T − 1,

E
[
f(wt+1)− f(w⋆)

]
≤

∥wt − w⋆∥2P−1M + 2
(
f(wt)− f(w⋆

)
)

2K
+ E

[
∥CσS∥2PM−1

]
≤

1
pmin

∥wt − w⋆∥2M + 2
(
f(wt)− f(w⋆

)
)

2K
+ E

[
∥CσS∥2PM−1

]
≤

(
1 + 1

pminµM

) (
f(wt)− f(w⋆

)
)

K
+ E

[
∥CσS∥2PM−1

]
.

13
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Setting K = 2
(
1 + 1

pminµM

)
we obtain

E
[
f(wt+1)− f(w⋆)

]
≤ f(wt)− f(w⋆)

2
+ E

[
∥CσS∥2PM−1

]
.

Recursive application of this inequality gives

E
[
f(wT )− f(w⋆)

]
≤ f(w0)− f(w⋆)

2T
+

T−1∑
t=0

1

2t
E
[
∥CσS∥2PM−1

]
≤ f(w0)− f(w⋆)

2T
+ 2E

[
∥CσS∥2PM−1

]
.

Let V 2 = E
[
∥C∆S(∇l)∥2PM−1

]
. Taking

T = log2

 (f(w0)− f(w⋆))n2ϵ2(
1 + 1

pminµM

)
V 2 log(1/δ)


gives

E
[
f(wT )− f(w⋆)

]
≤

(
1 + log2

(
(f(w0)− f(w⋆))n2ϵ2

24(1 + 1
pminµM

)V 2 log(1/δ)

))
24(1 + 1

pminµM
)V 2 log(1/δ)

n2ϵ2

= O

(
E
[
∥C∆S(∇l)∥2PM−1

] log(1/δ)

pminµMn2ϵ2
log2

(
(f(w0)− f(w⋆))nϵpminµM

V log(1/δ)

))
,

which is the result of our theorem.

B.3. Proof of Auxiliary Lemmas

Algorithm 1 DP-SkGD

1: Input: Initial point w0 ∈ Rd, step sizes Γ = Diag (γ1, . . . , γd), number of iterations T ,
number of inner loops K, probability distribution S over the subsets of [d], noise scales σU for
all U ∈ Range (S).

2: for t = 0, . . . , T − 1 do
3: Set θ0 = wt

4: for k = 0, . . . ,K − 1 do
5: Sample a subset S ∼ S and let C = C(S) (see definition 6)
6: Draw η ∼ N (0, σSI)
7: θk+1 = θk − ΓC

(
∇f(θk) + η

)
8: end for
9: wt+1 = 1

K

∑K
k=1 θ

k

10: end for

14
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Lemma 19 Let C be an unbiased diagonal sketch defined in (2), and let η ∼ N (0, σI) and let D
be any diagonal matrix. Then

E [C (x+ η)] = x,

and
E
[
∥C (x+ η) ∥2D

]
= ∥x∥2P−1D + E

[
∥CσS∥2D

]
,

for any deterministic diagonal matrix D.

Proof We have

E [C(x+ η)] = E [Cx] + E [Cη] = E [C]x+ E [C]E [η] = x.

Now we calculate the variance:

E
[
∥C(x+ η)∥2D

]
= E

[
∥Cx+Cη∥2D

]
= E

[
∥Cx∥2D

]
+ E [2 ⟨DCx,Cη⟩] + E

[
∥Cη∥2D

]
.

Further,

E
[
∥Cx∥2D

]
= E

[
x⊤CDCx

]
= E

 d∑
j=1

x2jc
2
jDj

 =
d∑

j=1

x2j
1

pj
Dj = ∥x∥2P−1D,

similarly,

E
[
∥Cη∥2D

]
= E

[
E
[
∥Cη∥2D|S

]]
= E

[
∥CσS∥2D

]
.

It remains to note that
E [2 ⟨DCx,Cη⟩] = 0.

Lemma 20 (Descent Lemma) For any 0 < α < 1 the following inequality holds.

E
[
f(θk+1)− f(w)

∣∣θk]− (1− α)
(
f(θk)− f(w)

)
≤ α

(
f(θk)− f(w)

)
− ∥∇f(θk)∥2Γ +

1

2

(
∥∇f(θk)∥2P−1Γ2M + E

[
∥CσS∥2Γ2M

])
.

Proof Using the M -component smoothness of f , and lemma 19 we get:

E
[
f(θk+1)

∣∣θk] = E
[
f
(
θk − ΓC

(
∇f(θk) + η

)) ∣∣θk]
≤ f(θk)−

〈
∇f(θk),ΓE

[
C
(
∇f(θk) + η

) ∣∣θk]〉
+

1

2
E
[
∥ΓC

(
∇f(θk) + η

)
∥2M
∣∣θk]

= f(θk)− ∥∇f(θk)∥2Γ +
1

2
E
[
∥C
(
∇f(θk) + η

)
∥2Γ2M

∣∣θk]
= f(θk)− ∥∇f(θk)∥2Γ +

1

2

(
∥∇f(θk)∥2P−1Γ2M + E

[
∥CσS∥2Γ2M

])
.
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For any vector w

E
[
f(θk+1)− f(w)

∣∣θk] ≤ f(θk)− f(w)− ∥∇f(θk)∥2Γ

+
1

2

(
∥∇f(θk)∥2P−1Γ2M + E

[
∥CσS∥2Γ2M

])
.

It remains to split f(θk)− f(w) into two parts.

Lemma 21 Under assumptions f is convex and M-smooth, for any w ∈ Rd and 0 < α < 1 the
iterates of Algorithm 1 satisfy〈
θk − w⋆,∇f(θk)

〉
≤ ∥θk−w⋆∥2Γ−1−E

[
∥θk+1 − w⋆∥2Γ−1

∣∣θk]+∥∇f(θk)∥2M−1−P−1Γ+E
[
∥CσS∥2Γ

]
.

(8)
Proof

E
[
∥θk+1 − w⋆∥2Γ−1

∣∣θk] = E
[
∥θk − ΓC

(
∇f(θk) + η

)
− w⋆∥2Γ−1

∣∣θk]
= ∥θk − w⋆∥2Γ−1 − 2

〈
θk − w⋆,∇f(θk)

〉
+ E

[
∥ΓC

(
∇f(θk) + η

)
∥2Γ−1

]
= ∥θk − w⋆∥2Γ−1 − 2

〈
θk − w⋆,∇f(θk)

〉
+ ∥∇f(θk)∥2P−1Γ + E

[
∥CσS∥2Γ

]
≤ ∥θk − w⋆∥2Γ−1 −

〈
θk − w⋆,∇f(θk)

〉
− ∥∇f(θk)∥2M−1

+ ∥∇f(θk)∥2P−1Γ + E
[
∥CσS∥2Γ

]
.

It remains to rearrange the terms.

Lemma 22 Under assumptions f is convex and M-smooth and the selection of stepsize Γ =
PM−1 and 0 < α < 1 the iterates of Algorithm 1 satisfy

E
[
f(θk+1)− f(w⋆)

∣∣θk]− (1− α)
(
f(θk)− f(w⋆)

)
≤ α

(
∥θk − w⋆∥2Γ−1 − E

[
∥θk+1 − w⋆∥2Γ−1

∣∣θk])+ 2α+ 1

2
E
[
∥CσS∥2PM−1

]
.

Proof Using convexity of f and lemma 21, we get

f(θk)− f(w⋆) ≤
〈
∇f(θk), θk − w⋆

〉
= ∥θk − w⋆∥2Γ−1 − E

[
∥θk+1 − w⋆∥2Γ−1

∣∣θk]+ ∥∇f(θk)∥2M−1−P−1Γ + E
[
∥CσS∥2Γ

]
.
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Next, we have

E
[
f(θk+1)− f(w⋆)

∣∣θk]− (1− α)
(
f(θk)− f(w⋆)

)
≤ α

(
f(θk)− f(w⋆)

)
− ∥∇f(θk)∥2Γ +

1

2

(
∥∇f(θk)∥2P−1Γ2M + E

[
∥CσS∥2Γ2M

])
≤ α

(
∥θk − w⋆∥2Γ−1 − E

[
∥θk+1 − w⋆∥2Γ−1

∣∣θk]+ ∥∇f(θk)∥2M−1−P−1Γ + E
[
∥CσS∥2Γ

])
− ∥∇f(θk)∥2Γ +

1

2

(
∥∇f(θk)∥2P−1Γ2M + E

[
∥CσS∥2Γ2M

])
Γ=PM−1

= α
(
∥θk − w⋆∥2Γ−1 − E

[
∥θk+1 − w⋆∥2Γ−1

∣∣θk]+ ∥∇f(θk)∥2M−1−P−1Γ + E
[
∥CσS∥2Γ

])
− ∥∇f(θk)∥2PM−1 +

1

2

(
∥∇f(θk)∥2PM−1 + E

[
∥CσS∥2Γ2M

])
Γ=PM−1

≤ α
(
∥θk − w⋆∥2Γ−1 − E

[
∥θk+1 − w⋆∥2Γ−1

∣∣θk])+ αE
[
∥CσS∥2PM−1

]
+

1

2
E
[
∥CσS∥2P2M−1

]
≤ α

(
∥θk − w⋆∥2Γ−1 − E

[
∥θk+1 − w⋆∥2Γ−1

∣∣θk])+ 2α+ 1

2
E
[
∥CσS∥2PM−1

]
.

Lemma 17 Under assumptions f is convex and M-smooth and the selection of stepsize Γ =
PM−1, the iterates of Algorithm 1 satisfy

E
[
f(wt+1)− f(w⋆)

]
≤

E
[
∥wt − w⋆∥2Γ−1

]
+ 2E

[
f(wt)− f(w⋆)

]
2K

+ E
[
∥CσS∥2PM−1

]
.

Proof Taking α = 1/2, the iterates of Algorithm 1 satisfy

K−1∑
k=0

[
E
[
f(θk+1)− f(w⋆)

]
− 1

2
E
[
f(θk)− f(w⋆)

]]

≤
K−1∑
k=0

[
1

2

(
E
[
∥θk − w⋆∥2Γ−1

]
− E

[
∥θk+1 − w⋆∥2Γ−1

])
+ E

[
∥CσS∥2PM−1

]]
≤ 1

2

(
E
[
∥θ0 − w⋆∥2Γ−1

]
− E

[
∥θK − w⋆∥2Γ−1

])
+KE

[
∥CσS∥2PM−1

]
≤ 1

2
E
[
∥wt − w⋆∥2Γ−1

]
+KE

[
∥CσS∥2PM−1

]
.
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On the other hand

K−1∑
k=0

[
E
[
f(θk+1)− f(w⋆)

]
− 1

2
E
[
f(θk)− f(w⋆)

]]

= E
[
f(θK)− f(w⋆)

]
− E

[
f(θ0)− f(w⋆)

]
+

1

2

K−1∑
k=0

E
[
f(θk)− f(w⋆)

]
= E

[
f(θK)− f(w⋆)

]
− E

[
f(θ0)− f(w⋆)

]
+

1

2

K∑
k=1

E
[
f(θk)− f(w⋆)

]
+

1

2
E
[
f(θ0)− f(w⋆)

]
− 1

2
E
[
f(θK)− f(w⋆)

]
=

1

2

K∑
k=1

E
[
f(θk)− f(w⋆)

]
− 1

2
E
[
f(wt)− f(w⋆)

]
+

1

2
E
[
f(θK)− f(w⋆)

]
≥ 1

2

K∑
k=1

E
[
f(θk)− f(w⋆)

]
− E

[
f(wt)− f(w⋆)

]
.

Further, using the convexity of f we have

f(wt+1) ≤ 1

K

K∑
k=1

f(θk).

Using this, we get

E
[
f(wt+1)− f(w⋆)

]
≤ 1

K

K∑
k=1

f(θk)− f(w⋆)

≤ 1

K

[
1

2
E
[
∥wt − w⋆∥2Γ−1

]
+ E

[
f(wt)− f(w⋆)

]
+KE

[
∥CσS∥2PM−1

]]
≤

E
[
∥wt − w⋆∥2Γ−1

]
+ 2E

[
f(wt)− f(w⋆)

]
2K

+ E
[
∥CσS∥2PM−1

]
.
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