Under review as a conference paper at ICLR 2025

HUMAN EXPERTISE REALLY MATTERS! MITIGATING
UNFAIR UTILITY INDUCED BY HETEROGENEOUS HU-
MAN EXPERTISE IN AI-ASSISTED DECISION-MAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Al-assisted decision-making often involves an Al model providing confidence,
which helps human decision-makers integrate these with their own confidence to
make higher-utility final decisions. However, when human decision-makers are
heterogeneous in their expertise, existing Al-assisted decision-making may fail
to provide fair utility across them. Such unfairness raises concerns about so-
cial welfare among diverse human decision-makers due to inequities in access
to equally effective Al assistance, which may reduce their willingness and trust
to engage with Al systems. In this work, we investigate how to calibrate Al
confidence to provide fair utility for human decision-makers. We first demon-
strate that rational decision-makers with heterogeneous expertise are unlikely to
obtain fair decision utility from existing Al confidence calibrations. We propose
a novel confidence calibration criterion, inter-group-alignment, which synergizes
with human-alignment to jointly determine the upper bound of utility disparity
across human decision-maker groups. Building on this foundation, we propose a
new fairness-aware confidence calibration method, group-level multicalibration,
which ensures a sufficient condition for achieving both inter-group-alignment and
human-alignment. We validate our theoretical findings through extensive experi-
ments on four real-world multimodal tasks. The results indicate that our calibrated
Al confidence facilitates fairer utility, concurrently enhancing overall utility. The
implementation code is available at https://anonymous.4open.science/r/iclr4 103,

1 INTRODUCTION

In recent years, artificial intelligence (Al) has been increasingly leveraged to assist human decision-
makers in decision-making across various domains. For example in typical binary classification
tasks, Al systems have been developed to support clinicians in medical diagnosis (Rajpurkar et al.,
2020; (Wysocki et al.l 2023), aid financial institutions in credit risk assessment (Bussmann et al.,
2021)), and assist legal professionals in bail or sentencing judgments (Dement & Inglis| [2024; |Grgic-
Hlaca et al., 2019). However, Al is trained on datasets with inherent uncertainties and is still far
from perfectly accurate in many real-world applications (Prabhudesai et al.,[2023)); human decision-
makers always need to integrate their own expertise with AI-generated insights to ensure the
appropriateness and accuracy of final decisions. One effective way to achieve this is by providing
AT’s confidence, which enables human decision-makers to better interpret the model’s outputs (Bhatt
et al.,[2021;|Steyvers & Kumar}|2024; Ma et al.| 2023)). Ideally, human decision-makers rely more on
Al in situations where the AI’s confidence is high and more on their own when the AI’s confidence
is low.

Existing research in Al-assisted decision-making has primarily focused on enhancing final decision-
making’s utility (the effectiveness of decisions, such as accuracy in classification tasks or prediction
errors in regression tasks). Early studies suggested that Al confidence should be well-calibrated
estimates of the probability that the predicted label matches the truth label (Pakdaman Naeini et al.,
2015; |Yin et al.} 2019; Zhang et al.| 2020). For instance, a well-calibrated diagnostic Al model ex-
presses confidence 0.75, to match the likelihood that the patient has the condition P(Y = 1) = 0.75.
However, |Vodrahalli et al.| (2022b)) experimentally demonstrated that in certain scenarios, explicitly
uncalibrated Al advice led to substantially higher decision utility compared to well-calibrated advice
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Figure 1: Illustration of Al-assisted decision-making where Al confidence is (1) calibrated without
considering expertise disparities (black dashed line) and (2) calibrated considering expertise dispar-
ities (i.e., blue solid line). Our goal is to mitigate unfair utility across human decision-makers with
heterogeneous expertise by calibrating Al confidence (i.e., red solid line). The utility is quantified
by the accuracy P(T =Y).

above. Subsequently, |Corvelo Benz & Rodriguez| (2023) provided a detailed theoretical analysis,
demonstrating that rational decision-makers make optimal final decisions when Al confidence ex-
hibits a natural alignment with human decision-makers’ confidence in their own predictions, referred
to as human-alignment.

Due to historical or unavoidable social factors, human decision-makers may have varying ex-
pertise, making their confidence not align with the probability of truth labels in those obser-
vations. Existing Al confidence calibrations may result in unfair utility for human decision-
makers with varying expertise. Consider the Al-assisted medical diagnosis scenario illustrated in
Figure |Il Human decision-makers are divided into two groups: low-expertise and high-expertise.
Upon observing symptoms (X), they demonstrate different confidence in their diagnoses. High-
expertise decision-makers have greater confidence (h = 0.9) in diagnosing a specific disease com-
pared to those with low expertise (h = 0.5). Taking the case where human decision-makers follow
a decision policy P(T' = 1|h,a) = w - h + (1 — w) - a as an example: if the Al provides an
undifferentiated confidence (a = 0.75) without accounting for expertise disparities—it leads to un-
fair utilities: low-expertise decision-makers receive a utility of 0.61, while high-expertise decision-
makers receive a utility of 0.68. In this work, we aim to mitigate such utility disparity caused by
heterogeneous expertise in Al-assisted decision-making. A fairer utility provided by Al systems
to human decision-makers with expertise disparity can increase human decision-makers willingness
and trust to engage with Al assistance. In advancing the use of Al for good to improve social welfare,
ensuring fair utility is particularly important. For example, in the case of the Al-assisted medical
diagnosis above, ensuring fair Al support could help reduce the diagnostic error gap between less
experienced doctors and experts by providing them with valuable decision-making experience. This,
in turn, can help mitigate the Matthew Effect (Mertonl|1968), which describes how disparities in re-
sources such as education, economics, and information tend to widen, leaving the less advantaged
further behind.

Our contributions. To the best of our knowledge, we present the first work that focuses on fair-
ness issues arising from human decision-makers with heterogeneous expertise. @ Our first key
contribution is the theoretical analysis showing that existing Al confidence mechanisms, including
calibration and human-alignment, may not guarantee fair utility across human decision-makers with
diverse expertise. @ The second key contribution is the critical concept of inter-group-alignment,
which measures the disparity in the relationship between Al confidence and truth labels across dif-
ferent human decision-makers groups. This concept serves as a novel criterion for Al confidence
calibration to ensure fair utility across human decision-makers groups with heterogeneous expertise.
Additionally, we establish a tight upper bound of utility disparity in Al-assisted decision-making,
determined by both levels of human-alignment and inter-group-alignment, offering insights into
how Al confidence can be calibrated to help rational decision-makers achieve optimal and fair util-
ity. ® To achieve the above calibration goals, we propose a new calibration approach group-level
multicalibration inspired by multicalibration [Hebert-Johnson et al.| (2018)), which is theoretically
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proven to be a sufficient condition for simultaneously achieving both human-alignment and inter-
group-alignment. @ To validate the practicality of our theoretical insights and the effectiveness of
the proposed calibration method, we conduct extensive experiments on four Al-assisted decision-
making tasks involving real human decision-makers. The results validate that calibrated Al con-
fidence facilitates fair utility across diverse human decision-makers groups and enhances overall
utility simultaneously.

2 PRELIMINARY

Human-AI interactive model in Al-assisted decision making. We focus on a binary decision-
making scenario to investigate the existence of unfair utility in existing Al confidence calibrations
and how to construct Al confidence values that ensure fair utility to human decision-makers groups
with heterogeneous expertise. Binary decision-making is prevalent in real-world applications such
as loan approvals, disease diagnoses, and job assignments. We illustrate the Al-assisted decision-
making process in Figure [I] Factors that may lead to varying levels of expertise among human
decision-makers include education level, job position, and personal characteristics such as gender,
age, etc. We define the attribute used to group the human decision-makers as S € S. Let fy :
X — [0, 1] represent the human decision-maker’s confidence function regarding positive outcomes.
Initially, the human decision-maker observes a sample with features z € X" and assigns a confidence
h = fg(z) € H. Subsequently, the AT model (i.e., a classifier) provides its confidence value
a = fa(xz,h,s) with h and s are optional variables, where f4 : Z — [0, 1] denotes the Al’s
confidence function toward positive outcomes with Z = {X', H,S}. Finally, the human decision-
maker makes a binary decision T based on the probability P(T' = 1) = w(h,a) € {0,1}: T = 1if
P(T =1) > 0.5, and T' = 0 otherwise, where m € II(,.A) denotes the decision-making policy.
Upon making this decision, the decision-maker receives a utility (7', Y’) € R under the truth label
Y € {0,1}.

Utility. A natural setting for a utility function, consistent with most real-world scenarios, assigns
higher utility to cases where the final decision, 7', aligns with the ground truth label, Y, compared
to cases where 71" and Y diverge. Following |Corvelo Benz & Rodriguez| (2023), we formalize the
utility function u(T,Y") as follows:

u(1,1) > u(1,0),u(1,1) > u(0,1),u(0,0) > u(1,0),u(0,0) > u(0,1). (1

Expertise disparity (ED) and utility disparity (UD). Assume there are |S| distinct human
decision-makers groups categorized by a sensitive attribute S € S. To enable statistical quantifica-
tion, for any given Al advice a, we measure the expertise disparity (ED) between the i-th and j-th
human decision-makers groups by calculating the likelihood disparities of the truth labels between
different groups, despite human decision-makers having identical confidence h (which reflects the
different expertise abilities to estimate the likelihood of the truth label correctly) as follows,

ED =P(Y =1|fa(z) = a,2z € Zp,s,) — P(Y = 1]fa(2) = a,2 € Zp.s)), 2)

where Z;, ,, = {(x,h,s)|fu(x) =h,S = s;} represents the subset of decisions for group s;
with human decision-makers confidence h. Human decision-makers are referred to as expertise-
heterogeneous if £ D # 0. This issue may not arise in calibration scenarios involving only predic-
tors (Hebert-Johnson et al., |[2018)); instead, it originates from human behavior, which is unique to
Al-assisted decision-making context. For example, specific human subgroups may exhibit overcon-
fidence in likelihood estimation. To mitigate the unfair utility arising from heterogeneous expertise,
we aim for the utility to be equal across different human decision-maker groups despite their exper-
tise disparities, that is, for any groups 4, j € |S| and for any h, a € [0, 1], the utility disparity (UD)
between group ¢ and j is expected to approach 0 as follows,

Ex [w(T,Y)|fa(z) =a,z € Zh,s;] —Ex [u(T, Y)|fa(z) =a,z € Zhysj] ‘

(5)

43 E€{1,- |81}, <i

UD = — 0.

3)

Specifically, in scenarios involving binary sensitive attributes, the Eq. [3|can be simplified to:

UD = |E; [w(T,Y)|fa(z) =a,z € Zp1] —E; [u(T,Y)|fa(z) =a,z € Zp0]| 0. &)
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Monotone. When the human decision-makers act rationally, increasing human decision-makers
confidence h and Al confidence « raises the probability of human decision-makers making positive
final decisions (Corvelo Benz & Rodriguez, [2023).

Assumption 2.1. (Monotone Decision Policy in Al-Assisted Decision Making) Assume that human
decision-makers are rational. The decision policy is monotone, meaning that for any Al confidence
a1 and az, and any human decision-makers confidence hy and ho, if a1 < ag and hy < ho, then,

P(T =1|h1,a1) < P(T = 1lha,a3), where P(T =1) = w(h,a). (5)

3 CAN FAIR UTILITY BE ACHIEVED IN AI-ASSISTED DECISION-MAKING?

3.1 FAILURE TO ENSURE FAIR UTILITY UNDER a-CALIBRATION

When the Al model produce confidence estimates that accurately represent the distribution of truth
labels, it achieves perfect calibration (Pakdaman Naeini et al., 2015} [Yin et al., 2019} Zhang et al.,
2020). We adopt the statistical notion of a-calibration introduced by [Hebert-Johnson et al.| (2018),
which transitions from approximate calibration to perfect calibration by adjusting the hyperparame-
ter o from 1 to 0.

Definition 3.1. («,-Calibration) An Al system with a confidence function fa : Z — [0, 1] where
Z = {X,H,S} satisfies o,-calibration with respect to Z if there exists Z' C Z with |2'| >
(1 — o) - | Z|, such that for any Al confidence a € [0, 1], it holds that:

|IP(Y =1 fa(z) =a,z € 2') —a|] < ay,. (6)

The Definition[3.T|bounds the proportion of samples where the difference between the Al confidence
and the positive label likelihood exceeds «, to be less than «,,. When the Al confidence is perfectly
calibrated (o, — 0), it implies that, for the entire sample space Z, the Al confidence f4 aligns
exactly with the likelihood of the positive label. Based on this definition, we present the utility
disparity under calibration in Theorem 3.2}

Theorem 3.2. (Utility disparity under calibration (Proof in Appendix [A.2)) For the Al-assisted
decision-making under utility function w(T,Y) in Eq. |I|and the human decision-makers with any
monotone Al-assisted decision policy m € TI(H, A), such that while Al confidence function f4 is
perfectly calibrated, the utility disparity is given by:
|Ex [w(T,Y)|fa(z) =a,z € Zp1] —Ex [u(T,Y)|fa(z) = a,z € Zp 0]
=Q-|P(Y =1|fa(z) =a,z € Zp1) — P(Y = 1|fa(z) = a,z € Z10)],

where Q can be any value in the range [0, max (u(0,0) — w(0,1),u(1,1) — u(1,0))].

)

Based on the Theorem for any monotone decision policies 7(h, a), attaining optimal fairness
necessitates that for any h,a € [0,1], P(Y = 1|fa(z) = a,z € Zp1) = P(Y = 1|fa(z) =
a,z € Zp ). However, it is non-trivial to achieve in practice: Consider a disease diagnosis scenario
involving two groups of human decision-makers: experts (S = 1) and general practitioners (S = 0)
working under Al assistance. Suppose both groups diagnose patients as having the disease with a
human decision-maker confidence level of A = 0.9. Due to differences in expertise, there may be a
disparity in the true probability that the patients actually have the disease, with the higher-expertise
group showing a higher probability: P(Y = 1|fa(z) =a,z € Zp9,1) > P(Y =1|fa(z) =a,z €
Z0.9,0)-

3.2 FAILURE TO ENSURE FAIR UTILITY UNDER «}-HUMAN-ALIGNMENT

Corvelo Benz & Rodriguez| (2023) argued that «,-calibration fails to ensure optimal utility for
monotone policies and proposed human-alignment as a new calibration objective. They demon-
strated that a perfectly human-aligned confidence function guarantees the existence of a monotone
policy 7 achieving optimal utility. Inspired by the superior performance of human-alignment, we
further analyze the resulting utility disparity.

Definition 3.3. («y,-Human-alignment) An Al system with a confidence function f4 : Z — [0, 1]
where Z = {X,H,S}, satisfies ap-alignment with respect to human decision-maker confi-
dence function fy : X — [0,1] if, for any h € H, there exists Z; C Zj with Z); =
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{(x,h,s)|fu(z) =h} C Zand |Z}| > (1 — ap/2) - | 24|, such that, for any 0 < a; < ag < 1
and 0 < h1 < hy < 1, it holds that,

P(Y=1|faz)=a1,2€ 2}, ) —P (Y =1] fa(z) =as,z€ 2} ) <an,ap €[0,1]. (8)

For h; and ho satisfying the monotonicity condition h; < ho, the above definition bounds the
violation of monotonicity in the positive label introduced by f4 to at most a, /2 over the sample
spaces Zj, and Zj,,. However, even if the Al confidence function f4 is perfectly human-aligned
(ap, = 0), the monotonic decision policy 7 still be suboptimal in terms of fair utility, as stated in
Theorem [3.4]

Theorem 3.4. (Utility disparity under human-alignment (Proof in Appendix|A3))) There exist (in-
finitely many) Al-assisted decision-making processes with utility function u(T,Y) in Eq. cmd the
human decision-maker with any monotone Al-assisted decision policy © € II(H, A), such that even
the Al confidence function f 4 is perfectly aligned with the human’s, the Al-assisted decision-making
still fails to achieve optimal utility fairness. Specifically,

Ex [w(T,Y)|fa(z) =a,z € Zp1] —Ex [w(T,Y)|fa(z) = a,z € Zp0]]

S [Ene [u(T, V) fa(2) = @2 € Zn1] = Ene [0(T, V)| fa(2) = 0,2 € Znol], O

where,

= arg(mi;l) |Ex [w(T,Y)|fa(z) =a,z € Zp1] — Ex [w(T,Y)|fa(z) = a,z € Zp0]]. (10)
well(H,

We analyze that the cause of failure in fairness arises from human-alignment without considering
differences in the correctness of human decision-makers’ confidence due to heterogeneous expertise.
This discrepancy results in differing levels of human-alignment between groups. For groups with
weaker alignment, this can lead to utility disadvantages.

3.3 INTER-GROUP-ALIGNMENT AND UTILITY DISPARITY UPPER BOUND

Given the limitations of existing calibration methods in ensuring optimal fair utility, we introduce
the core concept of inter-group-alignment in Definition 3.5 Building on this foundation, we give an
upper bound on utility disparity of any Al-assisted decision making process, as in Theorem 3.6}

Definition 3.5. (a-Inter-group-alignment) An Al system with a confidence function f4 : Z —
[0,1] where Z = [X,H,S], satisfies ag-inter-group-alignment if, for any h € H, there ex-
ists 2y, C Zp with Z, = {(z,h,s) |fu(x) = h} and |Z}] > (1 —ay/2) - |24 Let 25, , =

{(x,h,s) € Z}|S = s}, the Al confidence is ag-inter-group-alignment if,
‘P (Y=11faz)=az€2,) =P (Y =1]faz) =az € Z,’w)‘ <ag (11

Based on Equation [5] given identical Al confidence a and human decision-maker’s confidence h,
human decision-makers will exhibit the same probability of making the final decision, P(T" = 1).
The definition of o 4-inter-group-alignment constrains the distribution of positive label Y = 1 to be
statistically equal across different human decision-maker groups when oy — 0. This alignment en-
sures that human decision-makers within each group achieve statistically similar utilities for making
correct decisions.

Theorem 3.6. (Utility disparity upper bound under oy,-human-alignment and ovg-inter-group-
alignment (Proof in Appendix|A.4) For a given Al-assisted decision-making process with a utility
Sunction w(T,Y) satisfying E and the human with any monotone Al-assisted decision policy
m € II(H, A), if the Al confidence function f 4 is au,-human-alignment and satisfies oq-inter-group-
alignment, then the utility disparity is bounded by,

[Ex [w(T,Y)|fa(z) =a,z € Zp1] —Ex [w(T,Y)|fa(2) = a,z € Zp0]]

< (u(1,1) — u(0,1) — u(1,0) +u(0,0)) - (% + (1 - %) - (3ay — af,)) .

12)

Theorem [3.6] provides a tight upper bound on the utility disparity, which is constrained by both
the human-alignment level o, and inter-group-alignment level «,. This offers valuable insights
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into the fairness-aware Al confidence calibration objectives, which seek to align the Al confidence
as closely as possible with human decision-makers’s, while simultaneously ensuring that human
decision-makers from different groups, with identical confidence h, receive statistically similar pos-
itive label distributions when provided with the same Al confidence a. Based on this, we will next
outline a practical approach to achieving both calibration objectives simultaneously.

4 GROUP-LEVEL CONFIDENCE MULTICALIBRATION FOR SIMULTANEOUS
IMPROVEMENT OF UTILITY AND FAIRNESS

Based on Theorem [3.6] we now present the new Al confidence alignment objective to ensure fairer
utility across different human decision-maker groups in Al-assisted decision-making, enabling Al-
assisted decisions to be more practical for real-world human decision-maker with heterogeneous
expertise.

Corollary 4.1. For any Al-assisted decision-making with a utility function u(T,Y) in Eq. |I|and
is ap-human-alignment, the upper bound of utility disparity across different human decision-maker
groups is minimized when the decision function f A satisfies perfect inter-group-alignment.

The above corollary holds as (304_,, — aﬁ) > 0 for all a4 € [0, 1]. Consequently, under any human-
alignment level a;,, the utility disparity upper bound in Theorem is minimized when oy = 0.
We can further refine the conditions under which the Al-assisted decision-making process provides

both optimal utility and fair utility across heterogeneous human decision-maker groups as follows:

Corollary 4.2. For Al-assisted decision-making processes with a utility function uw(T,Y’) satisfying
Eq. [1} if fa achieves both perfectly human-alignment and perfectly inter-group-alignment, there
exist monotone Al-assisted decision policy m € 1I(H, A) that simultaneously attains optimal overall
utility and fair utility among heterogeneous human decision-maker groups.

Based on the utility disparity upper bound established in Theorem @ when both o, = ag = 0,
the Al-assisted decision-making system achieves optimal fairness with utility disparity to be 0. In
the following, we demonstrate how to simultaneously achieve human-alignment and inter-group-
alignment through multicalibration, thereby ensuring that Al-assisted decision-making provides fair
utility while guaranteeing optimal utility for all human decision-makers. Multicalibration (Hebert-
Johnson et al.||2018) was initially introduced as a measure of algorithm fairness to mitigate discrim-
ination introduced by a predictor’s training process.

Definition 4.3. (Multicalibration) Let C C 2% be a collection of subsets in domain Z, and let
a € [0,1]. An AI’s confidence function f4 : Z — [0, 1] is a-multicalibrated with respect to C if, for
all Z C C, fa satisfies a-calibration (Definition[3.1) with respect to Z.

Corvelo Benz & Rodriguez| (2023) demonstrated that multicalibration leads to human-alignment.
However, as shown in Theorem [3:4] and the experimental results in Figure 2} human-alignment
alone does not provide fair utility among heterogeneous human decision-makers. To address this,
we introduce group-level multicalibration and explain how it ensures fair utility for heterogeneous
decision-makers in Al-assisted decision-making, while maintaining overall utility.

Theorem 4.4. (o/2-Group-level multicalibration leads to a-human-alignment and o-inter-group-
alignment meanwhile (Proof in Appendix @) ) Let fo : Z — [0, 1] be an AI's confidence function.
Suppose in each human decision-maker group i € {1,...,|S|}, fa(z) is a/2-multicalibrated with
respect to the collection C = {Z, s, }, 4y With Zi s, = {(x,h, 8) [ fu(x) = h, S = s;}, then fa is
both a-aligned with respect to the human confidence function fy and a-inter-group aligned across
the different human decision-maker groups.

a/2-Group-level-multicalibration by A-discretization. We present the key steps to achieve a//2-
group-level multicalibration as follows, with a detailed algorithm provided in Algorithm [A.6} For
each Zj, 5, € C, we apply A-discretization (Hebert-Johnson et al.,|[2018) to the AI’s confidence func-
tion f4. Specifically, A-discretization partitions the f4 confidence interval [0, 1] into [1/\| discrete
bins, each with a width of \. The centers of these bins are located at A = %, %, B %} The
A-discretization partitions Zj, 5, into Zﬁsi ={z€ 2, |falz) € [AlJ]] = N2, A[i]] + 1/2)},5 =
{1,...,[1/A]}. We then iteratively update the Al’s confidence estimates for all instances z €
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2] ,.d=1,.,|1/A] as follows,

fa(z) = fa(z) + P(Y =1z € 2] ) ~E [fa(2)z € 2] ,,]. (13)

This process continues until the following discretized notion of a-multicalibration is satisfied on all
discrete partitions as follows,

B[a)ze 2, ] - Py =1ze 2,)| <@ (14)
After completing the aforementioned discretized a-multicalibration, for i-th human decision-maker
group, the algorithm proceeds to return a discretized confidence function in j-th bin as fa(z) =
E [ fa(z)|z € Zg} . According to (Hebert-Johnson et al.,|2018), the discretized confidence function
provides (a+\)-multicalibration for each human decision-maker group. Based on Theorem to
obtain a discretized confidence function f4 that satisfies at least a-human-alignment and a-inter-
group-alignment, it is necessary to ensure that & + A < «/2 for each group. We further analyze how
a and ) impact the efficiency of group-level multicalibration in Appendix

5 EXPERIMENTS

5.1 SETTINGS

Dataset. We utilize a publicly available dataset for human-Al interactions across 4 tasks (Vodrahalli
et al.,[2022a)). In each task, human decision-makers first provide their confidence (used to construct
fm). After receiving Al advice (used to construct f,), participants update their final decision confi-
dence (used to construct 7(h, a)). Additionally, the dataset includes basic demographic information
of the participants, such as gender, as provided by the crowdsourcing platform. The 4 tasks span
different data modalities (visual, text, and tabular) and are sufficiently challenging to ensure that
participants can benefit from Al assistance. In the Art (Image) task, participants determine the art
period of a painting from two options. In the Cities (Image) task, participants are asked to deter-
mine the originating city of an image from a binary choice. In the Sarcasm (Text) task, participants
determine if a Reddit text snippet contains sarcasm. In the Census (Tabular) task, participants as-
sess whether an individual earns at least $50,000 annually based on their demographic information.
The human decision-makers are divided into two groups (“Female” as Group S = 0 and “Male” as
Group S = 1). The data are preprocessed to filter out samples with missing information and con-
founding factors (Appendix [A.7.1), resulting in 14,999 Al-assisted decision-making records from
469 participants overall.

Hyperparameters. We configure the hyperparameters as follows: @ = 0.0001 and A = 0.125,
ensuring that the level of group-level multicalibration is approximately 0.125.

Decision policy function. Since the dataset only provides uncalibrated confidences, we evaluate
Al-assisted decision performance after calibration by learning the decision policy 7(h,a) using a
multi-layer perceptron (MLP) classifier with one hidden layer of 20 nodes and ReLLU activation.

Experimental setup. We establish three Al confidence calibration cases for each task: no calibra-
tion (before calibration), after multicalibration (Corvelo Benz & Rodriguez, [2023), and after group-
level multicalibration. Under each condition, we conduct the following experiments: @ Align-
ment quantification: We evaluate the effectiveness of the proposed group-level multicalibration in
achieving human-alignment and inner-group-alignment. @ Expected utility and utility disparity of
final decision 7(h, a): We compare the overall expected utility E(j, o) [u(7,Y")] and the utility dis-
parity By 0) [w(T,Y)|fa(2) = a,2 € Zn1] — Exn o) [w(T,Y)|fa(2) = a,z € 2} 0] to evaluate
how well group-level multicalibration can improve fair utility across diverse human decision-maker
groups and optimal utility simultaneously. ® Expected utility and utility disparity of human-only
decision 7(h) and Al-only decision 7(a): We compare the utility E (4 [u(T,Y)] (Er(q) [u(T,Y)])
and utility disparities E ) [u(T,Y)|fa(2) = a,2 € Zp1] — Ex) [w(T,Y)|fa(2) = a,z € 2} 0]
Era) [w(T,Y)|fa(z) = a,2 € Zp1] — Ere) [wW(T,Y)|fa(z) = a,z € Z4]) to understand why
achieving inter-group-alignment by group-level multicalibration supports fair utility across diverse
decision maker groups.
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Table 1: Alignment evaluation under no calibration, multicalibration, and group-level multicalibra-
tion (Bold represents the best result, underlined represents the second-best result).
Calibration Methods

Experiment
xperimen None Multicalibration Group-level Multicalibration

EAE MAE EIAE MIAE EAE MAE EIAE MIAE EAE MAE EIAE MIAE
0.0006 0.0576 0.0658 0.2701 0.0006 0.0323 0.0709 0.3760 0.0016 0.0875 0.0110 0.0970

1
2 0.0045 0.2239 0.0626 0.2599 0.0000 0.0000 0.0289 0.3912 0.0005 0.0465 0.0049 0.0790
3 0.0001 0.0134 0.0449 0.2049 0.0006 0.0590 0.0250 0.1881 0.0007 0.0606 0.0064 0.0674
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Figure 2: Statistics of utility and utility disparity over 100 experiments, where the final decision
P(T =1) = w(h, a) is made by human with Al assistance. The Al confidence is either uncalibrated
or calibrated using multicalibration and group-level multicalibration, respectively.

Evaluation metric. We use accuracy to evaluate the decision utility and, naturally, evaluate the fair
utility to diverse human decision-maker groups by measuring accuracy disparities as follows,

Disp=E[1(T =Y)|S =1 -E[L(T =Y)|S =0]. (15)

Human-alignment is measured through two primary metrics: the expected alignment error (EAE)
and the maximum alignment error (MAE) (Corvelo Benz & Rodriguez, [2023).

EAE = max 07;-i<%:<j/ [P(Y:Hzezg)—P(Y:Hzezg}’)] . (16)
MAE = max (0 L max (P (Y: 1]z€ zg') —P(Y: 1]z€ zﬂ))) (17)

Following the discretization process (Corvelo Benz & Rodriguez, [2023), we develop metrics for as-
sessing inter-group-alignment: the expected inter-group-alignment error (EIAE) and the maximum
inter-group-alignment error (MIAE).

1 . .
EIAE:W~Z\P(Y=1|z€Z{A’1)—P(Y:1\zer,O)\. (18)
¥
MIAE =max ([P (Y =1|2€ 2] ) -P(Y =1]|z€ 2},)|). (19)
1,] ’ ’

where Zf)o and Zil contain samples from the groups S = 0 and S = 1, respectively, located in
the (4, j)-th cell of the grid formed by the discretization of human confidence and AI confidence.
The discretization details is in the Appendix[A.7.2] The limitation of metrics based on discretization
lies in the finite number of discrete intervals, which may fail to capture alignment across the entire
continuous confidence space accurately. However, significant variations in the metrics can reflect
variations in alignment more accurately. In such cases, the influence of unmeasured alignment on

the ovprgHureswlts is reduced.

The key takeaway from the experimental results presented in Table [5.1]is an evaluation of the pro-
posed group-level multicalibration method’s effectiveness in ensuring both human-alignment and
inter-group-alignment. In the Cities and Centus tasks, both multicalibration and group-level multi-
calibration significantly reduce EAE and MAE compared to the uncalibrated case, indicating more
substantial alignment with human decision-maker’s confidence. While the uncalibrated model yields
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Figure 3: The utility and utility disparity where the final decision is made by human-only P(T" =
1) = w(h) or Al-only P(T = 1) = n(a).

the best performance for the Art and Sarcasm tasks, the differences in EAE and MAE across all cal-
ibration methods are subtle, with the maximum variation being 0.001. As previously noted, discrete
statistical metrics may lose precision when capturing such minor differences due to the limitations
of discrete interval choices. Therefore, multicalibration and group-level multicalibration can be re-
garded as demonstrating comparable levels of human-alignment to the uncalibrated model in these
tasks. This observation becomes particularly evident in subsequent experiments, where the actual
utility, measured by accuracy, demonstrates a significant improvement under both multicalibration
and group-level multicalibration across all tasks compared to the uncalibrated model. When eval-
uating inter-group-alignment using the EIAE and MIAE metrics, group-level multicalibration con-
sistently achieves the best performance across all tasks, significantly reducing EIAE and MIAE
compared to uncalibrated cases and multicalibration.

In Figure[2] the key takeaways are: 1) multicalibration fails to improve fairness and, in some cases,
exacerbates fairness issues, as shown in task 1, where the utility disparity after multicalibration
is worse than in the uncalibrated scenario; 2) group-level multicalibration consistently outperforms
both the uncalibrated case and multicalibration across all tasks, improving decision utility and reduc-
ing utility disparity across different human decision-maker groups. Using an MLP-based decision
model, we report the distribution of final decisions over 100 trials with random seeds (0 — 99). The
uncalibrated case shows no variance, as its decisions are fixed by the dataset.

In Figure[3] we provide the utility and utility disparity when final decisions are made solely by hu-
man decision-makers and Al independently. The key observation is that group-level multicalibration
adjusts the AI’s confidence to mitigate utility disparity caused by human-only decisions, either by
reducing the disparity or by creating an offsetting disparity with the opposite sign. This capability is
absent in multicalibration, which in some cases (e.g., the Sarcasm task) can even worsen utility dis-
parity compared to human-only decisions. This experiment highlights the advantage of group-level
multicalibration in promoting fairer utility by effectively adjusting Al confidence.

6 DISCUSSION

6.1 RELATED WORK

Al-assisted decision-making involves human decision-makers taking advice from Al systems. To
establish a productive working relationship between human decision-makers and Al, the AT model
is expected to provide an interpretable and explainable decision-making process. A direct approach
involves Al systems providing confidence for their predictions (Bhatt et al.l 2021} |Steyvers & Ku-
mar, |2024; Ma et al., 2023 [Zhang et al., [2020), i.e., the likelihood of classification outcomes. Al
confidence helps decision-makers calibrate their trust in the Al and appropriately apply Al knowl-
edge to make final decisions, especially in cases where the Al model is likely to perform poorly. To
enhance human decision-maker’s comprehension of Al prediction uncertainty, Al model confidence
is primarily calibrated to reflect the probabilities of classification correctness (Hebert-Johnson et al.,
2018 Guo et al.l 2017} [Zhao et al.l 2021). However, experimental evidence by [Vodrahalli et al.
(2022b) indicated that AI models, when perceived as more confident than they actually are—rather
than being well-calibrated—can enhance the accuracy of final decisions made by human decision-
makers after considering Al advice. The work most closely related to ours is |Corvelo Benz & Ro-
driguez|(2023)), which conducted a systematic theoretical analysis of scenarios where well-calibrated
Al confidence may lead to suboptimal utility for rational decision-makers. They also introduced the
concept of Al confidence human-alignment, enabling rational decision-makers to achieve optimal
utility. Previous works in Al-assisted decision making assume that human decision-makers are ho-
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mogeneous, overlooking heterogeneity (Rambachan, 2024} Rambachan et all [2024; |De-Arteaga
et al.l2024) in their expertise. Since heterogeneity in expertise may stem from historical inequities
in education and access to resources, mitigating the resulting utility disparity is critical for promoting
societal welfare. When Al assistance is used as a new information resource, failing to account for
expertise heterogeneity can exacerbate utility disparities among decision-makers, exacerbating soci-
etal inequities. Distinguished from Corvelo Benz & Rodriguez| (2023)), our work addresses a novel
and previously unexplored dimension of Al-assisted decision-making: ensuring equitable utility for
human decision-makers with varying levels of expertise. Furthermore, we contribute to a solid theo-
retical framework for analyzing and mitigating fairness issues in Al-assisted decision-making. Dif-
ferent from the commonly used algorithmic fairness in the fair machine learning area, which mainly
aims to ensure unbiased outcomes for individuals being decided upon (e.g., patients), our focus is on
ensuring fairness for the decision-makers (e.g., doctors). [Pleiss et al.|(2017) investigated the compat-
ibility between calibration and Equalized Odds. Beyond differences in application contexts—where
their focus is on predictor scenarios rather than Al-assistance—our work achieve human-alignment
and inter-group alignment in a compatible manner, also targeting a distinct fairness concept. This
fairness concept shares some similarities with accuracy disparity in centralized model training (Chi
et al., [2021)) and egalitarian fairness in decentralized learning (Donahue & Kleinberg, 2023), but
it requires fundamentally different solving methods tailored to the context of Al-assisted decision-
making.

6.2 SCOPE AND FUTURE WORK

Multi-class and multi-groups. Our theoretical results regarding the existence and mitigation for the
unfair utility are currently limited to binary classification tasks and binary human decision-maker
groups. The proofs presented in our work are modular, and it is possible that illuminating proper-
ties exist in the broader context of Al-assisted decision-making processes. However, extending the
theoretical analysis directly to multi-class classification and multiple human decision-maker groups
presents several challenges. The first challenge is identifying more natural properties that utility
functions may satisfy in multi-class classification. For example, the utility of diagnosing a patient
with Type 1 diabetes (Y = 1) as Type 2 diabetes (1" = 2) may yield higher utility than diagnosing
them as disease-free (T" = 0); thatis, (7 = 2,Y = 1) > u(T = 0,Y = 1), which may be more
complex than binary classification. Second, with multiple human groups, there may be alternative
forms of fair utility, such as focusing on the max-min gap or the standard deviation of the utilities
across all human decision-maker groups, reflecting different social welfare objectives. This raises
questions about human decision-makers behavior analysis and their preferences regarding various
notions of fair utility, deserving further exploration in subsequent research.

Fairness metrics. In this work, we use utility disparity for measuring fair utility, aligning with the
decision-makers’ primary goal of making more accurate decisions with Al assistance (Steyvers &
Kumar, 2024). The concept of utility disparity is also evident in centralized learning (Chi et al.,
2021)) and decentralized learning (Donahue & Kleinberg) 2023). While other fairness metrics, such
as demographic parity and equalized odds (Mehrabi et al., 2021)), emphasize the equality of positive
or true positive outcomes, these metrics primarily relate to individuals being judged (e.g., patients)
and diverge from the fair utility objective for decision-makers (e.g., doctors). Nonetheless, exploring
diverse fairness concepts remains an interesting avenue for future work.

7 CONCLUSIONS

In this work, we have systematically analyzed the issue of unfair utility that arises when human
decision-makers with heterogeneous expertise engage in Al-assisted decision-making. We have
identified that rational decision-makers incorporating Al confidence may not achieve equal util-
ity under existing Al confidence calibration criteria. To address this issue, we have introduced a
novel confidence calibration criterion, inter-group-alignment, which, when combined with human-
alignment, establishes an upper bound on utility disparities. Building on this foundation, we have
proposed group-level multicalibration to enable Al confidence to achieve both human-alignment
and inter-group-alignment simultaneously. Experiments conducted on real datasets have thoroughly
evaluated the effectiveness of our new Al confidence calibration criterion and approach in providing
optimal and fair utility across heterogeneous human decision-maker groups.
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A APPENDIX

A.1 PRE-LEMMAS

Lemma A.1. If the utility function u satisfies Eq. and the distribution of Y = 1 satisfies P(Y =
1|8 =1) > P(Y = 1|8 = 0), then a trivial policy  that always decides T = 1 will consistently
result in a positive utility disparity, while a trivial policy that always decides T' = 0 will consistently
result in a negative utility disparity.

Eyep [u(1,Y)]S =1] — Eyep [u(1,Y)[S = 0] > 0, (20)
Eyep [u(0,Y)[S =1] = Eyep [u(0,Y)]|S = 0] <0. 21
Lemma A.2. If the utility function u satisfies Eq. and the distribution of Y = 1 satisfies P(Y =
11S =1) < P(Y = 1|S = 0), then a trivial policy 7 that always decides T = 1 will consistently
result in a negative utility disparity, while a trivial policy that always decides T' = 0 will consistently
result in a positive utility disparity.
Eyep [u(1,Y)[S =1] — Eyep [u(1,Y)[S = 0] <0, (22)
Eyep [u(0,Y)]S =1] = Eyep [u(0,Y)[S = 0] > 0. (23)
Proof.  For Lemma A.1: As u(1,1) > u(1,0) and u(0,0) > u(0,1), when P(Y =1|S =1) >
P(Y =1|S =0), we have
Eyvep[u(1,Y)[S =1] = Eyep [u(1,Y)[S = 0]
=PY=15S=1)-u(1,1)+(1-PY =15=1)) - u(1,0)

—P(Y =1S=0)-u(l,1) - (1 - P(Y =1|S = 0)) - u(1,0) @4
=(PY=15=1)—PY =15=0)) - (u(1,1) — u(1,0)) > 0.

Eyep [u(0,Y)]S = 1] = Eyep [u(0,Y)]S = 0]

=PY =15=1)-u(0,1)+(1-PY =1S=1)) -u(0,0) 55
CP(Y =1]S = 0) - u(0,1) — (1 — P(Y = 1|S = 0)) - u(0,0) (23)
=(PY =1|S=1)—-P(Y =1|5=0)) - (u(0,1) — u(0,0)) < 0.

For Lemma A.2: Similarly, when P(Y =1|S =1) < P(Y = 1|S = 0), we have,
]EYEP [u(l,Y)|S = 1] — EyEp [u(l,Y)|S’ = 0] (26)

—(P(Y =1|S=1) - P(Y =1|S = 0)) - (u(1,1) — u(L,0)) < 0.
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Eyep [u(0,Y)|S =1] — Eyep [u(0,Y)[S = 0]

=(P(Y=1S=1)—-P(Y =1/S=0)) - (u(0,1) — u(0,0)) > 0. @7

A.2 PROOF OF THEOREM [3.2]

Theorem 3.2] (Utility disparity under calibration) For the Al-assisted decision-making under utility
function «(7',Y") in Eq. |1|and the human decision-makers with any monotone Al-assisted decision
policy m € TI(H, A), such that while AI confidence function f4 is perfectly calibrated, the utility
disparity is given by:
Er [w(T,Y)|fa(2) = a,2 € Zpa] = Ex [u(T,Y)|fa(2) = a, 2 € Zp 0]
=Q:-|PY =1|fa(z) =a,z€ Z,1) — P(Y =1|fa(z) = a,z € Z},0)|.

where Q can be any value in the range [0, max («(0,0) — «(0, 1), u(1,1) — u(1,0))].

Proof.  According to the law of total expectation, and the final decision P(T = 1) = w(h,a)
independent of the sensitive attribute S (consistent with reality that different human decision-makers
make decisions based solely on their own confidence and those of the Al (Corvelo Benz & Rodriguez,
2023)), the expected utility disparity can be formulated as follows:

|IE [u(T Y)|fA( ) =a,z¢€ Zh,l] —Ex [U(T’ Y)‘fA(Z) =a,2 € Z}L,O] |

=|P(Y =1|fa(z) =a,2 € Z41) — P(Y = 1|fa(z) = a,2 € Z4)|
(u(1,1) = u(1,0) — uw(0,1) + w(0,0)) - Pr(T =1|fa(z) = a,z € Zp) — (u(0,0) — u(0,1))].

(28)

To prove the above equation, let’s first look at B [w(T,Y)|fa(z) = a,z € Zj, 1].
Ex: [w(T,Y)|fa(z) = a,z € Zp1]
=E[ul,Y)|fa(z) =a,z € Zp1] - Pr(T =1|fa(z) = a,z € Z)
+Eu(0,Y)|fa(z) =a,z€ Z1] - [1 — Pr(T =1|fa(z) = a,z € Z})]
=P.(T=1|falz) =a,z € Zp)
. [IE [w(l,Y)|fa(z) =a,z € Zp1] —E[u(0,Y)|fa(z) =a,z € Z;,qﬂ]
Efu(0,Y)[fa(z) =

Similarly, E [u(T,Y)|fa(z) = a, z € 24, 0] can be formulated as followed.
Er [w(T,Y)[fa(z) = a,2 € Zp]
= Pﬂ-(T = 1|fA(Z) =a,z € Zh)
(B, Y)|fa(z) =a,2 € Z0] —E[u(0,Y)|fa(z) = a,z € Zp] ]
+E[u(0,Y)|fa(z) =a,z € Z3,0]

Therefore, this equation |E, [u(T,Y)|fa(z) = a,z € Zp1] —Ex [u(T,Y)|fa(z) = a,z € Zp, ]|
can be expanded into the following form.
B [w(T,Y)|fa(2) = a,2 € Zpa] — Ex [u(T,Y)|fa(2) = a,2 € Zn]|
=|P(Y =1|fa(z) =a,2 € Zp1) — P(Y =1|fa(2) = a,2 € Zh,)|
[u(1,1) = u(1,0) = w(0,1) +u(0,0)] - Pr(T = 1| fa(z) = a,z € Zx) — [u(0,0) — u(0,1)]].
Let
= |[w(1,1) — u(1,0) —u(0,1) +u(0,0)] - Po(T = 1|fa(2) = a,z € Zp,) — [u(0,0) — u(0,1)]]
~ [0, max (u(0,0) — u(0,1),u(1,1) — u(1,0))].

Given that the decision policy 7w(h, a) is monotone, it holds that,

u(0,0) — u(0,1)

Fhsa: Pr(T =1 a(z) = a:2 € 20) # U500 0) “u(0,1) + 0(0,0)

—~ Q#0. (30)
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Therefore, to ensure the fair utility of diverse human decision-maker groups, there should have,
P(Y =1|fa(z) =a,z € Zp1) — P(Y = 1|fa(z) =a,z € Z0) =0. (31

However, perfect calibration alone does not guarantee the above constraint. According to Definition
[3.1) when f 4 is perfectly calibrated, it holds that,

PY=1|falz)=a,z € Z)

=PY =1{fa(z) = a,z € Zp1) - P(S = 1[fa(z) = a,z € Zp) (32)

+ P(Y =1[fa(z) = a,z € Zp0) - P(S=0[fa(z) =a,z € Z) =a
We use an example to illustrate the case where the existence of perfect calibration satisfying Eq.
[32] does not guarantee Eq. 31} consider a scenario where the sensitive group proportions satisfy
P(S = 1|fa(z) = a,z € Z;,) = 0.75 and P(S = 0|fa(z) = a,z € Z3,) = 0.25, with P(Y =
1fa(z) = a,z € Zp1) = 2a/3 and P(Y = 1|fa(z) = a,z € Z},0) = 2a. This setup satisfies
perfect calibration as:

PY=1]|falz)=a,z€ Z) = <Q;> -0.75 4 (2a) - 0.25 = a. (33)

However,
P(Y =1|fa(z) =a,z2 € Zp1) — P(Y = 1|fa(z) =a,z € Z0) #0. (34)
O

A.3 PROOF OF THEOREM [3.4]

Theorem [3.4] (Utility disparity under human-alignment) There exist (infinitely many) Al-assisted
decision-making processes with utility function u(7,Y") in Eq. [I] and the human decision-maker
with any monotone Al-assisted decision policy = € II(H, A), such that while the Al confidence
function f4 is perfect human-alignment, the Al-assisted decision making is suboptimal with respect
to fair utility. Specifically,

[Ex [w(T,Y)|fa(z) =a,z € Zp1] —Ex [w(T,Y)|fa(z) = a,z € Zp0]] 35)
> |Epx [w(T,Y)|fa(2) =a,z € Zp1] — B [u(T,Y)|fa(2) = a,z € Z3,0]]

where,

— arg(miil) |Ex [w(T,Y)|fa(z) =a,z € Zp1] — Ex [w(T,Y)|fa(z) =a,z € Zpo]]. (36)
well(H,

Proof. We first define a, which represents the smallest Al system’s confidence value for given
confidence level h, such that,

a :min{a EA|PY =1|fa(z)=a,2€ Zp1) —P(Y =1| fa(z)=a,z€ Zp) > 0}.
(37

We demonstrate through the following four cases that there are infinitely many Al-assisted decision-
making processes where, despite the Al confidence being human-aligned, the Al-assisted system fails
to achieve optimal utility disparity.

Case 1. For any confidence [hy,a1] with a; < a1, according to Eq. @ it holds that,
PY =1]|fa(z)=a1,2€ Zp, 1) —PY =1| fa(z) =a1,2 € Zp,,0) <0. (38)
Furthermore, there exists another [ha, as), where ay > max(as, a1) and hy > hy such that,
P(Y=1| fa(z)=ag,z€ Zp,1) — P(Y =1]| fa(z) = as,z € Zp,0) > 0. (39)
In the case where f 4 is aup-alignment with respect to fy, according to Definition[3.3] for any h € H,
there exists Z;, C Zj, with Zy, = {(x, h,s) |fu(z) =h} C Zand |Z}| > (1 — ap/2) - | 24| such

that,
P(Y =1lai,z € Z},)) — P(Y = 1l]ag,z € Z},,) = a* < o, &« = max(0, o). (40)

15



Under review as a conference paper at ICLR 2025

Based on the law of total probability, the Eq. [40|can be expanded as follows:

P(Y =1la1,z € Z;,, ;) - P(S =1la1,z € Z},)

+ P(Y =1la1,z € 2, ) - P(S=0a1,z € Z,))

:P(Y:HCLQ,ZGZ;LQJ)'P :1|a2,Z€Z;LQ)
).

41
(s (41)
+ P(Y =1lag,z € Z,) - P(S =0ag, z € Z},,) + .

We can quantify the utility disparity gap under different confidence settings when the decision-maker
consistently chooses T = 1 as follows:

(E [w(1,Y)|ar,z € 2, 1] —E [u(1,Y)|ar,z € Z, o] )
— (E [u(l,Y)|a2,Z € Z}/LQJ] -E [u(laY)‘GQaZ € 2;1270} ) (42)

:(MLU_uqu.AL

where,

Ay =P =1lay,z € Z,’“yl) —P(Y =1lay,2 € Z,'Ll’o)
— P(Y =1lag, z € Z;’Lz’l) + P(Y = 1lag, 2z € Z}’m’o).

Similarly, we can define the utility disparity gap under different confidence settings when the
decision-maker consistently chooses T' = 0,

(]E [U(O7Y)|a17 Z € Z;Ll,l] —E [U(O,Y)|CL1, Z € Z;L],O])
— (E [u(0,Y)|az, z € Z;, 1] —E [u(0,Y)]as, z € 2}, 4]) (43)
= (U(O, 1) - U(O, 0)) : A1-

AsPY =1 fa(z) =a1,2 € Zp,1) — PY =1 fa(z) = a1,z € Zp,,0) < 0, according to
LemmalA2] we have:

Eu(1,Y)[fa(2) = a1, 2 € Zp, 1] = E[u(1,Y)[fa(2) = a1, 2 € Zp, 0]

<O <E[u(0,Y)|falz) = a1, € Zna] ~E[u(0,Y)[fa(z) = a1,z € Zpyo] . D

Combining Eqs. {2} @3] and {4 it holds that,

(E [u(l,Y)|a2,z € 2;12,1} -E [U(I,Y)|(12,Z € Z;L%O] )
- (IE [u(0,Y)|ag, z € 2}, 1] —E [u(0,Y)]az, 2z € 2}, ] ) (45)

< (u(07 1) — u(0,0) — u(L, 1) +u(l, 0)) Ny

AsP(Y =1]ag,z2 € Zp,1) — P(Y =1 ag,z € Zp,,0) > 0, it holds that,

E [u(l,Y)|a2,z S th’l] —E [u(l,Y)|a2,z S Z}u’o}

46
> 0> E[u(0,Y)]az, 2 € Zn, 1] — E[u(0,Y)]az, 2 € Zn, 0] (46)
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Based on Eq. H6| the upper bound of the utility disparity of policy  is,
0 < |Ex [u(T,Y)|az,z € Zpy1] — Ex [u(T,Y)]az, z € Zp, 0]
< (E[ (1,Y)|a2,z S th’ } E[ (1,Y)|CL2,Z S Zh%()])
— (E[u(0,Y)|az, z € Zp, 1] — Eu(0,Y)]az, z € Zp,.0])

)

[’U/ 1 Y |a2,z € th ] —-E [’U,(LY”(I%Z € Zfllz,o])

P
/N
—

47
[u(0,Y)]as, z € Z,,. 1] —E [u(0,Y)]as, 2 € 22270] ))

+
’%’\“‘@E%

/N

[ 1 Y |CL2,Z S th,l \ th ] E [u(l,Y)|a2,z S Zh%o \ 22270] )

[4(0,Y )z, 2 € Zu1 \ Zpy ] — E [0(0, V)]0, 2 € Znyo\ Zh0]))-

For z € Zy,

_—
&

hy GS

<E[u(1,Y)|az 2 € 2, \ Z,] < u(l,1), (48)
<E =

[w(0,Y) | ag,z € Zp, \ 2},
we have:

0<E {u(l,Y) | az, 2 € Zn, 1 \2;12,1} “E [u(l,Y) | a2,z € Zny0\ 2}, o < u(1,1) = u(1,0),

(49)
w(0,1) = u(0,0) S E[u(0,Y) | 02,2 € Zup \ 2| —E [u(0,Y) | az,2 € Znyo\ 21, 0] <0
(50)
Then, Eq. @7 can be reorganized as follows:
0 < |E;[u(T,Y)|az,z € Zpy1] — Ex [u(T,Y)|az, z € Zn, 0]l
o
< (1 - 5) : (u(l,O) —u(1,1) — u(0,0) + u(0, 1)) A 51)
+ % : (u(1, 1) — u(1,0) — u(0, 1) + u(0, 0)).
Based on Eq. 38 and[39] it follows that:
A; <0. (52)
Therefore, the optimal utility disparity is achieved when:
A =0". (53)

When f4 is perfectly aligned with fr (o* < a = 0) and Eq. [53]does not hold, there are infinitely
many cases that

|E [u(T,Y)|ag, z € Zny 1] — Ex [u(T,Y)]az, 2 € Zny 0l (54)
> |Erx [w(T,Y)|az, 2 € Zp, 1] — Exv [u(T,Y)|az, z € Zp, 0]l .
Case 2. For any confidence [hy, a1] with ay > @1, according to Egq. @ it holds that,
PY=1|a1,2€ 2p,1)—PY =1|a1,2 € Zp,0) >0. (55)
Furthermore, there exists another [hy, as), where ag > ao > ay and hy > hy such that,
PY=1]|as,2€ Zp,1)—PY =1]az,z€ Zp,0) <0. (56)
According to Lemmal[A.2} we have:
Ew(l,Y)|ar,z € Zp, 1] —Eu(l,Y)|a, z € Z4,0] 57)

E[u(0,Y)|a1,z € Zp, 1] —Eu(0,Y)]a,z € Zh0] -
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Combining Eqs. [57} M3|and @4 it holds that,
(E [u(O, Y)las, z € Z;LZ’J —E [u(O,Y)|a2,z € Z;lz,o:l )
~ (E[u(1,Y)laz, 2 € Z,,] ~E [u(1,Y)laz, = € ] ) (58)
< (U(L 1) - u<1a 0) - ’U/(O7 1) + U(0,0)) : AQ'
where,
Ay = P(Y =1lay,z € Z;Ll,l) — P(Y =1lay,z € Z,’lho)
— P(Y = 1|CL2,Z S Z}/L%l) + P(Y = 1|CL2,Z € 22270)
AsP(Y =1]as,z2 € Zp,1) — P(Y =1 ag,z € Zp,,0) <0, it holds that,
E[u(1,Y)|az,z € Zp, 1] — E[u(1,Y)|az, 2z € Zp, 0]

59
<0 <E[u(0,Y)]az, z € Zny1] — E[u(0,Y)|a, 2 € Zny0). %)
Based on Eq. the upper bound of the utility disparity of policy T is,
0 < |E; [u(T,Y)|az,z € Zp,1] — Ex [u(T,Y)]az, z € Zp, o]
< (E [U(O,Y)|CL2, AS thﬂ —E [U(O, Y)|a2, FAS thﬁo])
— (E [u(l,Y)|a2,z S th,l] —E [u(l,Y)|a2,z S Zh%o])
@
- (1-5)
2
. ((E [u(O,Y)|a2,z € Z;LQJ] —F [u(O,Y)|a2,z € Z}/Lg,o] )
(60)
~ (B [u(1,Y)|az, 2 € 2, 1] ~ E [u(1,Y)|az, 2 € Z, 0] ))

L
2
(B [w(0,Y)|az, 2 € Zny1 \ Z4,1] — E [u(0,Y)laz, 2 € Zns0\ Zh,0])
— (E [U(I,Y”CLQ,Z S th,l \ Z;L%l] —E [’U,(l,Y)|CL2,Z S th,() \ Z;L%Ojl ))
Forz € Zp, \ Z,’lz, according to Eq. it holds that,

u(1,0) —u(1,1) <E [u(l, Y) | as, 2 € Zp, \2;12,1} ) [u(l, Y) | az, 2 € Znyo )\ 322,0} <o,
(61)
0<E [u(o,y) | az, 2 € 2,1 \z,gz’l] ~E [u(o,y) | az,2 € Zny0 )\ z;%o] < u(0,0) — u(0, 1).
(62)
Then, Eq.[60| can be reorganized as follows:

0 < |E;[u(T,Y)|az,z € Zp,1] — Ex [u(T,Y)|az, z € Zn, 0]
< (1-3) - (1, 1) = u(1,0) = u(0,1) +u(0,0)) - Ay 63)
(e

+ 5" (u(1,1) — u(1,0) — u(0,1) + u(0,0)).
Based on Eq. [53]and[56] it follows that:
Ay > 0. (64)
Therefore, the optimal utility disparity is achieved when:
Ay =07, (65)

When f4 is perfectly aligned with fy (o* < a = 0) and Eq. [63]does not hold, there are infinitely
many cases that

|Ex [w(T,Y)|az, 2z € Zp, 1] — Ex [w(T,Y)]az, 2 € Zn, 0| ©6)
> ‘Eﬂ-* [U(T, Y)‘G/Q, A Zhg,l] — E - [U(T, Y)|a2, z e th,oﬂ .
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Case 3. For any confidence [hy,a1] with a; < @y, according to Eq. @ it holds that,

PY=1|a1,2€ Zp,1)—PY =1]a1,2€ Zp,0) <O0. (67)
Furthermore, there exists another [ha, as), where Gy > as > ay and he > hy such that,
PY=1|a2,2€ Zp,1)—PY =1]az,2€ Zp,0) <O0. (68)

When the decision-maker consistently chooses T’ = 1, it holds that:
(E [u(1,Y)|a1,z € 25, 1] —E[u(1,Y)]a1, z € 2}, o))
+ (E [u(L,Y)|ag,z € Z;, 1] —E [u(1,Y)|az, z € 2}, 4]) (69)
= (u(1,1) — u(1,0)) - As.
where,
Az =P(Y =1lar,z € Z;, 1) — P(Y =1|a1,z € Z, o)
+ P(Y =1lag,z € 222,1) — P(Y =1lag, z € Z;LQ’O).
Similarly, when the decision-maker consistently chooses T' = 0, it holds that,
(E [u(0,Y)|a1,z € Z;, 1] —E[u(0,Y)|a,z € 2, 4])
+ (E [u(0,Y)]az, z € 2}, 1] — E [u(0,Y)]az, z € 2}, ,]) (70)
= (u(0,1) — u(0,0)) - As.

According to Corollary[A.2] we have:
E[uw(l,Y)|a1,z € Zp, 1) —Eu(1,Y)|a1, 2 € Zp, 0]
<E[u(0,Y)]a1,z € Zp, 1] —Eu(0,Y)]a1, 2 € Zp, 0] -

Combining Egs. [71}[69 and[70} it holds that,
(E [u(0,Y)|az,z € Z;, 1] —E[u(0,Y)]as, z € Z}, 0])
— (E [u(1,Y)|az,z € Z;, ] —E[u(1,Y)]as, z € 2}, 0]) (72)
< (u(0,1) —u(0,0) —u(1,1) +u(1,0)) - As.

(71)

AsP(Y =1]as,2 € Zp,1) —P(Y =1]as,z € Zp,,0) <0, it holds that,
E[u(l,Y)|ag, z € Zp, 1] — Eu(1,Y)|az, z € Zp, 0]

<0< E[u(0,Y)|az,z € Zp,1] —E[u(0,Y)]az, z € Zn, 0] - (73)
Based on Eq. [73] the upper bound of the utility disparity of policy T is,
0 < |Ex [uw(T,Y)|az,z € Zpy1] — Ex [u(T,Y)|az, z € Zp, 0]
< (E[u(0,Y)|ag, z € Zn, 1] —E[u(0,Y)|az, z € Zp,0])
—(Eu(l,Y)|az, z € Zp,1] —Eu(1,Y)|az, 2 € Zh,.0])
@
=(1-3)
: (( [u(0,Y)]as, z € 25,,] —E [u(0,Y)]az, 2 € 2}, 4] ) .

: ((E [w(0,Y)]az, z € Zny1 \ Zh,1] —E [u(0,Y)]az, 2 € Zny 0\ Zh,0] )
— (E [u(1,Y)laz, € Zpy1 \ Zhn] — B [u(1,Y)laz, 2 € Znyo\ B, o)) )-
Forz € Zp, \ Z, ,» according to Eq. it holds that,
u(1,0) —u(1,1) <E [u(l,y) | az, 2 € Zn, 1 \222,1] ~E [u(l,y) | a2,z € Zny0 )\ z,;z,o] <.
(75)
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0<E [u(o,y) | az, 2 € Zn, 1 \z,gz)l] ) [u(o,y) | a2,z € 2,0\ 2}, o < u(0,0) — u(0,1).

(76)
Then, Eq.[74|can be reorganized as follows:
0 < |Ex [u(T,Y)|az,z € Zpy1] — Ex [u(T,Y)|az, z € Zp, 0]
@
< (1-5) - ((1,0) = u(1,1) = u(0,0) +u(0,1)) - Ag an
+ % (u(1,1) = u(1,0) — u(0, 1) + u(0,0)).
Based on Eq. [67]and[68] it follows that:
Ay < 0. (78)
Therefore, the optimal utility disparity is achieved when:
As=0". (719)

When f 4 is perfectly aligned with fr (o* < a = 0) and Eq. [/9 does not hold, there are infinitely
many cases that

|Ex [w(T,Y)|az, 2z € Zpy 1] — Ex [w(T,Y)|az, 2z € Zn, 0]l

80
> ‘Eﬂ-* [U(T, Y)‘ag, z € Zhg,l] — Eﬂ-* [U(T,Y”CLQ, S Zh%oﬂ . ( )
Case 4. For any confidence [hy,a1] with a; > @y, according to Eq. @ it holds that,
PY=1|a1,2€ 2p,1)—PY =1|a1,2 € Zp,0) > 0. (81)
Furthermore, there exists another [ha, as), where ay > ay > ag and hy > hy such that,
PY=1]|a2,2€ Zp,1)—PY =1]az,z€ Zp,0) >0. (82)
According to LemmalA.2} we have:
E [u(l, Y)|(11, z € Zhl,l] —E [U(]., Y)|CL1, S Zhhd (83)

> E[u(0,Y)]a1,z € Zp, 1] —Eu(0,Y)]ar, 2z € Zp,0] -
Combining Egs. [83} [69 and[70} it holds that,
(]E [u(17Y)|a27z € 2;12,1] —-E [u(l,Y)|a2,z € 22270])
— (E [u(0,Y)|az,z € Z;, 1] —E [u(0,Y)]az, z € 2}, 0]) (84)
< (u(1,1) —u(1,0) —u(0,1) +u(0,0)) - Ay.
where,
Ay =P =1lay,z € 3;11,1) —P(Y =1lay,2z € Zfln,o)
+ P(Y =1]ag, 2 € Z,’lz,l) — P(Y =1lag, z € Z}/sz)-
AsP(Y =1]ag,z2 € Zp,1) —P(Y =1]as,z € Zp,,0) > 0, it holds that,
E[u(0,Y)|az, z € Zp,1] — E[u(0,Y)]as, z € 2, o]

85
<0 <E[u(l,Y)]ag, z € Zn,] — Efu(l,Y)|az, = € Zny0].- (83)
Based on Eq. [83] the upper bound of the utility disparity of policy T is,
0 < |E; [u(T,Y)l|az,z € Zp,1] — Ex [u(T,Y)|az, z € Zn, 0]
< (Eu(l,Y)|as,z € Zp,1] —E[u(l,Y)|az, z € Zp,0])
— (E[u(0,Y)|az,z € Zp, 1] — Eu(0,Y)]az, z € Zh,.0])
«
=(1-3)
(B [u(1,Y)|az, 2 € 2, ] ~E[u(1,Y)|az, 2 € Z4,,])
(86)
— (E [u(0,Y)|az, z € Zj, 1] —E [u(0,Y)|as, z € Zj, o] ))
Lo
2
(B [u(1,Y)|az, 2 € Zny1 \ 1, 1] —E [u(1,Y)laz, € Zns0\ Zhy0])

[w(0,Y)|az, 2 € Zny1 \ 24, 1] — E [u0,Y)]az, 2 € Zns0\ Zh0]) )
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Forz € Z, \ Z,’Lz, according to Eq. it holds that,

0<E [U(LY) | a2, 2 € Zny 1 \322,1} ) [ua,Y) | a2,z € Zny0\ 2}, o < u(1,1) = u(1,0),

(87)
u(0,1) = u(0,0) S E[u(0,Y) | 02,2 € Zupr \ Zp, | —E [u(0,Y) | az,2 € Zny0\ 24, 0] <0
(88)
Then, Eq.[86| can be reorganized as follows:
0 < |Ex [w(T,Y)|az,z € Zpy1] — Ex [u(T,Y)|az, z € Zp, 0]
@
< (1-5) - (1, 1)~ u(1,0) = u(0,1) +u(0,0)) - Ay (89)
+ 5 - (u(1,1) = u(1,0) — u(0,1) +u(0,0))..
Based on Eq. [81|and[82) it follows that:
Ay > 0. (90)
Therefore, the optimal utility disparity is achieved when:
Ay =0T, (C2))

When f4 is perfectly aligned with fy (o < o = 0) and Eq. [91)does not hold, there are infinitely
many cases that

]E,r [w(T,Y)|az,z € Zj, 1] — Ex [u(T,Y)|ag, z € z;w,o]|

, , (92)
> |Er- [u(T,Y )|ag, z € 2}, 1] — Ene [w(T,Y)|az, z € 2}, 0] |-

Based on the above proof, we have demonstrated the existence of scenarios in which, even when f 5
is perfectly aligned with fy, any monotone policy 7 leads to a suboptimal utility disparity, thereby
supporting Theorem O

A.4 PROOF OF THEOREM [3.6]

Theorem [3.6] (Utility disparity upper bound under o-human-alignment) For a given Al-assisted
decision-making process with a utility function u(7",Y) satisfying Eq. |1/ and the human decision-
maker with any monotone Al-assisted decision policy = € II(H, A), if the Al confidence func-
tion fa is ap-human-alignment and satisfies ag-inter-group-alignment, then the utility disparity is
bounded by,

|IE7F [U(Tv Y)|fa(z) =a,z € Zh,l] —E, [’U,(T, Y)'fA(Z) =a,z € Zh,O]l

< (u(1,1) — u(0,1) — u(1,0) + u(0,0)) - (% + (1 - %) - (3ay — a?])) .9

Proof.  Given ag-inter-group-alignment, for any two confidence levels {h1, a1} and {ha, a2} with
ag > ay and hy > hy, the following conditions hold for all z € 2}/ and z € Zj] , respectively:

—ay < P(Y =1lay,z € 2y, 1) — P(Y =1]a1,z € 2}/ ) < ay. (94)
—ay < P(Y =1lag,z € 2}, 1) — P(Y = 1]ag,z € 2, o) < oy, (95)

where Z}! C Zp, and 2] C Zp, with |2} | > (1 — ag/2)-|Zh] and |Z]! | > (1 — ag/2)- | Zp,].
Referring to Case 1 in Appendix[A.3] we have the following utility disparity upper bound for Al
confidence levels {ha, as}:

0 < |Ex [w(T,Y)|az,z € Zpy1] — Ex [u(T,Y)|az, z € Zp, 0]
< (1 - %) (u(1,0) — u(1,1) — u(0,0) + u(0,1)) - A, (96)
% ~(u(1,1) — u(1,0) — (0, 1) + u(0,0)).

where,
A =P(Y =1lay,z € Z,'n’l) — P(Y =1]ay,z € Zf/n,o)
—P(Y =1lag,z € 2}, ,) + P(Y = 1lag, z € 2}, ).
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Using the conditions given by Egs. [94and[93] we have:
—2ay < Ay < 2ay. 97
where,
Ay = P(Y =1|ay, 2z € Z;Ll’l N Z,'{hl) — P(Y =1|ay,z € Zf/n,o N Z;Lll,o)
— P(Y =1lag, z € Z,’ml N Z;L’%l) + P(Y = 1]ag, 2z € Z}/LQ,O N Z}%,O)

For z € Z; \ Z}!, it holds that,
—2<A3<2. (98)

where,
Az =P(Y =1lay, 2 € Z;th \ZI/'L/l,l) - P(Y =1lay,z € Zilu,o \ Z,’l'ho)
— P(Y =1lag,z € 3;12,1 \Z;’;’l) + P(Y =1]ag, z € Z;m’o \ Z;z/z,0>~
Incorporating these conditions into the utility disparity upper bound in Eq. [96] we get:
0 < |Ex [w(T,Y)|az,z € Zpy1] — Ex [w(T,Y)|az, z € 24, 0]

< (o1, 1) = u(1,0) — u(0,1) +u(0,0)) - (1= ) - ((1-52) - 20, + & 2) + )

2 2 2
= (u(1,1) — u(0,1) — u(1,0) + u(0,0)) - (% + (1 - %) - (3 — aj)) .
99)
This bound can be similarly derived for Cases 2~4 in Appendix[A.3] yielding a consistent utility
disparity bound as stated in Theorem[3.6| O

A.5 PROOF OF THEOREM [4.4]

Theorem (ar/2-Group-level multicalibration leads to «-human-alignment and «-inter-group-
alignment meanwhile) Let f4 : Z — [0,1] be an AI’s confidence function. Suppose for each
human decision-maker group ¢ € {1,...,|S|}, fa(z|z € Z4.s,;) is a/2-multicalibrated with respect
to the collection C = {Z}, 5, },,cq With Zp, s, = {(z,h,s) |fu(x) = h, S = s;}, then f4 is both
«-aligned with respect to the human decision-maker’s confidence function fy and a-inter-group
aligned across the human decision-maker groups.

Proof.  If in the i-th sensitive group, fa is a/2-multicalibration with respect to {2}, s, }), ., then,
according to the Deﬁnition for any h € H, there exists Z; C Zj, with |Z;| > (1 — %) |1 2Zn
such that, for any Al confidence a1, hy € [0, 1], it holds that,

@
[P =1 fa(z) =a1,2 € 2}, 1) — | < 5 (100)
e
|P(Y =1 fa(z) =a1,2 € 2}, o) —a1| < 5 (101)
From the given inequalities, we have:
P(Y =1|faz) =ar,2€ 2}, ) € {al—%,m%—%], (102)
, @ o

PY =1] fa(z) =a1,2€ 25, ) € [a1_57a1+§]' (103)

Then, it’s natural that f 4 satisfied a-inter-group-alignment as,
|P(Y =1 fa(z) = a1,z € Z}, 1) —P(Y =1] fa(z) = a1,z € 2}, y)| < a. (104)

As for any human decision-maker confidence 0 < hy < hy < 1and 0 < a1 < ag < 1, it holds that,

(0% «

P(Y =1 fa(z) =as,2€ 2} ) € {a2—§,a2+§]. (105)
(0% «

P(Y =1]fa(z) =az,z€ Z,,) € [ag—i,ag—i—g]. (106)
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For P(S =1|a,z € Z})) 4+ P(S = 0|a, z € Z}) = 1, it holds that,

P(Y =1lai,z€ Z},)) — P(Y = 1]az,z € Z},,)

:P( =1lay,z € 2}, 1) - P(S=1]a1,z € Zp))
P(Y =1la1,z € Z;,, o) - P(S =0la1,z € Z},)
P(Y =1lag,z € 2, ;) - P(S = 1l]a, z € Z},)
P(Y =1lag,z € 2, ) - P(S = 0lag, 2z € Z},)
=P(Y =1la1,z € 25, 1) - P(S =1la1,z € Z},)
+P(Y =1lar,z € 2}, ) (1= P(S =1|a1,z € Z})) (107)
— P(Y =1lag,z € Z},,,) - P(S = 1|az, z € Z},)
— P(Y =1lag,z € 2}, ) - (1 - P(S = 1l]ag, z € Z},,))
< P(S 1|a1,zez;”)-(a1+%)+(1—P(5:1|a17zez,gl))-(a1+%)

— P(S =1las,z € Z;,) - (a2 — %) — (1 — P(S =1|ag, z € Z,’lz)) (ag — 2)

=a+a —ay <a.

As fa is a/2-multicalibrated with respect to the collection C, this implies that f 4 is «/2-calibrated
with respect to any of the sets Zj, € Z. Consequently, 4 satisfies a-human-alignment and a-inner-
group-alignment meanwhile. O

A.6 ALGORITHM OF GROUP-LEVEL CONFIDENCE MULTICALIBRATION

The procedure is outlined in Algorithm|[I]

A.7 EXPERIMENT SETTINGS

A.7.1 DATASET PROCESSING

Following the data processing (Corvelo Benz & Rodriguez, 2023), we transform the original
dataset’s confidence values from a scale of [—1, 1] to [0, 1] to ensure consistency with our human-Al
interactive model (Section [2). In the original dataset, predictions by participants are from different
but overlapping sets of countries across tasks, who are told the Al advice has different accuracy.
Thus, to control for these confounding factors, we focus exclusively on participants from the United
States who are informed that the Al advice had an 80% accuracy. Furthermore, we use gender as
a sensitive attribute, a recommended factor that may influence expertise of human decision-makers
across different tasks but should be treated with equal utility in Al assistance for social good (Zap-
pala et al.| 2024} |Ward et al.| 2022)). We exclude records where gender information is not provided.
The data are then preprocessed to filter out samples with missing information and confounding
factors (Appendix [A.7.T)), resulting in 14, 999 Al-assisted decision-making records from 469 partic-
ipants overall, as detailed in Table E}

A.7.2 DISCRETIZATION PROCESS

In the following, we present a detailed description of the discretization parameters used in our ex-
periments: the human confidence h is discretized into 3 bins per task, {#1, H2, H3}, corresponding
to low, medium, and high confidence levels, respectively. The bin boundaries are set such that each
bin contains approximately equal probability mass, with the bin values assigned as the average con-
fidence within each bin. The AI’s confidence a are divided into uniformly sized bins per task with
centred value given by A = %, %, B f} where A = 1/8. The above process discretizes the
continuous confidence space H x A 1nt0 a grid of 3 x |1/A] cells. The (4, j)-th grid cell contains

the samples Z/ = {(z,h,s) € Z|h € H,, fa(z) € [A[j] — A/2, A[j] + \/2)}. Furthermore, based
on the value of the sensitive attribute s € S, the samples in ZJ can be further divided into ZJ =
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Algorithm 1: Group-Level Confidence Multicalibration

Input: o, A

Result: calibrated Al confidence function: fy4
1 Initialize Cy < {Zp,1}),cq With Zp 1 < {(z, h, 8) [fu ()
2 Initialize Co = {20}, cq With 20 < {(2, h, 5) | fu(2)
3 repeat

I
[
—

I
> >

4 for Zh71 € (Cy do

5 for a € {1,...,|1/X]} do

6 Let Zj | — Zp1 N{z]fa(2) € [Ala] — A/2,Ala] + \/2)}
7 if P(z € 25 ,) <al\-P(z € Z5,) then

8 | continue

9 end

10 if‘E{fA(z)\zGZﬁ,l —P(Y:1|zeZg,1)‘ < G then
" | () > Sa(z) + PY = 1|z € Z8)) —E [ fa(2)|z € 23, | forall 2 € 23
12 end

13 end

14 end

15 until no 22,1 updated,

16 for a € {1,...,|1/\|} do

v | de(Z) — E[fa(2)] Unen C1 N {z|fa(2) € [Ala] — A/2,Ala] + A/2)}]
18 €n

19 repeat

20 for Z}L7Q € Cydo

2 for a € {1,...,|1/X]} do

2 Let 25 o — 2,0 N{z]fa(2) € [Ala] — A/2,Ala] + \/2)}
2 if P(z € 2 ) <@\~ P(z € Z3,0) then

2 | continue

25 end

26 if ‘E [fA(z)\z ezr|-PY=1z¢ z;;o)‘ < G then
n ‘ Fa(2) = fa(2) + P(Y = 1]z € Z30) — E [ fa(2)|z € Zg,] forall 2 € Zf,
28 end

29 end

30 end

31 until no Z}io updated,

2 for a € {1,...,|1/)\]} do

B | de(z) — E[fa(2)] Unen Co N{z[fa(z) € [Ala] — A/2, Ala] + A/2)}]
34 en

35 return f4

[
@

Table 2: The details of human-Al interactions dataset (grouped by “gender”)

Human Decision-makers Count

Experiment Task Type  Decision Record
S=0 S=1
1 Art image 4637 77 68
2 Cities image 2878 52 38
3 Sarcasm text 4543 70 72
4 Census  tabular 2941 49 43

{251,25;0},Where Zil = {(x,h,s) € Z|h € H;, fa(z) € [A[j] — A/2,A[j] +A/2),S =1} and
2y ={(x,h,s) € Z|h € Hy, fa(z) € [Alj] = \/2,A[j] + A/2), 5 = 0}.
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Figure 4: Visualization of EAE and EIAE metrics following group-level multicalibration, with pa-
rameters & ~ [0.0001,0.01,0.1] and A ~ [0.1,0.125,0.2].

Table 3: The details of human-Al interactions dataset (grouped by “education”)

Human Decision-makers Count

Experiment Task Type  Decision Record

S=0 S:l
1 Art image 4637 27 118
2 Cities image 2878 13 77
3 Sarcasm text 4543 23 119
4 Census  tabular 2941 14 78

A.8 ADDITIONAL EXPERIMENTS

A.8.1 IMPACT OF DISCRETIZATION PARAMETERS ON GROUP-LEVEL MULTICALIBRATION
EFFICIENCY

Figure [ presents the evaluation of EAE and EIAE metrics across 4 tasks after performing group-
level calibration with varying hyperparameters & ~ [0.0001,0.01,0.1] and A ~ [0.1,0.125,0.2].
The results indicate a general trend where smaller values of a + A (reflected in results closer to the
left or bottom of the plots) lead to lower EAE and EIAE values. We focus on the general trend as we
have claimed that discrete evaluation metrics like EAE and EIAE provide a more accurate reflection
of alignment when there are significant changes and may fail to capture alignment across the entire
continuous confidence space fully. Nevertheless, the general trend strongly supports the notion that
decreasing & 4+ A leads to improved human-alignment and inter-group-alignment.

A.8.2 GENERALIZATION TO MULTIPLE GROUPS

In this experiment, we introduce the additional demographic feature, “education,” which contains
numerical values ranging in 2 ~ 8, reflecting human decision-makers with varying levels of educa-
tional attainment. We transform this feature into a binary demographic variable: decision-makers
with “education”> 6 are categorized as Group S = 0, while those with “education”< 6 are catego-
rized as Group S = 1.

We first validate the effectiveness of our method under the new demographic feature “education.”
The count of human decision-markers across different groups is shown in Table[3] The experimental
results are presented in Figures[5]and[6]

We further conduct experiments considering both “gender” and “education” as demographic fea-
tures, resulting in 4 human decision-maker groups: S = (0,0), S = (0,1), S = (1,0), and
S = (1,1). The count of human decision-markers across different groups is shown in Table El
The utility disparity is measured using the standard deviation of utility distributions across these
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Table 4: The details of human-Al interactions dataset (grouped by both “gender” and “education’)

Human Decision-makers Count

Experiment Task Type  Decision Record
S=(0,0)0 S=(0,1) S=(1,00 S=(1,1)
1 Art image 4637 13 64 14 54
2 Cities image 2878 7 45 6 32
3 Sarcasm text 4543 13 57 10 62
4 Census tabular 2941 10 39 4 39
Al-assisted decision making P(T = 1) = i(h, a) Al-assisted decision making P(T = 1) = ni(h, a)

0.050
0.82 > %
‘= 0.025 A
] A
Jom BB e : T T
= a 0.000 g i
Som s TFG =1
076 = -0.025 A No-calibration
: A > [ Multicalibration
-0.050 [ Group-level Multicalibration
0.74
1 2 3 4 1 2 3 4
Experiment Experiment

Figure 5: Grouped by “education”: Statistics of utility and utility disparity over 100 experiments,
where the final decision P(T = 1) = w(h, a) is made by human with AT assistance. The Al con-
fidence is either uncalibrated or calibrated using multicalibration and group-level multicalibration,
respectively.

subgroups:
Disp = Std(E[L(T' = Y) | S = (0,
EL(T=Y)|S=(1,0)],E[L(T

The results are presented in Figures[7]and [§]

OLEMT =Y)|S=(0,1)],

Y) [ S = (1,1)). (108)

Across these experiments, where human decision-makers are grouped by either single or multiple
demographic features, the results align with expectations and demonstrate the following key take-
aways:

1. Effectiveness in improving fairness across different settings: Across both single-group and
multi-group settings, group-level multicalibration consistently outperforms both uncali-
brated and multicalibration methods in terms of fairness. Notably, it avoids the fairness
deterioration observed with multicalibration (i.e., tasks 1, 3 and 4 in Figure El task 3 in
Figure[7).

2. Comparable utility performance: Group-level multicalibration achieves utility performance
comparable to multicalibration. For example, in Figure [5] group-level multicalibration
demonstrates similar utility performance compared to multicalibration. In tasks 2, and 4 of
Figures[7} group-level multicalibration shows superior utility performance. Although there
is a slight accuracy drop in task 1, with the 25th percentile decreasing by 0.9% compared
to multicalibration, this trade-off is considered acceptable given the significant gains in
fairness across groups.

3. Adjusting Al confidence to mitigate utility disparities: Group-level multicalibration effec-
tively adjusts Al confidence to reduce or reverse utility disparities in Al-only decisions,
compensating for disparities observed in human-only decisions. This behavior remains
consistent across different group settings (Figures [6]and [g).
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Figure 6: Grouped by “education”: The utility and utility disparity where the final decision
P(T = 1) = w(h) is made by human-only or Al-only where Al confidence is either uncalibrated or

calibrated using multicalibration and group-level multicalibration, respectively.
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Figure 7: Grouped by both “gender” and “education”: Statistics of utility and utility disparity over
100 experiments, where the final decision P(T" = 1) = m(h, a) is made by human with AT assis-
tance. The Al confidence is either uncalibrated or calibrated using multicalibration and group-level

multicalibration, respectively.
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Figure 8: Grouped by both “gender” and “education”: The utility and utility disparity where the
final decision P(T' = 1) = (k) is made by human-only or Al-only where AI confidence is either
uncalibrated or calibrated using multicalibration and group-level multicalibration, respectively.
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